machdep.c revision 107521
1/*-
2 * Copyright (c) 1992 Terrence R. Lambert.
3 * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * William Jolitz.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 *    must display the following acknowledgement:
19 *	This product includes software developed by the University of
20 *	California, Berkeley and its contributors.
21 * 4. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 *	from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
38 * $FreeBSD: head/sys/amd64/amd64/machdep.c 107521 2002-12-02 19:58:55Z deischen $
39 */
40
41#include "opt_atalk.h"
42#include "opt_compat.h"
43#include "opt_cpu.h"
44#include "opt_ddb.h"
45#include "opt_inet.h"
46#include "opt_ipx.h"
47#include "opt_isa.h"
48#include "opt_maxmem.h"
49#include "opt_msgbuf.h"
50#include "opt_npx.h"
51#include "opt_perfmon.h"
52#include "opt_kstack_pages.h"
53
54#include <sys/param.h>
55#include <sys/systm.h>
56#include <sys/sysproto.h>
57#include <sys/signalvar.h>
58#include <sys/imgact.h>
59#include <sys/kernel.h>
60#include <sys/ktr.h>
61#include <sys/linker.h>
62#include <sys/lock.h>
63#include <sys/malloc.h>
64#include <sys/mutex.h>
65#include <sys/pcpu.h>
66#include <sys/proc.h>
67#include <sys/bio.h>
68#include <sys/buf.h>
69#include <sys/reboot.h>
70#include <sys/callout.h>
71#include <sys/msgbuf.h>
72#include <sys/sched.h>
73#include <sys/sysent.h>
74#include <sys/sysctl.h>
75#include <sys/ucontext.h>
76#include <sys/vmmeter.h>
77#include <sys/bus.h>
78#include <sys/eventhandler.h>
79
80#include <vm/vm.h>
81#include <vm/vm_param.h>
82#include <vm/vm_kern.h>
83#include <vm/vm_object.h>
84#include <vm/vm_page.h>
85#include <vm/vm_map.h>
86#include <vm/vm_pager.h>
87#include <vm/vm_extern.h>
88
89#include <sys/user.h>
90#include <sys/exec.h>
91#include <sys/cons.h>
92
93#include <ddb/ddb.h>
94
95#include <net/netisr.h>
96
97#include <machine/cpu.h>
98#include <machine/cputypes.h>
99#include <machine/reg.h>
100#include <machine/clock.h>
101#include <machine/specialreg.h>
102#include <machine/bootinfo.h>
103#include <machine/md_var.h>
104#include <machine/pc/bios.h>
105#include <machine/pcb_ext.h>		/* pcb.h included via sys/user.h */
106#include <machine/proc.h>
107#ifdef PERFMON
108#include <machine/perfmon.h>
109#endif
110#ifdef SMP
111#include <machine/privatespace.h>
112#include <machine/smp.h>
113#endif
114
115#include <i386/isa/icu.h>
116#include <i386/isa/intr_machdep.h>
117#include <isa/rtc.h>
118#include <machine/vm86.h>
119#include <sys/ptrace.h>
120#include <machine/sigframe.h>
121
122extern void init386(int first);
123extern void dblfault_handler(void);
124
125extern void printcpuinfo(void);	/* XXX header file */
126extern void earlysetcpuclass(void);	/* same header file */
127extern void finishidentcpu(void);
128extern void panicifcpuunsupported(void);
129extern void initializecpu(void);
130
131#define	CS_SECURE(cs)		(ISPL(cs) == SEL_UPL)
132#define	EFL_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
133
134#if !defined(CPU_ENABLE_SSE) && defined(I686_CPU)
135#define CPU_ENABLE_SSE
136#endif
137#if defined(CPU_DISABLE_SSE)
138#undef CPU_ENABLE_SSE
139#endif
140
141static void cpu_startup(void *);
142static void fpstate_drop(struct thread *td);
143static void get_fpcontext(struct thread *td, mcontext_t *mcp);
144static int  set_fpcontext(struct thread *td, const mcontext_t *mcp);
145#ifdef CPU_ENABLE_SSE
146static void set_fpregs_xmm(struct save87 *, struct savexmm *);
147static void fill_fpregs_xmm(struct savexmm *, struct save87 *);
148#endif /* CPU_ENABLE_SSE */
149SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL)
150
151int	_udatasel, _ucodesel;
152u_int	atdevbase;
153
154#if defined(SWTCH_OPTIM_STATS)
155extern int swtch_optim_stats;
156SYSCTL_INT(_debug, OID_AUTO, swtch_optim_stats,
157	CTLFLAG_RD, &swtch_optim_stats, 0, "");
158SYSCTL_INT(_debug, OID_AUTO, tlb_flush_count,
159	CTLFLAG_RD, &tlb_flush_count, 0, "");
160#endif
161
162int cold = 1;
163
164#ifdef COMPAT_43
165static void osendsig(sig_t catcher, int sig, sigset_t *mask, u_long code);
166#endif
167#ifdef COMPAT_FREEBSD4
168static void freebsd4_sendsig(sig_t catcher, int sig, sigset_t *mask,
169    u_long code);
170#endif
171
172long Maxmem = 0;
173
174vm_offset_t phys_avail[10];
175
176/* must be 2 less so 0 0 can signal end of chunks */
177#define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(vm_offset_t)) - 2)
178
179struct kva_md_info kmi;
180
181static struct trapframe proc0_tf;
182#ifndef SMP
183static struct pcpu __pcpu;
184#endif
185
186struct mtx icu_lock;
187
188static void
189cpu_startup(dummy)
190	void *dummy;
191{
192	/*
193	 * Good {morning,afternoon,evening,night}.
194	 */
195	earlysetcpuclass();
196	startrtclock();
197	printcpuinfo();
198	panicifcpuunsupported();
199#ifdef PERFMON
200	perfmon_init();
201#endif
202	printf("real memory  = %u (%u MB)\n", ptoa(Maxmem),
203	    ptoa(Maxmem) / 1048576);
204	/*
205	 * Display any holes after the first chunk of extended memory.
206	 */
207	if (bootverbose) {
208		int indx;
209
210		printf("Physical memory chunk(s):\n");
211		for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
212			unsigned int size1;
213
214			size1 = phys_avail[indx + 1] - phys_avail[indx];
215			printf("0x%08x - 0x%08x, %u bytes (%u pages)\n",
216			    phys_avail[indx], phys_avail[indx + 1] - 1, size1,
217			    size1 / PAGE_SIZE);
218		}
219	}
220
221	vm_ksubmap_init(&kmi);
222
223	printf("avail memory = %u (%u MB)\n", ptoa(cnt.v_free_count),
224	    ptoa(cnt.v_free_count) / 1048576);
225
226	/*
227	 * Set up buffers, so they can be used to read disk labels.
228	 */
229	bufinit();
230	vm_pager_bufferinit();
231
232#ifndef SMP
233	/* For SMP, we delay the cpu_setregs() until after SMP startup. */
234	cpu_setregs();
235#endif
236}
237
238/*
239 * Send an interrupt to process.
240 *
241 * Stack is set up to allow sigcode stored
242 * at top to call routine, followed by kcall
243 * to sigreturn routine below.  After sigreturn
244 * resets the signal mask, the stack, and the
245 * frame pointer, it returns to the user
246 * specified pc, psl.
247 */
248#ifdef COMPAT_43
249static void
250osendsig(catcher, sig, mask, code)
251	sig_t catcher;
252	int sig;
253	sigset_t *mask;
254	u_long code;
255{
256	struct osigframe sf, *fp;
257	struct proc *p;
258	struct thread *td;
259	struct sigacts *psp;
260	struct trapframe *regs;
261	int oonstack;
262
263	td = curthread;
264	p = td->td_proc;
265	PROC_LOCK_ASSERT(p, MA_OWNED);
266	psp = p->p_sigacts;
267	regs = td->td_frame;
268	oonstack = sigonstack(regs->tf_esp);
269
270	/* Allocate space for the signal handler context. */
271	if ((p->p_flag & P_ALTSTACK) && !oonstack &&
272	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
273		fp = (struct osigframe *)(p->p_sigstk.ss_sp +
274		    p->p_sigstk.ss_size - sizeof(struct osigframe));
275#if defined(COMPAT_43) || defined(COMPAT_SUNOS)
276		p->p_sigstk.ss_flags |= SS_ONSTACK;
277#endif
278	} else
279		fp = (struct osigframe *)regs->tf_esp - 1;
280	PROC_UNLOCK(p);
281
282	/* Translate the signal if appropriate. */
283	if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
284		sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
285
286	/* Build the argument list for the signal handler. */
287	sf.sf_signum = sig;
288	sf.sf_scp = (register_t)&fp->sf_siginfo.si_sc;
289	PROC_LOCK(p);
290	if (SIGISMEMBER(p->p_sigacts->ps_siginfo, sig)) {
291		/* Signal handler installed with SA_SIGINFO. */
292		sf.sf_arg2 = (register_t)&fp->sf_siginfo;
293		sf.sf_siginfo.si_signo = sig;
294		sf.sf_siginfo.si_code = code;
295		sf.sf_ahu.sf_action = (__osiginfohandler_t *)catcher;
296	} else {
297		/* Old FreeBSD-style arguments. */
298		sf.sf_arg2 = code;
299		sf.sf_addr = regs->tf_err;
300		sf.sf_ahu.sf_handler = catcher;
301	}
302	PROC_UNLOCK(p);
303
304	/* Save most if not all of trap frame. */
305	sf.sf_siginfo.si_sc.sc_eax = regs->tf_eax;
306	sf.sf_siginfo.si_sc.sc_ebx = regs->tf_ebx;
307	sf.sf_siginfo.si_sc.sc_ecx = regs->tf_ecx;
308	sf.sf_siginfo.si_sc.sc_edx = regs->tf_edx;
309	sf.sf_siginfo.si_sc.sc_esi = regs->tf_esi;
310	sf.sf_siginfo.si_sc.sc_edi = regs->tf_edi;
311	sf.sf_siginfo.si_sc.sc_cs = regs->tf_cs;
312	sf.sf_siginfo.si_sc.sc_ds = regs->tf_ds;
313	sf.sf_siginfo.si_sc.sc_ss = regs->tf_ss;
314	sf.sf_siginfo.si_sc.sc_es = regs->tf_es;
315	sf.sf_siginfo.si_sc.sc_fs = regs->tf_fs;
316	sf.sf_siginfo.si_sc.sc_gs = rgs();
317	sf.sf_siginfo.si_sc.sc_isp = regs->tf_isp;
318
319	/* Build the signal context to be used by osigreturn(). */
320	sf.sf_siginfo.si_sc.sc_onstack = (oonstack) ? 1 : 0;
321	SIG2OSIG(*mask, sf.sf_siginfo.si_sc.sc_mask);
322	sf.sf_siginfo.si_sc.sc_sp = regs->tf_esp;
323	sf.sf_siginfo.si_sc.sc_fp = regs->tf_ebp;
324	sf.sf_siginfo.si_sc.sc_pc = regs->tf_eip;
325	sf.sf_siginfo.si_sc.sc_ps = regs->tf_eflags;
326	sf.sf_siginfo.si_sc.sc_trapno = regs->tf_trapno;
327	sf.sf_siginfo.si_sc.sc_err = regs->tf_err;
328
329	/*
330	 * If we're a vm86 process, we want to save the segment registers.
331	 * We also change eflags to be our emulated eflags, not the actual
332	 * eflags.
333	 */
334	if (regs->tf_eflags & PSL_VM) {
335		/* XXX confusing names: `tf' isn't a trapframe; `regs' is. */
336		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
337		struct vm86_kernel *vm86 = &td->td_pcb->pcb_ext->ext_vm86;
338
339		sf.sf_siginfo.si_sc.sc_gs = tf->tf_vm86_gs;
340		sf.sf_siginfo.si_sc.sc_fs = tf->tf_vm86_fs;
341		sf.sf_siginfo.si_sc.sc_es = tf->tf_vm86_es;
342		sf.sf_siginfo.si_sc.sc_ds = tf->tf_vm86_ds;
343
344		if (vm86->vm86_has_vme == 0)
345			sf.sf_siginfo.si_sc.sc_ps =
346			    (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
347			    (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
348
349		/* See sendsig() for comments. */
350		tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
351	}
352
353	/*
354	 * Copy the sigframe out to the user's stack.
355	 */
356	if (copyout(&sf, fp, sizeof(*fp)) != 0) {
357#ifdef DEBUG
358		printf("process %ld has trashed its stack\n", (long)p->p_pid);
359#endif
360		PROC_LOCK(p);
361		sigexit(td, SIGILL);
362	}
363
364	regs->tf_esp = (int)fp;
365	regs->tf_eip = PS_STRINGS - szosigcode;
366	regs->tf_eflags &= ~PSL_T;
367	regs->tf_cs = _ucodesel;
368	regs->tf_ds = _udatasel;
369	regs->tf_es = _udatasel;
370	regs->tf_fs = _udatasel;
371	load_gs(_udatasel);
372	regs->tf_ss = _udatasel;
373	PROC_LOCK(p);
374}
375#endif /* COMPAT_43 */
376
377#ifdef COMPAT_FREEBSD4
378static void
379freebsd4_sendsig(catcher, sig, mask, code)
380	sig_t catcher;
381	int sig;
382	sigset_t *mask;
383	u_long code;
384{
385	struct sigframe4 sf, *sfp;
386	struct proc *p;
387	struct thread *td;
388	struct sigacts *psp;
389	struct trapframe *regs;
390	int oonstack;
391
392	td = curthread;
393	p = td->td_proc;
394	PROC_LOCK_ASSERT(p, MA_OWNED);
395	psp = p->p_sigacts;
396	regs = td->td_frame;
397	oonstack = sigonstack(regs->tf_esp);
398
399	/* Save user context. */
400	bzero(&sf, sizeof(sf));
401	sf.sf_uc.uc_sigmask = *mask;
402	sf.sf_uc.uc_stack = p->p_sigstk;
403	sf.sf_uc.uc_stack.ss_flags = (p->p_flag & P_ALTSTACK)
404	    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
405	sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
406	sf.sf_uc.uc_mcontext.mc_gs = rgs();
407	bcopy(regs, &sf.sf_uc.uc_mcontext.mc_fs, sizeof(*regs));
408
409	/* Allocate space for the signal handler context. */
410	if ((p->p_flag & P_ALTSTACK) != 0 && !oonstack &&
411	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
412		sfp = (struct sigframe4 *)(p->p_sigstk.ss_sp +
413		    p->p_sigstk.ss_size - sizeof(struct sigframe4));
414#if defined(COMPAT_43) || defined(COMPAT_SUNOS)
415		p->p_sigstk.ss_flags |= SS_ONSTACK;
416#endif
417	} else
418		sfp = (struct sigframe4 *)regs->tf_esp - 1;
419	PROC_UNLOCK(p);
420
421	/* Translate the signal if appropriate. */
422	if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
423		sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
424
425	/* Build the argument list for the signal handler. */
426	sf.sf_signum = sig;
427	sf.sf_ucontext = (register_t)&sfp->sf_uc;
428	PROC_LOCK(p);
429	if (SIGISMEMBER(p->p_sigacts->ps_siginfo, sig)) {
430		/* Signal handler installed with SA_SIGINFO. */
431		sf.sf_siginfo = (register_t)&sfp->sf_si;
432		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
433
434		/* Fill in POSIX parts */
435		sf.sf_si.si_signo = sig;
436		sf.sf_si.si_code = code;
437		sf.sf_si.si_addr = (void *)regs->tf_err;
438	} else {
439		/* Old FreeBSD-style arguments. */
440		sf.sf_siginfo = code;
441		sf.sf_addr = regs->tf_err;
442		sf.sf_ahu.sf_handler = catcher;
443	}
444	PROC_UNLOCK(p);
445
446	/*
447	 * If we're a vm86 process, we want to save the segment registers.
448	 * We also change eflags to be our emulated eflags, not the actual
449	 * eflags.
450	 */
451	if (regs->tf_eflags & PSL_VM) {
452		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
453		struct vm86_kernel *vm86 = &td->td_pcb->pcb_ext->ext_vm86;
454
455		sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
456		sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
457		sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
458		sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
459
460		if (vm86->vm86_has_vme == 0)
461			sf.sf_uc.uc_mcontext.mc_eflags =
462			    (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
463			    (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
464
465		/*
466		 * Clear PSL_NT to inhibit T_TSSFLT faults on return from
467		 * syscalls made by the signal handler.  This just avoids
468		 * wasting time for our lazy fixup of such faults.  PSL_NT
469		 * does nothing in vm86 mode, but vm86 programs can set it
470		 * almost legitimately in probes for old cpu types.
471		 */
472		tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
473	}
474
475	/*
476	 * Copy the sigframe out to the user's stack.
477	 */
478	if (copyout(&sf, sfp, sizeof(*sfp)) != 0) {
479#ifdef DEBUG
480		printf("process %ld has trashed its stack\n", (long)p->p_pid);
481#endif
482		PROC_LOCK(p);
483		sigexit(td, SIGILL);
484	}
485
486	regs->tf_esp = (int)sfp;
487	regs->tf_eip = PS_STRINGS - szfreebsd4_sigcode;
488	regs->tf_eflags &= ~PSL_T;
489	regs->tf_cs = _ucodesel;
490	regs->tf_ds = _udatasel;
491	regs->tf_es = _udatasel;
492	regs->tf_fs = _udatasel;
493	regs->tf_ss = _udatasel;
494	PROC_LOCK(p);
495}
496#endif	/* COMPAT_FREEBSD4 */
497
498void
499sendsig(catcher, sig, mask, code)
500	sig_t catcher;
501	int sig;
502	sigset_t *mask;
503	u_long code;
504{
505	struct sigframe sf, *sfp;
506	struct proc *p;
507	struct thread *td;
508	struct sigacts *psp;
509	char *sp;
510	struct trapframe *regs;
511	int oonstack;
512
513	td = curthread;
514	p = td->td_proc;
515	PROC_LOCK_ASSERT(p, MA_OWNED);
516	psp = p->p_sigacts;
517#ifdef COMPAT_FREEBSD4
518	if (SIGISMEMBER(psp->ps_freebsd4, sig)) {
519		freebsd4_sendsig(catcher, sig, mask, code);
520		return;
521	}
522#endif
523#ifdef COMPAT_43
524	if (SIGISMEMBER(psp->ps_osigset, sig)) {
525		osendsig(catcher, sig, mask, code);
526		return;
527	}
528#endif
529	regs = td->td_frame;
530	oonstack = sigonstack(regs->tf_esp);
531
532	/* Save user context. */
533	bzero(&sf, sizeof(sf));
534	sf.sf_uc.uc_sigmask = *mask;
535	sf.sf_uc.uc_stack = p->p_sigstk;
536	sf.sf_uc.uc_stack.ss_flags = (p->p_flag & P_ALTSTACK)
537	    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
538	sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
539	sf.sf_uc.uc_mcontext.mc_gs = rgs();
540	bcopy(regs, &sf.sf_uc.uc_mcontext.mc_fs, sizeof(*regs));
541	sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext); /* magic */
542	get_fpcontext(td, &sf.sf_uc.uc_mcontext);
543	fpstate_drop(td);
544
545	/* Allocate space for the signal handler context. */
546	if ((p->p_flag & P_ALTSTACK) != 0 && !oonstack &&
547	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
548		sp = p->p_sigstk.ss_sp +
549		    p->p_sigstk.ss_size - sizeof(struct sigframe);
550#if defined(COMPAT_43) || defined(COMPAT_SUNOS)
551		p->p_sigstk.ss_flags |= SS_ONSTACK;
552#endif
553	} else
554		sp = (char *)regs->tf_esp - sizeof(struct sigframe);
555	/* Align to 16 bytes. */
556	sfp = (struct sigframe *)((unsigned int)sp & ~0xF);
557	PROC_UNLOCK(p);
558
559	/* Translate the signal if appropriate. */
560	if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
561		sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
562
563	/* Build the argument list for the signal handler. */
564	sf.sf_signum = sig;
565	sf.sf_ucontext = (register_t)&sfp->sf_uc;
566	PROC_LOCK(p);
567	if (SIGISMEMBER(p->p_sigacts->ps_siginfo, sig)) {
568		/* Signal handler installed with SA_SIGINFO. */
569		sf.sf_siginfo = (register_t)&sfp->sf_si;
570		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
571
572		/* Fill in POSIX parts */
573		sf.sf_si.si_signo = sig;
574		sf.sf_si.si_code = code;
575		sf.sf_si.si_addr = (void *)regs->tf_err;
576	} else {
577		/* Old FreeBSD-style arguments. */
578		sf.sf_siginfo = code;
579		sf.sf_addr = regs->tf_err;
580		sf.sf_ahu.sf_handler = catcher;
581	}
582	PROC_UNLOCK(p);
583
584	/*
585	 * If we're a vm86 process, we want to save the segment registers.
586	 * We also change eflags to be our emulated eflags, not the actual
587	 * eflags.
588	 */
589	if (regs->tf_eflags & PSL_VM) {
590		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
591		struct vm86_kernel *vm86 = &td->td_pcb->pcb_ext->ext_vm86;
592
593		sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
594		sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
595		sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
596		sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
597
598		if (vm86->vm86_has_vme == 0)
599			sf.sf_uc.uc_mcontext.mc_eflags =
600			    (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
601			    (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
602
603		/*
604		 * Clear PSL_NT to inhibit T_TSSFLT faults on return from
605		 * syscalls made by the signal handler.  This just avoids
606		 * wasting time for our lazy fixup of such faults.  PSL_NT
607		 * does nothing in vm86 mode, but vm86 programs can set it
608		 * almost legitimately in probes for old cpu types.
609		 */
610		tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
611	}
612
613	/*
614	 * Copy the sigframe out to the user's stack.
615	 */
616	if (copyout(&sf, sfp, sizeof(*sfp)) != 0) {
617#ifdef DEBUG
618		printf("process %ld has trashed its stack\n", (long)p->p_pid);
619#endif
620		PROC_LOCK(p);
621		sigexit(td, SIGILL);
622	}
623
624	regs->tf_esp = (int)sfp;
625	regs->tf_eip = PS_STRINGS - *(p->p_sysent->sv_szsigcode);
626	regs->tf_eflags &= ~PSL_T;
627	regs->tf_cs = _ucodesel;
628	regs->tf_ds = _udatasel;
629	regs->tf_es = _udatasel;
630	regs->tf_fs = _udatasel;
631	regs->tf_ss = _udatasel;
632	PROC_LOCK(p);
633}
634
635/*
636 * System call to cleanup state after a signal
637 * has been taken.  Reset signal mask and
638 * stack state from context left by sendsig (above).
639 * Return to previous pc and psl as specified by
640 * context left by sendsig. Check carefully to
641 * make sure that the user has not modified the
642 * state to gain improper privileges.
643 *
644 * MPSAFE
645 */
646#ifdef COMPAT_43
647int
648osigreturn(td, uap)
649	struct thread *td;
650	struct osigreturn_args /* {
651		struct osigcontext *sigcntxp;
652	} */ *uap;
653{
654	struct osigcontext sc;
655	struct trapframe *regs;
656	struct osigcontext *scp;
657	struct proc *p = td->td_proc;
658	int eflags, error;
659
660	regs = td->td_frame;
661	error = copyin(uap->sigcntxp, &sc, sizeof(sc));
662	if (error != 0)
663		return (error);
664	scp = &sc;
665	eflags = scp->sc_ps;
666	if (eflags & PSL_VM) {
667		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
668		struct vm86_kernel *vm86;
669
670		/*
671		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
672		 * set up the vm86 area, and we can't enter vm86 mode.
673		 */
674		if (td->td_pcb->pcb_ext == 0)
675			return (EINVAL);
676		vm86 = &td->td_pcb->pcb_ext->ext_vm86;
677		if (vm86->vm86_inited == 0)
678			return (EINVAL);
679
680		/* Go back to user mode if both flags are set. */
681		if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
682			trapsignal(p, SIGBUS, 0);
683
684		if (vm86->vm86_has_vme) {
685			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
686			    (eflags & VME_USERCHANGE) | PSL_VM;
687		} else {
688			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
689			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
690			    (eflags & VM_USERCHANGE) | PSL_VM;
691		}
692		tf->tf_vm86_ds = scp->sc_ds;
693		tf->tf_vm86_es = scp->sc_es;
694		tf->tf_vm86_fs = scp->sc_fs;
695		tf->tf_vm86_gs = scp->sc_gs;
696		tf->tf_ds = _udatasel;
697		tf->tf_es = _udatasel;
698		tf->tf_fs = _udatasel;
699	} else {
700		/*
701		 * Don't allow users to change privileged or reserved flags.
702		 */
703		/*
704		 * XXX do allow users to change the privileged flag PSL_RF.
705		 * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
706		 * should sometimes set it there too.  tf_eflags is kept in
707		 * the signal context during signal handling and there is no
708		 * other place to remember it, so the PSL_RF bit may be
709		 * corrupted by the signal handler without us knowing.
710		 * Corruption of the PSL_RF bit at worst causes one more or
711		 * one less debugger trap, so allowing it is fairly harmless.
712		 */
713		if (!EFL_SECURE(eflags & ~PSL_RF, regs->tf_eflags & ~PSL_RF)) {
714	    		return (EINVAL);
715		}
716
717		/*
718		 * Don't allow users to load a valid privileged %cs.  Let the
719		 * hardware check for invalid selectors, excess privilege in
720		 * other selectors, invalid %eip's and invalid %esp's.
721		 */
722		if (!CS_SECURE(scp->sc_cs)) {
723			trapsignal(p, SIGBUS, T_PROTFLT);
724			return (EINVAL);
725		}
726		regs->tf_ds = scp->sc_ds;
727		regs->tf_es = scp->sc_es;
728		regs->tf_fs = scp->sc_fs;
729	}
730
731	/* Restore remaining registers. */
732	regs->tf_eax = scp->sc_eax;
733	regs->tf_ebx = scp->sc_ebx;
734	regs->tf_ecx = scp->sc_ecx;
735	regs->tf_edx = scp->sc_edx;
736	regs->tf_esi = scp->sc_esi;
737	regs->tf_edi = scp->sc_edi;
738	regs->tf_cs = scp->sc_cs;
739	regs->tf_ss = scp->sc_ss;
740	regs->tf_isp = scp->sc_isp;
741	regs->tf_ebp = scp->sc_fp;
742	regs->tf_esp = scp->sc_sp;
743	regs->tf_eip = scp->sc_pc;
744	regs->tf_eflags = eflags;
745
746	PROC_LOCK(p);
747#if defined(COMPAT_43) || defined(COMPAT_SUNOS)
748	if (scp->sc_onstack & 1)
749		p->p_sigstk.ss_flags |= SS_ONSTACK;
750	else
751		p->p_sigstk.ss_flags &= ~SS_ONSTACK;
752#endif
753	SIGSETOLD(p->p_sigmask, scp->sc_mask);
754	SIG_CANTMASK(p->p_sigmask);
755	signotify(p);
756	PROC_UNLOCK(p);
757	return (EJUSTRETURN);
758}
759#endif /* COMPAT_43 */
760
761#ifdef COMPAT_FREEBSD4
762/*
763 * MPSAFE
764 */
765int
766freebsd4_sigreturn(td, uap)
767	struct thread *td;
768	struct freebsd4_sigreturn_args /* {
769		const ucontext4 *sigcntxp;
770	} */ *uap;
771{
772	struct ucontext4 uc;
773	struct proc *p = td->td_proc;
774	struct trapframe *regs;
775	const struct ucontext4 *ucp;
776	int cs, eflags, error;
777
778	error = copyin(uap->sigcntxp, &uc, sizeof(uc));
779	if (error != 0)
780		return (error);
781	ucp = &uc;
782	regs = td->td_frame;
783	eflags = ucp->uc_mcontext.mc_eflags;
784	if (eflags & PSL_VM) {
785		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
786		struct vm86_kernel *vm86;
787
788		/*
789		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
790		 * set up the vm86 area, and we can't enter vm86 mode.
791		 */
792		if (td->td_pcb->pcb_ext == 0)
793			return (EINVAL);
794		vm86 = &td->td_pcb->pcb_ext->ext_vm86;
795		if (vm86->vm86_inited == 0)
796			return (EINVAL);
797
798		/* Go back to user mode if both flags are set. */
799		if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
800			trapsignal(p, SIGBUS, 0);
801
802		if (vm86->vm86_has_vme) {
803			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
804			    (eflags & VME_USERCHANGE) | PSL_VM;
805		} else {
806			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
807			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
808			    (eflags & VM_USERCHANGE) | PSL_VM;
809		}
810		bcopy(&ucp->uc_mcontext.mc_fs, tf, sizeof(struct trapframe));
811		tf->tf_eflags = eflags;
812		tf->tf_vm86_ds = tf->tf_ds;
813		tf->tf_vm86_es = tf->tf_es;
814		tf->tf_vm86_fs = tf->tf_fs;
815		tf->tf_vm86_gs = ucp->uc_mcontext.mc_gs;
816		tf->tf_ds = _udatasel;
817		tf->tf_es = _udatasel;
818		tf->tf_fs = _udatasel;
819	} else {
820		/*
821		 * Don't allow users to change privileged or reserved flags.
822		 */
823		/*
824		 * XXX do allow users to change the privileged flag PSL_RF.
825		 * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
826		 * should sometimes set it there too.  tf_eflags is kept in
827		 * the signal context during signal handling and there is no
828		 * other place to remember it, so the PSL_RF bit may be
829		 * corrupted by the signal handler without us knowing.
830		 * Corruption of the PSL_RF bit at worst causes one more or
831		 * one less debugger trap, so allowing it is fairly harmless.
832		 */
833		if (!EFL_SECURE(eflags & ~PSL_RF, regs->tf_eflags & ~PSL_RF)) {
834			printf("freebsd4_sigreturn: eflags = 0x%x\n", eflags);
835	    		return (EINVAL);
836		}
837
838		/*
839		 * Don't allow users to load a valid privileged %cs.  Let the
840		 * hardware check for invalid selectors, excess privilege in
841		 * other selectors, invalid %eip's and invalid %esp's.
842		 */
843		cs = ucp->uc_mcontext.mc_cs;
844		if (!CS_SECURE(cs)) {
845			printf("freebsd4_sigreturn: cs = 0x%x\n", cs);
846			trapsignal(p, SIGBUS, T_PROTFLT);
847			return (EINVAL);
848		}
849
850		bcopy(&ucp->uc_mcontext.mc_fs, regs, sizeof(*regs));
851	}
852
853	PROC_LOCK(p);
854#if defined(COMPAT_43) || defined(COMPAT_SUNOS)
855	if (ucp->uc_mcontext.mc_onstack & 1)
856		p->p_sigstk.ss_flags |= SS_ONSTACK;
857	else
858		p->p_sigstk.ss_flags &= ~SS_ONSTACK;
859#endif
860
861	p->p_sigmask = ucp->uc_sigmask;
862	SIG_CANTMASK(p->p_sigmask);
863	signotify(p);
864	PROC_UNLOCK(p);
865	return (EJUSTRETURN);
866}
867#endif	/* COMPAT_FREEBSD4 */
868
869/*
870 * MPSAFE
871 */
872int
873sigreturn(td, uap)
874	struct thread *td;
875	struct sigreturn_args /* {
876		const __ucontext *sigcntxp;
877	} */ *uap;
878{
879	ucontext_t uc;
880	struct proc *p = td->td_proc;
881	struct trapframe *regs;
882	const ucontext_t *ucp;
883	int cs, eflags, error, ret;
884
885	error = copyin(uap->sigcntxp, &uc, sizeof(uc));
886	if (error != 0)
887		return (error);
888	ucp = &uc;
889	regs = td->td_frame;
890	eflags = ucp->uc_mcontext.mc_eflags;
891	if (eflags & PSL_VM) {
892		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
893		struct vm86_kernel *vm86;
894
895		/*
896		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
897		 * set up the vm86 area, and we can't enter vm86 mode.
898		 */
899		if (td->td_pcb->pcb_ext == 0)
900			return (EINVAL);
901		vm86 = &td->td_pcb->pcb_ext->ext_vm86;
902		if (vm86->vm86_inited == 0)
903			return (EINVAL);
904
905		/* Go back to user mode if both flags are set. */
906		if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
907			trapsignal(p, SIGBUS, 0);
908
909		if (vm86->vm86_has_vme) {
910			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
911			    (eflags & VME_USERCHANGE) | PSL_VM;
912		} else {
913			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
914			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
915			    (eflags & VM_USERCHANGE) | PSL_VM;
916		}
917		bcopy(&ucp->uc_mcontext.mc_fs, tf, sizeof(struct trapframe));
918		tf->tf_eflags = eflags;
919		tf->tf_vm86_ds = tf->tf_ds;
920		tf->tf_vm86_es = tf->tf_es;
921		tf->tf_vm86_fs = tf->tf_fs;
922		tf->tf_vm86_gs = ucp->uc_mcontext.mc_gs;
923		tf->tf_ds = _udatasel;
924		tf->tf_es = _udatasel;
925		tf->tf_fs = _udatasel;
926	} else {
927		/*
928		 * Don't allow users to change privileged or reserved flags.
929		 */
930		/*
931		 * XXX do allow users to change the privileged flag PSL_RF.
932		 * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
933		 * should sometimes set it there too.  tf_eflags is kept in
934		 * the signal context during signal handling and there is no
935		 * other place to remember it, so the PSL_RF bit may be
936		 * corrupted by the signal handler without us knowing.
937		 * Corruption of the PSL_RF bit at worst causes one more or
938		 * one less debugger trap, so allowing it is fairly harmless.
939		 */
940		if (!EFL_SECURE(eflags & ~PSL_RF, regs->tf_eflags & ~PSL_RF)) {
941			printf("sigreturn: eflags = 0x%x\n", eflags);
942	    		return (EINVAL);
943		}
944
945		/*
946		 * Don't allow users to load a valid privileged %cs.  Let the
947		 * hardware check for invalid selectors, excess privilege in
948		 * other selectors, invalid %eip's and invalid %esp's.
949		 */
950		cs = ucp->uc_mcontext.mc_cs;
951		if (!CS_SECURE(cs)) {
952			printf("sigreturn: cs = 0x%x\n", cs);
953			trapsignal(p, SIGBUS, T_PROTFLT);
954			return (EINVAL);
955		}
956
957		ret = set_fpcontext(td, &ucp->uc_mcontext);
958		if (ret != 0)
959			return (ret);
960		bcopy(&ucp->uc_mcontext.mc_fs, regs, sizeof(*regs));
961	}
962
963	PROC_LOCK(p);
964#if defined(COMPAT_43) || defined(COMPAT_SUNOS)
965	if (ucp->uc_mcontext.mc_onstack & 1)
966		p->p_sigstk.ss_flags |= SS_ONSTACK;
967	else
968		p->p_sigstk.ss_flags &= ~SS_ONSTACK;
969#endif
970
971	p->p_sigmask = ucp->uc_sigmask;
972	SIG_CANTMASK(p->p_sigmask);
973	signotify(p);
974	PROC_UNLOCK(p);
975	return (EJUSTRETURN);
976}
977
978/*
979 * Machine dependent boot() routine
980 *
981 * I haven't seen anything to put here yet
982 * Possibly some stuff might be grafted back here from boot()
983 */
984void
985cpu_boot(int howto)
986{
987}
988
989/*
990 * Shutdown the CPU as much as possible
991 */
992void
993cpu_halt(void)
994{
995	for (;;)
996		__asm__ ("hlt");
997}
998
999/*
1000 * Hook to idle the CPU when possible.  In the SMP case we default to
1001 * off because a halted cpu will not currently pick up a new thread in the
1002 * run queue until the next timer tick.  If turned on this will result in
1003 * approximately a 4.2% loss in real time performance in buildworld tests
1004 * (but improves user and sys times oddly enough), and saves approximately
1005 * 5% in power consumption on an idle machine (tests w/2xCPU 1.1GHz P3).
1006 *
1007 * XXX we need to have a cpu mask of idle cpus and generate an IPI or
1008 * otherwise generate some sort of interrupt to wake up cpus sitting in HLT.
1009 * Then we can have our cake and eat it too.
1010 */
1011#ifdef SMP
1012static int	cpu_idle_hlt = 0;
1013#else
1014static int	cpu_idle_hlt = 1;
1015#endif
1016SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hlt, CTLFLAG_RW,
1017    &cpu_idle_hlt, 0, "Idle loop HLT enable");
1018
1019/*
1020 * Note that we have to be careful here to avoid a race between checking
1021 * sched_runnable() and actually halting.  If we don't do this, we may waste
1022 * the time between calling hlt and the next interrupt even though there
1023 * is a runnable process.
1024 */
1025void
1026cpu_idle(void)
1027{
1028	if (cpu_idle_hlt) {
1029		disable_intr();
1030  		if (sched_runnable()) {
1031			enable_intr();
1032		} else {
1033			/*
1034			 * we must absolutely guarentee that hlt is the
1035			 * absolute next instruction after sti or we
1036			 * introduce a timing window.
1037			 */
1038			__asm __volatile("sti; hlt");
1039		}
1040	}
1041}
1042
1043/*
1044 * Clear registers on exec
1045 */
1046void
1047exec_setregs(td, entry, stack, ps_strings)
1048	struct thread *td;
1049	u_long entry;
1050	u_long stack;
1051	u_long ps_strings;
1052{
1053	struct trapframe *regs = td->td_frame;
1054	struct pcb *pcb = td->td_pcb;
1055
1056	/* Reset pc->pcb_gs and %gs before possibly invalidating it. */
1057	pcb->pcb_gs = _udatasel;
1058	load_gs(_udatasel);
1059
1060	if (td->td_proc->p_md.md_ldt)
1061		user_ldt_free(td);
1062
1063	bzero((char *)regs, sizeof(struct trapframe));
1064	regs->tf_eip = entry;
1065	regs->tf_esp = stack;
1066	regs->tf_eflags = PSL_USER | (regs->tf_eflags & PSL_T);
1067	regs->tf_ss = _udatasel;
1068	regs->tf_ds = _udatasel;
1069	regs->tf_es = _udatasel;
1070	regs->tf_fs = _udatasel;
1071	regs->tf_cs = _ucodesel;
1072
1073	/* PS_STRINGS value for BSD/OS binaries.  It is 0 for non-BSD/OS. */
1074	regs->tf_ebx = ps_strings;
1075
1076        /*
1077         * Reset the hardware debug registers if they were in use.
1078         * They won't have any meaning for the newly exec'd process.
1079         */
1080        if (pcb->pcb_flags & PCB_DBREGS) {
1081                pcb->pcb_dr0 = 0;
1082                pcb->pcb_dr1 = 0;
1083                pcb->pcb_dr2 = 0;
1084                pcb->pcb_dr3 = 0;
1085                pcb->pcb_dr6 = 0;
1086                pcb->pcb_dr7 = 0;
1087                if (pcb == PCPU_GET(curpcb)) {
1088		        /*
1089			 * Clear the debug registers on the running
1090			 * CPU, otherwise they will end up affecting
1091			 * the next process we switch to.
1092			 */
1093		        reset_dbregs();
1094                }
1095                pcb->pcb_flags &= ~PCB_DBREGS;
1096        }
1097
1098	/*
1099	 * Initialize the math emulator (if any) for the current process.
1100	 * Actually, just clear the bit that says that the emulator has
1101	 * been initialized.  Initialization is delayed until the process
1102	 * traps to the emulator (if it is done at all) mainly because
1103	 * emulators don't provide an entry point for initialization.
1104	 */
1105	td->td_pcb->pcb_flags &= ~FP_SOFTFP;
1106
1107	/*
1108	 * Arrange to trap the next npx or `fwait' instruction (see npx.c
1109	 * for why fwait must be trapped at least if there is an npx or an
1110	 * emulator).  This is mainly to handle the case where npx0 is not
1111	 * configured, since the npx routines normally set up the trap
1112	 * otherwise.  It should be done only at boot time, but doing it
1113	 * here allows modifying `npx_exists' for testing the emulator on
1114	 * systems with an npx.
1115	 */
1116	load_cr0(rcr0() | CR0_MP | CR0_TS);
1117
1118	/* Initialize the npx (if any) for the current process. */
1119	/*
1120	 * XXX the above load_cr0() also initializes it and is a layering
1121	 * violation if NPX is configured.  It drops the npx partially
1122	 * and this would be fatal if we were interrupted now, and decided
1123	 * to force the state to the pcb, and checked the invariant
1124	 * (CR0_TS clear) if and only if PCPU_GET(fpcurthread) != NULL).
1125	 * ALL of this can happen except the check.  The check used to
1126	 * happen and be fatal later when we didn't complete the drop
1127	 * before returning to user mode.  This should be fixed properly
1128	 * soon.
1129	 */
1130	fpstate_drop(td);
1131
1132	/*
1133	 * XXX - Linux emulator
1134	 * Make sure sure edx is 0x0 on entry. Linux binaries depend
1135	 * on it.
1136	 */
1137	td->td_retval[1] = 0;
1138}
1139
1140void
1141cpu_setregs(void)
1142{
1143	unsigned int cr0;
1144
1145	cr0 = rcr0();
1146#ifdef SMP
1147	cr0 |= CR0_NE;			/* Done by npxinit() */
1148#endif
1149	cr0 |= CR0_MP | CR0_TS;		/* Done at every execve() too. */
1150#ifndef I386_CPU
1151	cr0 |= CR0_WP | CR0_AM;
1152#endif
1153	load_cr0(cr0);
1154	load_gs(_udatasel);
1155}
1156
1157static int
1158sysctl_machdep_adjkerntz(SYSCTL_HANDLER_ARGS)
1159{
1160	int error;
1161	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
1162		req);
1163	if (!error && req->newptr)
1164		resettodr();
1165	return (error);
1166}
1167
1168SYSCTL_PROC(_machdep, CPU_ADJKERNTZ, adjkerntz, CTLTYPE_INT|CTLFLAG_RW,
1169	&adjkerntz, 0, sysctl_machdep_adjkerntz, "I", "");
1170
1171SYSCTL_INT(_machdep, CPU_DISRTCSET, disable_rtc_set,
1172	CTLFLAG_RW, &disable_rtc_set, 0, "");
1173
1174SYSCTL_STRUCT(_machdep, CPU_BOOTINFO, bootinfo,
1175	CTLFLAG_RD, &bootinfo, bootinfo, "");
1176
1177SYSCTL_INT(_machdep, CPU_WALLCLOCK, wall_cmos_clock,
1178	CTLFLAG_RW, &wall_cmos_clock, 0, "");
1179
1180u_long bootdev;		/* not a dev_t - encoding is different */
1181SYSCTL_ULONG(_machdep, OID_AUTO, guessed_bootdev,
1182	CTLFLAG_RD, &bootdev, 0, "Maybe the Boot device (not in dev_t format)");
1183
1184/*
1185 * Initialize 386 and configure to run kernel
1186 */
1187
1188/*
1189 * Initialize segments & interrupt table
1190 */
1191
1192int _default_ldt;
1193union descriptor gdt[NGDT * MAXCPU];	/* global descriptor table */
1194static struct gate_descriptor idt0[NIDT];
1195struct gate_descriptor *idt = &idt0[0];	/* interrupt descriptor table */
1196union descriptor ldt[NLDT];		/* local descriptor table */
1197#ifdef SMP
1198/* table descriptors - used to load tables by microp */
1199struct region_descriptor r_gdt, r_idt;
1200#endif
1201
1202int private_tss;			/* flag indicating private tss */
1203
1204#if defined(I586_CPU) && !defined(NO_F00F_HACK)
1205extern int has_f00f_bug;
1206#endif
1207
1208static struct i386tss dblfault_tss;
1209static char dblfault_stack[PAGE_SIZE];
1210
1211extern  struct user	*proc0uarea;
1212extern  vm_offset_t	proc0kstack;
1213
1214
1215/* software prototypes -- in more palatable form */
1216struct soft_segment_descriptor gdt_segs[] = {
1217/* GNULL_SEL	0 Null Descriptor */
1218{	0x0,			/* segment base address  */
1219	0x0,			/* length */
1220	0,			/* segment type */
1221	0,			/* segment descriptor priority level */
1222	0,			/* segment descriptor present */
1223	0, 0,
1224	0,			/* default 32 vs 16 bit size */
1225	0  			/* limit granularity (byte/page units)*/ },
1226/* GCODE_SEL	1 Code Descriptor for kernel */
1227{	0x0,			/* segment base address  */
1228	0xfffff,		/* length - all address space */
1229	SDT_MEMERA,		/* segment type */
1230	0,			/* segment descriptor priority level */
1231	1,			/* segment descriptor present */
1232	0, 0,
1233	1,			/* default 32 vs 16 bit size */
1234	1  			/* limit granularity (byte/page units)*/ },
1235/* GDATA_SEL	2 Data Descriptor for kernel */
1236{	0x0,			/* segment base address  */
1237	0xfffff,		/* length - all address space */
1238	SDT_MEMRWA,		/* segment type */
1239	0,			/* segment descriptor priority level */
1240	1,			/* segment descriptor present */
1241	0, 0,
1242	1,			/* default 32 vs 16 bit size */
1243	1  			/* limit granularity (byte/page units)*/ },
1244/* GPRIV_SEL	3 SMP Per-Processor Private Data Descriptor */
1245{	0x0,			/* segment base address  */
1246	0xfffff,		/* length - all address space */
1247	SDT_MEMRWA,		/* segment type */
1248	0,			/* segment descriptor priority level */
1249	1,			/* segment descriptor present */
1250	0, 0,
1251	1,			/* default 32 vs 16 bit size */
1252	1  			/* limit granularity (byte/page units)*/ },
1253/* GPROC0_SEL	4 Proc 0 Tss Descriptor */
1254{
1255	0x0,			/* segment base address */
1256	sizeof(struct i386tss)-1,/* length - all address space */
1257	SDT_SYS386TSS,		/* segment type */
1258	0,			/* segment descriptor priority level */
1259	1,			/* segment descriptor present */
1260	0, 0,
1261	0,			/* unused - default 32 vs 16 bit size */
1262	0  			/* limit granularity (byte/page units)*/ },
1263/* GLDT_SEL	5 LDT Descriptor */
1264{	(int) ldt,		/* segment base address  */
1265	sizeof(ldt)-1,		/* length - all address space */
1266	SDT_SYSLDT,		/* segment type */
1267	SEL_UPL,		/* segment descriptor priority level */
1268	1,			/* segment descriptor present */
1269	0, 0,
1270	0,			/* unused - default 32 vs 16 bit size */
1271	0  			/* limit granularity (byte/page units)*/ },
1272/* GUSERLDT_SEL	6 User LDT Descriptor per process */
1273{	(int) ldt,		/* segment base address  */
1274	(512 * sizeof(union descriptor)-1),		/* length */
1275	SDT_SYSLDT,		/* segment type */
1276	0,			/* segment descriptor priority level */
1277	1,			/* segment descriptor present */
1278	0, 0,
1279	0,			/* unused - default 32 vs 16 bit size */
1280	0  			/* limit granularity (byte/page units)*/ },
1281/* GTGATE_SEL	7 Null Descriptor - Placeholder */
1282{	0x0,			/* segment base address  */
1283	0x0,			/* length - all address space */
1284	0,			/* segment type */
1285	0,			/* segment descriptor priority level */
1286	0,			/* segment descriptor present */
1287	0, 0,
1288	0,			/* default 32 vs 16 bit size */
1289	0  			/* limit granularity (byte/page units)*/ },
1290/* GBIOSLOWMEM_SEL 8 BIOS access to realmode segment 0x40, must be #8 in GDT */
1291{	0x400,			/* segment base address */
1292	0xfffff,		/* length */
1293	SDT_MEMRWA,		/* segment type */
1294	0,			/* segment descriptor priority level */
1295	1,			/* segment descriptor present */
1296	0, 0,
1297	1,			/* default 32 vs 16 bit size */
1298	1  			/* limit granularity (byte/page units)*/ },
1299/* GPANIC_SEL	9 Panic Tss Descriptor */
1300{	(int) &dblfault_tss,	/* segment base address  */
1301	sizeof(struct i386tss)-1,/* length - all address space */
1302	SDT_SYS386TSS,		/* segment type */
1303	0,			/* segment descriptor priority level */
1304	1,			/* segment descriptor present */
1305	0, 0,
1306	0,			/* unused - default 32 vs 16 bit size */
1307	0  			/* limit granularity (byte/page units)*/ },
1308/* GBIOSCODE32_SEL 10 BIOS 32-bit interface (32bit Code) */
1309{	0,			/* segment base address (overwritten)  */
1310	0xfffff,		/* length */
1311	SDT_MEMERA,		/* segment type */
1312	0,			/* segment descriptor priority level */
1313	1,			/* segment descriptor present */
1314	0, 0,
1315	0,			/* default 32 vs 16 bit size */
1316	1  			/* limit granularity (byte/page units)*/ },
1317/* GBIOSCODE16_SEL 11 BIOS 32-bit interface (16bit Code) */
1318{	0,			/* segment base address (overwritten)  */
1319	0xfffff,		/* length */
1320	SDT_MEMERA,		/* segment type */
1321	0,			/* segment descriptor priority level */
1322	1,			/* segment descriptor present */
1323	0, 0,
1324	0,			/* default 32 vs 16 bit size */
1325	1  			/* limit granularity (byte/page units)*/ },
1326/* GBIOSDATA_SEL 12 BIOS 32-bit interface (Data) */
1327{	0,			/* segment base address (overwritten) */
1328	0xfffff,		/* length */
1329	SDT_MEMRWA,		/* segment type */
1330	0,			/* segment descriptor priority level */
1331	1,			/* segment descriptor present */
1332	0, 0,
1333	1,			/* default 32 vs 16 bit size */
1334	1  			/* limit granularity (byte/page units)*/ },
1335/* GBIOSUTIL_SEL 13 BIOS 16-bit interface (Utility) */
1336{	0,			/* segment base address (overwritten) */
1337	0xfffff,		/* length */
1338	SDT_MEMRWA,		/* segment type */
1339	0,			/* segment descriptor priority level */
1340	1,			/* segment descriptor present */
1341	0, 0,
1342	0,			/* default 32 vs 16 bit size */
1343	1  			/* limit granularity (byte/page units)*/ },
1344/* GBIOSARGS_SEL 14 BIOS 16-bit interface (Arguments) */
1345{	0,			/* segment base address (overwritten) */
1346	0xfffff,		/* length */
1347	SDT_MEMRWA,		/* segment type */
1348	0,			/* segment descriptor priority level */
1349	1,			/* segment descriptor present */
1350	0, 0,
1351	0,			/* default 32 vs 16 bit size */
1352	1  			/* limit granularity (byte/page units)*/ },
1353};
1354
1355static struct soft_segment_descriptor ldt_segs[] = {
1356	/* Null Descriptor - overwritten by call gate */
1357{	0x0,			/* segment base address  */
1358	0x0,			/* length - all address space */
1359	0,			/* segment type */
1360	0,			/* segment descriptor priority level */
1361	0,			/* segment descriptor present */
1362	0, 0,
1363	0,			/* default 32 vs 16 bit size */
1364	0  			/* limit granularity (byte/page units)*/ },
1365	/* Null Descriptor - overwritten by call gate */
1366{	0x0,			/* segment base address  */
1367	0x0,			/* length - all address space */
1368	0,			/* segment type */
1369	0,			/* segment descriptor priority level */
1370	0,			/* segment descriptor present */
1371	0, 0,
1372	0,			/* default 32 vs 16 bit size */
1373	0  			/* limit granularity (byte/page units)*/ },
1374	/* Null Descriptor - overwritten by call gate */
1375{	0x0,			/* segment base address  */
1376	0x0,			/* length - all address space */
1377	0,			/* segment type */
1378	0,			/* segment descriptor priority level */
1379	0,			/* segment descriptor present */
1380	0, 0,
1381	0,			/* default 32 vs 16 bit size */
1382	0  			/* limit granularity (byte/page units)*/ },
1383	/* Code Descriptor for user */
1384{	0x0,			/* segment base address  */
1385	0xfffff,		/* length - all address space */
1386	SDT_MEMERA,		/* segment type */
1387	SEL_UPL,		/* segment descriptor priority level */
1388	1,			/* segment descriptor present */
1389	0, 0,
1390	1,			/* default 32 vs 16 bit size */
1391	1  			/* limit granularity (byte/page units)*/ },
1392	/* Null Descriptor - overwritten by call gate */
1393{	0x0,			/* segment base address  */
1394	0x0,			/* length - all address space */
1395	0,			/* segment type */
1396	0,			/* segment descriptor priority level */
1397	0,			/* segment descriptor present */
1398	0, 0,
1399	0,			/* default 32 vs 16 bit size */
1400	0  			/* limit granularity (byte/page units)*/ },
1401	/* Data Descriptor for user */
1402{	0x0,			/* segment base address  */
1403	0xfffff,		/* length - all address space */
1404	SDT_MEMRWA,		/* segment type */
1405	SEL_UPL,		/* segment descriptor priority level */
1406	1,			/* segment descriptor present */
1407	0, 0,
1408	1,			/* default 32 vs 16 bit size */
1409	1  			/* limit granularity (byte/page units)*/ },
1410};
1411
1412void
1413setidt(idx, func, typ, dpl, selec)
1414	int idx;
1415	inthand_t *func;
1416	int typ;
1417	int dpl;
1418	int selec;
1419{
1420	struct gate_descriptor *ip;
1421
1422	ip = idt + idx;
1423	ip->gd_looffset = (int)func;
1424	ip->gd_selector = selec;
1425	ip->gd_stkcpy = 0;
1426	ip->gd_xx = 0;
1427	ip->gd_type = typ;
1428	ip->gd_dpl = dpl;
1429	ip->gd_p = 1;
1430	ip->gd_hioffset = ((int)func)>>16 ;
1431}
1432
1433#define	IDTVEC(name)	__CONCAT(X,name)
1434
1435extern inthand_t
1436	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
1437	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
1438	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
1439	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
1440	IDTVEC(xmm), IDTVEC(lcall_syscall), IDTVEC(int0x80_syscall);
1441
1442void
1443sdtossd(sd, ssd)
1444	struct segment_descriptor *sd;
1445	struct soft_segment_descriptor *ssd;
1446{
1447	ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
1448	ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
1449	ssd->ssd_type  = sd->sd_type;
1450	ssd->ssd_dpl   = sd->sd_dpl;
1451	ssd->ssd_p     = sd->sd_p;
1452	ssd->ssd_def32 = sd->sd_def32;
1453	ssd->ssd_gran  = sd->sd_gran;
1454}
1455
1456#define PHYSMAP_SIZE	(2 * 8)
1457
1458/*
1459 * Populate the (physmap) array with base/bound pairs describing the
1460 * available physical memory in the system, then test this memory and
1461 * build the phys_avail array describing the actually-available memory.
1462 *
1463 * If we cannot accurately determine the physical memory map, then use
1464 * value from the 0xE801 call, and failing that, the RTC.
1465 *
1466 * Total memory size may be set by the kernel environment variable
1467 * hw.physmem or the compile-time define MAXMEM.
1468 */
1469static void
1470getmemsize(int first)
1471{
1472	int i, physmap_idx, pa_indx;
1473	int hasbrokenint12;
1474	u_int basemem, extmem;
1475	struct vm86frame vmf;
1476	struct vm86context vmc;
1477	vm_offset_t pa, physmap[PHYSMAP_SIZE];
1478	pt_entry_t *pte;
1479	char *cp;
1480	struct bios_smap *smap;
1481
1482	hasbrokenint12 = 0;
1483	TUNABLE_INT_FETCH("hw.hasbrokenint12", &hasbrokenint12);
1484	bzero(&vmf, sizeof(struct vm86frame));
1485	bzero(physmap, sizeof(physmap));
1486	basemem = 0;
1487
1488	/*
1489	 * Some newer BIOSes has broken INT 12H implementation which cause
1490	 * kernel panic immediately. In this case, we need to scan SMAP
1491	 * with INT 15:E820 first, then determine base memory size.
1492	 */
1493	if (hasbrokenint12) {
1494		goto int15e820;
1495	}
1496
1497	/*
1498	 * Perform "base memory" related probes & setup
1499	 */
1500	vm86_intcall(0x12, &vmf);
1501	basemem = vmf.vmf_ax;
1502	if (basemem > 640) {
1503		printf("Preposterous BIOS basemem of %uK, truncating to 640K\n",
1504			basemem);
1505		basemem = 640;
1506	}
1507
1508	/*
1509	 * XXX if biosbasemem is now < 640, there is a `hole'
1510	 * between the end of base memory and the start of
1511	 * ISA memory.  The hole may be empty or it may
1512	 * contain BIOS code or data.  Map it read/write so
1513	 * that the BIOS can write to it.  (Memory from 0 to
1514	 * the physical end of the kernel is mapped read-only
1515	 * to begin with and then parts of it are remapped.
1516	 * The parts that aren't remapped form holes that
1517	 * remain read-only and are unused by the kernel.
1518	 * The base memory area is below the physical end of
1519	 * the kernel and right now forms a read-only hole.
1520	 * The part of it from PAGE_SIZE to
1521	 * (trunc_page(biosbasemem * 1024) - 1) will be
1522	 * remapped and used by the kernel later.)
1523	 *
1524	 * This code is similar to the code used in
1525	 * pmap_mapdev, but since no memory needs to be
1526	 * allocated we simply change the mapping.
1527	 */
1528	for (pa = trunc_page(basemem * 1024);
1529	     pa < ISA_HOLE_START; pa += PAGE_SIZE)
1530		pmap_kenter(KERNBASE + pa, pa);
1531
1532	/*
1533	 * if basemem != 640, map pages r/w into vm86 page table so
1534	 * that the bios can scribble on it.
1535	 */
1536	pte = (pt_entry_t *)vm86paddr;
1537	for (i = basemem / 4; i < 160; i++)
1538		pte[i] = (i << PAGE_SHIFT) | PG_V | PG_RW | PG_U;
1539
1540int15e820:
1541	/*
1542	 * map page 1 R/W into the kernel page table so we can use it
1543	 * as a buffer.  The kernel will unmap this page later.
1544	 */
1545	pmap_kenter(KERNBASE + (1 << PAGE_SHIFT), 1);
1546
1547	/*
1548	 * get memory map with INT 15:E820
1549	 */
1550	vmc.npages = 0;
1551	smap = (void *)vm86_addpage(&vmc, 1, KERNBASE + (1 << PAGE_SHIFT));
1552	vm86_getptr(&vmc, (vm_offset_t)smap, &vmf.vmf_es, &vmf.vmf_di);
1553
1554	physmap_idx = 0;
1555	vmf.vmf_ebx = 0;
1556	do {
1557		vmf.vmf_eax = 0xE820;
1558		vmf.vmf_edx = SMAP_SIG;
1559		vmf.vmf_ecx = sizeof(struct bios_smap);
1560		i = vm86_datacall(0x15, &vmf, &vmc);
1561		if (i || vmf.vmf_eax != SMAP_SIG)
1562			break;
1563		if (boothowto & RB_VERBOSE)
1564			printf("SMAP type=%02x base=%08x %08x len=%08x %08x\n",
1565				smap->type,
1566				*(u_int32_t *)((char *)&smap->base + 4),
1567				(u_int32_t)smap->base,
1568				*(u_int32_t *)((char *)&smap->length + 4),
1569				(u_int32_t)smap->length);
1570
1571		if (smap->type != 0x01)
1572			goto next_run;
1573
1574		if (smap->length == 0)
1575			goto next_run;
1576
1577		if (smap->base >= 0xffffffff) {
1578			printf("%uK of memory above 4GB ignored\n",
1579			    (u_int)(smap->length / 1024));
1580			goto next_run;
1581		}
1582
1583		for (i = 0; i <= physmap_idx; i += 2) {
1584			if (smap->base < physmap[i + 1]) {
1585				if (boothowto & RB_VERBOSE)
1586					printf(
1587	"Overlapping or non-montonic memory region, ignoring second region\n");
1588				goto next_run;
1589			}
1590		}
1591
1592		if (smap->base == physmap[physmap_idx + 1]) {
1593			physmap[physmap_idx + 1] += smap->length;
1594			goto next_run;
1595		}
1596
1597		physmap_idx += 2;
1598		if (physmap_idx == PHYSMAP_SIZE) {
1599			printf(
1600		"Too many segments in the physical address map, giving up\n");
1601			break;
1602		}
1603		physmap[physmap_idx] = smap->base;
1604		physmap[physmap_idx + 1] = smap->base + smap->length;
1605next_run: ;
1606	} while (vmf.vmf_ebx != 0);
1607
1608	/*
1609	 * Perform "base memory" related probes & setup based on SMAP
1610	 */
1611	if (basemem == 0) {
1612		for (i = 0; i <= physmap_idx; i += 2) {
1613			if (physmap[i] == 0x00000000) {
1614				basemem = physmap[i + 1] / 1024;
1615				break;
1616			}
1617		}
1618
1619		if (basemem == 0) {
1620			basemem = 640;
1621		}
1622
1623		if (basemem > 640) {
1624			printf("Preposterous BIOS basemem of %uK, truncating to 640K\n",
1625				basemem);
1626			basemem = 640;
1627		}
1628
1629		for (pa = trunc_page(basemem * 1024);
1630		     pa < ISA_HOLE_START; pa += PAGE_SIZE)
1631			pmap_kenter(KERNBASE + pa, pa);
1632
1633		pte = (pt_entry_t *)vm86paddr;
1634		for (i = basemem / 4; i < 160; i++)
1635			pte[i] = (i << PAGE_SHIFT) | PG_V | PG_RW | PG_U;
1636	}
1637
1638	if (physmap[1] != 0)
1639		goto physmap_done;
1640
1641	/*
1642	 * If we failed above, try memory map with INT 15:E801
1643	 */
1644	vmf.vmf_ax = 0xE801;
1645	if (vm86_intcall(0x15, &vmf) == 0) {
1646		extmem = vmf.vmf_cx + vmf.vmf_dx * 64;
1647	} else {
1648#if 0
1649		vmf.vmf_ah = 0x88;
1650		vm86_intcall(0x15, &vmf);
1651		extmem = vmf.vmf_ax;
1652#else
1653		/*
1654		 * Prefer the RTC value for extended memory.
1655		 */
1656		extmem = rtcin(RTC_EXTLO) + (rtcin(RTC_EXTHI) << 8);
1657#endif
1658	}
1659
1660	/*
1661	 * Special hack for chipsets that still remap the 384k hole when
1662	 * there's 16MB of memory - this really confuses people that
1663	 * are trying to use bus mastering ISA controllers with the
1664	 * "16MB limit"; they only have 16MB, but the remapping puts
1665	 * them beyond the limit.
1666	 *
1667	 * If extended memory is between 15-16MB (16-17MB phys address range),
1668	 *	chop it to 15MB.
1669	 */
1670	if ((extmem > 15 * 1024) && (extmem < 16 * 1024))
1671		extmem = 15 * 1024;
1672
1673	physmap[0] = 0;
1674	physmap[1] = basemem * 1024;
1675	physmap_idx = 2;
1676	physmap[physmap_idx] = 0x100000;
1677	physmap[physmap_idx + 1] = physmap[physmap_idx] + extmem * 1024;
1678
1679physmap_done:
1680	/*
1681	 * Now, physmap contains a map of physical memory.
1682	 */
1683
1684#ifdef SMP
1685	/* make hole for AP bootstrap code */
1686	physmap[1] = mp_bootaddress(physmap[1] / 1024);
1687
1688	/* look for the MP hardware - needed for apic addresses */
1689	i386_mp_probe();
1690#endif
1691
1692	/*
1693	 * Maxmem isn't the "maximum memory", it's one larger than the
1694	 * highest page of the physical address space.  It should be
1695	 * called something like "Maxphyspage".  We may adjust this
1696	 * based on ``hw.physmem'' and the results of the memory test.
1697	 */
1698	Maxmem = atop(physmap[physmap_idx + 1]);
1699
1700#ifdef MAXMEM
1701	Maxmem = MAXMEM / 4;
1702#endif
1703
1704	/*
1705	 * hw.physmem is a size in bytes; we also allow k, m, and g suffixes
1706	 * for the appropriate modifiers.  This overrides MAXMEM.
1707	 */
1708	if ((cp = getenv("hw.physmem")) != NULL) {
1709		u_int64_t AllowMem, sanity;
1710		char *ep;
1711
1712		sanity = AllowMem = strtouq(cp, &ep, 0);
1713		if ((ep != cp) && (*ep != 0)) {
1714			switch(*ep) {
1715			case 'g':
1716			case 'G':
1717				AllowMem <<= 10;
1718			case 'm':
1719			case 'M':
1720				AllowMem <<= 10;
1721			case 'k':
1722			case 'K':
1723				AllowMem <<= 10;
1724				break;
1725			default:
1726				AllowMem = sanity = 0;
1727			}
1728			if (AllowMem < sanity)
1729				AllowMem = 0;
1730		}
1731		if (AllowMem == 0)
1732			printf("Ignoring invalid memory size of '%s'\n", cp);
1733		else
1734			Maxmem = atop(AllowMem);
1735		freeenv(cp);
1736	}
1737
1738	if (atop(physmap[physmap_idx + 1]) != Maxmem &&
1739	    (boothowto & RB_VERBOSE))
1740		printf("Physical memory use set to %ldK\n", Maxmem * 4);
1741
1742	/*
1743	 * If Maxmem has been increased beyond what the system has detected,
1744	 * extend the last memory segment to the new limit.
1745	 */
1746	if (atop(physmap[physmap_idx + 1]) < Maxmem)
1747		physmap[physmap_idx + 1] = ptoa(Maxmem);
1748
1749	/* call pmap initialization to make new kernel address space */
1750	pmap_bootstrap(first, 0);
1751
1752	/*
1753	 * Size up each available chunk of physical memory.
1754	 */
1755	physmap[0] = PAGE_SIZE;		/* mask off page 0 */
1756	pa_indx = 0;
1757	phys_avail[pa_indx++] = physmap[0];
1758	phys_avail[pa_indx] = physmap[0];
1759	pte = CMAP1;
1760
1761	/*
1762	 * physmap is in bytes, so when converting to page boundaries,
1763	 * round up the start address and round down the end address.
1764	 */
1765	for (i = 0; i <= physmap_idx; i += 2) {
1766		vm_offset_t end;
1767
1768		end = ptoa(Maxmem);
1769		if (physmap[i + 1] < end)
1770			end = trunc_page(physmap[i + 1]);
1771		for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
1772			int tmp, page_bad;
1773			int *ptr = (int *)CADDR1;
1774
1775			/*
1776			 * block out kernel memory as not available.
1777			 */
1778			if (pa >= 0x100000 && pa < first)
1779				continue;
1780
1781			page_bad = FALSE;
1782
1783			/*
1784			 * map page into kernel: valid, read/write,non-cacheable
1785			 */
1786			*pte = pa | PG_V | PG_RW | PG_N;
1787			invltlb();
1788
1789			tmp = *(int *)ptr;
1790			/*
1791			 * Test for alternating 1's and 0's
1792			 */
1793			*(volatile int *)ptr = 0xaaaaaaaa;
1794			if (*(volatile int *)ptr != 0xaaaaaaaa) {
1795				page_bad = TRUE;
1796			}
1797			/*
1798			 * Test for alternating 0's and 1's
1799			 */
1800			*(volatile int *)ptr = 0x55555555;
1801			if (*(volatile int *)ptr != 0x55555555) {
1802			page_bad = TRUE;
1803			}
1804			/*
1805			 * Test for all 1's
1806			 */
1807			*(volatile int *)ptr = 0xffffffff;
1808			if (*(volatile int *)ptr != 0xffffffff) {
1809				page_bad = TRUE;
1810			}
1811			/*
1812			 * Test for all 0's
1813			 */
1814			*(volatile int *)ptr = 0x0;
1815			if (*(volatile int *)ptr != 0x0) {
1816				page_bad = TRUE;
1817			}
1818			/*
1819			 * Restore original value.
1820			 */
1821			*(int *)ptr = tmp;
1822
1823			/*
1824			 * Adjust array of valid/good pages.
1825			 */
1826			if (page_bad == TRUE) {
1827				continue;
1828			}
1829			/*
1830			 * If this good page is a continuation of the
1831			 * previous set of good pages, then just increase
1832			 * the end pointer. Otherwise start a new chunk.
1833			 * Note that "end" points one higher than end,
1834			 * making the range >= start and < end.
1835			 * If we're also doing a speculative memory
1836			 * test and we at or past the end, bump up Maxmem
1837			 * so that we keep going. The first bad page
1838			 * will terminate the loop.
1839			 */
1840			if (phys_avail[pa_indx] == pa) {
1841				phys_avail[pa_indx] += PAGE_SIZE;
1842			} else {
1843				pa_indx++;
1844				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
1845					printf(
1846		"Too many holes in the physical address space, giving up\n");
1847					pa_indx--;
1848					break;
1849				}
1850				phys_avail[pa_indx++] = pa;	/* start */
1851				phys_avail[pa_indx] = pa + PAGE_SIZE;	/* end */
1852			}
1853			physmem++;
1854		}
1855	}
1856	*pte = 0;
1857	invltlb();
1858
1859	/*
1860	 * XXX
1861	 * The last chunk must contain at least one page plus the message
1862	 * buffer to avoid complicating other code (message buffer address
1863	 * calculation, etc.).
1864	 */
1865	while (phys_avail[pa_indx - 1] + PAGE_SIZE +
1866	    round_page(MSGBUF_SIZE) >= phys_avail[pa_indx]) {
1867		physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
1868		phys_avail[pa_indx--] = 0;
1869		phys_avail[pa_indx--] = 0;
1870	}
1871
1872	Maxmem = atop(phys_avail[pa_indx]);
1873
1874	/* Trim off space for the message buffer. */
1875	phys_avail[pa_indx] -= round_page(MSGBUF_SIZE);
1876
1877	avail_end = phys_avail[pa_indx];
1878}
1879
1880void
1881init386(first)
1882	int first;
1883{
1884	struct gate_descriptor *gdp;
1885	int gsel_tss, metadata_missing, off, x;
1886#ifndef SMP
1887	/* table descriptors - used to load tables by microp */
1888	struct region_descriptor r_gdt, r_idt;
1889#endif
1890	struct pcpu *pc;
1891
1892	proc0.p_uarea = proc0uarea;
1893	thread0.td_kstack = proc0kstack;
1894	thread0.td_pcb = (struct pcb *)
1895	   (thread0.td_kstack + KSTACK_PAGES * PAGE_SIZE) - 1;
1896	atdevbase = ISA_HOLE_START + KERNBASE;
1897
1898	/*
1899 	 * This may be done better later if it gets more high level
1900 	 * components in it. If so just link td->td_proc here.
1901	 */
1902	proc_linkup(&proc0, &ksegrp0, &kse0, &thread0);
1903
1904	metadata_missing = 0;
1905	if (bootinfo.bi_modulep) {
1906		preload_metadata = (caddr_t)bootinfo.bi_modulep + KERNBASE;
1907		preload_bootstrap_relocate(KERNBASE);
1908	} else {
1909		metadata_missing = 1;
1910	}
1911	if (envmode == 1)
1912		kern_envp = static_env;
1913	else if (bootinfo.bi_envp)
1914		kern_envp = (caddr_t)bootinfo.bi_envp + KERNBASE;
1915
1916	/* Init basic tunables, hz etc */
1917	init_param1();
1918
1919	/*
1920	 * make gdt memory segments, the code segment goes up to end of the
1921	 * page with etext in it, the data segment goes to the end of
1922	 * the address space
1923	 */
1924	/*
1925	 * XXX text protection is temporarily (?) disabled.  The limit was
1926	 * i386_btop(round_page(etext)) - 1.
1927	 */
1928	gdt_segs[GCODE_SEL].ssd_limit = atop(0 - 1);
1929	gdt_segs[GDATA_SEL].ssd_limit = atop(0 - 1);
1930#ifdef SMP
1931	pc = &SMP_prvspace[0].pcpu;
1932	gdt_segs[GPRIV_SEL].ssd_limit =
1933		atop(sizeof(struct privatespace) - 1);
1934#else
1935	pc = &__pcpu;
1936	gdt_segs[GPRIV_SEL].ssd_limit =
1937		atop(sizeof(struct pcpu) - 1);
1938#endif
1939	gdt_segs[GPRIV_SEL].ssd_base = (int) pc;
1940	gdt_segs[GPROC0_SEL].ssd_base = (int) &pc->pc_common_tss;
1941
1942	for (x = 0; x < NGDT; x++) {
1943#ifdef BDE_DEBUGGER
1944		/* avoid overwriting db entries with APM ones */
1945		if (x >= GAPMCODE32_SEL && x <= GAPMDATA_SEL)
1946			continue;
1947#endif
1948		ssdtosd(&gdt_segs[x], &gdt[x].sd);
1949	}
1950
1951	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
1952	r_gdt.rd_base =  (int) gdt;
1953	lgdt(&r_gdt);
1954
1955	pcpu_init(pc, 0, sizeof(struct pcpu));
1956	PCPU_SET(prvspace, pc);
1957	PCPU_SET(curthread, &thread0);
1958
1959	/*
1960	 * Initialize mutexes.
1961	 *
1962	 * icu_lock: in order to allow an interrupt to occur in a critical
1963	 * 	     section, to set pcpu->ipending (etc...) properly, we
1964	 *	     must be able to get the icu lock, so it can't be
1965	 *	     under witness.
1966	 */
1967	mutex_init();
1968	mtx_init(&clock_lock, "clk", NULL, MTX_SPIN | MTX_RECURSE);
1969	mtx_init(&icu_lock, "icu", NULL, MTX_SPIN | MTX_NOWITNESS);
1970
1971	/* make ldt memory segments */
1972	/*
1973	 * XXX - VM_MAXUSER_ADDRESS is an end address, not a max.  And it
1974	 * should be spelled ...MAX_USER...
1975	 */
1976	ldt_segs[LUCODE_SEL].ssd_limit = atop(VM_MAXUSER_ADDRESS - 1);
1977	ldt_segs[LUDATA_SEL].ssd_limit = atop(VM_MAXUSER_ADDRESS - 1);
1978	for (x = 0; x < sizeof ldt_segs / sizeof ldt_segs[0]; x++)
1979		ssdtosd(&ldt_segs[x], &ldt[x].sd);
1980
1981	_default_ldt = GSEL(GLDT_SEL, SEL_KPL);
1982	lldt(_default_ldt);
1983	PCPU_SET(currentldt, _default_ldt);
1984
1985	/* exceptions */
1986	for (x = 0; x < NIDT; x++)
1987		setidt(x, &IDTVEC(rsvd), SDT_SYS386TGT, SEL_KPL,
1988		    GSEL(GCODE_SEL, SEL_KPL));
1989	setidt(0, &IDTVEC(div),  SDT_SYS386TGT, SEL_KPL,
1990	    GSEL(GCODE_SEL, SEL_KPL));
1991	setidt(1, &IDTVEC(dbg),  SDT_SYS386IGT, SEL_KPL,
1992	    GSEL(GCODE_SEL, SEL_KPL));
1993	setidt(2, &IDTVEC(nmi),  SDT_SYS386TGT, SEL_KPL,
1994	    GSEL(GCODE_SEL, SEL_KPL));
1995 	setidt(3, &IDTVEC(bpt),  SDT_SYS386IGT, SEL_UPL,
1996	    GSEL(GCODE_SEL, SEL_KPL));
1997	setidt(4, &IDTVEC(ofl),  SDT_SYS386TGT, SEL_UPL,
1998	    GSEL(GCODE_SEL, SEL_KPL));
1999	setidt(5, &IDTVEC(bnd),  SDT_SYS386TGT, SEL_KPL,
2000	    GSEL(GCODE_SEL, SEL_KPL));
2001	setidt(6, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL,
2002	    GSEL(GCODE_SEL, SEL_KPL));
2003	setidt(7, &IDTVEC(dna),  SDT_SYS386TGT, SEL_KPL
2004	    , GSEL(GCODE_SEL, SEL_KPL));
2005	setidt(8, 0,  SDT_SYSTASKGT, SEL_KPL, GSEL(GPANIC_SEL, SEL_KPL));
2006	setidt(9, &IDTVEC(fpusegm),  SDT_SYS386TGT, SEL_KPL,
2007	    GSEL(GCODE_SEL, SEL_KPL));
2008	setidt(10, &IDTVEC(tss),  SDT_SYS386TGT, SEL_KPL,
2009	    GSEL(GCODE_SEL, SEL_KPL));
2010	setidt(11, &IDTVEC(missing),  SDT_SYS386TGT, SEL_KPL,
2011	    GSEL(GCODE_SEL, SEL_KPL));
2012	setidt(12, &IDTVEC(stk),  SDT_SYS386TGT, SEL_KPL,
2013	    GSEL(GCODE_SEL, SEL_KPL));
2014	setidt(13, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL,
2015	    GSEL(GCODE_SEL, SEL_KPL));
2016	setidt(14, &IDTVEC(page),  SDT_SYS386IGT, SEL_KPL,
2017	    GSEL(GCODE_SEL, SEL_KPL));
2018	setidt(15, &IDTVEC(rsvd),  SDT_SYS386TGT, SEL_KPL,
2019	    GSEL(GCODE_SEL, SEL_KPL));
2020	setidt(16, &IDTVEC(fpu),  SDT_SYS386TGT, SEL_KPL,
2021	    GSEL(GCODE_SEL, SEL_KPL));
2022	setidt(17, &IDTVEC(align), SDT_SYS386TGT, SEL_KPL,
2023	    GSEL(GCODE_SEL, SEL_KPL));
2024	setidt(18, &IDTVEC(mchk),  SDT_SYS386TGT, SEL_KPL,
2025	    GSEL(GCODE_SEL, SEL_KPL));
2026	setidt(19, &IDTVEC(xmm), SDT_SYS386TGT, SEL_KPL,
2027	    GSEL(GCODE_SEL, SEL_KPL));
2028 	setidt(0x80, &IDTVEC(int0x80_syscall), SDT_SYS386TGT, SEL_UPL,
2029	    GSEL(GCODE_SEL, SEL_KPL));
2030
2031	r_idt.rd_limit = sizeof(idt0) - 1;
2032	r_idt.rd_base = (int) idt;
2033	lidt(&r_idt);
2034
2035	/*
2036	 * Initialize the console before we print anything out.
2037	 */
2038	cninit();
2039
2040	if (metadata_missing)
2041		printf("WARNING: loader(8) metadata is missing!\n");
2042
2043#ifdef DEV_ISA
2044	isa_defaultirq();
2045#endif
2046
2047#ifdef DDB
2048	kdb_init();
2049	if (boothowto & RB_KDB)
2050		Debugger("Boot flags requested debugger");
2051#endif
2052
2053	finishidentcpu();	/* Final stage of CPU initialization */
2054	setidt(6, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL,
2055	    GSEL(GCODE_SEL, SEL_KPL));
2056	setidt(13, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL,
2057	    GSEL(GCODE_SEL, SEL_KPL));
2058	initializecpu();	/* Initialize CPU registers */
2059
2060	/* make an initial tss so cpu can get interrupt stack on syscall! */
2061	/* Note: -16 is so we can grow the trapframe if we came from vm86 */
2062	PCPU_SET(common_tss.tss_esp0, thread0.td_kstack +
2063	    KSTACK_PAGES * PAGE_SIZE - sizeof(struct pcb) - 16);
2064	PCPU_SET(common_tss.tss_ss0, GSEL(GDATA_SEL, SEL_KPL));
2065	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
2066	private_tss = 0;
2067	PCPU_SET(tss_gdt, &gdt[GPROC0_SEL].sd);
2068	PCPU_SET(common_tssd, *PCPU_GET(tss_gdt));
2069	PCPU_SET(common_tss.tss_ioopt, (sizeof (struct i386tss)) << 16);
2070	ltr(gsel_tss);
2071
2072	dblfault_tss.tss_esp = dblfault_tss.tss_esp0 = dblfault_tss.tss_esp1 =
2073	    dblfault_tss.tss_esp2 = (int)&dblfault_stack[sizeof(dblfault_stack)];
2074	dblfault_tss.tss_ss = dblfault_tss.tss_ss0 = dblfault_tss.tss_ss1 =
2075	    dblfault_tss.tss_ss2 = GSEL(GDATA_SEL, SEL_KPL);
2076	dblfault_tss.tss_cr3 = (int)IdlePTD;
2077	dblfault_tss.tss_eip = (int)dblfault_handler;
2078	dblfault_tss.tss_eflags = PSL_KERNEL;
2079	dblfault_tss.tss_ds = dblfault_tss.tss_es =
2080	    dblfault_tss.tss_gs = GSEL(GDATA_SEL, SEL_KPL);
2081	dblfault_tss.tss_fs = GSEL(GPRIV_SEL, SEL_KPL);
2082	dblfault_tss.tss_cs = GSEL(GCODE_SEL, SEL_KPL);
2083	dblfault_tss.tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
2084
2085	vm86_initialize();
2086	getmemsize(first);
2087	init_param2(physmem);
2088
2089	/* now running on new page tables, configured,and u/iom is accessible */
2090
2091	/* Map the message buffer. */
2092	for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE)
2093		pmap_kenter((vm_offset_t)msgbufp + off, avail_end + off);
2094
2095	msgbufinit(msgbufp, MSGBUF_SIZE);
2096
2097	/* make a call gate to reenter kernel with */
2098	gdp = &ldt[LSYS5CALLS_SEL].gd;
2099
2100	x = (int) &IDTVEC(lcall_syscall);
2101	gdp->gd_looffset = x;
2102	gdp->gd_selector = GSEL(GCODE_SEL,SEL_KPL);
2103	gdp->gd_stkcpy = 1;
2104	gdp->gd_type = SDT_SYS386CGT;
2105	gdp->gd_dpl = SEL_UPL;
2106	gdp->gd_p = 1;
2107	gdp->gd_hioffset = x >> 16;
2108
2109	/* XXX does this work? */
2110	ldt[LBSDICALLS_SEL] = ldt[LSYS5CALLS_SEL];
2111	ldt[LSOL26CALLS_SEL] = ldt[LSYS5CALLS_SEL];
2112
2113	/* transfer to user mode */
2114
2115	_ucodesel = LSEL(LUCODE_SEL, SEL_UPL);
2116	_udatasel = LSEL(LUDATA_SEL, SEL_UPL);
2117
2118	/* setup proc 0's pcb */
2119	thread0.td_pcb->pcb_flags = 0; /* XXXKSE */
2120	thread0.td_pcb->pcb_cr3 = (int)IdlePTD;
2121	thread0.td_pcb->pcb_ext = 0;
2122	thread0.td_frame = &proc0_tf;
2123}
2124
2125void
2126cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
2127{
2128}
2129
2130#if defined(I586_CPU) && !defined(NO_F00F_HACK)
2131static void f00f_hack(void *unused);
2132SYSINIT(f00f_hack, SI_SUB_INTRINSIC, SI_ORDER_FIRST, f00f_hack, NULL);
2133
2134static void
2135f00f_hack(void *unused) {
2136	struct gate_descriptor *new_idt;
2137#ifndef SMP
2138	struct region_descriptor r_idt;
2139#endif
2140	vm_offset_t tmp;
2141
2142	if (!has_f00f_bug)
2143		return;
2144
2145	GIANT_REQUIRED;
2146
2147	printf("Intel Pentium detected, installing workaround for F00F bug\n");
2148
2149	r_idt.rd_limit = sizeof(idt0) - 1;
2150
2151	tmp = kmem_alloc(kernel_map, PAGE_SIZE * 2);
2152	if (tmp == 0)
2153		panic("kmem_alloc returned 0");
2154	if (((unsigned int)tmp & (PAGE_SIZE-1)) != 0)
2155		panic("kmem_alloc returned non-page-aligned memory");
2156	/* Put the first seven entries in the lower page */
2157	new_idt = (struct gate_descriptor*)(tmp + PAGE_SIZE - (7*8));
2158	bcopy(idt, new_idt, sizeof(idt0));
2159	r_idt.rd_base = (int)new_idt;
2160	lidt(&r_idt);
2161	idt = new_idt;
2162	if (vm_map_protect(kernel_map, tmp, tmp + PAGE_SIZE,
2163			   VM_PROT_READ, FALSE) != KERN_SUCCESS)
2164		panic("vm_map_protect failed");
2165	return;
2166}
2167#endif /* defined(I586_CPU) && !NO_F00F_HACK */
2168
2169int
2170ptrace_set_pc(struct thread *td, unsigned long addr)
2171{
2172	td->td_frame->tf_eip = addr;
2173	return (0);
2174}
2175
2176int
2177ptrace_single_step(struct thread *td)
2178{
2179	td->td_frame->tf_eflags |= PSL_T;
2180	return (0);
2181}
2182
2183int
2184fill_regs(struct thread *td, struct reg *regs)
2185{
2186	struct pcb *pcb;
2187	struct trapframe *tp;
2188
2189	tp = td->td_frame;
2190	regs->r_fs = tp->tf_fs;
2191	regs->r_es = tp->tf_es;
2192	regs->r_ds = tp->tf_ds;
2193	regs->r_edi = tp->tf_edi;
2194	regs->r_esi = tp->tf_esi;
2195	regs->r_ebp = tp->tf_ebp;
2196	regs->r_ebx = tp->tf_ebx;
2197	regs->r_edx = tp->tf_edx;
2198	regs->r_ecx = tp->tf_ecx;
2199	regs->r_eax = tp->tf_eax;
2200	regs->r_eip = tp->tf_eip;
2201	regs->r_cs = tp->tf_cs;
2202	regs->r_eflags = tp->tf_eflags;
2203	regs->r_esp = tp->tf_esp;
2204	regs->r_ss = tp->tf_ss;
2205	pcb = td->td_pcb;
2206	regs->r_gs = pcb->pcb_gs;
2207	return (0);
2208}
2209
2210int
2211set_regs(struct thread *td, struct reg *regs)
2212{
2213	struct pcb *pcb;
2214	struct trapframe *tp;
2215
2216	tp = td->td_frame;
2217	if (!EFL_SECURE(regs->r_eflags, tp->tf_eflags) ||
2218	    !CS_SECURE(regs->r_cs))
2219		return (EINVAL);
2220	tp->tf_fs = regs->r_fs;
2221	tp->tf_es = regs->r_es;
2222	tp->tf_ds = regs->r_ds;
2223	tp->tf_edi = regs->r_edi;
2224	tp->tf_esi = regs->r_esi;
2225	tp->tf_ebp = regs->r_ebp;
2226	tp->tf_ebx = regs->r_ebx;
2227	tp->tf_edx = regs->r_edx;
2228	tp->tf_ecx = regs->r_ecx;
2229	tp->tf_eax = regs->r_eax;
2230	tp->tf_eip = regs->r_eip;
2231	tp->tf_cs = regs->r_cs;
2232	tp->tf_eflags = regs->r_eflags;
2233	tp->tf_esp = regs->r_esp;
2234	tp->tf_ss = regs->r_ss;
2235	pcb = td->td_pcb;
2236	pcb->pcb_gs = regs->r_gs;
2237	return (0);
2238}
2239
2240#ifdef CPU_ENABLE_SSE
2241static void
2242fill_fpregs_xmm(sv_xmm, sv_87)
2243	struct savexmm *sv_xmm;
2244	struct save87 *sv_87;
2245{
2246	register struct env87 *penv_87 = &sv_87->sv_env;
2247	register struct envxmm *penv_xmm = &sv_xmm->sv_env;
2248	int i;
2249
2250	bzero(sv_87, sizeof(*sv_87));
2251
2252	/* FPU control/status */
2253	penv_87->en_cw = penv_xmm->en_cw;
2254	penv_87->en_sw = penv_xmm->en_sw;
2255	penv_87->en_tw = penv_xmm->en_tw;
2256	penv_87->en_fip = penv_xmm->en_fip;
2257	penv_87->en_fcs = penv_xmm->en_fcs;
2258	penv_87->en_opcode = penv_xmm->en_opcode;
2259	penv_87->en_foo = penv_xmm->en_foo;
2260	penv_87->en_fos = penv_xmm->en_fos;
2261
2262	/* FPU registers */
2263	for (i = 0; i < 8; ++i)
2264		sv_87->sv_ac[i] = sv_xmm->sv_fp[i].fp_acc;
2265}
2266
2267static void
2268set_fpregs_xmm(sv_87, sv_xmm)
2269	struct save87 *sv_87;
2270	struct savexmm *sv_xmm;
2271{
2272	register struct env87 *penv_87 = &sv_87->sv_env;
2273	register struct envxmm *penv_xmm = &sv_xmm->sv_env;
2274	int i;
2275
2276	/* FPU control/status */
2277	penv_xmm->en_cw = penv_87->en_cw;
2278	penv_xmm->en_sw = penv_87->en_sw;
2279	penv_xmm->en_tw = penv_87->en_tw;
2280	penv_xmm->en_fip = penv_87->en_fip;
2281	penv_xmm->en_fcs = penv_87->en_fcs;
2282	penv_xmm->en_opcode = penv_87->en_opcode;
2283	penv_xmm->en_foo = penv_87->en_foo;
2284	penv_xmm->en_fos = penv_87->en_fos;
2285
2286	/* FPU registers */
2287	for (i = 0; i < 8; ++i)
2288		sv_xmm->sv_fp[i].fp_acc = sv_87->sv_ac[i];
2289}
2290#endif /* CPU_ENABLE_SSE */
2291
2292int
2293fill_fpregs(struct thread *td, struct fpreg *fpregs)
2294{
2295#ifdef CPU_ENABLE_SSE
2296	if (cpu_fxsr) {
2297		fill_fpregs_xmm(&td->td_pcb->pcb_save.sv_xmm,
2298						(struct save87 *)fpregs);
2299		return (0);
2300	}
2301#endif /* CPU_ENABLE_SSE */
2302	bcopy(&td->td_pcb->pcb_save.sv_87, fpregs, sizeof *fpregs);
2303	return (0);
2304}
2305
2306int
2307set_fpregs(struct thread *td, struct fpreg *fpregs)
2308{
2309#ifdef CPU_ENABLE_SSE
2310	if (cpu_fxsr) {
2311		set_fpregs_xmm((struct save87 *)fpregs,
2312					   &td->td_pcb->pcb_save.sv_xmm);
2313		return (0);
2314	}
2315#endif /* CPU_ENABLE_SSE */
2316	bcopy(fpregs, &td->td_pcb->pcb_save.sv_87, sizeof *fpregs);
2317	return (0);
2318}
2319
2320/*
2321 * Get machine context.
2322 */
2323int
2324get_mcontext(struct thread *td, mcontext_t *mcp)
2325{
2326	struct trapframe *tp;
2327
2328	tp = td->td_frame;
2329
2330	mcp->mc_onstack = sigonstack(tp->tf_esp);
2331	mcp->mc_gs = td->td_pcb->pcb_gs;
2332	mcp->mc_fs = tp->tf_fs;
2333	mcp->mc_es = tp->tf_es;
2334	mcp->mc_ds = tp->tf_ds;
2335	mcp->mc_edi = tp->tf_edi;
2336	mcp->mc_esi = tp->tf_esi;
2337	mcp->mc_ebp = tp->tf_ebp;
2338	mcp->mc_isp = tp->tf_isp;
2339	mcp->mc_ebx = tp->tf_ebx;
2340	mcp->mc_edx = tp->tf_edx;
2341	mcp->mc_ecx = tp->tf_ecx;
2342	mcp->mc_eax = tp->tf_eax;
2343	mcp->mc_eip = tp->tf_eip;
2344	mcp->mc_cs = tp->tf_cs;
2345	mcp->mc_eflags = tp->tf_eflags;
2346	mcp->mc_esp = tp->tf_esp;
2347	mcp->mc_ss = tp->tf_ss;
2348	mcp->mc_len = sizeof(*mcp);
2349	get_fpcontext(td, mcp);
2350	return (0);
2351}
2352
2353/*
2354 * Set machine context.
2355 *
2356 * However, we don't set any but the user modifiable flags, and we won't
2357 * touch the cs selector.
2358 */
2359int
2360set_mcontext(struct thread *td, const mcontext_t *mcp)
2361{
2362	struct trapframe *tp;
2363	int eflags, ret;
2364
2365	tp = td->td_frame;
2366	if (mcp->mc_len != sizeof(*mcp))
2367		return (EINVAL);
2368	eflags = (mcp->mc_eflags & PSL_USERCHANGE) |
2369	    (tp->tf_eflags & ~PSL_USERCHANGE);
2370	if ((ret = set_fpcontext(td, mcp)) == 0) {
2371		tp->tf_fs = mcp->mc_fs;
2372		tp->tf_es = mcp->mc_es;
2373		tp->tf_ds = mcp->mc_ds;
2374		tp->tf_edi = mcp->mc_edi;
2375		tp->tf_esi = mcp->mc_esi;
2376		tp->tf_ebp = mcp->mc_ebp;
2377		tp->tf_ebx = mcp->mc_ebx;
2378		tp->tf_edx = mcp->mc_edx;
2379		tp->tf_ecx = mcp->mc_ecx;
2380		tp->tf_eax = mcp->mc_eax;
2381		tp->tf_eip = mcp->mc_eip;
2382		tp->tf_eflags = eflags;
2383		tp->tf_esp = mcp->mc_esp;
2384		tp->tf_ss = mcp->mc_ss;
2385		td->td_pcb->pcb_gs = mcp->mc_gs;
2386		ret = 0;
2387	}
2388	return (ret);
2389}
2390
2391static void
2392get_fpcontext(struct thread *td, mcontext_t *mcp)
2393{
2394#ifndef DEV_NPX
2395	mcp->mc_fpformat = _MC_FPFMT_NODEV;
2396	mcp->mc_ownedfp = _MC_FPOWNED_NONE;
2397#else
2398	union savefpu *addr;
2399
2400	/*
2401	 * XXX mc_fpstate might be misaligned, since its declaration is not
2402	 * unportabilized using __attribute__((aligned(16))) like the
2403	 * declaration of struct savemm, and anyway, alignment doesn't work
2404	 * for auto variables since we don't use gcc's pessimal stack
2405	 * alignment.  Work around this by abusing the spare fields after
2406	 * mcp->mc_fpstate.
2407	 *
2408	 * XXX unpessimize most cases by only aligning when fxsave might be
2409	 * called, although this requires knowing too much about
2410	 * npxgetregs()'s internals.
2411	 */
2412	addr = (union savefpu *)&mcp->mc_fpstate;
2413	if (td == PCPU_GET(fpcurthread) &&
2414#ifdef CPU_ENABLE_SSE
2415	    cpu_fxsr &&
2416#endif
2417	    ((uintptr_t)(void *)addr & 0xF)) {
2418		do
2419			addr = (void *)((char *)addr + 4);
2420		while ((uintptr_t)(void *)addr & 0xF);
2421	}
2422	mcp->mc_ownedfp = npxgetregs(td, addr);
2423	if (addr != (union savefpu *)&mcp->mc_fpstate) {
2424		bcopy(addr, &mcp->mc_fpstate, sizeof(mcp->mc_fpstate));
2425		bzero(&mcp->mc_spare2, sizeof(mcp->mc_spare2));
2426	}
2427	mcp->mc_fpformat = npxformat();
2428#endif
2429}
2430
2431static int
2432set_fpcontext(struct thread *td, const mcontext_t *mcp)
2433{
2434	union savefpu *addr;
2435
2436	if (mcp->mc_fpformat == _MC_FPFMT_NODEV)
2437		return (0);
2438	else if (mcp->mc_fpformat != _MC_FPFMT_387 &&
2439	    mcp->mc_fpformat != _MC_FPFMT_XMM)
2440		return (EINVAL);
2441	else if (mcp->mc_ownedfp == _MC_FPOWNED_NONE)
2442		/* We don't care what state is left in the FPU or PCB. */
2443		fpstate_drop(td);
2444	else if (mcp->mc_ownedfp == _MC_FPOWNED_FPU ||
2445	    mcp->mc_ownedfp == _MC_FPOWNED_PCB) {
2446		/* XXX align as above. */
2447		addr = (union savefpu *)&mcp->mc_fpstate;
2448		if (td == PCPU_GET(fpcurthread) &&
2449#ifdef CPU_ENABLE_SSE
2450		    cpu_fxsr &&
2451#endif
2452		    ((uintptr_t)(void *)addr & 0xF)) {
2453			do
2454				addr = (void *)((char *)addr + 4);
2455			while ((uintptr_t)(void *)addr & 0xF);
2456			bcopy(&mcp->mc_fpstate, addr, sizeof(mcp->mc_fpstate));
2457		}
2458#ifdef DEV_NPX
2459		/*
2460		 * XXX we violate the dubious requirement that npxsetregs()
2461		 * be called with interrupts disabled.
2462		 */
2463		npxsetregs(td, addr);
2464#endif
2465		/*
2466		 * Don't bother putting things back where they were in the
2467		 * misaligned case, since we know that the caller won't use
2468		 * them again.
2469		 */
2470	} else
2471		return (EINVAL);
2472	return (0);
2473}
2474
2475static void
2476fpstate_drop(struct thread *td)
2477{
2478	register_t s;
2479
2480	s = intr_disable();
2481#ifdef DEV_NPX
2482	if (PCPU_GET(fpcurthread) == td)
2483		npxdrop();
2484#endif
2485	/*
2486	 * XXX force a full drop of the npx.  The above only drops it if we
2487	 * owned it.  npxgetregs() has the same bug in the !cpu_fxsr case.
2488	 *
2489	 * XXX I don't much like npxgetregs()'s semantics of doing a full
2490	 * drop.  Dropping only to the pcb matches fnsave's behaviour.
2491	 * We only need to drop to !PCB_INITDONE in sendsig().  But
2492	 * sendsig() is the only caller of npxgetregs()... perhaps we just
2493	 * have too many layers.
2494	 */
2495	curthread->td_pcb->pcb_flags &= ~PCB_NPXINITDONE;
2496	intr_restore(s);
2497}
2498
2499int
2500fill_dbregs(struct thread *td, struct dbreg *dbregs)
2501{
2502	struct pcb *pcb;
2503
2504	if (td == NULL) {
2505		dbregs->dr[0] = rdr0();
2506		dbregs->dr[1] = rdr1();
2507		dbregs->dr[2] = rdr2();
2508		dbregs->dr[3] = rdr3();
2509		dbregs->dr[4] = rdr4();
2510		dbregs->dr[5] = rdr5();
2511		dbregs->dr[6] = rdr6();
2512		dbregs->dr[7] = rdr7();
2513	} else {
2514		pcb = td->td_pcb;
2515		dbregs->dr[0] = pcb->pcb_dr0;
2516		dbregs->dr[1] = pcb->pcb_dr1;
2517		dbregs->dr[2] = pcb->pcb_dr2;
2518		dbregs->dr[3] = pcb->pcb_dr3;
2519		dbregs->dr[4] = 0;
2520		dbregs->dr[5] = 0;
2521		dbregs->dr[6] = pcb->pcb_dr6;
2522		dbregs->dr[7] = pcb->pcb_dr7;
2523	}
2524	return (0);
2525}
2526
2527int
2528set_dbregs(struct thread *td, struct dbreg *dbregs)
2529{
2530	struct pcb *pcb;
2531	int i;
2532	u_int32_t mask1, mask2;
2533
2534	if (td == NULL) {
2535		load_dr0(dbregs->dr[0]);
2536		load_dr1(dbregs->dr[1]);
2537		load_dr2(dbregs->dr[2]);
2538		load_dr3(dbregs->dr[3]);
2539		load_dr4(dbregs->dr[4]);
2540		load_dr5(dbregs->dr[5]);
2541		load_dr6(dbregs->dr[6]);
2542		load_dr7(dbregs->dr[7]);
2543	} else {
2544		/*
2545		 * Don't let an illegal value for dr7 get set.	Specifically,
2546		 * check for undefined settings.  Setting these bit patterns
2547		 * result in undefined behaviour and can lead to an unexpected
2548		 * TRCTRAP.
2549		 */
2550		for (i = 0, mask1 = 0x3<<16, mask2 = 0x2<<16; i < 8;
2551		     i++, mask1 <<= 2, mask2 <<= 2)
2552			if ((dbregs->dr[7] & mask1) == mask2)
2553				return (EINVAL);
2554
2555		pcb = td->td_pcb;
2556
2557		/*
2558		 * Don't let a process set a breakpoint that is not within the
2559		 * process's address space.  If a process could do this, it
2560		 * could halt the system by setting a breakpoint in the kernel
2561		 * (if ddb was enabled).  Thus, we need to check to make sure
2562		 * that no breakpoints are being enabled for addresses outside
2563		 * process's address space, unless, perhaps, we were called by
2564		 * uid 0.
2565		 *
2566		 * XXX - what about when the watched area of the user's
2567		 * address space is written into from within the kernel
2568		 * ... wouldn't that still cause a breakpoint to be generated
2569		 * from within kernel mode?
2570		 */
2571
2572		if (suser(td) != 0) {
2573			if (dbregs->dr[7] & 0x3) {
2574				/* dr0 is enabled */
2575				if (dbregs->dr[0] >= VM_MAXUSER_ADDRESS)
2576					return (EINVAL);
2577			}
2578
2579			if (dbregs->dr[7] & (0x3<<2)) {
2580				/* dr1 is enabled */
2581				if (dbregs->dr[1] >= VM_MAXUSER_ADDRESS)
2582					return (EINVAL);
2583			}
2584
2585			if (dbregs->dr[7] & (0x3<<4)) {
2586				/* dr2 is enabled */
2587				if (dbregs->dr[2] >= VM_MAXUSER_ADDRESS)
2588					return (EINVAL);
2589			}
2590
2591			if (dbregs->dr[7] & (0x3<<6)) {
2592				/* dr3 is enabled */
2593				if (dbregs->dr[3] >= VM_MAXUSER_ADDRESS)
2594					return (EINVAL);
2595			}
2596		}
2597
2598		pcb->pcb_dr0 = dbregs->dr[0];
2599		pcb->pcb_dr1 = dbregs->dr[1];
2600		pcb->pcb_dr2 = dbregs->dr[2];
2601		pcb->pcb_dr3 = dbregs->dr[3];
2602		pcb->pcb_dr6 = dbregs->dr[6];
2603		pcb->pcb_dr7 = dbregs->dr[7];
2604
2605		pcb->pcb_flags |= PCB_DBREGS;
2606	}
2607
2608	return (0);
2609}
2610
2611/*
2612 * Return > 0 if a hardware breakpoint has been hit, and the
2613 * breakpoint was in user space.  Return 0, otherwise.
2614 */
2615int
2616user_dbreg_trap(void)
2617{
2618        u_int32_t dr7, dr6; /* debug registers dr6 and dr7 */
2619        u_int32_t bp;       /* breakpoint bits extracted from dr6 */
2620        int nbp;            /* number of breakpoints that triggered */
2621        caddr_t addr[4];    /* breakpoint addresses */
2622        int i;
2623
2624        dr7 = rdr7();
2625        if ((dr7 & 0x000000ff) == 0) {
2626                /*
2627                 * all GE and LE bits in the dr7 register are zero,
2628                 * thus the trap couldn't have been caused by the
2629                 * hardware debug registers
2630                 */
2631                return 0;
2632        }
2633
2634        nbp = 0;
2635        dr6 = rdr6();
2636        bp = dr6 & 0x0000000f;
2637
2638        if (!bp) {
2639                /*
2640                 * None of the breakpoint bits are set meaning this
2641                 * trap was not caused by any of the debug registers
2642                 */
2643                return 0;
2644        }
2645
2646        /*
2647         * at least one of the breakpoints were hit, check to see
2648         * which ones and if any of them are user space addresses
2649         */
2650
2651        if (bp & 0x01) {
2652                addr[nbp++] = (caddr_t)rdr0();
2653        }
2654        if (bp & 0x02) {
2655                addr[nbp++] = (caddr_t)rdr1();
2656        }
2657        if (bp & 0x04) {
2658                addr[nbp++] = (caddr_t)rdr2();
2659        }
2660        if (bp & 0x08) {
2661                addr[nbp++] = (caddr_t)rdr3();
2662        }
2663
2664        for (i=0; i<nbp; i++) {
2665                if (addr[i] <
2666                    (caddr_t)VM_MAXUSER_ADDRESS) {
2667                        /*
2668                         * addr[i] is in user space
2669                         */
2670                        return nbp;
2671                }
2672        }
2673
2674        /*
2675         * None of the breakpoints are in user space.
2676         */
2677        return 0;
2678}
2679
2680
2681#ifndef DDB
2682void
2683Debugger(const char *msg)
2684{
2685	printf("Debugger(\"%s\") called.\n", msg);
2686}
2687#endif /* no DDB */
2688
2689#ifdef DDB
2690
2691/*
2692 * Provide inb() and outb() as functions.  They are normally only
2693 * available as macros calling inlined functions, thus cannot be
2694 * called inside DDB.
2695 *
2696 * The actual code is stolen from <machine/cpufunc.h>, and de-inlined.
2697 */
2698
2699#undef inb
2700#undef outb
2701
2702/* silence compiler warnings */
2703u_char inb(u_int);
2704void outb(u_int, u_char);
2705
2706u_char
2707inb(u_int port)
2708{
2709	u_char	data;
2710	/*
2711	 * We use %%dx and not %1 here because i/o is done at %dx and not at
2712	 * %edx, while gcc generates inferior code (movw instead of movl)
2713	 * if we tell it to load (u_short) port.
2714	 */
2715	__asm __volatile("inb %%dx,%0" : "=a" (data) : "d" (port));
2716	return (data);
2717}
2718
2719void
2720outb(u_int port, u_char data)
2721{
2722	u_char	al;
2723	/*
2724	 * Use an unnecessary assignment to help gcc's register allocator.
2725	 * This make a large difference for gcc-1.40 and a tiny difference
2726	 * for gcc-2.6.0.  For gcc-1.40, al had to be ``asm("ax")'' for
2727	 * best results.  gcc-2.6.0 can't handle this.
2728	 */
2729	al = data;
2730	__asm __volatile("outb %0,%%dx" : : "a" (al), "d" (port));
2731}
2732
2733#endif /* DDB */
2734