machdep.c revision 106503
1/*-
2 * Copyright (c) 1992 Terrence R. Lambert.
3 * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * William Jolitz.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 *    must display the following acknowledgement:
19 *	This product includes software developed by the University of
20 *	California, Berkeley and its contributors.
21 * 4. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 *	from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
38 * $FreeBSD: head/sys/amd64/amd64/machdep.c 106503 2002-11-06 14:53:35Z jmallett $
39 */
40
41#include "opt_atalk.h"
42#include "opt_compat.h"
43#include "opt_cpu.h"
44#include "opt_ddb.h"
45#include "opt_inet.h"
46#include "opt_ipx.h"
47#include "opt_isa.h"
48#include "opt_maxmem.h"
49#include "opt_msgbuf.h"
50#include "opt_npx.h"
51#include "opt_perfmon.h"
52#include "opt_kstack_pages.h"
53
54#include <sys/param.h>
55#include <sys/systm.h>
56#include <sys/sysproto.h>
57#include <sys/signalvar.h>
58#include <sys/imgact.h>
59#include <sys/kernel.h>
60#include <sys/ktr.h>
61#include <sys/linker.h>
62#include <sys/lock.h>
63#include <sys/malloc.h>
64#include <sys/mutex.h>
65#include <sys/pcpu.h>
66#include <sys/proc.h>
67#include <sys/bio.h>
68#include <sys/buf.h>
69#include <sys/reboot.h>
70#include <sys/callout.h>
71#include <sys/msgbuf.h>
72#include <sys/sched.h>
73#include <sys/sysent.h>
74#include <sys/sysctl.h>
75#include <sys/ucontext.h>
76#include <sys/vmmeter.h>
77#include <sys/bus.h>
78#include <sys/eventhandler.h>
79
80#include <vm/vm.h>
81#include <vm/vm_param.h>
82#include <vm/vm_kern.h>
83#include <vm/vm_object.h>
84#include <vm/vm_page.h>
85#include <vm/vm_map.h>
86#include <vm/vm_pager.h>
87#include <vm/vm_extern.h>
88
89#include <sys/user.h>
90#include <sys/exec.h>
91#include <sys/cons.h>
92
93#include <ddb/ddb.h>
94
95#include <net/netisr.h>
96
97#include <machine/cpu.h>
98#include <machine/cputypes.h>
99#include <machine/reg.h>
100#include <machine/clock.h>
101#include <machine/specialreg.h>
102#include <machine/bootinfo.h>
103#include <machine/md_var.h>
104#include <machine/pc/bios.h>
105#include <machine/pcb_ext.h>		/* pcb.h included via sys/user.h */
106#include <machine/proc.h>
107#ifdef PERFMON
108#include <machine/perfmon.h>
109#endif
110#ifdef SMP
111#include <machine/privatespace.h>
112#include <machine/smp.h>
113#endif
114
115#include <i386/isa/icu.h>
116#include <i386/isa/intr_machdep.h>
117#include <isa/rtc.h>
118#include <machine/vm86.h>
119#include <sys/ptrace.h>
120#include <machine/sigframe.h>
121
122extern void init386(int first);
123extern void dblfault_handler(void);
124
125extern void printcpuinfo(void);	/* XXX header file */
126extern void earlysetcpuclass(void);	/* same header file */
127extern void finishidentcpu(void);
128extern void panicifcpuunsupported(void);
129extern void initializecpu(void);
130
131#define	CS_SECURE(cs)		(ISPL(cs) == SEL_UPL)
132#define	EFL_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
133
134#if !defined(CPU_ENABLE_SSE) && defined(I686_CPU)
135#define CPU_ENABLE_SSE
136#endif
137#if defined(CPU_DISABLE_SSE)
138#undef CPU_ENABLE_SSE
139#endif
140
141static void cpu_startup(void *);
142static void fpstate_drop(struct thread *td);
143static void get_fpcontext(struct thread *td, mcontext_t *mcp);
144static int  set_fpcontext(struct thread *td, const mcontext_t *mcp);
145#ifdef CPU_ENABLE_SSE
146static void set_fpregs_xmm(struct save87 *, struct savexmm *);
147static void fill_fpregs_xmm(struct savexmm *, struct save87 *);
148#endif /* CPU_ENABLE_SSE */
149SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL)
150
151int	_udatasel, _ucodesel;
152u_int	atdevbase;
153
154#if defined(SWTCH_OPTIM_STATS)
155extern int swtch_optim_stats;
156SYSCTL_INT(_debug, OID_AUTO, swtch_optim_stats,
157	CTLFLAG_RD, &swtch_optim_stats, 0, "");
158SYSCTL_INT(_debug, OID_AUTO, tlb_flush_count,
159	CTLFLAG_RD, &tlb_flush_count, 0, "");
160#endif
161
162long physmem = 0;
163int cold = 1;
164
165#ifdef COMPAT_43
166static void osendsig(sig_t catcher, int sig, sigset_t *mask, u_long code);
167#endif
168#ifdef COMPAT_FREEBSD4
169static void freebsd4_sendsig(sig_t catcher, int sig, sigset_t *mask,
170    u_long code);
171#endif
172
173static int
174sysctl_hw_physmem(SYSCTL_HANDLER_ARGS)
175{
176	u_long val;
177
178	val = ctob(physmem);
179	return (sysctl_handle_long(oidp, &val, 0, req));
180}
181
182SYSCTL_PROC(_hw, HW_PHYSMEM, physmem, CTLTYPE_ULONG | CTLFLAG_RD,
183	0, 0, sysctl_hw_physmem, "LU", "");
184
185static int
186sysctl_hw_usermem(SYSCTL_HANDLER_ARGS)
187{
188	u_long val;
189
190	val = ctob(physmem - cnt.v_wire_count);
191	return (sysctl_handle_long(oidp, &val, 0, req));
192}
193
194SYSCTL_PROC(_hw, HW_USERMEM, usermem, CTLTYPE_ULONG | CTLFLAG_RD,
195	0, 0, sysctl_hw_usermem, "LU", "");
196
197static int
198sysctl_hw_availpages(SYSCTL_HANDLER_ARGS)
199{
200	u_long val;
201
202	val = i386_btop(avail_end - avail_start);
203	return (sysctl_handle_long(oidp, &val, 0, req));
204}
205
206SYSCTL_PROC(_hw, OID_AUTO, availpages, CTLTYPE_ULONG | CTLFLAG_RD,
207	0, 0, sysctl_hw_availpages, "LU", "");
208
209long Maxmem = 0;
210
211vm_offset_t phys_avail[10];
212
213/* must be 2 less so 0 0 can signal end of chunks */
214#define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(vm_offset_t)) - 2)
215
216struct kva_md_info kmi;
217
218static struct trapframe proc0_tf;
219#ifndef SMP
220static struct pcpu __pcpu;
221#endif
222
223struct mtx icu_lock;
224
225static void
226cpu_startup(dummy)
227	void *dummy;
228{
229	/*
230	 * Good {morning,afternoon,evening,night}.
231	 */
232	earlysetcpuclass();
233	startrtclock();
234	printcpuinfo();
235	panicifcpuunsupported();
236#ifdef PERFMON
237	perfmon_init();
238#endif
239	printf("real memory  = %u (%uK bytes)\n", ptoa(Maxmem),
240	    ptoa(Maxmem) / 1024);
241	/*
242	 * Display any holes after the first chunk of extended memory.
243	 */
244	if (bootverbose) {
245		int indx;
246
247		printf("Physical memory chunk(s):\n");
248		for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
249			unsigned int size1;
250
251			size1 = phys_avail[indx + 1] - phys_avail[indx];
252			printf("0x%08x - 0x%08x, %u bytes (%u pages)\n",
253			    phys_avail[indx], phys_avail[indx + 1] - 1, size1,
254			    size1 / PAGE_SIZE);
255		}
256	}
257
258	vm_ksubmap_init(&kmi);
259
260	printf("avail memory = %u (%uK bytes)\n", ptoa(cnt.v_free_count),
261	    ptoa(cnt.v_free_count) / 1024);
262
263	/*
264	 * Set up buffers, so they can be used to read disk labels.
265	 */
266	bufinit();
267	vm_pager_bufferinit();
268
269#ifndef SMP
270	/* For SMP, we delay the cpu_setregs() until after SMP startup. */
271	cpu_setregs();
272#endif
273}
274
275/*
276 * Send an interrupt to process.
277 *
278 * Stack is set up to allow sigcode stored
279 * at top to call routine, followed by kcall
280 * to sigreturn routine below.  After sigreturn
281 * resets the signal mask, the stack, and the
282 * frame pointer, it returns to the user
283 * specified pc, psl.
284 */
285#ifdef COMPAT_43
286static void
287osendsig(catcher, sig, mask, code)
288	sig_t catcher;
289	int sig;
290	sigset_t *mask;
291	u_long code;
292{
293	struct osigframe sf, *fp;
294	struct proc *p;
295	struct thread *td;
296	struct sigacts *psp;
297	struct trapframe *regs;
298	int oonstack;
299
300	td = curthread;
301	p = td->td_proc;
302	PROC_LOCK_ASSERT(p, MA_OWNED);
303	psp = p->p_sigacts;
304	regs = td->td_frame;
305	oonstack = sigonstack(regs->tf_esp);
306
307	/* Allocate space for the signal handler context. */
308	if ((p->p_flag & P_ALTSTACK) && !oonstack &&
309	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
310		fp = (struct osigframe *)(p->p_sigstk.ss_sp +
311		    p->p_sigstk.ss_size - sizeof(struct osigframe));
312#if defined(COMPAT_43) || defined(COMPAT_SUNOS)
313		p->p_sigstk.ss_flags |= SS_ONSTACK;
314#endif
315	} else
316		fp = (struct osigframe *)regs->tf_esp - 1;
317	PROC_UNLOCK(p);
318
319	/* Translate the signal if appropriate. */
320	if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
321		sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
322
323	/* Build the argument list for the signal handler. */
324	sf.sf_signum = sig;
325	sf.sf_scp = (register_t)&fp->sf_siginfo.si_sc;
326	PROC_LOCK(p);
327	if (SIGISMEMBER(p->p_sigacts->ps_siginfo, sig)) {
328		/* Signal handler installed with SA_SIGINFO. */
329		sf.sf_arg2 = (register_t)&fp->sf_siginfo;
330		sf.sf_siginfo.si_signo = sig;
331		sf.sf_siginfo.si_code = code;
332		sf.sf_ahu.sf_action = (__osiginfohandler_t *)catcher;
333	} else {
334		/* Old FreeBSD-style arguments. */
335		sf.sf_arg2 = code;
336		sf.sf_addr = regs->tf_err;
337		sf.sf_ahu.sf_handler = catcher;
338	}
339	PROC_UNLOCK(p);
340
341	/* Save most if not all of trap frame. */
342	sf.sf_siginfo.si_sc.sc_eax = regs->tf_eax;
343	sf.sf_siginfo.si_sc.sc_ebx = regs->tf_ebx;
344	sf.sf_siginfo.si_sc.sc_ecx = regs->tf_ecx;
345	sf.sf_siginfo.si_sc.sc_edx = regs->tf_edx;
346	sf.sf_siginfo.si_sc.sc_esi = regs->tf_esi;
347	sf.sf_siginfo.si_sc.sc_edi = regs->tf_edi;
348	sf.sf_siginfo.si_sc.sc_cs = regs->tf_cs;
349	sf.sf_siginfo.si_sc.sc_ds = regs->tf_ds;
350	sf.sf_siginfo.si_sc.sc_ss = regs->tf_ss;
351	sf.sf_siginfo.si_sc.sc_es = regs->tf_es;
352	sf.sf_siginfo.si_sc.sc_fs = regs->tf_fs;
353	sf.sf_siginfo.si_sc.sc_gs = rgs();
354	sf.sf_siginfo.si_sc.sc_isp = regs->tf_isp;
355
356	/* Build the signal context to be used by osigreturn(). */
357	sf.sf_siginfo.si_sc.sc_onstack = (oonstack) ? 1 : 0;
358	SIG2OSIG(*mask, sf.sf_siginfo.si_sc.sc_mask);
359	sf.sf_siginfo.si_sc.sc_sp = regs->tf_esp;
360	sf.sf_siginfo.si_sc.sc_fp = regs->tf_ebp;
361	sf.sf_siginfo.si_sc.sc_pc = regs->tf_eip;
362	sf.sf_siginfo.si_sc.sc_ps = regs->tf_eflags;
363	sf.sf_siginfo.si_sc.sc_trapno = regs->tf_trapno;
364	sf.sf_siginfo.si_sc.sc_err = regs->tf_err;
365
366	/*
367	 * If we're a vm86 process, we want to save the segment registers.
368	 * We also change eflags to be our emulated eflags, not the actual
369	 * eflags.
370	 */
371	if (regs->tf_eflags & PSL_VM) {
372		/* XXX confusing names: `tf' isn't a trapframe; `regs' is. */
373		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
374		struct vm86_kernel *vm86 = &td->td_pcb->pcb_ext->ext_vm86;
375
376		sf.sf_siginfo.si_sc.sc_gs = tf->tf_vm86_gs;
377		sf.sf_siginfo.si_sc.sc_fs = tf->tf_vm86_fs;
378		sf.sf_siginfo.si_sc.sc_es = tf->tf_vm86_es;
379		sf.sf_siginfo.si_sc.sc_ds = tf->tf_vm86_ds;
380
381		if (vm86->vm86_has_vme == 0)
382			sf.sf_siginfo.si_sc.sc_ps =
383			    (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
384			    (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
385
386		/* See sendsig() for comments. */
387		tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
388	}
389
390	/*
391	 * Copy the sigframe out to the user's stack.
392	 */
393	if (copyout(&sf, fp, sizeof(*fp)) != 0) {
394#ifdef DEBUG
395		printf("process %ld has trashed its stack\n", (long)p->p_pid);
396#endif
397		PROC_LOCK(p);
398		sigexit(td, SIGILL);
399	}
400
401	regs->tf_esp = (int)fp;
402	regs->tf_eip = PS_STRINGS - szosigcode;
403	regs->tf_eflags &= ~PSL_T;
404	regs->tf_cs = _ucodesel;
405	regs->tf_ds = _udatasel;
406	regs->tf_es = _udatasel;
407	regs->tf_fs = _udatasel;
408	load_gs(_udatasel);
409	regs->tf_ss = _udatasel;
410	PROC_LOCK(p);
411}
412#endif /* COMPAT_43 */
413
414#ifdef COMPAT_FREEBSD4
415static void
416freebsd4_sendsig(catcher, sig, mask, code)
417	sig_t catcher;
418	int sig;
419	sigset_t *mask;
420	u_long code;
421{
422	struct sigframe4 sf, *sfp;
423	struct proc *p;
424	struct thread *td;
425	struct sigacts *psp;
426	struct trapframe *regs;
427	int oonstack;
428
429	td = curthread;
430	p = td->td_proc;
431	PROC_LOCK_ASSERT(p, MA_OWNED);
432	psp = p->p_sigacts;
433	regs = td->td_frame;
434	oonstack = sigonstack(regs->tf_esp);
435
436	/* Save user context. */
437	bzero(&sf, sizeof(sf));
438	sf.sf_uc.uc_sigmask = *mask;
439	sf.sf_uc.uc_stack = p->p_sigstk;
440	sf.sf_uc.uc_stack.ss_flags = (p->p_flag & P_ALTSTACK)
441	    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
442	sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
443	sf.sf_uc.uc_mcontext.mc_gs = rgs();
444	bcopy(regs, &sf.sf_uc.uc_mcontext.mc_fs, sizeof(*regs));
445
446	/* Allocate space for the signal handler context. */
447	if ((p->p_flag & P_ALTSTACK) != 0 && !oonstack &&
448	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
449		sfp = (struct sigframe4 *)(p->p_sigstk.ss_sp +
450		    p->p_sigstk.ss_size - sizeof(struct sigframe4));
451#if defined(COMPAT_43) || defined(COMPAT_SUNOS)
452		p->p_sigstk.ss_flags |= SS_ONSTACK;
453#endif
454	} else
455		sfp = (struct sigframe4 *)regs->tf_esp - 1;
456	PROC_UNLOCK(p);
457
458	/* Translate the signal if appropriate. */
459	if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
460		sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
461
462	/* Build the argument list for the signal handler. */
463	sf.sf_signum = sig;
464	sf.sf_ucontext = (register_t)&sfp->sf_uc;
465	PROC_LOCK(p);
466	if (SIGISMEMBER(p->p_sigacts->ps_siginfo, sig)) {
467		/* Signal handler installed with SA_SIGINFO. */
468		sf.sf_siginfo = (register_t)&sfp->sf_si;
469		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
470
471		/* Fill in POSIX parts */
472		sf.sf_si.si_signo = sig;
473		sf.sf_si.si_code = code;
474		sf.sf_si.si_addr = (void *)regs->tf_err;
475	} else {
476		/* Old FreeBSD-style arguments. */
477		sf.sf_siginfo = code;
478		sf.sf_addr = regs->tf_err;
479		sf.sf_ahu.sf_handler = catcher;
480	}
481	PROC_UNLOCK(p);
482
483	/*
484	 * If we're a vm86 process, we want to save the segment registers.
485	 * We also change eflags to be our emulated eflags, not the actual
486	 * eflags.
487	 */
488	if (regs->tf_eflags & PSL_VM) {
489		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
490		struct vm86_kernel *vm86 = &td->td_pcb->pcb_ext->ext_vm86;
491
492		sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
493		sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
494		sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
495		sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
496
497		if (vm86->vm86_has_vme == 0)
498			sf.sf_uc.uc_mcontext.mc_eflags =
499			    (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
500			    (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
501
502		/*
503		 * Clear PSL_NT to inhibit T_TSSFLT faults on return from
504		 * syscalls made by the signal handler.  This just avoids
505		 * wasting time for our lazy fixup of such faults.  PSL_NT
506		 * does nothing in vm86 mode, but vm86 programs can set it
507		 * almost legitimately in probes for old cpu types.
508		 */
509		tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
510	}
511
512	/*
513	 * Copy the sigframe out to the user's stack.
514	 */
515	if (copyout(&sf, sfp, sizeof(*sfp)) != 0) {
516#ifdef DEBUG
517		printf("process %ld has trashed its stack\n", (long)p->p_pid);
518#endif
519		PROC_LOCK(p);
520		sigexit(td, SIGILL);
521	}
522
523	regs->tf_esp = (int)sfp;
524	regs->tf_eip = PS_STRINGS - szfreebsd4_sigcode;
525	regs->tf_eflags &= ~PSL_T;
526	regs->tf_cs = _ucodesel;
527	regs->tf_ds = _udatasel;
528	regs->tf_es = _udatasel;
529	regs->tf_fs = _udatasel;
530	regs->tf_ss = _udatasel;
531	PROC_LOCK(p);
532}
533#endif	/* COMPAT_FREEBSD4 */
534
535void
536sendsig(catcher, sig, mask, code)
537	sig_t catcher;
538	int sig;
539	sigset_t *mask;
540	u_long code;
541{
542	struct sigframe sf, *sfp;
543	struct proc *p;
544	struct thread *td;
545	struct sigacts *psp;
546	struct trapframe *regs;
547	int oonstack;
548
549	td = curthread;
550	p = td->td_proc;
551	PROC_LOCK_ASSERT(p, MA_OWNED);
552	psp = p->p_sigacts;
553#ifdef COMPAT_FREEBSD4
554	if (SIGISMEMBER(psp->ps_freebsd4, sig)) {
555		freebsd4_sendsig(catcher, sig, mask, code);
556		return;
557	}
558#endif
559#ifdef COMPAT_43
560	if (SIGISMEMBER(psp->ps_osigset, sig)) {
561		osendsig(catcher, sig, mask, code);
562		return;
563	}
564#endif
565	regs = td->td_frame;
566	oonstack = sigonstack(regs->tf_esp);
567
568	/* Save user context. */
569	bzero(&sf, sizeof(sf));
570	sf.sf_uc.uc_sigmask = *mask;
571	sf.sf_uc.uc_stack = p->p_sigstk;
572	sf.sf_uc.uc_stack.ss_flags = (p->p_flag & P_ALTSTACK)
573	    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
574	sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
575	sf.sf_uc.uc_mcontext.mc_gs = rgs();
576	bcopy(regs, &sf.sf_uc.uc_mcontext.mc_fs, sizeof(*regs));
577	sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext); /* magic */
578	get_fpcontext(td, &sf.sf_uc.uc_mcontext);
579	fpstate_drop(td);
580
581	/* Allocate space for the signal handler context. */
582	if ((p->p_flag & P_ALTSTACK) != 0 && !oonstack &&
583	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
584		sfp = (struct sigframe *)(p->p_sigstk.ss_sp +
585		    p->p_sigstk.ss_size - sizeof(struct sigframe));
586#if defined(COMPAT_43) || defined(COMPAT_SUNOS)
587		p->p_sigstk.ss_flags |= SS_ONSTACK;
588#endif
589	} else
590		sfp = (struct sigframe *)regs->tf_esp - 1;
591	PROC_UNLOCK(p);
592
593	/* Translate the signal if appropriate. */
594	if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
595		sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
596
597	/* Build the argument list for the signal handler. */
598	sf.sf_signum = sig;
599	sf.sf_ucontext = (register_t)&sfp->sf_uc;
600	PROC_LOCK(p);
601	if (SIGISMEMBER(p->p_sigacts->ps_siginfo, sig)) {
602		/* Signal handler installed with SA_SIGINFO. */
603		sf.sf_siginfo = (register_t)&sfp->sf_si;
604		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
605
606		/* Fill in POSIX parts */
607		sf.sf_si.si_signo = sig;
608		sf.sf_si.si_code = code;
609		sf.sf_si.si_addr = (void *)regs->tf_err;
610	} else {
611		/* Old FreeBSD-style arguments. */
612		sf.sf_siginfo = code;
613		sf.sf_addr = regs->tf_err;
614		sf.sf_ahu.sf_handler = catcher;
615	}
616	PROC_UNLOCK(p);
617
618	/*
619	 * If we're a vm86 process, we want to save the segment registers.
620	 * We also change eflags to be our emulated eflags, not the actual
621	 * eflags.
622	 */
623	if (regs->tf_eflags & PSL_VM) {
624		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
625		struct vm86_kernel *vm86 = &td->td_pcb->pcb_ext->ext_vm86;
626
627		sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
628		sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
629		sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
630		sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
631
632		if (vm86->vm86_has_vme == 0)
633			sf.sf_uc.uc_mcontext.mc_eflags =
634			    (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
635			    (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
636
637		/*
638		 * Clear PSL_NT to inhibit T_TSSFLT faults on return from
639		 * syscalls made by the signal handler.  This just avoids
640		 * wasting time for our lazy fixup of such faults.  PSL_NT
641		 * does nothing in vm86 mode, but vm86 programs can set it
642		 * almost legitimately in probes for old cpu types.
643		 */
644		tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
645	}
646
647	/*
648	 * Copy the sigframe out to the user's stack.
649	 */
650	if (copyout(&sf, sfp, sizeof(*sfp)) != 0) {
651#ifdef DEBUG
652		printf("process %ld has trashed its stack\n", (long)p->p_pid);
653#endif
654		PROC_LOCK(p);
655		sigexit(td, SIGILL);
656	}
657
658	regs->tf_esp = (int)sfp;
659	regs->tf_eip = PS_STRINGS - *(p->p_sysent->sv_szsigcode);
660	regs->tf_eflags &= ~PSL_T;
661	regs->tf_cs = _ucodesel;
662	regs->tf_ds = _udatasel;
663	regs->tf_es = _udatasel;
664	regs->tf_fs = _udatasel;
665	regs->tf_ss = _udatasel;
666	PROC_LOCK(p);
667}
668
669/*
670 * System call to cleanup state after a signal
671 * has been taken.  Reset signal mask and
672 * stack state from context left by sendsig (above).
673 * Return to previous pc and psl as specified by
674 * context left by sendsig. Check carefully to
675 * make sure that the user has not modified the
676 * state to gain improper privileges.
677 *
678 * MPSAFE
679 */
680#ifdef COMPAT_43
681int
682osigreturn(td, uap)
683	struct thread *td;
684	struct osigreturn_args /* {
685		struct osigcontext *sigcntxp;
686	} */ *uap;
687{
688	struct osigcontext sc;
689	struct trapframe *regs;
690	struct osigcontext *scp;
691	struct proc *p = td->td_proc;
692	int eflags, error;
693
694	regs = td->td_frame;
695	error = copyin(uap->sigcntxp, &sc, sizeof(sc));
696	if (error != 0)
697		return (error);
698	scp = &sc;
699	eflags = scp->sc_ps;
700	if (eflags & PSL_VM) {
701		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
702		struct vm86_kernel *vm86;
703
704		/*
705		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
706		 * set up the vm86 area, and we can't enter vm86 mode.
707		 */
708		if (td->td_pcb->pcb_ext == 0)
709			return (EINVAL);
710		vm86 = &td->td_pcb->pcb_ext->ext_vm86;
711		if (vm86->vm86_inited == 0)
712			return (EINVAL);
713
714		/* Go back to user mode if both flags are set. */
715		if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
716			trapsignal(p, SIGBUS, 0);
717
718		if (vm86->vm86_has_vme) {
719			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
720			    (eflags & VME_USERCHANGE) | PSL_VM;
721		} else {
722			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
723			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
724			    (eflags & VM_USERCHANGE) | PSL_VM;
725		}
726		tf->tf_vm86_ds = scp->sc_ds;
727		tf->tf_vm86_es = scp->sc_es;
728		tf->tf_vm86_fs = scp->sc_fs;
729		tf->tf_vm86_gs = scp->sc_gs;
730		tf->tf_ds = _udatasel;
731		tf->tf_es = _udatasel;
732		tf->tf_fs = _udatasel;
733	} else {
734		/*
735		 * Don't allow users to change privileged or reserved flags.
736		 */
737		/*
738		 * XXX do allow users to change the privileged flag PSL_RF.
739		 * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
740		 * should sometimes set it there too.  tf_eflags is kept in
741		 * the signal context during signal handling and there is no
742		 * other place to remember it, so the PSL_RF bit may be
743		 * corrupted by the signal handler without us knowing.
744		 * Corruption of the PSL_RF bit at worst causes one more or
745		 * one less debugger trap, so allowing it is fairly harmless.
746		 */
747		if (!EFL_SECURE(eflags & ~PSL_RF, regs->tf_eflags & ~PSL_RF)) {
748	    		return (EINVAL);
749		}
750
751		/*
752		 * Don't allow users to load a valid privileged %cs.  Let the
753		 * hardware check for invalid selectors, excess privilege in
754		 * other selectors, invalid %eip's and invalid %esp's.
755		 */
756		if (!CS_SECURE(scp->sc_cs)) {
757			trapsignal(p, SIGBUS, T_PROTFLT);
758			return (EINVAL);
759		}
760		regs->tf_ds = scp->sc_ds;
761		regs->tf_es = scp->sc_es;
762		regs->tf_fs = scp->sc_fs;
763	}
764
765	/* Restore remaining registers. */
766	regs->tf_eax = scp->sc_eax;
767	regs->tf_ebx = scp->sc_ebx;
768	regs->tf_ecx = scp->sc_ecx;
769	regs->tf_edx = scp->sc_edx;
770	regs->tf_esi = scp->sc_esi;
771	regs->tf_edi = scp->sc_edi;
772	regs->tf_cs = scp->sc_cs;
773	regs->tf_ss = scp->sc_ss;
774	regs->tf_isp = scp->sc_isp;
775	regs->tf_ebp = scp->sc_fp;
776	regs->tf_esp = scp->sc_sp;
777	regs->tf_eip = scp->sc_pc;
778	regs->tf_eflags = eflags;
779
780	PROC_LOCK(p);
781#if defined(COMPAT_43) || defined(COMPAT_SUNOS)
782	if (scp->sc_onstack & 1)
783		p->p_sigstk.ss_flags |= SS_ONSTACK;
784	else
785		p->p_sigstk.ss_flags &= ~SS_ONSTACK;
786#endif
787	SIGSETOLD(p->p_sigmask, scp->sc_mask);
788	SIG_CANTMASK(p->p_sigmask);
789	signotify(p);
790	PROC_UNLOCK(p);
791	return (EJUSTRETURN);
792}
793#endif /* COMPAT_43 */
794
795#ifdef COMPAT_FREEBSD4
796/*
797 * MPSAFE
798 */
799int
800freebsd4_sigreturn(td, uap)
801	struct thread *td;
802	struct freebsd4_sigreturn_args /* {
803		const ucontext4 *sigcntxp;
804	} */ *uap;
805{
806	struct ucontext4 uc;
807	struct proc *p = td->td_proc;
808	struct trapframe *regs;
809	const struct ucontext4 *ucp;
810	int cs, eflags, error;
811
812	error = copyin(uap->sigcntxp, &uc, sizeof(uc));
813	if (error != 0)
814		return (error);
815	ucp = &uc;
816	regs = td->td_frame;
817	eflags = ucp->uc_mcontext.mc_eflags;
818	if (eflags & PSL_VM) {
819		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
820		struct vm86_kernel *vm86;
821
822		/*
823		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
824		 * set up the vm86 area, and we can't enter vm86 mode.
825		 */
826		if (td->td_pcb->pcb_ext == 0)
827			return (EINVAL);
828		vm86 = &td->td_pcb->pcb_ext->ext_vm86;
829		if (vm86->vm86_inited == 0)
830			return (EINVAL);
831
832		/* Go back to user mode if both flags are set. */
833		if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
834			trapsignal(p, SIGBUS, 0);
835
836		if (vm86->vm86_has_vme) {
837			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
838			    (eflags & VME_USERCHANGE) | PSL_VM;
839		} else {
840			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
841			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
842			    (eflags & VM_USERCHANGE) | PSL_VM;
843		}
844		bcopy(&ucp->uc_mcontext.mc_fs, tf, sizeof(struct trapframe));
845		tf->tf_eflags = eflags;
846		tf->tf_vm86_ds = tf->tf_ds;
847		tf->tf_vm86_es = tf->tf_es;
848		tf->tf_vm86_fs = tf->tf_fs;
849		tf->tf_vm86_gs = ucp->uc_mcontext.mc_gs;
850		tf->tf_ds = _udatasel;
851		tf->tf_es = _udatasel;
852		tf->tf_fs = _udatasel;
853	} else {
854		/*
855		 * Don't allow users to change privileged or reserved flags.
856		 */
857		/*
858		 * XXX do allow users to change the privileged flag PSL_RF.
859		 * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
860		 * should sometimes set it there too.  tf_eflags is kept in
861		 * the signal context during signal handling and there is no
862		 * other place to remember it, so the PSL_RF bit may be
863		 * corrupted by the signal handler without us knowing.
864		 * Corruption of the PSL_RF bit at worst causes one more or
865		 * one less debugger trap, so allowing it is fairly harmless.
866		 */
867		if (!EFL_SECURE(eflags & ~PSL_RF, regs->tf_eflags & ~PSL_RF)) {
868			printf("freebsd4_sigreturn: eflags = 0x%x\n", eflags);
869	    		return (EINVAL);
870		}
871
872		/*
873		 * Don't allow users to load a valid privileged %cs.  Let the
874		 * hardware check for invalid selectors, excess privilege in
875		 * other selectors, invalid %eip's and invalid %esp's.
876		 */
877		cs = ucp->uc_mcontext.mc_cs;
878		if (!CS_SECURE(cs)) {
879			printf("freebsd4_sigreturn: cs = 0x%x\n", cs);
880			trapsignal(p, SIGBUS, T_PROTFLT);
881			return (EINVAL);
882		}
883
884		bcopy(&ucp->uc_mcontext.mc_fs, regs, sizeof(*regs));
885	}
886
887	PROC_LOCK(p);
888#if defined(COMPAT_43) || defined(COMPAT_SUNOS)
889	if (ucp->uc_mcontext.mc_onstack & 1)
890		p->p_sigstk.ss_flags |= SS_ONSTACK;
891	else
892		p->p_sigstk.ss_flags &= ~SS_ONSTACK;
893#endif
894
895	p->p_sigmask = ucp->uc_sigmask;
896	SIG_CANTMASK(p->p_sigmask);
897	signotify(p);
898	PROC_UNLOCK(p);
899	return (EJUSTRETURN);
900}
901#endif	/* COMPAT_FREEBSD4 */
902
903/*
904 * MPSAFE
905 */
906int
907sigreturn(td, uap)
908	struct thread *td;
909	struct sigreturn_args /* {
910		const __ucontext *sigcntxp;
911	} */ *uap;
912{
913	ucontext_t uc;
914	struct proc *p = td->td_proc;
915	struct trapframe *regs;
916	const ucontext_t *ucp;
917	int cs, eflags, error, ret;
918
919	error = copyin(uap->sigcntxp, &uc, sizeof(uc));
920	if (error != 0)
921		return (error);
922	ucp = &uc;
923	regs = td->td_frame;
924	eflags = ucp->uc_mcontext.mc_eflags;
925	if (eflags & PSL_VM) {
926		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
927		struct vm86_kernel *vm86;
928
929		/*
930		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
931		 * set up the vm86 area, and we can't enter vm86 mode.
932		 */
933		if (td->td_pcb->pcb_ext == 0)
934			return (EINVAL);
935		vm86 = &td->td_pcb->pcb_ext->ext_vm86;
936		if (vm86->vm86_inited == 0)
937			return (EINVAL);
938
939		/* Go back to user mode if both flags are set. */
940		if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
941			trapsignal(p, SIGBUS, 0);
942
943		if (vm86->vm86_has_vme) {
944			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
945			    (eflags & VME_USERCHANGE) | PSL_VM;
946		} else {
947			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
948			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
949			    (eflags & VM_USERCHANGE) | PSL_VM;
950		}
951		bcopy(&ucp->uc_mcontext.mc_fs, tf, sizeof(struct trapframe));
952		tf->tf_eflags = eflags;
953		tf->tf_vm86_ds = tf->tf_ds;
954		tf->tf_vm86_es = tf->tf_es;
955		tf->tf_vm86_fs = tf->tf_fs;
956		tf->tf_vm86_gs = ucp->uc_mcontext.mc_gs;
957		tf->tf_ds = _udatasel;
958		tf->tf_es = _udatasel;
959		tf->tf_fs = _udatasel;
960	} else {
961		/*
962		 * Don't allow users to change privileged or reserved flags.
963		 */
964		/*
965		 * XXX do allow users to change the privileged flag PSL_RF.
966		 * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
967		 * should sometimes set it there too.  tf_eflags is kept in
968		 * the signal context during signal handling and there is no
969		 * other place to remember it, so the PSL_RF bit may be
970		 * corrupted by the signal handler without us knowing.
971		 * Corruption of the PSL_RF bit at worst causes one more or
972		 * one less debugger trap, so allowing it is fairly harmless.
973		 */
974		if (!EFL_SECURE(eflags & ~PSL_RF, regs->tf_eflags & ~PSL_RF)) {
975			printf("sigreturn: eflags = 0x%x\n", eflags);
976	    		return (EINVAL);
977		}
978
979		/*
980		 * Don't allow users to load a valid privileged %cs.  Let the
981		 * hardware check for invalid selectors, excess privilege in
982		 * other selectors, invalid %eip's and invalid %esp's.
983		 */
984		cs = ucp->uc_mcontext.mc_cs;
985		if (!CS_SECURE(cs)) {
986			printf("sigreturn: cs = 0x%x\n", cs);
987			trapsignal(p, SIGBUS, T_PROTFLT);
988			return (EINVAL);
989		}
990
991		ret = set_fpcontext(td, &ucp->uc_mcontext);
992		if (ret != 0)
993			return (ret);
994		bcopy(&ucp->uc_mcontext.mc_fs, regs, sizeof(*regs));
995	}
996
997	PROC_LOCK(p);
998#if defined(COMPAT_43) || defined(COMPAT_SUNOS)
999	if (ucp->uc_mcontext.mc_onstack & 1)
1000		p->p_sigstk.ss_flags |= SS_ONSTACK;
1001	else
1002		p->p_sigstk.ss_flags &= ~SS_ONSTACK;
1003#endif
1004
1005	p->p_sigmask = ucp->uc_sigmask;
1006	SIG_CANTMASK(p->p_sigmask);
1007	signotify(p);
1008	PROC_UNLOCK(p);
1009	return (EJUSTRETURN);
1010}
1011
1012/*
1013 * Machine dependent boot() routine
1014 *
1015 * I haven't seen anything to put here yet
1016 * Possibly some stuff might be grafted back here from boot()
1017 */
1018void
1019cpu_boot(int howto)
1020{
1021}
1022
1023/*
1024 * Shutdown the CPU as much as possible
1025 */
1026void
1027cpu_halt(void)
1028{
1029	for (;;)
1030		__asm__ ("hlt");
1031}
1032
1033/*
1034 * Hook to idle the CPU when possible.  In the SMP case we default to
1035 * off because a halted cpu will not currently pick up a new thread in the
1036 * run queue until the next timer tick.  If turned on this will result in
1037 * approximately a 4.2% loss in real time performance in buildworld tests
1038 * (but improves user and sys times oddly enough), and saves approximately
1039 * 5% in power consumption on an idle machine (tests w/2xCPU 1.1GHz P3).
1040 *
1041 * XXX we need to have a cpu mask of idle cpus and generate an IPI or
1042 * otherwise generate some sort of interrupt to wake up cpus sitting in HLT.
1043 * Then we can have our cake and eat it too.
1044 */
1045#ifdef SMP
1046static int	cpu_idle_hlt = 0;
1047#else
1048static int	cpu_idle_hlt = 1;
1049#endif
1050SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hlt, CTLFLAG_RW,
1051    &cpu_idle_hlt, 0, "Idle loop HLT enable");
1052
1053/*
1054 * Note that we have to be careful here to avoid a race between checking
1055 * sched_runnable() and actually halting.  If we don't do this, we may waste
1056 * the time between calling hlt and the next interrupt even though there
1057 * is a runnable process.
1058 */
1059void
1060cpu_idle(void)
1061{
1062	if (cpu_idle_hlt) {
1063		disable_intr();
1064  		if (sched_runnable()) {
1065			enable_intr();
1066		} else {
1067			/*
1068			 * we must absolutely guarentee that hlt is the
1069			 * absolute next instruction after sti or we
1070			 * introduce a timing window.
1071			 */
1072			__asm __volatile("sti; hlt");
1073		}
1074	}
1075}
1076
1077/*
1078 * Clear registers on exec
1079 */
1080void
1081exec_setregs(td, entry, stack, ps_strings)
1082	struct thread *td;
1083	u_long entry;
1084	u_long stack;
1085	u_long ps_strings;
1086{
1087	struct trapframe *regs = td->td_frame;
1088	struct pcb *pcb = td->td_pcb;
1089
1090	/* Reset pc->pcb_gs and %gs before possibly invalidating it. */
1091	pcb->pcb_gs = _udatasel;
1092	load_gs(_udatasel);
1093
1094	if (td->td_proc->p_md.md_ldt)
1095		user_ldt_free(td);
1096
1097	bzero((char *)regs, sizeof(struct trapframe));
1098	regs->tf_eip = entry;
1099	regs->tf_esp = stack;
1100	regs->tf_eflags = PSL_USER | (regs->tf_eflags & PSL_T);
1101	regs->tf_ss = _udatasel;
1102	regs->tf_ds = _udatasel;
1103	regs->tf_es = _udatasel;
1104	regs->tf_fs = _udatasel;
1105	regs->tf_cs = _ucodesel;
1106
1107	/* PS_STRINGS value for BSD/OS binaries.  It is 0 for non-BSD/OS. */
1108	regs->tf_ebx = ps_strings;
1109
1110        /*
1111         * Reset the hardware debug registers if they were in use.
1112         * They won't have any meaning for the newly exec'd process.
1113         */
1114        if (pcb->pcb_flags & PCB_DBREGS) {
1115                pcb->pcb_dr0 = 0;
1116                pcb->pcb_dr1 = 0;
1117                pcb->pcb_dr2 = 0;
1118                pcb->pcb_dr3 = 0;
1119                pcb->pcb_dr6 = 0;
1120                pcb->pcb_dr7 = 0;
1121                if (pcb == PCPU_GET(curpcb)) {
1122		        /*
1123			 * Clear the debug registers on the running
1124			 * CPU, otherwise they will end up affecting
1125			 * the next process we switch to.
1126			 */
1127		        reset_dbregs();
1128                }
1129                pcb->pcb_flags &= ~PCB_DBREGS;
1130        }
1131
1132	/*
1133	 * Initialize the math emulator (if any) for the current process.
1134	 * Actually, just clear the bit that says that the emulator has
1135	 * been initialized.  Initialization is delayed until the process
1136	 * traps to the emulator (if it is done at all) mainly because
1137	 * emulators don't provide an entry point for initialization.
1138	 */
1139	td->td_pcb->pcb_flags &= ~FP_SOFTFP;
1140
1141	/*
1142	 * Arrange to trap the next npx or `fwait' instruction (see npx.c
1143	 * for why fwait must be trapped at least if there is an npx or an
1144	 * emulator).  This is mainly to handle the case where npx0 is not
1145	 * configured, since the npx routines normally set up the trap
1146	 * otherwise.  It should be done only at boot time, but doing it
1147	 * here allows modifying `npx_exists' for testing the emulator on
1148	 * systems with an npx.
1149	 */
1150	load_cr0(rcr0() | CR0_MP | CR0_TS);
1151
1152	/* Initialize the npx (if any) for the current process. */
1153	/*
1154	 * XXX the above load_cr0() also initializes it and is a layering
1155	 * violation if NPX is configured.  It drops the npx partially
1156	 * and this would be fatal if we were interrupted now, and decided
1157	 * to force the state to the pcb, and checked the invariant
1158	 * (CR0_TS clear) if and only if PCPU_GET(fpcurthread) != NULL).
1159	 * ALL of this can happen except the check.  The check used to
1160	 * happen and be fatal later when we didn't complete the drop
1161	 * before returning to user mode.  This should be fixed properly
1162	 * soon.
1163	 */
1164	fpstate_drop(td);
1165
1166	/*
1167	 * XXX - Linux emulator
1168	 * Make sure sure edx is 0x0 on entry. Linux binaries depend
1169	 * on it.
1170	 */
1171	td->td_retval[1] = 0;
1172}
1173
1174void
1175cpu_setregs(void)
1176{
1177	unsigned int cr0;
1178
1179	cr0 = rcr0();
1180#ifdef SMP
1181	cr0 |= CR0_NE;			/* Done by npxinit() */
1182#endif
1183	cr0 |= CR0_MP | CR0_TS;		/* Done at every execve() too. */
1184#ifndef I386_CPU
1185	cr0 |= CR0_WP | CR0_AM;
1186#endif
1187	load_cr0(cr0);
1188	load_gs(_udatasel);
1189}
1190
1191static int
1192sysctl_machdep_adjkerntz(SYSCTL_HANDLER_ARGS)
1193{
1194	int error;
1195	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
1196		req);
1197	if (!error && req->newptr)
1198		resettodr();
1199	return (error);
1200}
1201
1202SYSCTL_PROC(_machdep, CPU_ADJKERNTZ, adjkerntz, CTLTYPE_INT|CTLFLAG_RW,
1203	&adjkerntz, 0, sysctl_machdep_adjkerntz, "I", "");
1204
1205SYSCTL_INT(_machdep, CPU_DISRTCSET, disable_rtc_set,
1206	CTLFLAG_RW, &disable_rtc_set, 0, "");
1207
1208SYSCTL_STRUCT(_machdep, CPU_BOOTINFO, bootinfo,
1209	CTLFLAG_RD, &bootinfo, bootinfo, "");
1210
1211SYSCTL_INT(_machdep, CPU_WALLCLOCK, wall_cmos_clock,
1212	CTLFLAG_RW, &wall_cmos_clock, 0, "");
1213
1214u_long bootdev;		/* not a dev_t - encoding is different */
1215SYSCTL_ULONG(_machdep, OID_AUTO, guessed_bootdev,
1216	CTLFLAG_RD, &bootdev, 0, "Maybe the Boot device (not in dev_t format)");
1217
1218/*
1219 * Initialize 386 and configure to run kernel
1220 */
1221
1222/*
1223 * Initialize segments & interrupt table
1224 */
1225
1226int _default_ldt;
1227union descriptor gdt[NGDT * MAXCPU];	/* global descriptor table */
1228static struct gate_descriptor idt0[NIDT];
1229struct gate_descriptor *idt = &idt0[0];	/* interrupt descriptor table */
1230union descriptor ldt[NLDT];		/* local descriptor table */
1231#ifdef SMP
1232/* table descriptors - used to load tables by microp */
1233struct region_descriptor r_gdt, r_idt;
1234#endif
1235
1236int private_tss;			/* flag indicating private tss */
1237
1238#if defined(I586_CPU) && !defined(NO_F00F_HACK)
1239extern int has_f00f_bug;
1240#endif
1241
1242static struct i386tss dblfault_tss;
1243static char dblfault_stack[PAGE_SIZE];
1244
1245extern  struct user	*proc0uarea;
1246extern  vm_offset_t	proc0kstack;
1247
1248
1249/* software prototypes -- in more palatable form */
1250struct soft_segment_descriptor gdt_segs[] = {
1251/* GNULL_SEL	0 Null Descriptor */
1252{	0x0,			/* segment base address  */
1253	0x0,			/* length */
1254	0,			/* segment type */
1255	0,			/* segment descriptor priority level */
1256	0,			/* segment descriptor present */
1257	0, 0,
1258	0,			/* default 32 vs 16 bit size */
1259	0  			/* limit granularity (byte/page units)*/ },
1260/* GCODE_SEL	1 Code Descriptor for kernel */
1261{	0x0,			/* segment base address  */
1262	0xfffff,		/* length - all address space */
1263	SDT_MEMERA,		/* segment type */
1264	0,			/* segment descriptor priority level */
1265	1,			/* segment descriptor present */
1266	0, 0,
1267	1,			/* default 32 vs 16 bit size */
1268	1  			/* limit granularity (byte/page units)*/ },
1269/* GDATA_SEL	2 Data Descriptor for kernel */
1270{	0x0,			/* segment base address  */
1271	0xfffff,		/* length - all address space */
1272	SDT_MEMRWA,		/* segment type */
1273	0,			/* segment descriptor priority level */
1274	1,			/* segment descriptor present */
1275	0, 0,
1276	1,			/* default 32 vs 16 bit size */
1277	1  			/* limit granularity (byte/page units)*/ },
1278/* GPRIV_SEL	3 SMP Per-Processor Private Data Descriptor */
1279{	0x0,			/* segment base address  */
1280	0xfffff,		/* length - all address space */
1281	SDT_MEMRWA,		/* segment type */
1282	0,			/* segment descriptor priority level */
1283	1,			/* segment descriptor present */
1284	0, 0,
1285	1,			/* default 32 vs 16 bit size */
1286	1  			/* limit granularity (byte/page units)*/ },
1287/* GPROC0_SEL	4 Proc 0 Tss Descriptor */
1288{
1289	0x0,			/* segment base address */
1290	sizeof(struct i386tss)-1,/* length - all address space */
1291	SDT_SYS386TSS,		/* segment type */
1292	0,			/* segment descriptor priority level */
1293	1,			/* segment descriptor present */
1294	0, 0,
1295	0,			/* unused - default 32 vs 16 bit size */
1296	0  			/* limit granularity (byte/page units)*/ },
1297/* GLDT_SEL	5 LDT Descriptor */
1298{	(int) ldt,		/* segment base address  */
1299	sizeof(ldt)-1,		/* length - all address space */
1300	SDT_SYSLDT,		/* segment type */
1301	SEL_UPL,		/* segment descriptor priority level */
1302	1,			/* segment descriptor present */
1303	0, 0,
1304	0,			/* unused - default 32 vs 16 bit size */
1305	0  			/* limit granularity (byte/page units)*/ },
1306/* GUSERLDT_SEL	6 User LDT Descriptor per process */
1307{	(int) ldt,		/* segment base address  */
1308	(512 * sizeof(union descriptor)-1),		/* length */
1309	SDT_SYSLDT,		/* segment type */
1310	0,			/* segment descriptor priority level */
1311	1,			/* segment descriptor present */
1312	0, 0,
1313	0,			/* unused - default 32 vs 16 bit size */
1314	0  			/* limit granularity (byte/page units)*/ },
1315/* GTGATE_SEL	7 Null Descriptor - Placeholder */
1316{	0x0,			/* segment base address  */
1317	0x0,			/* length - all address space */
1318	0,			/* segment type */
1319	0,			/* segment descriptor priority level */
1320	0,			/* segment descriptor present */
1321	0, 0,
1322	0,			/* default 32 vs 16 bit size */
1323	0  			/* limit granularity (byte/page units)*/ },
1324/* GBIOSLOWMEM_SEL 8 BIOS access to realmode segment 0x40, must be #8 in GDT */
1325{	0x400,			/* segment base address */
1326	0xfffff,		/* length */
1327	SDT_MEMRWA,		/* segment type */
1328	0,			/* segment descriptor priority level */
1329	1,			/* segment descriptor present */
1330	0, 0,
1331	1,			/* default 32 vs 16 bit size */
1332	1  			/* limit granularity (byte/page units)*/ },
1333/* GPANIC_SEL	9 Panic Tss Descriptor */
1334{	(int) &dblfault_tss,	/* segment base address  */
1335	sizeof(struct i386tss)-1,/* length - all address space */
1336	SDT_SYS386TSS,		/* segment type */
1337	0,			/* segment descriptor priority level */
1338	1,			/* segment descriptor present */
1339	0, 0,
1340	0,			/* unused - default 32 vs 16 bit size */
1341	0  			/* limit granularity (byte/page units)*/ },
1342/* GBIOSCODE32_SEL 10 BIOS 32-bit interface (32bit Code) */
1343{	0,			/* segment base address (overwritten)  */
1344	0xfffff,		/* length */
1345	SDT_MEMERA,		/* segment type */
1346	0,			/* segment descriptor priority level */
1347	1,			/* segment descriptor present */
1348	0, 0,
1349	0,			/* default 32 vs 16 bit size */
1350	1  			/* limit granularity (byte/page units)*/ },
1351/* GBIOSCODE16_SEL 11 BIOS 32-bit interface (16bit Code) */
1352{	0,			/* segment base address (overwritten)  */
1353	0xfffff,		/* length */
1354	SDT_MEMERA,		/* segment type */
1355	0,			/* segment descriptor priority level */
1356	1,			/* segment descriptor present */
1357	0, 0,
1358	0,			/* default 32 vs 16 bit size */
1359	1  			/* limit granularity (byte/page units)*/ },
1360/* GBIOSDATA_SEL 12 BIOS 32-bit interface (Data) */
1361{	0,			/* segment base address (overwritten) */
1362	0xfffff,		/* length */
1363	SDT_MEMRWA,		/* segment type */
1364	0,			/* segment descriptor priority level */
1365	1,			/* segment descriptor present */
1366	0, 0,
1367	1,			/* default 32 vs 16 bit size */
1368	1  			/* limit granularity (byte/page units)*/ },
1369/* GBIOSUTIL_SEL 13 BIOS 16-bit interface (Utility) */
1370{	0,			/* segment base address (overwritten) */
1371	0xfffff,		/* length */
1372	SDT_MEMRWA,		/* segment type */
1373	0,			/* segment descriptor priority level */
1374	1,			/* segment descriptor present */
1375	0, 0,
1376	0,			/* default 32 vs 16 bit size */
1377	1  			/* limit granularity (byte/page units)*/ },
1378/* GBIOSARGS_SEL 14 BIOS 16-bit interface (Arguments) */
1379{	0,			/* segment base address (overwritten) */
1380	0xfffff,		/* length */
1381	SDT_MEMRWA,		/* segment type */
1382	0,			/* segment descriptor priority level */
1383	1,			/* segment descriptor present */
1384	0, 0,
1385	0,			/* default 32 vs 16 bit size */
1386	1  			/* limit granularity (byte/page units)*/ },
1387};
1388
1389static struct soft_segment_descriptor ldt_segs[] = {
1390	/* Null Descriptor - overwritten by call gate */
1391{	0x0,			/* segment base address  */
1392	0x0,			/* length - all address space */
1393	0,			/* segment type */
1394	0,			/* segment descriptor priority level */
1395	0,			/* segment descriptor present */
1396	0, 0,
1397	0,			/* default 32 vs 16 bit size */
1398	0  			/* limit granularity (byte/page units)*/ },
1399	/* Null Descriptor - overwritten by call gate */
1400{	0x0,			/* segment base address  */
1401	0x0,			/* length - all address space */
1402	0,			/* segment type */
1403	0,			/* segment descriptor priority level */
1404	0,			/* segment descriptor present */
1405	0, 0,
1406	0,			/* default 32 vs 16 bit size */
1407	0  			/* limit granularity (byte/page units)*/ },
1408	/* Null Descriptor - overwritten by call gate */
1409{	0x0,			/* segment base address  */
1410	0x0,			/* length - all address space */
1411	0,			/* segment type */
1412	0,			/* segment descriptor priority level */
1413	0,			/* segment descriptor present */
1414	0, 0,
1415	0,			/* default 32 vs 16 bit size */
1416	0  			/* limit granularity (byte/page units)*/ },
1417	/* Code Descriptor for user */
1418{	0x0,			/* segment base address  */
1419	0xfffff,		/* length - all address space */
1420	SDT_MEMERA,		/* segment type */
1421	SEL_UPL,		/* segment descriptor priority level */
1422	1,			/* segment descriptor present */
1423	0, 0,
1424	1,			/* default 32 vs 16 bit size */
1425	1  			/* limit granularity (byte/page units)*/ },
1426	/* Null Descriptor - overwritten by call gate */
1427{	0x0,			/* segment base address  */
1428	0x0,			/* length - all address space */
1429	0,			/* segment type */
1430	0,			/* segment descriptor priority level */
1431	0,			/* segment descriptor present */
1432	0, 0,
1433	0,			/* default 32 vs 16 bit size */
1434	0  			/* limit granularity (byte/page units)*/ },
1435	/* Data Descriptor for user */
1436{	0x0,			/* segment base address  */
1437	0xfffff,		/* length - all address space */
1438	SDT_MEMRWA,		/* segment type */
1439	SEL_UPL,		/* segment descriptor priority level */
1440	1,			/* segment descriptor present */
1441	0, 0,
1442	1,			/* default 32 vs 16 bit size */
1443	1  			/* limit granularity (byte/page units)*/ },
1444};
1445
1446void
1447setidt(idx, func, typ, dpl, selec)
1448	int idx;
1449	inthand_t *func;
1450	int typ;
1451	int dpl;
1452	int selec;
1453{
1454	struct gate_descriptor *ip;
1455
1456	ip = idt + idx;
1457	ip->gd_looffset = (int)func;
1458	ip->gd_selector = selec;
1459	ip->gd_stkcpy = 0;
1460	ip->gd_xx = 0;
1461	ip->gd_type = typ;
1462	ip->gd_dpl = dpl;
1463	ip->gd_p = 1;
1464	ip->gd_hioffset = ((int)func)>>16 ;
1465}
1466
1467#define	IDTVEC(name)	__CONCAT(X,name)
1468
1469extern inthand_t
1470	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
1471	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
1472	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
1473	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
1474	IDTVEC(xmm), IDTVEC(lcall_syscall), IDTVEC(int0x80_syscall);
1475
1476void
1477sdtossd(sd, ssd)
1478	struct segment_descriptor *sd;
1479	struct soft_segment_descriptor *ssd;
1480{
1481	ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
1482	ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
1483	ssd->ssd_type  = sd->sd_type;
1484	ssd->ssd_dpl   = sd->sd_dpl;
1485	ssd->ssd_p     = sd->sd_p;
1486	ssd->ssd_def32 = sd->sd_def32;
1487	ssd->ssd_gran  = sd->sd_gran;
1488}
1489
1490#define PHYSMAP_SIZE	(2 * 8)
1491
1492/*
1493 * Populate the (physmap) array with base/bound pairs describing the
1494 * available physical memory in the system, then test this memory and
1495 * build the phys_avail array describing the actually-available memory.
1496 *
1497 * If we cannot accurately determine the physical memory map, then use
1498 * value from the 0xE801 call, and failing that, the RTC.
1499 *
1500 * Total memory size may be set by the kernel environment variable
1501 * hw.physmem or the compile-time define MAXMEM.
1502 */
1503static void
1504getmemsize(int first)
1505{
1506	int i, physmap_idx, pa_indx;
1507	u_int basemem, extmem;
1508	struct vm86frame vmf;
1509	struct vm86context vmc;
1510	vm_offset_t pa, physmap[PHYSMAP_SIZE];
1511	pt_entry_t *pte;
1512	char *cp;
1513	struct bios_smap *smap;
1514
1515	bzero(&vmf, sizeof(struct vm86frame));
1516	bzero(physmap, sizeof(physmap));
1517	basemem = 0;
1518
1519	/*
1520	 * map page 1 R/W into the kernel page table so we can use it
1521	 * as a buffer.  The kernel will unmap this page later.
1522	 */
1523	pmap_kenter(KERNBASE + (1 << PAGE_SHIFT), 1);
1524
1525	/*
1526	 * get memory map with INT 15:E820
1527	 */
1528	vmc.npages = 0;
1529	smap = (void *)vm86_addpage(&vmc, 1, KERNBASE + (1 << PAGE_SHIFT));
1530	vm86_getptr(&vmc, (vm_offset_t)smap, &vmf.vmf_es, &vmf.vmf_di);
1531
1532	physmap_idx = 0;
1533	vmf.vmf_ebx = 0;
1534	do {
1535		vmf.vmf_eax = 0xE820;
1536		vmf.vmf_edx = SMAP_SIG;
1537		vmf.vmf_ecx = sizeof(struct bios_smap);
1538		i = vm86_datacall(0x15, &vmf, &vmc);
1539		if (i || vmf.vmf_eax != SMAP_SIG)
1540			break;
1541		if (boothowto & RB_VERBOSE)
1542			printf("SMAP type=%02x base=%08x %08x len=%08x %08x\n",
1543				smap->type,
1544				*(u_int32_t *)((char *)&smap->base + 4),
1545				(u_int32_t)smap->base,
1546				*(u_int32_t *)((char *)&smap->length + 4),
1547				(u_int32_t)smap->length);
1548
1549		if (smap->type != 0x01)
1550			goto next_run;
1551
1552		if (smap->length == 0)
1553			goto next_run;
1554
1555		if (smap->base >= 0xffffffff) {
1556			printf("%uK of memory above 4GB ignored\n",
1557			    (u_int)(smap->length / 1024));
1558			goto next_run;
1559		}
1560
1561		for (i = 0; i <= physmap_idx; i += 2) {
1562			if (smap->base < physmap[i + 1]) {
1563				if (boothowto & RB_VERBOSE)
1564					printf(
1565	"Overlapping or non-montonic memory region, ignoring second region\n");
1566				goto next_run;
1567			}
1568		}
1569
1570		if (smap->base == physmap[physmap_idx + 1]) {
1571			physmap[physmap_idx + 1] += smap->length;
1572			goto next_run;
1573		}
1574
1575		physmap_idx += 2;
1576		if (physmap_idx == PHYSMAP_SIZE) {
1577			printf(
1578		"Too many segments in the physical address map, giving up\n");
1579			break;
1580		}
1581		physmap[physmap_idx] = smap->base;
1582		physmap[physmap_idx + 1] = smap->base + smap->length;
1583next_run: ;
1584	} while (vmf.vmf_ebx != 0);
1585
1586	/*
1587	 * Perform "base memory" related probes & setup
1588	 */
1589	for (i = 0; i <= physmap_idx; i += 2) {
1590		if (physmap[i] == 0x00000000) {
1591			basemem = physmap[i + 1] / 1024;
1592			break;
1593		}
1594	}
1595
1596	/* Fall back to the old compatibility function for base memory */
1597	if (basemem == 0) {
1598		vm86_intcall(0x12, &vmf);
1599		basemem = vmf.vmf_ax;
1600	}
1601
1602	if (basemem > 640) {
1603		printf("Preposterous BIOS basemem of %uK, truncating to 640K\n",
1604			basemem);
1605		basemem = 640;
1606	}
1607
1608	/*
1609	 * XXX if biosbasemem is now < 640, there is a `hole'
1610	 * between the end of base memory and the start of
1611	 * ISA memory.  The hole may be empty or it may
1612	 * contain BIOS code or data.  Map it read/write so
1613	 * that the BIOS can write to it.  (Memory from 0 to
1614	 * the physical end of the kernel is mapped read-only
1615	 * to begin with and then parts of it are remapped.
1616	 * The parts that aren't remapped form holes that
1617	 * remain read-only and are unused by the kernel.
1618	 * The base memory area is below the physical end of
1619	 * the kernel and right now forms a read-only hole.
1620	 * The part of it from PAGE_SIZE to
1621	 * (trunc_page(biosbasemem * 1024) - 1) will be
1622	 * remapped and used by the kernel later.)
1623	 *
1624	 * This code is similar to the code used in
1625	 * pmap_mapdev, but since no memory needs to be
1626	 * allocated we simply change the mapping.
1627	 */
1628	for (pa = trunc_page(basemem * 1024);
1629	     pa < ISA_HOLE_START; pa += PAGE_SIZE)
1630		pmap_kenter(KERNBASE + pa, pa);
1631
1632	/*
1633	 * if basemem != 640, map pages r/w into vm86 page table so
1634	 * that the bios can scribble on it.
1635	 */
1636	pte = (pt_entry_t *)vm86paddr;
1637	for (i = basemem / 4; i < 160; i++)
1638		pte[i] = (i << PAGE_SHIFT) | PG_V | PG_RW | PG_U;
1639
1640	if (physmap[1] != 0)
1641		goto physmap_done;
1642
1643	/*
1644	 * If we failed above, try memory map with INT 15:E801
1645	 */
1646	vmf.vmf_ax = 0xE801;
1647	if (vm86_intcall(0x15, &vmf) == 0) {
1648		extmem = vmf.vmf_cx + vmf.vmf_dx * 64;
1649	} else {
1650#if 0
1651		vmf.vmf_ah = 0x88;
1652		vm86_intcall(0x15, &vmf);
1653		extmem = vmf.vmf_ax;
1654#else
1655		/*
1656		 * Prefer the RTC value for extended memory.
1657		 */
1658		extmem = rtcin(RTC_EXTLO) + (rtcin(RTC_EXTHI) << 8);
1659#endif
1660	}
1661
1662	/*
1663	 * Special hack for chipsets that still remap the 384k hole when
1664	 * there's 16MB of memory - this really confuses people that
1665	 * are trying to use bus mastering ISA controllers with the
1666	 * "16MB limit"; they only have 16MB, but the remapping puts
1667	 * them beyond the limit.
1668	 *
1669	 * If extended memory is between 15-16MB (16-17MB phys address range),
1670	 *	chop it to 15MB.
1671	 */
1672	if ((extmem > 15 * 1024) && (extmem < 16 * 1024))
1673		extmem = 15 * 1024;
1674
1675	physmap[0] = 0;
1676	physmap[1] = basemem * 1024;
1677	physmap_idx = 2;
1678	physmap[physmap_idx] = 0x100000;
1679	physmap[physmap_idx + 1] = physmap[physmap_idx] + extmem * 1024;
1680
1681physmap_done:
1682	/*
1683	 * Now, physmap contains a map of physical memory.
1684	 */
1685
1686#ifdef SMP
1687	/* make hole for AP bootstrap code */
1688	physmap[1] = mp_bootaddress(physmap[1] / 1024);
1689
1690	/* look for the MP hardware - needed for apic addresses */
1691	i386_mp_probe();
1692#endif
1693
1694	/*
1695	 * Maxmem isn't the "maximum memory", it's one larger than the
1696	 * highest page of the physical address space.  It should be
1697	 * called something like "Maxphyspage".  We may adjust this
1698	 * based on ``hw.physmem'' and the results of the memory test.
1699	 */
1700	Maxmem = atop(physmap[physmap_idx + 1]);
1701
1702#ifdef MAXMEM
1703	Maxmem = MAXMEM / 4;
1704#endif
1705
1706	/*
1707	 * hw.physmem is a size in bytes; we also allow k, m, and g suffixes
1708	 * for the appropriate modifiers.  This overrides MAXMEM.
1709	 */
1710	if ((cp = getenv("hw.physmem")) != NULL) {
1711		u_int64_t AllowMem, sanity;
1712		char *ep;
1713
1714		sanity = AllowMem = strtouq(cp, &ep, 0);
1715		if ((ep != cp) && (*ep != 0)) {
1716			switch(*ep) {
1717			case 'g':
1718			case 'G':
1719				AllowMem <<= 10;
1720			case 'm':
1721			case 'M':
1722				AllowMem <<= 10;
1723			case 'k':
1724			case 'K':
1725				AllowMem <<= 10;
1726				break;
1727			default:
1728				AllowMem = sanity = 0;
1729			}
1730			if (AllowMem < sanity)
1731				AllowMem = 0;
1732		}
1733		if (AllowMem == 0)
1734			printf("Ignoring invalid memory size of '%s'\n", cp);
1735		else
1736			Maxmem = atop(AllowMem);
1737		freeenv(cp);
1738	}
1739
1740	if (atop(physmap[physmap_idx + 1]) != Maxmem &&
1741	    (boothowto & RB_VERBOSE))
1742		printf("Physical memory use set to %ldK\n", Maxmem * 4);
1743
1744	/*
1745	 * If Maxmem has been increased beyond what the system has detected,
1746	 * extend the last memory segment to the new limit.
1747	 */
1748	if (atop(physmap[physmap_idx + 1]) < Maxmem)
1749		physmap[physmap_idx + 1] = ptoa(Maxmem);
1750
1751	/* call pmap initialization to make new kernel address space */
1752	pmap_bootstrap(first, 0);
1753
1754	/*
1755	 * Size up each available chunk of physical memory.
1756	 */
1757	physmap[0] = PAGE_SIZE;		/* mask off page 0 */
1758	pa_indx = 0;
1759	phys_avail[pa_indx++] = physmap[0];
1760	phys_avail[pa_indx] = physmap[0];
1761	pte = CMAP1;
1762
1763	/*
1764	 * physmap is in bytes, so when converting to page boundaries,
1765	 * round up the start address and round down the end address.
1766	 */
1767	for (i = 0; i <= physmap_idx; i += 2) {
1768		vm_offset_t end;
1769
1770		end = ptoa(Maxmem);
1771		if (physmap[i + 1] < end)
1772			end = trunc_page(physmap[i + 1]);
1773		for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
1774			int tmp, page_bad;
1775			int *ptr = (int *)CADDR1;
1776
1777			/*
1778			 * block out kernel memory as not available.
1779			 */
1780			if (pa >= 0x100000 && pa < first)
1781				continue;
1782
1783			page_bad = FALSE;
1784
1785			/*
1786			 * map page into kernel: valid, read/write,non-cacheable
1787			 */
1788			*pte = pa | PG_V | PG_RW | PG_N;
1789			invltlb();
1790
1791			tmp = *(int *)ptr;
1792			/*
1793			 * Test for alternating 1's and 0's
1794			 */
1795			*(volatile int *)ptr = 0xaaaaaaaa;
1796			if (*(volatile int *)ptr != 0xaaaaaaaa) {
1797				page_bad = TRUE;
1798			}
1799			/*
1800			 * Test for alternating 0's and 1's
1801			 */
1802			*(volatile int *)ptr = 0x55555555;
1803			if (*(volatile int *)ptr != 0x55555555) {
1804			page_bad = TRUE;
1805			}
1806			/*
1807			 * Test for all 1's
1808			 */
1809			*(volatile int *)ptr = 0xffffffff;
1810			if (*(volatile int *)ptr != 0xffffffff) {
1811				page_bad = TRUE;
1812			}
1813			/*
1814			 * Test for all 0's
1815			 */
1816			*(volatile int *)ptr = 0x0;
1817			if (*(volatile int *)ptr != 0x0) {
1818				page_bad = TRUE;
1819			}
1820			/*
1821			 * Restore original value.
1822			 */
1823			*(int *)ptr = tmp;
1824
1825			/*
1826			 * Adjust array of valid/good pages.
1827			 */
1828			if (page_bad == TRUE) {
1829				continue;
1830			}
1831			/*
1832			 * If this good page is a continuation of the
1833			 * previous set of good pages, then just increase
1834			 * the end pointer. Otherwise start a new chunk.
1835			 * Note that "end" points one higher than end,
1836			 * making the range >= start and < end.
1837			 * If we're also doing a speculative memory
1838			 * test and we at or past the end, bump up Maxmem
1839			 * so that we keep going. The first bad page
1840			 * will terminate the loop.
1841			 */
1842			if (phys_avail[pa_indx] == pa) {
1843				phys_avail[pa_indx] += PAGE_SIZE;
1844			} else {
1845				pa_indx++;
1846				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
1847					printf(
1848		"Too many holes in the physical address space, giving up\n");
1849					pa_indx--;
1850					break;
1851				}
1852				phys_avail[pa_indx++] = pa;	/* start */
1853				phys_avail[pa_indx] = pa + PAGE_SIZE;	/* end */
1854			}
1855			physmem++;
1856		}
1857	}
1858	*pte = 0;
1859	invltlb();
1860
1861	/*
1862	 * XXX
1863	 * The last chunk must contain at least one page plus the message
1864	 * buffer to avoid complicating other code (message buffer address
1865	 * calculation, etc.).
1866	 */
1867	while (phys_avail[pa_indx - 1] + PAGE_SIZE +
1868	    round_page(MSGBUF_SIZE) >= phys_avail[pa_indx]) {
1869		physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
1870		phys_avail[pa_indx--] = 0;
1871		phys_avail[pa_indx--] = 0;
1872	}
1873
1874	Maxmem = atop(phys_avail[pa_indx]);
1875
1876	/* Trim off space for the message buffer. */
1877	phys_avail[pa_indx] -= round_page(MSGBUF_SIZE);
1878
1879	avail_end = phys_avail[pa_indx];
1880}
1881
1882void
1883init386(first)
1884	int first;
1885{
1886	struct gate_descriptor *gdp;
1887	int gsel_tss, metadata_missing, off, x;
1888#ifndef SMP
1889	/* table descriptors - used to load tables by microp */
1890	struct region_descriptor r_gdt, r_idt;
1891#endif
1892	struct pcpu *pc;
1893
1894	proc0.p_uarea = proc0uarea;
1895	thread0.td_kstack = proc0kstack;
1896	thread0.td_pcb = (struct pcb *)
1897	   (thread0.td_kstack + KSTACK_PAGES * PAGE_SIZE) - 1;
1898	atdevbase = ISA_HOLE_START + KERNBASE;
1899
1900	/*
1901 	 * This may be done better later if it gets more high level
1902 	 * components in it. If so just link td->td_proc here.
1903	 */
1904	proc_linkup(&proc0, &ksegrp0, &kse0, &thread0);
1905
1906	metadata_missing = 0;
1907	if (bootinfo.bi_modulep) {
1908		preload_metadata = (caddr_t)bootinfo.bi_modulep + KERNBASE;
1909		preload_bootstrap_relocate(KERNBASE);
1910	} else {
1911		metadata_missing = 1;
1912	}
1913	if (envmode == 1)
1914		kern_envp = static_env;
1915	else if (bootinfo.bi_envp)
1916		kern_envp = (caddr_t)bootinfo.bi_envp + KERNBASE;
1917
1918	/* Init basic tunables, hz etc */
1919	init_param1();
1920
1921	/*
1922	 * make gdt memory segments, the code segment goes up to end of the
1923	 * page with etext in it, the data segment goes to the end of
1924	 * the address space
1925	 */
1926	/*
1927	 * XXX text protection is temporarily (?) disabled.  The limit was
1928	 * i386_btop(round_page(etext)) - 1.
1929	 */
1930	gdt_segs[GCODE_SEL].ssd_limit = atop(0 - 1);
1931	gdt_segs[GDATA_SEL].ssd_limit = atop(0 - 1);
1932#ifdef SMP
1933	pc = &SMP_prvspace[0].pcpu;
1934	gdt_segs[GPRIV_SEL].ssd_limit =
1935		atop(sizeof(struct privatespace) - 1);
1936#else
1937	pc = &__pcpu;
1938	gdt_segs[GPRIV_SEL].ssd_limit =
1939		atop(sizeof(struct pcpu) - 1);
1940#endif
1941	gdt_segs[GPRIV_SEL].ssd_base = (int) pc;
1942	gdt_segs[GPROC0_SEL].ssd_base = (int) &pc->pc_common_tss;
1943
1944	for (x = 0; x < NGDT; x++) {
1945#ifdef BDE_DEBUGGER
1946		/* avoid overwriting db entries with APM ones */
1947		if (x >= GAPMCODE32_SEL && x <= GAPMDATA_SEL)
1948			continue;
1949#endif
1950		ssdtosd(&gdt_segs[x], &gdt[x].sd);
1951	}
1952
1953	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
1954	r_gdt.rd_base =  (int) gdt;
1955	lgdt(&r_gdt);
1956
1957	pcpu_init(pc, 0, sizeof(struct pcpu));
1958	PCPU_SET(prvspace, pc);
1959	PCPU_SET(curthread, &thread0);
1960
1961	/*
1962	 * Initialize mutexes.
1963	 *
1964	 * icu_lock: in order to allow an interrupt to occur in a critical
1965	 * 	     section, to set pcpu->ipending (etc...) properly, we
1966	 *	     must be able to get the icu lock, so it can't be
1967	 *	     under witness.
1968	 */
1969	mutex_init();
1970	mtx_init(&clock_lock, "clk", NULL, MTX_SPIN | MTX_RECURSE);
1971	mtx_init(&icu_lock, "icu", NULL, MTX_SPIN | MTX_NOWITNESS);
1972
1973	/* make ldt memory segments */
1974	/*
1975	 * XXX - VM_MAXUSER_ADDRESS is an end address, not a max.  And it
1976	 * should be spelled ...MAX_USER...
1977	 */
1978	ldt_segs[LUCODE_SEL].ssd_limit = atop(VM_MAXUSER_ADDRESS - 1);
1979	ldt_segs[LUDATA_SEL].ssd_limit = atop(VM_MAXUSER_ADDRESS - 1);
1980	for (x = 0; x < sizeof ldt_segs / sizeof ldt_segs[0]; x++)
1981		ssdtosd(&ldt_segs[x], &ldt[x].sd);
1982
1983	_default_ldt = GSEL(GLDT_SEL, SEL_KPL);
1984	lldt(_default_ldt);
1985	PCPU_SET(currentldt, _default_ldt);
1986
1987	/* exceptions */
1988	for (x = 0; x < NIDT; x++)
1989		setidt(x, &IDTVEC(rsvd), SDT_SYS386TGT, SEL_KPL,
1990		    GSEL(GCODE_SEL, SEL_KPL));
1991	setidt(0, &IDTVEC(div),  SDT_SYS386TGT, SEL_KPL,
1992	    GSEL(GCODE_SEL, SEL_KPL));
1993	setidt(1, &IDTVEC(dbg),  SDT_SYS386IGT, SEL_KPL,
1994	    GSEL(GCODE_SEL, SEL_KPL));
1995	setidt(2, &IDTVEC(nmi),  SDT_SYS386TGT, SEL_KPL,
1996	    GSEL(GCODE_SEL, SEL_KPL));
1997 	setidt(3, &IDTVEC(bpt),  SDT_SYS386IGT, SEL_UPL,
1998	    GSEL(GCODE_SEL, SEL_KPL));
1999	setidt(4, &IDTVEC(ofl),  SDT_SYS386TGT, SEL_UPL,
2000	    GSEL(GCODE_SEL, SEL_KPL));
2001	setidt(5, &IDTVEC(bnd),  SDT_SYS386TGT, SEL_KPL,
2002	    GSEL(GCODE_SEL, SEL_KPL));
2003	setidt(6, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL,
2004	    GSEL(GCODE_SEL, SEL_KPL));
2005	setidt(7, &IDTVEC(dna),  SDT_SYS386TGT, SEL_KPL
2006	    , GSEL(GCODE_SEL, SEL_KPL));
2007	setidt(8, 0,  SDT_SYSTASKGT, SEL_KPL, GSEL(GPANIC_SEL, SEL_KPL));
2008	setidt(9, &IDTVEC(fpusegm),  SDT_SYS386TGT, SEL_KPL,
2009	    GSEL(GCODE_SEL, SEL_KPL));
2010	setidt(10, &IDTVEC(tss),  SDT_SYS386TGT, SEL_KPL,
2011	    GSEL(GCODE_SEL, SEL_KPL));
2012	setidt(11, &IDTVEC(missing),  SDT_SYS386TGT, SEL_KPL,
2013	    GSEL(GCODE_SEL, SEL_KPL));
2014	setidt(12, &IDTVEC(stk),  SDT_SYS386TGT, SEL_KPL,
2015	    GSEL(GCODE_SEL, SEL_KPL));
2016	setidt(13, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL,
2017	    GSEL(GCODE_SEL, SEL_KPL));
2018	setidt(14, &IDTVEC(page),  SDT_SYS386IGT, SEL_KPL,
2019	    GSEL(GCODE_SEL, SEL_KPL));
2020	setidt(15, &IDTVEC(rsvd),  SDT_SYS386TGT, SEL_KPL,
2021	    GSEL(GCODE_SEL, SEL_KPL));
2022	setidt(16, &IDTVEC(fpu),  SDT_SYS386TGT, SEL_KPL,
2023	    GSEL(GCODE_SEL, SEL_KPL));
2024	setidt(17, &IDTVEC(align), SDT_SYS386TGT, SEL_KPL,
2025	    GSEL(GCODE_SEL, SEL_KPL));
2026	setidt(18, &IDTVEC(mchk),  SDT_SYS386TGT, SEL_KPL,
2027	    GSEL(GCODE_SEL, SEL_KPL));
2028	setidt(19, &IDTVEC(xmm), SDT_SYS386TGT, SEL_KPL,
2029	    GSEL(GCODE_SEL, SEL_KPL));
2030 	setidt(0x80, &IDTVEC(int0x80_syscall), SDT_SYS386TGT, SEL_UPL,
2031	    GSEL(GCODE_SEL, SEL_KPL));
2032
2033	r_idt.rd_limit = sizeof(idt0) - 1;
2034	r_idt.rd_base = (int) idt;
2035	lidt(&r_idt);
2036
2037	/*
2038	 * Initialize the console before we print anything out.
2039	 */
2040	cninit();
2041
2042	if (metadata_missing)
2043		printf("WARNING: loader(8) metadata is missing!\n");
2044
2045#ifdef DEV_ISA
2046	isa_defaultirq();
2047#endif
2048
2049#ifdef DDB
2050	kdb_init();
2051	if (boothowto & RB_KDB)
2052		Debugger("Boot flags requested debugger");
2053#endif
2054
2055	finishidentcpu();	/* Final stage of CPU initialization */
2056	setidt(6, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL,
2057	    GSEL(GCODE_SEL, SEL_KPL));
2058	setidt(13, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL,
2059	    GSEL(GCODE_SEL, SEL_KPL));
2060	initializecpu();	/* Initialize CPU registers */
2061
2062	/* make an initial tss so cpu can get interrupt stack on syscall! */
2063	/* Note: -16 is so we can grow the trapframe if we came from vm86 */
2064	PCPU_SET(common_tss.tss_esp0, thread0.td_kstack +
2065	    KSTACK_PAGES * PAGE_SIZE - sizeof(struct pcb) - 16);
2066	PCPU_SET(common_tss.tss_ss0, GSEL(GDATA_SEL, SEL_KPL));
2067	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
2068	private_tss = 0;
2069	PCPU_SET(tss_gdt, &gdt[GPROC0_SEL].sd);
2070	PCPU_SET(common_tssd, *PCPU_GET(tss_gdt));
2071	PCPU_SET(common_tss.tss_ioopt, (sizeof (struct i386tss)) << 16);
2072	ltr(gsel_tss);
2073
2074	dblfault_tss.tss_esp = dblfault_tss.tss_esp0 = dblfault_tss.tss_esp1 =
2075	    dblfault_tss.tss_esp2 = (int)&dblfault_stack[sizeof(dblfault_stack)];
2076	dblfault_tss.tss_ss = dblfault_tss.tss_ss0 = dblfault_tss.tss_ss1 =
2077	    dblfault_tss.tss_ss2 = GSEL(GDATA_SEL, SEL_KPL);
2078	dblfault_tss.tss_cr3 = (int)IdlePTD;
2079	dblfault_tss.tss_eip = (int)dblfault_handler;
2080	dblfault_tss.tss_eflags = PSL_KERNEL;
2081	dblfault_tss.tss_ds = dblfault_tss.tss_es =
2082	    dblfault_tss.tss_gs = GSEL(GDATA_SEL, SEL_KPL);
2083	dblfault_tss.tss_fs = GSEL(GPRIV_SEL, SEL_KPL);
2084	dblfault_tss.tss_cs = GSEL(GCODE_SEL, SEL_KPL);
2085	dblfault_tss.tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
2086
2087	vm86_initialize();
2088	getmemsize(first);
2089	init_param2(physmem);
2090
2091	/* now running on new page tables, configured,and u/iom is accessible */
2092
2093	/* Map the message buffer. */
2094	for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE)
2095		pmap_kenter((vm_offset_t)msgbufp + off, avail_end + off);
2096
2097	msgbufinit(msgbufp, MSGBUF_SIZE);
2098
2099	/* make a call gate to reenter kernel with */
2100	gdp = &ldt[LSYS5CALLS_SEL].gd;
2101
2102	x = (int) &IDTVEC(lcall_syscall);
2103	gdp->gd_looffset = x;
2104	gdp->gd_selector = GSEL(GCODE_SEL,SEL_KPL);
2105	gdp->gd_stkcpy = 1;
2106	gdp->gd_type = SDT_SYS386CGT;
2107	gdp->gd_dpl = SEL_UPL;
2108	gdp->gd_p = 1;
2109	gdp->gd_hioffset = x >> 16;
2110
2111	/* XXX does this work? */
2112	ldt[LBSDICALLS_SEL] = ldt[LSYS5CALLS_SEL];
2113	ldt[LSOL26CALLS_SEL] = ldt[LSYS5CALLS_SEL];
2114
2115	/* transfer to user mode */
2116
2117	_ucodesel = LSEL(LUCODE_SEL, SEL_UPL);
2118	_udatasel = LSEL(LUDATA_SEL, SEL_UPL);
2119
2120	/* setup proc 0's pcb */
2121	thread0.td_pcb->pcb_flags = 0; /* XXXKSE */
2122	thread0.td_pcb->pcb_cr3 = (int)IdlePTD;
2123	thread0.td_pcb->pcb_ext = 0;
2124	thread0.td_frame = &proc0_tf;
2125}
2126
2127void
2128cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
2129{
2130}
2131
2132#if defined(I586_CPU) && !defined(NO_F00F_HACK)
2133static void f00f_hack(void *unused);
2134SYSINIT(f00f_hack, SI_SUB_INTRINSIC, SI_ORDER_FIRST, f00f_hack, NULL);
2135
2136static void
2137f00f_hack(void *unused) {
2138	struct gate_descriptor *new_idt;
2139#ifndef SMP
2140	struct region_descriptor r_idt;
2141#endif
2142	vm_offset_t tmp;
2143
2144	if (!has_f00f_bug)
2145		return;
2146
2147	GIANT_REQUIRED;
2148
2149	printf("Intel Pentium detected, installing workaround for F00F bug\n");
2150
2151	r_idt.rd_limit = sizeof(idt0) - 1;
2152
2153	tmp = kmem_alloc(kernel_map, PAGE_SIZE * 2);
2154	if (tmp == 0)
2155		panic("kmem_alloc returned 0");
2156	if (((unsigned int)tmp & (PAGE_SIZE-1)) != 0)
2157		panic("kmem_alloc returned non-page-aligned memory");
2158	/* Put the first seven entries in the lower page */
2159	new_idt = (struct gate_descriptor*)(tmp + PAGE_SIZE - (7*8));
2160	bcopy(idt, new_idt, sizeof(idt0));
2161	r_idt.rd_base = (int)new_idt;
2162	lidt(&r_idt);
2163	idt = new_idt;
2164	if (vm_map_protect(kernel_map, tmp, tmp + PAGE_SIZE,
2165			   VM_PROT_READ, FALSE) != KERN_SUCCESS)
2166		panic("vm_map_protect failed");
2167	return;
2168}
2169#endif /* defined(I586_CPU) && !NO_F00F_HACK */
2170
2171int
2172ptrace_set_pc(struct thread *td, unsigned long addr)
2173{
2174	td->td_frame->tf_eip = addr;
2175	return (0);
2176}
2177
2178int
2179ptrace_single_step(struct thread *td)
2180{
2181	td->td_frame->tf_eflags |= PSL_T;
2182	return (0);
2183}
2184
2185int
2186fill_regs(struct thread *td, struct reg *regs)
2187{
2188	struct pcb *pcb;
2189	struct trapframe *tp;
2190
2191	tp = td->td_frame;
2192	regs->r_fs = tp->tf_fs;
2193	regs->r_es = tp->tf_es;
2194	regs->r_ds = tp->tf_ds;
2195	regs->r_edi = tp->tf_edi;
2196	regs->r_esi = tp->tf_esi;
2197	regs->r_ebp = tp->tf_ebp;
2198	regs->r_ebx = tp->tf_ebx;
2199	regs->r_edx = tp->tf_edx;
2200	regs->r_ecx = tp->tf_ecx;
2201	regs->r_eax = tp->tf_eax;
2202	regs->r_eip = tp->tf_eip;
2203	regs->r_cs = tp->tf_cs;
2204	regs->r_eflags = tp->tf_eflags;
2205	regs->r_esp = tp->tf_esp;
2206	regs->r_ss = tp->tf_ss;
2207	pcb = td->td_pcb;
2208	regs->r_gs = pcb->pcb_gs;
2209	return (0);
2210}
2211
2212int
2213set_regs(struct thread *td, struct reg *regs)
2214{
2215	struct pcb *pcb;
2216	struct trapframe *tp;
2217
2218	tp = td->td_frame;
2219	if (!EFL_SECURE(regs->r_eflags, tp->tf_eflags) ||
2220	    !CS_SECURE(regs->r_cs))
2221		return (EINVAL);
2222	tp->tf_fs = regs->r_fs;
2223	tp->tf_es = regs->r_es;
2224	tp->tf_ds = regs->r_ds;
2225	tp->tf_edi = regs->r_edi;
2226	tp->tf_esi = regs->r_esi;
2227	tp->tf_ebp = regs->r_ebp;
2228	tp->tf_ebx = regs->r_ebx;
2229	tp->tf_edx = regs->r_edx;
2230	tp->tf_ecx = regs->r_ecx;
2231	tp->tf_eax = regs->r_eax;
2232	tp->tf_eip = regs->r_eip;
2233	tp->tf_cs = regs->r_cs;
2234	tp->tf_eflags = regs->r_eflags;
2235	tp->tf_esp = regs->r_esp;
2236	tp->tf_ss = regs->r_ss;
2237	pcb = td->td_pcb;
2238	pcb->pcb_gs = regs->r_gs;
2239	return (0);
2240}
2241
2242#ifdef CPU_ENABLE_SSE
2243static void
2244fill_fpregs_xmm(sv_xmm, sv_87)
2245	struct savexmm *sv_xmm;
2246	struct save87 *sv_87;
2247{
2248	register struct env87 *penv_87 = &sv_87->sv_env;
2249	register struct envxmm *penv_xmm = &sv_xmm->sv_env;
2250	int i;
2251
2252	bzero(sv_87, sizeof(*sv_87));
2253
2254	/* FPU control/status */
2255	penv_87->en_cw = penv_xmm->en_cw;
2256	penv_87->en_sw = penv_xmm->en_sw;
2257	penv_87->en_tw = penv_xmm->en_tw;
2258	penv_87->en_fip = penv_xmm->en_fip;
2259	penv_87->en_fcs = penv_xmm->en_fcs;
2260	penv_87->en_opcode = penv_xmm->en_opcode;
2261	penv_87->en_foo = penv_xmm->en_foo;
2262	penv_87->en_fos = penv_xmm->en_fos;
2263
2264	/* FPU registers */
2265	for (i = 0; i < 8; ++i)
2266		sv_87->sv_ac[i] = sv_xmm->sv_fp[i].fp_acc;
2267}
2268
2269static void
2270set_fpregs_xmm(sv_87, sv_xmm)
2271	struct save87 *sv_87;
2272	struct savexmm *sv_xmm;
2273{
2274	register struct env87 *penv_87 = &sv_87->sv_env;
2275	register struct envxmm *penv_xmm = &sv_xmm->sv_env;
2276	int i;
2277
2278	/* FPU control/status */
2279	penv_xmm->en_cw = penv_87->en_cw;
2280	penv_xmm->en_sw = penv_87->en_sw;
2281	penv_xmm->en_tw = penv_87->en_tw;
2282	penv_xmm->en_fip = penv_87->en_fip;
2283	penv_xmm->en_fcs = penv_87->en_fcs;
2284	penv_xmm->en_opcode = penv_87->en_opcode;
2285	penv_xmm->en_foo = penv_87->en_foo;
2286	penv_xmm->en_fos = penv_87->en_fos;
2287
2288	/* FPU registers */
2289	for (i = 0; i < 8; ++i)
2290		sv_xmm->sv_fp[i].fp_acc = sv_87->sv_ac[i];
2291}
2292#endif /* CPU_ENABLE_SSE */
2293
2294int
2295fill_fpregs(struct thread *td, struct fpreg *fpregs)
2296{
2297#ifdef CPU_ENABLE_SSE
2298	if (cpu_fxsr) {
2299		fill_fpregs_xmm(&td->td_pcb->pcb_save.sv_xmm,
2300						(struct save87 *)fpregs);
2301		return (0);
2302	}
2303#endif /* CPU_ENABLE_SSE */
2304	bcopy(&td->td_pcb->pcb_save.sv_87, fpregs, sizeof *fpregs);
2305	return (0);
2306}
2307
2308int
2309set_fpregs(struct thread *td, struct fpreg *fpregs)
2310{
2311#ifdef CPU_ENABLE_SSE
2312	if (cpu_fxsr) {
2313		set_fpregs_xmm((struct save87 *)fpregs,
2314					   &td->td_pcb->pcb_save.sv_xmm);
2315		return (0);
2316	}
2317#endif /* CPU_ENABLE_SSE */
2318	bcopy(fpregs, &td->td_pcb->pcb_save.sv_87, sizeof *fpregs);
2319	return (0);
2320}
2321
2322/*
2323 * Get machine context.
2324 */
2325void
2326get_mcontext(struct thread *td, mcontext_t *mcp)
2327{
2328	struct trapframe *tp;
2329
2330	tp = td->td_frame;
2331
2332	mcp->mc_onstack = sigonstack(tp->tf_esp);
2333	mcp->mc_gs = td->td_pcb->pcb_gs;
2334	mcp->mc_fs = tp->tf_fs;
2335	mcp->mc_es = tp->tf_es;
2336	mcp->mc_ds = tp->tf_ds;
2337	mcp->mc_edi = tp->tf_edi;
2338	mcp->mc_esi = tp->tf_esi;
2339	mcp->mc_ebp = tp->tf_ebp;
2340	mcp->mc_isp = tp->tf_isp;
2341	mcp->mc_ebx = tp->tf_ebx;
2342	mcp->mc_edx = tp->tf_edx;
2343	mcp->mc_ecx = tp->tf_ecx;
2344	mcp->mc_eax = tp->tf_eax;
2345	mcp->mc_eip = tp->tf_eip;
2346	mcp->mc_cs = tp->tf_cs;
2347	mcp->mc_eflags = tp->tf_eflags;
2348	mcp->mc_esp = tp->tf_esp;
2349	mcp->mc_ss = tp->tf_ss;
2350	mcp->mc_len = sizeof(*mcp);
2351	get_fpcontext(td, mcp);
2352}
2353
2354/*
2355 * Set machine context.
2356 *
2357 * However, we don't set any but the user modifiable flags, and we won't
2358 * touch the cs selector.
2359 */
2360int
2361set_mcontext(struct thread *td, const mcontext_t *mcp)
2362{
2363	struct trapframe *tp;
2364	int eflags, ret;
2365
2366	tp = td->td_frame;
2367	if (mcp->mc_len != sizeof(*mcp))
2368		return (EINVAL);
2369	eflags = (mcp->mc_eflags & PSL_USERCHANGE) |
2370	    (tp->tf_eflags & ~PSL_USERCHANGE);
2371	if ((ret = set_fpcontext(td, mcp)) == 0) {
2372		tp->tf_fs = mcp->mc_fs;
2373		tp->tf_es = mcp->mc_es;
2374		tp->tf_ds = mcp->mc_ds;
2375		tp->tf_edi = mcp->mc_edi;
2376		tp->tf_esi = mcp->mc_esi;
2377		tp->tf_ebp = mcp->mc_ebp;
2378		tp->tf_ebx = mcp->mc_ebx;
2379		tp->tf_edx = mcp->mc_edx;
2380		tp->tf_ecx = mcp->mc_ecx;
2381		tp->tf_eax = mcp->mc_eax;
2382		tp->tf_eip = mcp->mc_eip;
2383		tp->tf_eflags = eflags;
2384		tp->tf_esp = mcp->mc_esp;
2385		tp->tf_ss = mcp->mc_ss;
2386		td->td_pcb->pcb_gs = mcp->mc_gs;
2387		ret = 0;
2388	}
2389	return (ret);
2390}
2391
2392static void
2393get_fpcontext(struct thread *td, mcontext_t *mcp)
2394{
2395#ifndef DEV_NPX
2396	mcp->mc_fpformat = _MC_FPFMT_NODEV;
2397	mcp->mc_ownedfp = _MC_FPOWNED_NONE;
2398#else
2399	union savefpu *addr;
2400
2401	/*
2402	 * XXX mc_fpstate might be misaligned, since its declaration is not
2403	 * unportabilized using __attribute__((aligned(16))) like the
2404	 * declaration of struct savemm, and anyway, alignment doesn't work
2405	 * for auto variables since we don't use gcc's pessimal stack
2406	 * alignment.  Work around this by abusing the spare fields after
2407	 * mcp->mc_fpstate.
2408	 *
2409	 * XXX unpessimize most cases by only aligning when fxsave might be
2410	 * called, although this requires knowing too much about
2411	 * npxgetregs()'s internals.
2412	 */
2413	addr = (union savefpu *)&mcp->mc_fpstate;
2414	if (td == PCPU_GET(fpcurthread) &&
2415#ifdef CPU_ENABLE_SSE
2416	    cpu_fxsr &&
2417#endif
2418	    ((uintptr_t)(void *)addr & 0xF)) {
2419		do
2420			addr = (void *)((char *)addr + 4);
2421		while ((uintptr_t)(void *)addr & 0xF);
2422	}
2423	mcp->mc_ownedfp = npxgetregs(td, addr);
2424	if (addr != (union savefpu *)&mcp->mc_fpstate) {
2425		bcopy(addr, &mcp->mc_fpstate, sizeof(mcp->mc_fpstate));
2426		bzero(&mcp->mc_spare2, sizeof(mcp->mc_spare2));
2427	}
2428	mcp->mc_fpformat = npxformat();
2429#endif
2430}
2431
2432static int
2433set_fpcontext(struct thread *td, const mcontext_t *mcp)
2434{
2435	union savefpu *addr;
2436
2437	if (mcp->mc_fpformat == _MC_FPFMT_NODEV)
2438		return (0);
2439	else if (mcp->mc_fpformat != _MC_FPFMT_387 &&
2440	    mcp->mc_fpformat != _MC_FPFMT_XMM)
2441		return (EINVAL);
2442	else if (mcp->mc_ownedfp == _MC_FPOWNED_NONE)
2443		/* We don't care what state is left in the FPU or PCB. */
2444		fpstate_drop(td);
2445	else if (mcp->mc_ownedfp == _MC_FPOWNED_FPU ||
2446	    mcp->mc_ownedfp == _MC_FPOWNED_PCB) {
2447		/* XXX align as above. */
2448		addr = (union savefpu *)&mcp->mc_fpstate;
2449		if (td == PCPU_GET(fpcurthread) &&
2450#ifdef CPU_ENABLE_SSE
2451		    cpu_fxsr &&
2452#endif
2453		    ((uintptr_t)(void *)addr & 0xF)) {
2454			do
2455				addr = (void *)((char *)addr + 4);
2456			while ((uintptr_t)(void *)addr & 0xF);
2457			bcopy(&mcp->mc_fpstate, addr, sizeof(mcp->mc_fpstate));
2458		}
2459#ifdef DEV_NPX
2460		/*
2461		 * XXX we violate the dubious requirement that npxsetregs()
2462		 * be called with interrupts disabled.
2463		 */
2464		npxsetregs(td, addr);
2465#endif
2466		/*
2467		 * Don't bother putting things back where they were in the
2468		 * misaligned case, since we know that the caller won't use
2469		 * them again.
2470		 */
2471	} else
2472		return (EINVAL);
2473	return (0);
2474}
2475
2476static void
2477fpstate_drop(struct thread *td)
2478{
2479	register_t s;
2480
2481	s = intr_disable();
2482#ifdef DEV_NPX
2483	if (PCPU_GET(fpcurthread) == td)
2484		npxdrop();
2485#endif
2486	/*
2487	 * XXX force a full drop of the npx.  The above only drops it if we
2488	 * owned it.  npxgetregs() has the same bug in the !cpu_fxsr case.
2489	 *
2490	 * XXX I don't much like npxgetregs()'s semantics of doing a full
2491	 * drop.  Dropping only to the pcb matches fnsave's behaviour.
2492	 * We only need to drop to !PCB_INITDONE in sendsig().  But
2493	 * sendsig() is the only caller of npxgetregs()... perhaps we just
2494	 * have too many layers.
2495	 */
2496	curthread->td_pcb->pcb_flags &= ~PCB_NPXINITDONE;
2497	intr_restore(s);
2498}
2499
2500int
2501fill_dbregs(struct thread *td, struct dbreg *dbregs)
2502{
2503	struct pcb *pcb;
2504
2505	if (td == NULL) {
2506		dbregs->dr[0] = rdr0();
2507		dbregs->dr[1] = rdr1();
2508		dbregs->dr[2] = rdr2();
2509		dbregs->dr[3] = rdr3();
2510		dbregs->dr[4] = rdr4();
2511		dbregs->dr[5] = rdr5();
2512		dbregs->dr[6] = rdr6();
2513		dbregs->dr[7] = rdr7();
2514	} else {
2515		pcb = td->td_pcb;
2516		dbregs->dr[0] = pcb->pcb_dr0;
2517		dbregs->dr[1] = pcb->pcb_dr1;
2518		dbregs->dr[2] = pcb->pcb_dr2;
2519		dbregs->dr[3] = pcb->pcb_dr3;
2520		dbregs->dr[4] = 0;
2521		dbregs->dr[5] = 0;
2522		dbregs->dr[6] = pcb->pcb_dr6;
2523		dbregs->dr[7] = pcb->pcb_dr7;
2524	}
2525	return (0);
2526}
2527
2528int
2529set_dbregs(struct thread *td, struct dbreg *dbregs)
2530{
2531	struct pcb *pcb;
2532	int i;
2533	u_int32_t mask1, mask2;
2534
2535	if (td == NULL) {
2536		load_dr0(dbregs->dr[0]);
2537		load_dr1(dbregs->dr[1]);
2538		load_dr2(dbregs->dr[2]);
2539		load_dr3(dbregs->dr[3]);
2540		load_dr4(dbregs->dr[4]);
2541		load_dr5(dbregs->dr[5]);
2542		load_dr6(dbregs->dr[6]);
2543		load_dr7(dbregs->dr[7]);
2544	} else {
2545		/*
2546		 * Don't let an illegal value for dr7 get set.	Specifically,
2547		 * check for undefined settings.  Setting these bit patterns
2548		 * result in undefined behaviour and can lead to an unexpected
2549		 * TRCTRAP.
2550		 */
2551		for (i = 0, mask1 = 0x3<<16, mask2 = 0x2<<16; i < 8;
2552		     i++, mask1 <<= 2, mask2 <<= 2)
2553			if ((dbregs->dr[7] & mask1) == mask2)
2554				return (EINVAL);
2555
2556		pcb = td->td_pcb;
2557
2558		/*
2559		 * Don't let a process set a breakpoint that is not within the
2560		 * process's address space.  If a process could do this, it
2561		 * could halt the system by setting a breakpoint in the kernel
2562		 * (if ddb was enabled).  Thus, we need to check to make sure
2563		 * that no breakpoints are being enabled for addresses outside
2564		 * process's address space, unless, perhaps, we were called by
2565		 * uid 0.
2566		 *
2567		 * XXX - what about when the watched area of the user's
2568		 * address space is written into from within the kernel
2569		 * ... wouldn't that still cause a breakpoint to be generated
2570		 * from within kernel mode?
2571		 */
2572
2573		if (suser(td) != 0) {
2574			if (dbregs->dr[7] & 0x3) {
2575				/* dr0 is enabled */
2576				if (dbregs->dr[0] >= VM_MAXUSER_ADDRESS)
2577					return (EINVAL);
2578			}
2579
2580			if (dbregs->dr[7] & (0x3<<2)) {
2581				/* dr1 is enabled */
2582				if (dbregs->dr[1] >= VM_MAXUSER_ADDRESS)
2583					return (EINVAL);
2584			}
2585
2586			if (dbregs->dr[7] & (0x3<<4)) {
2587				/* dr2 is enabled */
2588				if (dbregs->dr[2] >= VM_MAXUSER_ADDRESS)
2589					return (EINVAL);
2590			}
2591
2592			if (dbregs->dr[7] & (0x3<<6)) {
2593				/* dr3 is enabled */
2594				if (dbregs->dr[3] >= VM_MAXUSER_ADDRESS)
2595					return (EINVAL);
2596			}
2597		}
2598
2599		pcb->pcb_dr0 = dbregs->dr[0];
2600		pcb->pcb_dr1 = dbregs->dr[1];
2601		pcb->pcb_dr2 = dbregs->dr[2];
2602		pcb->pcb_dr3 = dbregs->dr[3];
2603		pcb->pcb_dr6 = dbregs->dr[6];
2604		pcb->pcb_dr7 = dbregs->dr[7];
2605
2606		pcb->pcb_flags |= PCB_DBREGS;
2607	}
2608
2609	return (0);
2610}
2611
2612/*
2613 * Return > 0 if a hardware breakpoint has been hit, and the
2614 * breakpoint was in user space.  Return 0, otherwise.
2615 */
2616int
2617user_dbreg_trap(void)
2618{
2619        u_int32_t dr7, dr6; /* debug registers dr6 and dr7 */
2620        u_int32_t bp;       /* breakpoint bits extracted from dr6 */
2621        int nbp;            /* number of breakpoints that triggered */
2622        caddr_t addr[4];    /* breakpoint addresses */
2623        int i;
2624
2625        dr7 = rdr7();
2626        if ((dr7 & 0x000000ff) == 0) {
2627                /*
2628                 * all GE and LE bits in the dr7 register are zero,
2629                 * thus the trap couldn't have been caused by the
2630                 * hardware debug registers
2631                 */
2632                return 0;
2633        }
2634
2635        nbp = 0;
2636        dr6 = rdr6();
2637        bp = dr6 & 0x0000000f;
2638
2639        if (!bp) {
2640                /*
2641                 * None of the breakpoint bits are set meaning this
2642                 * trap was not caused by any of the debug registers
2643                 */
2644                return 0;
2645        }
2646
2647        /*
2648         * at least one of the breakpoints were hit, check to see
2649         * which ones and if any of them are user space addresses
2650         */
2651
2652        if (bp & 0x01) {
2653                addr[nbp++] = (caddr_t)rdr0();
2654        }
2655        if (bp & 0x02) {
2656                addr[nbp++] = (caddr_t)rdr1();
2657        }
2658        if (bp & 0x04) {
2659                addr[nbp++] = (caddr_t)rdr2();
2660        }
2661        if (bp & 0x08) {
2662                addr[nbp++] = (caddr_t)rdr3();
2663        }
2664
2665        for (i=0; i<nbp; i++) {
2666                if (addr[i] <
2667                    (caddr_t)VM_MAXUSER_ADDRESS) {
2668                        /*
2669                         * addr[i] is in user space
2670                         */
2671                        return nbp;
2672                }
2673        }
2674
2675        /*
2676         * None of the breakpoints are in user space.
2677         */
2678        return 0;
2679}
2680
2681
2682#ifndef DDB
2683void
2684Debugger(const char *msg)
2685{
2686	printf("Debugger(\"%s\") called.\n", msg);
2687}
2688#endif /* no DDB */
2689
2690#ifdef DDB
2691
2692/*
2693 * Provide inb() and outb() as functions.  They are normally only
2694 * available as macros calling inlined functions, thus cannot be
2695 * called inside DDB.
2696 *
2697 * The actual code is stolen from <machine/cpufunc.h>, and de-inlined.
2698 */
2699
2700#undef inb
2701#undef outb
2702
2703/* silence compiler warnings */
2704u_char inb(u_int);
2705void outb(u_int, u_char);
2706
2707u_char
2708inb(u_int port)
2709{
2710	u_char	data;
2711	/*
2712	 * We use %%dx and not %1 here because i/o is done at %dx and not at
2713	 * %edx, while gcc generates inferior code (movw instead of movl)
2714	 * if we tell it to load (u_short) port.
2715	 */
2716	__asm __volatile("inb %%dx,%0" : "=a" (data) : "d" (port));
2717	return (data);
2718}
2719
2720void
2721outb(u_int port, u_char data)
2722{
2723	u_char	al;
2724	/*
2725	 * Use an unnecessary assignment to help gcc's register allocator.
2726	 * This make a large difference for gcc-1.40 and a tiny difference
2727	 * for gcc-2.6.0.  For gcc-1.40, al had to be ``asm("ax")'' for
2728	 * best results.  gcc-2.6.0 can't handle this.
2729	 */
2730	al = data;
2731	__asm __volatile("outb %0,%%dx" : : "a" (al), "d" (port));
2732}
2733
2734#endif /* DDB */
2735