machdep.c revision 104513
1/*-
2 * Copyright (c) 1992 Terrence R. Lambert.
3 * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * William Jolitz.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 *    must display the following acknowledgement:
19 *	This product includes software developed by the University of
20 *	California, Berkeley and its contributors.
21 * 4. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 *	from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
38 * $FreeBSD: head/sys/amd64/amd64/machdep.c 104513 2002-10-05 14:36:14Z deischen $
39 */
40
41#include "opt_atalk.h"
42#include "opt_compat.h"
43#include "opt_cpu.h"
44#include "opt_ddb.h"
45#include "opt_inet.h"
46#include "opt_ipx.h"
47#include "opt_isa.h"
48#include "opt_maxmem.h"
49#include "opt_msgbuf.h"
50#include "opt_npx.h"
51#include "opt_perfmon.h"
52#include "opt_kstack_pages.h"
53
54#include <sys/param.h>
55#include <sys/systm.h>
56#include <sys/sysproto.h>
57#include <sys/signalvar.h>
58#include <sys/imgact.h>
59#include <sys/kernel.h>
60#include <sys/ktr.h>
61#include <sys/linker.h>
62#include <sys/lock.h>
63#include <sys/malloc.h>
64#include <sys/mutex.h>
65#include <sys/pcpu.h>
66#include <sys/proc.h>
67#include <sys/bio.h>
68#include <sys/buf.h>
69#include <sys/reboot.h>
70#include <sys/callout.h>
71#include <sys/msgbuf.h>
72#include <sys/sysent.h>
73#include <sys/sysctl.h>
74#include <sys/ucontext.h>
75#include <sys/vmmeter.h>
76#include <sys/bus.h>
77#include <sys/eventhandler.h>
78
79#include <vm/vm.h>
80#include <vm/vm_param.h>
81#include <vm/vm_kern.h>
82#include <vm/vm_object.h>
83#include <vm/vm_page.h>
84#include <vm/vm_map.h>
85#include <vm/vm_pager.h>
86#include <vm/vm_extern.h>
87
88#include <sys/user.h>
89#include <sys/exec.h>
90#include <sys/cons.h>
91
92#include <ddb/ddb.h>
93
94#include <net/netisr.h>
95
96#include <machine/cpu.h>
97#include <machine/cputypes.h>
98#include <machine/reg.h>
99#include <machine/clock.h>
100#include <machine/specialreg.h>
101#include <machine/bootinfo.h>
102#include <machine/md_var.h>
103#include <machine/pc/bios.h>
104#include <machine/pcb_ext.h>		/* pcb.h included via sys/user.h */
105#include <machine/proc.h>
106#ifdef PERFMON
107#include <machine/perfmon.h>
108#endif
109#ifdef SMP
110#include <machine/privatespace.h>
111#include <machine/smp.h>
112#endif
113
114#include <i386/isa/icu.h>
115#include <i386/isa/intr_machdep.h>
116#include <isa/rtc.h>
117#include <machine/vm86.h>
118#include <sys/ptrace.h>
119#include <machine/sigframe.h>
120
121extern void init386(int first);
122extern void dblfault_handler(void);
123
124extern void printcpuinfo(void);	/* XXX header file */
125extern void earlysetcpuclass(void);	/* same header file */
126extern void finishidentcpu(void);
127extern void panicifcpuunsupported(void);
128extern void initializecpu(void);
129
130#define	CS_SECURE(cs)		(ISPL(cs) == SEL_UPL)
131#define	EFL_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
132
133#if !defined(CPU_ENABLE_SSE) && defined(I686_CPU)
134#define CPU_ENABLE_SSE
135#endif
136#if defined(CPU_DISABLE_SSE)
137#undef CPU_ENABLE_SSE
138#endif
139
140static void cpu_startup(void *);
141static void fpstate_drop(struct thread *td);
142static void get_fpcontext(struct thread *td, mcontext_t *mcp);
143static int  set_fpcontext(struct thread *td, const mcontext_t *mcp);
144#ifdef CPU_ENABLE_SSE
145static void set_fpregs_xmm(struct save87 *, struct savexmm *);
146static void fill_fpregs_xmm(struct savexmm *, struct save87 *);
147#endif /* CPU_ENABLE_SSE */
148SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL)
149
150int	_udatasel, _ucodesel;
151u_int	atdevbase;
152
153#if defined(SWTCH_OPTIM_STATS)
154extern int swtch_optim_stats;
155SYSCTL_INT(_debug, OID_AUTO, swtch_optim_stats,
156	CTLFLAG_RD, &swtch_optim_stats, 0, "");
157SYSCTL_INT(_debug, OID_AUTO, tlb_flush_count,
158	CTLFLAG_RD, &tlb_flush_count, 0, "");
159#endif
160
161long physmem = 0;
162int cold = 1;
163
164#ifdef COMPAT_43
165static void osendsig(sig_t catcher, int sig, sigset_t *mask, u_long code);
166#endif
167
168static int
169sysctl_hw_physmem(SYSCTL_HANDLER_ARGS)
170{
171	u_long val;
172
173	val = ctob(physmem);
174	return (sysctl_handle_long(oidp, &val, 0, req));
175}
176
177SYSCTL_PROC(_hw, HW_PHYSMEM, physmem, CTLTYPE_ULONG | CTLFLAG_RD,
178	0, 0, sysctl_hw_physmem, "LU", "");
179
180static int
181sysctl_hw_usermem(SYSCTL_HANDLER_ARGS)
182{
183	u_long val;
184
185	val = ctob(physmem - cnt.v_wire_count);
186	return (sysctl_handle_long(oidp, &val, 0, req));
187}
188
189SYSCTL_PROC(_hw, HW_USERMEM, usermem, CTLTYPE_ULONG | CTLFLAG_RD,
190	0, 0, sysctl_hw_usermem, "LU", "");
191
192static int
193sysctl_hw_availpages(SYSCTL_HANDLER_ARGS)
194{
195	u_long val;
196
197	val = i386_btop(avail_end - avail_start);
198	return (sysctl_handle_long(oidp, &val, 0, req));
199}
200
201SYSCTL_PROC(_hw, OID_AUTO, availpages, CTLTYPE_ULONG | CTLFLAG_RD,
202	0, 0, sysctl_hw_availpages, "LU", "");
203
204long Maxmem = 0;
205
206vm_offset_t phys_avail[10];
207
208/* must be 2 less so 0 0 can signal end of chunks */
209#define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(vm_offset_t)) - 2)
210
211struct kva_md_info kmi;
212
213static struct trapframe proc0_tf;
214#ifndef SMP
215static struct pcpu __pcpu;
216#endif
217
218struct mtx icu_lock;
219
220static void
221cpu_startup(dummy)
222	void *dummy;
223{
224	/*
225	 * Good {morning,afternoon,evening,night}.
226	 */
227	earlysetcpuclass();
228	startrtclock();
229	printcpuinfo();
230	panicifcpuunsupported();
231#ifdef PERFMON
232	perfmon_init();
233#endif
234	printf("real memory  = %u (%uK bytes)\n", ptoa(Maxmem),
235	    ptoa(Maxmem) / 1024);
236	/*
237	 * Display any holes after the first chunk of extended memory.
238	 */
239	if (bootverbose) {
240		int indx;
241
242		printf("Physical memory chunk(s):\n");
243		for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
244			unsigned int size1;
245
246			size1 = phys_avail[indx + 1] - phys_avail[indx];
247			printf("0x%08x - 0x%08x, %u bytes (%u pages)\n",
248			    phys_avail[indx], phys_avail[indx + 1] - 1, size1,
249			    size1 / PAGE_SIZE);
250		}
251	}
252
253	vm_ksubmap_init(&kmi);
254
255	printf("avail memory = %u (%uK bytes)\n", ptoa(cnt.v_free_count),
256	    ptoa(cnt.v_free_count) / 1024);
257
258	/*
259	 * Set up buffers, so they can be used to read disk labels.
260	 */
261	bufinit();
262	vm_pager_bufferinit();
263
264#ifndef SMP
265	/* For SMP, we delay the cpu_setregs() until after SMP startup. */
266	cpu_setregs();
267#endif
268}
269
270/*
271 * Send an interrupt to process.
272 *
273 * Stack is set up to allow sigcode stored
274 * at top to call routine, followed by kcall
275 * to sigreturn routine below.  After sigreturn
276 * resets the signal mask, the stack, and the
277 * frame pointer, it returns to the user
278 * specified pc, psl.
279 */
280#ifdef COMPAT_43
281static void
282osendsig(catcher, sig, mask, code)
283	sig_t catcher;
284	int sig;
285	sigset_t *mask;
286	u_long code;
287{
288	struct osigframe sf;
289	struct osigframe *fp;
290	struct proc *p;
291	struct thread *td;
292	struct sigacts *psp;
293	struct trapframe *regs;
294	int oonstack;
295
296	td = curthread;
297	p = td->td_proc;
298	PROC_LOCK_ASSERT(p, MA_OWNED);
299	psp = p->p_sigacts;
300	regs = td->td_frame;
301	oonstack = sigonstack(regs->tf_esp);
302
303	/* Allocate space for the signal handler context. */
304	if ((p->p_flag & P_ALTSTACK) && !oonstack &&
305	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
306		fp = (struct osigframe *)(p->p_sigstk.ss_sp +
307		    p->p_sigstk.ss_size - sizeof(struct osigframe));
308#if defined(COMPAT_43) || defined(COMPAT_SUNOS)
309		p->p_sigstk.ss_flags |= SS_ONSTACK;
310#endif
311	} else
312		fp = (struct osigframe *)regs->tf_esp - 1;
313	PROC_UNLOCK(p);
314
315	/* Translate the signal if appropriate. */
316	if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
317		sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
318
319	/* Build the argument list for the signal handler. */
320	sf.sf_signum = sig;
321	sf.sf_scp = (register_t)&fp->sf_siginfo.si_sc;
322	PROC_LOCK(p);
323	if (SIGISMEMBER(p->p_sigacts->ps_siginfo, sig)) {
324		/* Signal handler installed with SA_SIGINFO. */
325		sf.sf_arg2 = (register_t)&fp->sf_siginfo;
326		sf.sf_siginfo.si_signo = sig;
327		sf.sf_siginfo.si_code = code;
328		sf.sf_ahu.sf_action = (__osiginfohandler_t *)catcher;
329	} else {
330		/* Old FreeBSD-style arguments. */
331		sf.sf_arg2 = code;
332		sf.sf_addr = regs->tf_err;
333		sf.sf_ahu.sf_handler = catcher;
334	}
335	PROC_UNLOCK(p);
336
337	/* Save most if not all of trap frame. */
338	sf.sf_siginfo.si_sc.sc_eax = regs->tf_eax;
339	sf.sf_siginfo.si_sc.sc_ebx = regs->tf_ebx;
340	sf.sf_siginfo.si_sc.sc_ecx = regs->tf_ecx;
341	sf.sf_siginfo.si_sc.sc_edx = regs->tf_edx;
342	sf.sf_siginfo.si_sc.sc_esi = regs->tf_esi;
343	sf.sf_siginfo.si_sc.sc_edi = regs->tf_edi;
344	sf.sf_siginfo.si_sc.sc_cs = regs->tf_cs;
345	sf.sf_siginfo.si_sc.sc_ds = regs->tf_ds;
346	sf.sf_siginfo.si_sc.sc_ss = regs->tf_ss;
347	sf.sf_siginfo.si_sc.sc_es = regs->tf_es;
348	sf.sf_siginfo.si_sc.sc_fs = regs->tf_fs;
349	sf.sf_siginfo.si_sc.sc_gs = rgs();
350	sf.sf_siginfo.si_sc.sc_isp = regs->tf_isp;
351
352	/* Build the signal context to be used by osigreturn(). */
353	sf.sf_siginfo.si_sc.sc_onstack = (oonstack) ? 1 : 0;
354	SIG2OSIG(*mask, sf.sf_siginfo.si_sc.sc_mask);
355	sf.sf_siginfo.si_sc.sc_sp = regs->tf_esp;
356	sf.sf_siginfo.si_sc.sc_fp = regs->tf_ebp;
357	sf.sf_siginfo.si_sc.sc_pc = regs->tf_eip;
358	sf.sf_siginfo.si_sc.sc_ps = regs->tf_eflags;
359	sf.sf_siginfo.si_sc.sc_trapno = regs->tf_trapno;
360	sf.sf_siginfo.si_sc.sc_err = regs->tf_err;
361
362	/*
363	 * If we're a vm86 process, we want to save the segment registers.
364	 * We also change eflags to be our emulated eflags, not the actual
365	 * eflags.
366	 */
367	if (regs->tf_eflags & PSL_VM) {
368		/* XXX confusing names: `tf' isn't a trapframe; `regs' is. */
369		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
370		struct vm86_kernel *vm86 = &td->td_pcb->pcb_ext->ext_vm86;
371
372		sf.sf_siginfo.si_sc.sc_gs = tf->tf_vm86_gs;
373		sf.sf_siginfo.si_sc.sc_fs = tf->tf_vm86_fs;
374		sf.sf_siginfo.si_sc.sc_es = tf->tf_vm86_es;
375		sf.sf_siginfo.si_sc.sc_ds = tf->tf_vm86_ds;
376
377		if (vm86->vm86_has_vme == 0)
378			sf.sf_siginfo.si_sc.sc_ps =
379			    (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
380			    (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
381
382		/* See sendsig() for comments. */
383		tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
384	}
385
386	/*
387	 * Copy the sigframe out to the user's stack.
388	 */
389	if (copyout(&sf, fp, sizeof(*fp)) != 0) {
390#ifdef DEBUG
391		printf("process %ld has trashed its stack\n", (long)p->p_pid);
392#endif
393		PROC_LOCK(p);
394		sigexit(td, SIGILL);
395	}
396
397	regs->tf_esp = (int)fp;
398	regs->tf_eip = PS_STRINGS - szosigcode;
399	regs->tf_eflags &= ~PSL_T;
400	regs->tf_cs = _ucodesel;
401	regs->tf_ds = _udatasel;
402	regs->tf_es = _udatasel;
403	regs->tf_fs = _udatasel;
404	load_gs(_udatasel);
405	regs->tf_ss = _udatasel;
406	PROC_LOCK(p);
407}
408#endif /* COMPAT_43 */
409
410void
411sendsig(catcher, sig, mask, code)
412	sig_t catcher;
413	int sig;
414	sigset_t *mask;
415	u_long code;
416{
417	struct sigframe sf;
418	struct proc *p;
419	struct thread *td;
420	struct sigacts *psp;
421	struct trapframe *regs;
422	struct sigframe *sfp;
423	int oonstack;
424
425	td = curthread;
426	p = td->td_proc;
427	PROC_LOCK_ASSERT(p, MA_OWNED);
428	psp = p->p_sigacts;
429#ifdef COMPAT_43
430	if (SIGISMEMBER(psp->ps_osigset, sig)) {
431		osendsig(catcher, sig, mask, code);
432		return;
433	}
434#endif
435	regs = td->td_frame;
436	oonstack = sigonstack(regs->tf_esp);
437
438	/* Save user context. */
439	bzero(&sf, sizeof(sf));
440	sf.sf_uc.uc_sigmask = *mask;
441	sf.sf_uc.uc_stack = p->p_sigstk;
442	sf.sf_uc.uc_stack.ss_flags = (p->p_flag & P_ALTSTACK)
443	    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
444	sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
445	sf.sf_uc.uc_mcontext.mc_gs = rgs();
446	bcopy(regs, &sf.sf_uc.uc_mcontext.mc_fs, sizeof(*regs));
447	sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext); /* magic */
448	get_fpcontext(td, &sf.sf_uc.uc_mcontext);
449	fpstate_drop(td);
450
451	/* Allocate space for the signal handler context. */
452	if ((p->p_flag & P_ALTSTACK) != 0 && !oonstack &&
453	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
454		sfp = (struct sigframe *)(p->p_sigstk.ss_sp +
455		    p->p_sigstk.ss_size - sizeof(struct sigframe));
456#if defined(COMPAT_43) || defined(COMPAT_SUNOS)
457		p->p_sigstk.ss_flags |= SS_ONSTACK;
458#endif
459	} else
460		sfp = (struct sigframe *)regs->tf_esp - 1;
461	PROC_UNLOCK(p);
462
463	/* Translate the signal if appropriate. */
464	if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
465		sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
466
467	/* Build the argument list for the signal handler. */
468	sf.sf_signum = sig;
469	sf.sf_ucontext = (register_t)&sfp->sf_uc;
470	PROC_LOCK(p);
471	if (SIGISMEMBER(p->p_sigacts->ps_siginfo, sig)) {
472		/* Signal handler installed with SA_SIGINFO. */
473		sf.sf_siginfo = (register_t)&sfp->sf_si;
474		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
475
476		/* Fill in POSIX parts */
477		sf.sf_si.si_signo = sig;
478		sf.sf_si.si_code = code;
479		sf.sf_si.si_addr = (void *)regs->tf_err;
480		sf.sf_si.si_pid = p->p_pid;
481		sf.sf_si.si_uid = p->p_ucred->cr_uid;
482	} else {
483		/* Old FreeBSD-style arguments. */
484		sf.sf_siginfo = code;
485		sf.sf_addr = regs->tf_err;
486		sf.sf_ahu.sf_handler = catcher;
487	}
488	PROC_UNLOCK(p);
489
490	/*
491	 * If we're a vm86 process, we want to save the segment registers.
492	 * We also change eflags to be our emulated eflags, not the actual
493	 * eflags.
494	 */
495	if (regs->tf_eflags & PSL_VM) {
496		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
497		struct vm86_kernel *vm86 = &td->td_pcb->pcb_ext->ext_vm86;
498
499		sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
500		sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
501		sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
502		sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
503
504		if (vm86->vm86_has_vme == 0)
505			sf.sf_uc.uc_mcontext.mc_eflags =
506			    (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
507			    (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
508
509		/*
510		 * Clear PSL_NT to inhibit T_TSSFLT faults on return from
511		 * syscalls made by the signal handler.  This just avoids
512		 * wasting time for our lazy fixup of such faults.  PSL_NT
513		 * does nothing in vm86 mode, but vm86 programs can set it
514		 * almost legitimately in probes for old cpu types.
515		 */
516		tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
517	}
518
519	/*
520	 * Copy the sigframe out to the user's stack.
521	 */
522	if (copyout(&sf, sfp, sizeof(*sfp)) != 0) {
523#ifdef DEBUG
524		printf("process %ld has trashed its stack\n", (long)p->p_pid);
525#endif
526		PROC_LOCK(p);
527		sigexit(td, SIGILL);
528	}
529
530	regs->tf_esp = (int)sfp;
531	regs->tf_eip = PS_STRINGS - *(p->p_sysent->sv_szsigcode);
532	regs->tf_eflags &= ~PSL_T;
533	regs->tf_cs = _ucodesel;
534	regs->tf_ds = _udatasel;
535	regs->tf_es = _udatasel;
536	regs->tf_fs = _udatasel;
537	regs->tf_ss = _udatasel;
538	PROC_LOCK(p);
539}
540
541/*
542 * System call to cleanup state after a signal
543 * has been taken.  Reset signal mask and
544 * stack state from context left by sendsig (above).
545 * Return to previous pc and psl as specified by
546 * context left by sendsig. Check carefully to
547 * make sure that the user has not modified the
548 * state to gain improper privileges.
549 *
550 * MPSAFE
551 */
552int
553osigreturn(td, uap)
554	struct thread *td;
555	struct osigreturn_args /* {
556		struct osigcontext *sigcntxp;
557	} */ *uap;
558{
559#ifdef COMPAT_43
560	struct osigcontext sc;
561	struct trapframe *regs;
562	struct osigcontext *scp;
563	struct proc *p = td->td_proc;
564	int eflags, error;
565
566	regs = td->td_frame;
567	error = copyin(uap->sigcntxp, &sc, sizeof(sc));
568	if (error != 0)
569		return (error);
570	scp = &sc;
571	eflags = scp->sc_ps;
572	if (eflags & PSL_VM) {
573		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
574		struct vm86_kernel *vm86;
575
576		/*
577		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
578		 * set up the vm86 area, and we can't enter vm86 mode.
579		 */
580		if (td->td_pcb->pcb_ext == 0)
581			return (EINVAL);
582		vm86 = &td->td_pcb->pcb_ext->ext_vm86;
583		if (vm86->vm86_inited == 0)
584			return (EINVAL);
585
586		/* Go back to user mode if both flags are set. */
587		if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
588			trapsignal(p, SIGBUS, 0);
589
590		if (vm86->vm86_has_vme) {
591			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
592			    (eflags & VME_USERCHANGE) | PSL_VM;
593		} else {
594			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
595			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
596			    (eflags & VM_USERCHANGE) | PSL_VM;
597		}
598		tf->tf_vm86_ds = scp->sc_ds;
599		tf->tf_vm86_es = scp->sc_es;
600		tf->tf_vm86_fs = scp->sc_fs;
601		tf->tf_vm86_gs = scp->sc_gs;
602		tf->tf_ds = _udatasel;
603		tf->tf_es = _udatasel;
604		tf->tf_fs = _udatasel;
605	} else {
606		/*
607		 * Don't allow users to change privileged or reserved flags.
608		 */
609		/*
610		 * XXX do allow users to change the privileged flag PSL_RF.
611		 * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
612		 * should sometimes set it there too.  tf_eflags is kept in
613		 * the signal context during signal handling and there is no
614		 * other place to remember it, so the PSL_RF bit may be
615		 * corrupted by the signal handler without us knowing.
616		 * Corruption of the PSL_RF bit at worst causes one more or
617		 * one less debugger trap, so allowing it is fairly harmless.
618		 */
619		if (!EFL_SECURE(eflags & ~PSL_RF, regs->tf_eflags & ~PSL_RF)) {
620	    		return (EINVAL);
621		}
622
623		/*
624		 * Don't allow users to load a valid privileged %cs.  Let the
625		 * hardware check for invalid selectors, excess privilege in
626		 * other selectors, invalid %eip's and invalid %esp's.
627		 */
628		if (!CS_SECURE(scp->sc_cs)) {
629			trapsignal(p, SIGBUS, T_PROTFLT);
630			return (EINVAL);
631		}
632		regs->tf_ds = scp->sc_ds;
633		regs->tf_es = scp->sc_es;
634		regs->tf_fs = scp->sc_fs;
635	}
636
637	/* Restore remaining registers. */
638	regs->tf_eax = scp->sc_eax;
639	regs->tf_ebx = scp->sc_ebx;
640	regs->tf_ecx = scp->sc_ecx;
641	regs->tf_edx = scp->sc_edx;
642	regs->tf_esi = scp->sc_esi;
643	regs->tf_edi = scp->sc_edi;
644	regs->tf_cs = scp->sc_cs;
645	regs->tf_ss = scp->sc_ss;
646	regs->tf_isp = scp->sc_isp;
647	regs->tf_ebp = scp->sc_fp;
648	regs->tf_esp = scp->sc_sp;
649	regs->tf_eip = scp->sc_pc;
650	regs->tf_eflags = eflags;
651
652	PROC_LOCK(p);
653#if defined(COMPAT_43) || defined(COMPAT_SUNOS)
654	if (scp->sc_onstack & 1)
655		p->p_sigstk.ss_flags |= SS_ONSTACK;
656	else
657		p->p_sigstk.ss_flags &= ~SS_ONSTACK;
658#endif
659	SIGSETOLD(p->p_sigmask, scp->sc_mask);
660	SIG_CANTMASK(p->p_sigmask);
661	signotify(p);
662	PROC_UNLOCK(p);
663	return (EJUSTRETURN);
664#else /* !COMPAT_43 */
665	return (ENOSYS);
666#endif /* COMPAT_43 */
667}
668
669/*
670 * MPSAFE
671 */
672int
673sigreturn(td, uap)
674	struct thread *td;
675	struct sigreturn_args /* {
676		const __ucontext *sigcntxp;
677	} */ *uap;
678{
679	ucontext_t uc;
680	struct proc *p = td->td_proc;
681	struct trapframe *regs;
682	const ucontext_t *ucp;
683	int cs, eflags, error, ret;
684
685	error = copyin(uap->sigcntxp, &uc, sizeof(uc));
686	if (error != 0)
687		return (error);
688	ucp = &uc;
689	regs = td->td_frame;
690	eflags = ucp->uc_mcontext.mc_eflags;
691	if (eflags & PSL_VM) {
692		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
693		struct vm86_kernel *vm86;
694
695		/*
696		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
697		 * set up the vm86 area, and we can't enter vm86 mode.
698		 */
699		if (td->td_pcb->pcb_ext == 0)
700			return (EINVAL);
701		vm86 = &td->td_pcb->pcb_ext->ext_vm86;
702		if (vm86->vm86_inited == 0)
703			return (EINVAL);
704
705		/* Go back to user mode if both flags are set. */
706		if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
707			trapsignal(p, SIGBUS, 0);
708
709		if (vm86->vm86_has_vme) {
710			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
711			    (eflags & VME_USERCHANGE) | PSL_VM;
712		} else {
713			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
714			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
715			    (eflags & VM_USERCHANGE) | PSL_VM;
716		}
717		bcopy(&ucp->uc_mcontext.mc_fs, tf, sizeof(struct trapframe));
718		tf->tf_eflags = eflags;
719		tf->tf_vm86_ds = tf->tf_ds;
720		tf->tf_vm86_es = tf->tf_es;
721		tf->tf_vm86_fs = tf->tf_fs;
722		tf->tf_vm86_gs = ucp->uc_mcontext.mc_gs;
723		tf->tf_ds = _udatasel;
724		tf->tf_es = _udatasel;
725		tf->tf_fs = _udatasel;
726	} else {
727		/*
728		 * Don't allow users to change privileged or reserved flags.
729		 */
730		/*
731		 * XXX do allow users to change the privileged flag PSL_RF.
732		 * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
733		 * should sometimes set it there too.  tf_eflags is kept in
734		 * the signal context during signal handling and there is no
735		 * other place to remember it, so the PSL_RF bit may be
736		 * corrupted by the signal handler without us knowing.
737		 * Corruption of the PSL_RF bit at worst causes one more or
738		 * one less debugger trap, so allowing it is fairly harmless.
739		 */
740		if (!EFL_SECURE(eflags & ~PSL_RF, regs->tf_eflags & ~PSL_RF)) {
741			printf("sigreturn: eflags = 0x%x\n", eflags);
742	    		return (EINVAL);
743		}
744
745		/*
746		 * Don't allow users to load a valid privileged %cs.  Let the
747		 * hardware check for invalid selectors, excess privilege in
748		 * other selectors, invalid %eip's and invalid %esp's.
749		 */
750		cs = ucp->uc_mcontext.mc_cs;
751		if (!CS_SECURE(cs)) {
752			printf("sigreturn: cs = 0x%x\n", cs);
753			trapsignal(p, SIGBUS, T_PROTFLT);
754			return (EINVAL);
755		}
756
757		ret = set_fpcontext(td, &ucp->uc_mcontext);
758		if (ret != 0)
759			return (ret);
760		bcopy(&ucp->uc_mcontext.mc_fs, regs, sizeof(*regs));
761	}
762
763	PROC_LOCK(p);
764#if defined(COMPAT_43) || defined(COMPAT_SUNOS)
765	if (ucp->uc_mcontext.mc_onstack & 1)
766		p->p_sigstk.ss_flags |= SS_ONSTACK;
767	else
768		p->p_sigstk.ss_flags &= ~SS_ONSTACK;
769#endif
770
771	p->p_sigmask = ucp->uc_sigmask;
772	SIG_CANTMASK(p->p_sigmask);
773	signotify(p);
774	PROC_UNLOCK(p);
775	return (EJUSTRETURN);
776}
777
778/*
779 * Machine dependent boot() routine
780 *
781 * I haven't seen anything to put here yet
782 * Possibly some stuff might be grafted back here from boot()
783 */
784void
785cpu_boot(int howto)
786{
787}
788
789/*
790 * Shutdown the CPU as much as possible
791 */
792void
793cpu_halt(void)
794{
795	for (;;)
796		__asm__ ("hlt");
797}
798
799/*
800 * Hook to idle the CPU when possible.  In the SMP case we default to
801 * off because a halted cpu will not currently pick up a new thread in the
802 * run queue until the next timer tick.  If turned on this will result in
803 * approximately a 4.2% loss in real time performance in buildworld tests
804 * (but improves user and sys times oddly enough), and saves approximately
805 * 5% in power consumption on an idle machine (tests w/2xCPU 1.1GHz P3).
806 *
807 * XXX we need to have a cpu mask of idle cpus and generate an IPI or
808 * otherwise generate some sort of interrupt to wake up cpus sitting in HLT.
809 * Then we can have our cake and eat it too.
810 */
811#ifdef SMP
812static int	cpu_idle_hlt = 0;
813#else
814static int	cpu_idle_hlt = 1;
815#endif
816SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hlt, CTLFLAG_RW,
817    &cpu_idle_hlt, 0, "Idle loop HLT enable");
818
819/*
820 * Note that we have to be careful here to avoid a race between checking
821 * kserunnable() and actually halting.  If we don't do this, we may waste
822 * the time between calling hlt and the next interrupt even though there
823 * is a runnable process.
824 */
825void
826cpu_idle(void)
827{
828	if (cpu_idle_hlt) {
829		disable_intr();
830  		if (kserunnable()) {
831			enable_intr();
832		} else {
833			/*
834			 * we must absolutely guarentee that hlt is the
835			 * absolute next instruction after sti or we
836			 * introduce a timing window.
837			 */
838			__asm __volatile("sti; hlt");
839		}
840	}
841}
842
843/*
844 * Clear registers on exec
845 */
846void
847exec_setregs(td, entry, stack, ps_strings)
848	struct thread *td;
849	u_long entry;
850	u_long stack;
851	u_long ps_strings;
852{
853	struct trapframe *regs = td->td_frame;
854	struct pcb *pcb = td->td_pcb;
855
856	/* Reset pc->pcb_gs and %gs before possibly invalidating it. */
857	pcb->pcb_gs = _udatasel;
858	load_gs(_udatasel);
859
860	if (td->td_proc->p_md.md_ldt)
861		user_ldt_free(td);
862
863	bzero((char *)regs, sizeof(struct trapframe));
864	regs->tf_eip = entry;
865	regs->tf_esp = stack;
866	regs->tf_eflags = PSL_USER | (regs->tf_eflags & PSL_T);
867	regs->tf_ss = _udatasel;
868	regs->tf_ds = _udatasel;
869	regs->tf_es = _udatasel;
870	regs->tf_fs = _udatasel;
871	regs->tf_cs = _ucodesel;
872
873	/* PS_STRINGS value for BSD/OS binaries.  It is 0 for non-BSD/OS. */
874	regs->tf_ebx = ps_strings;
875
876        /*
877         * Reset the hardware debug registers if they were in use.
878         * They won't have any meaning for the newly exec'd process.
879         */
880        if (pcb->pcb_flags & PCB_DBREGS) {
881                pcb->pcb_dr0 = 0;
882                pcb->pcb_dr1 = 0;
883                pcb->pcb_dr2 = 0;
884                pcb->pcb_dr3 = 0;
885                pcb->pcb_dr6 = 0;
886                pcb->pcb_dr7 = 0;
887                if (pcb == PCPU_GET(curpcb)) {
888		        /*
889			 * Clear the debug registers on the running
890			 * CPU, otherwise they will end up affecting
891			 * the next process we switch to.
892			 */
893		        reset_dbregs();
894                }
895                pcb->pcb_flags &= ~PCB_DBREGS;
896        }
897
898	/*
899	 * Initialize the math emulator (if any) for the current process.
900	 * Actually, just clear the bit that says that the emulator has
901	 * been initialized.  Initialization is delayed until the process
902	 * traps to the emulator (if it is done at all) mainly because
903	 * emulators don't provide an entry point for initialization.
904	 */
905	td->td_pcb->pcb_flags &= ~FP_SOFTFP;
906
907	/*
908	 * Arrange to trap the next npx or `fwait' instruction (see npx.c
909	 * for why fwait must be trapped at least if there is an npx or an
910	 * emulator).  This is mainly to handle the case where npx0 is not
911	 * configured, since the npx routines normally set up the trap
912	 * otherwise.  It should be done only at boot time, but doing it
913	 * here allows modifying `npx_exists' for testing the emulator on
914	 * systems with an npx.
915	 */
916	load_cr0(rcr0() | CR0_MP | CR0_TS);
917
918	/* Initialize the npx (if any) for the current process. */
919	/*
920	 * XXX the above load_cr0() also initializes it and is a layering
921	 * violation if NPX is configured.  It drops the npx partially
922	 * and this would be fatal if we were interrupted now, and decided
923	 * to force the state to the pcb, and checked the invariant
924	 * (CR0_TS clear) if and only if PCPU_GET(fpcurthread) != NULL).
925	 * ALL of this can happen except the check.  The check used to
926	 * happen and be fatal later when we didn't complete the drop
927	 * before returning to user mode.  This should be fixed properly
928	 * soon.
929	 */
930	fpstate_drop(td);
931
932	/*
933	 * XXX - Linux emulator
934	 * Make sure sure edx is 0x0 on entry. Linux binaries depend
935	 * on it.
936	 */
937	td->td_retval[1] = 0;
938}
939
940void
941cpu_setregs(void)
942{
943	unsigned int cr0;
944
945	cr0 = rcr0();
946#ifdef SMP
947	cr0 |= CR0_NE;			/* Done by npxinit() */
948#endif
949	cr0 |= CR0_MP | CR0_TS;		/* Done at every execve() too. */
950#ifndef I386_CPU
951	cr0 |= CR0_WP | CR0_AM;
952#endif
953	load_cr0(cr0);
954	load_gs(_udatasel);
955}
956
957static int
958sysctl_machdep_adjkerntz(SYSCTL_HANDLER_ARGS)
959{
960	int error;
961	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
962		req);
963	if (!error && req->newptr)
964		resettodr();
965	return (error);
966}
967
968SYSCTL_PROC(_machdep, CPU_ADJKERNTZ, adjkerntz, CTLTYPE_INT|CTLFLAG_RW,
969	&adjkerntz, 0, sysctl_machdep_adjkerntz, "I", "");
970
971SYSCTL_INT(_machdep, CPU_DISRTCSET, disable_rtc_set,
972	CTLFLAG_RW, &disable_rtc_set, 0, "");
973
974SYSCTL_STRUCT(_machdep, CPU_BOOTINFO, bootinfo,
975	CTLFLAG_RD, &bootinfo, bootinfo, "");
976
977SYSCTL_INT(_machdep, CPU_WALLCLOCK, wall_cmos_clock,
978	CTLFLAG_RW, &wall_cmos_clock, 0, "");
979
980u_long bootdev;		/* not a dev_t - encoding is different */
981SYSCTL_ULONG(_machdep, OID_AUTO, guessed_bootdev,
982	CTLFLAG_RD, &bootdev, 0, "Maybe the Boot device (not in dev_t format)");
983
984/*
985 * Initialize 386 and configure to run kernel
986 */
987
988/*
989 * Initialize segments & interrupt table
990 */
991
992int _default_ldt;
993union descriptor gdt[NGDT * MAXCPU];	/* global descriptor table */
994static struct gate_descriptor idt0[NIDT];
995struct gate_descriptor *idt = &idt0[0];	/* interrupt descriptor table */
996union descriptor ldt[NLDT];		/* local descriptor table */
997#ifdef SMP
998/* table descriptors - used to load tables by microp */
999struct region_descriptor r_gdt, r_idt;
1000#endif
1001
1002int private_tss;			/* flag indicating private tss */
1003
1004#if defined(I586_CPU) && !defined(NO_F00F_HACK)
1005extern int has_f00f_bug;
1006#endif
1007
1008static struct i386tss dblfault_tss;
1009static char dblfault_stack[PAGE_SIZE];
1010
1011extern  struct user	*proc0uarea;
1012extern  vm_offset_t	proc0kstack;
1013
1014
1015/* software prototypes -- in more palatable form */
1016struct soft_segment_descriptor gdt_segs[] = {
1017/* GNULL_SEL	0 Null Descriptor */
1018{	0x0,			/* segment base address  */
1019	0x0,			/* length */
1020	0,			/* segment type */
1021	0,			/* segment descriptor priority level */
1022	0,			/* segment descriptor present */
1023	0, 0,
1024	0,			/* default 32 vs 16 bit size */
1025	0  			/* limit granularity (byte/page units)*/ },
1026/* GCODE_SEL	1 Code Descriptor for kernel */
1027{	0x0,			/* segment base address  */
1028	0xfffff,		/* length - all address space */
1029	SDT_MEMERA,		/* segment type */
1030	0,			/* segment descriptor priority level */
1031	1,			/* segment descriptor present */
1032	0, 0,
1033	1,			/* default 32 vs 16 bit size */
1034	1  			/* limit granularity (byte/page units)*/ },
1035/* GDATA_SEL	2 Data Descriptor for kernel */
1036{	0x0,			/* segment base address  */
1037	0xfffff,		/* length - all address space */
1038	SDT_MEMRWA,		/* segment type */
1039	0,			/* segment descriptor priority level */
1040	1,			/* segment descriptor present */
1041	0, 0,
1042	1,			/* default 32 vs 16 bit size */
1043	1  			/* limit granularity (byte/page units)*/ },
1044/* GPRIV_SEL	3 SMP Per-Processor Private Data Descriptor */
1045{	0x0,			/* segment base address  */
1046	0xfffff,		/* length - all address space */
1047	SDT_MEMRWA,		/* segment type */
1048	0,			/* segment descriptor priority level */
1049	1,			/* segment descriptor present */
1050	0, 0,
1051	1,			/* default 32 vs 16 bit size */
1052	1  			/* limit granularity (byte/page units)*/ },
1053/* GPROC0_SEL	4 Proc 0 Tss Descriptor */
1054{
1055	0x0,			/* segment base address */
1056	sizeof(struct i386tss)-1,/* length - all address space */
1057	SDT_SYS386TSS,		/* segment type */
1058	0,			/* segment descriptor priority level */
1059	1,			/* segment descriptor present */
1060	0, 0,
1061	0,			/* unused - default 32 vs 16 bit size */
1062	0  			/* limit granularity (byte/page units)*/ },
1063/* GLDT_SEL	5 LDT Descriptor */
1064{	(int) ldt,		/* segment base address  */
1065	sizeof(ldt)-1,		/* length - all address space */
1066	SDT_SYSLDT,		/* segment type */
1067	SEL_UPL,		/* segment descriptor priority level */
1068	1,			/* segment descriptor present */
1069	0, 0,
1070	0,			/* unused - default 32 vs 16 bit size */
1071	0  			/* limit granularity (byte/page units)*/ },
1072/* GUSERLDT_SEL	6 User LDT Descriptor per process */
1073{	(int) ldt,		/* segment base address  */
1074	(512 * sizeof(union descriptor)-1),		/* length */
1075	SDT_SYSLDT,		/* segment type */
1076	0,			/* segment descriptor priority level */
1077	1,			/* segment descriptor present */
1078	0, 0,
1079	0,			/* unused - default 32 vs 16 bit size */
1080	0  			/* limit granularity (byte/page units)*/ },
1081/* GTGATE_SEL	7 Null Descriptor - Placeholder */
1082{	0x0,			/* segment base address  */
1083	0x0,			/* length - all address space */
1084	0,			/* segment type */
1085	0,			/* segment descriptor priority level */
1086	0,			/* segment descriptor present */
1087	0, 0,
1088	0,			/* default 32 vs 16 bit size */
1089	0  			/* limit granularity (byte/page units)*/ },
1090/* GBIOSLOWMEM_SEL 8 BIOS access to realmode segment 0x40, must be #8 in GDT */
1091{	0x400,			/* segment base address */
1092	0xfffff,		/* length */
1093	SDT_MEMRWA,		/* segment type */
1094	0,			/* segment descriptor priority level */
1095	1,			/* segment descriptor present */
1096	0, 0,
1097	1,			/* default 32 vs 16 bit size */
1098	1  			/* limit granularity (byte/page units)*/ },
1099/* GPANIC_SEL	9 Panic Tss Descriptor */
1100{	(int) &dblfault_tss,	/* segment base address  */
1101	sizeof(struct i386tss)-1,/* length - all address space */
1102	SDT_SYS386TSS,		/* segment type */
1103	0,			/* segment descriptor priority level */
1104	1,			/* segment descriptor present */
1105	0, 0,
1106	0,			/* unused - default 32 vs 16 bit size */
1107	0  			/* limit granularity (byte/page units)*/ },
1108/* GBIOSCODE32_SEL 10 BIOS 32-bit interface (32bit Code) */
1109{	0,			/* segment base address (overwritten)  */
1110	0xfffff,		/* length */
1111	SDT_MEMERA,		/* segment type */
1112	0,			/* segment descriptor priority level */
1113	1,			/* segment descriptor present */
1114	0, 0,
1115	0,			/* default 32 vs 16 bit size */
1116	1  			/* limit granularity (byte/page units)*/ },
1117/* GBIOSCODE16_SEL 11 BIOS 32-bit interface (16bit Code) */
1118{	0,			/* segment base address (overwritten)  */
1119	0xfffff,		/* length */
1120	SDT_MEMERA,		/* segment type */
1121	0,			/* segment descriptor priority level */
1122	1,			/* segment descriptor present */
1123	0, 0,
1124	0,			/* default 32 vs 16 bit size */
1125	1  			/* limit granularity (byte/page units)*/ },
1126/* GBIOSDATA_SEL 12 BIOS 32-bit interface (Data) */
1127{	0,			/* segment base address (overwritten) */
1128	0xfffff,		/* length */
1129	SDT_MEMRWA,		/* segment type */
1130	0,			/* segment descriptor priority level */
1131	1,			/* segment descriptor present */
1132	0, 0,
1133	1,			/* default 32 vs 16 bit size */
1134	1  			/* limit granularity (byte/page units)*/ },
1135/* GBIOSUTIL_SEL 13 BIOS 16-bit interface (Utility) */
1136{	0,			/* segment base address (overwritten) */
1137	0xfffff,		/* length */
1138	SDT_MEMRWA,		/* segment type */
1139	0,			/* segment descriptor priority level */
1140	1,			/* segment descriptor present */
1141	0, 0,
1142	0,			/* default 32 vs 16 bit size */
1143	1  			/* limit granularity (byte/page units)*/ },
1144/* GBIOSARGS_SEL 14 BIOS 16-bit interface (Arguments) */
1145{	0,			/* segment base address (overwritten) */
1146	0xfffff,		/* length */
1147	SDT_MEMRWA,		/* segment type */
1148	0,			/* segment descriptor priority level */
1149	1,			/* segment descriptor present */
1150	0, 0,
1151	0,			/* default 32 vs 16 bit size */
1152	1  			/* limit granularity (byte/page units)*/ },
1153};
1154
1155static struct soft_segment_descriptor ldt_segs[] = {
1156	/* Null Descriptor - overwritten by call gate */
1157{	0x0,			/* segment base address  */
1158	0x0,			/* length - all address space */
1159	0,			/* segment type */
1160	0,			/* segment descriptor priority level */
1161	0,			/* segment descriptor present */
1162	0, 0,
1163	0,			/* default 32 vs 16 bit size */
1164	0  			/* limit granularity (byte/page units)*/ },
1165	/* Null Descriptor - overwritten by call gate */
1166{	0x0,			/* segment base address  */
1167	0x0,			/* length - all address space */
1168	0,			/* segment type */
1169	0,			/* segment descriptor priority level */
1170	0,			/* segment descriptor present */
1171	0, 0,
1172	0,			/* default 32 vs 16 bit size */
1173	0  			/* limit granularity (byte/page units)*/ },
1174	/* Null Descriptor - overwritten by call gate */
1175{	0x0,			/* segment base address  */
1176	0x0,			/* length - all address space */
1177	0,			/* segment type */
1178	0,			/* segment descriptor priority level */
1179	0,			/* segment descriptor present */
1180	0, 0,
1181	0,			/* default 32 vs 16 bit size */
1182	0  			/* limit granularity (byte/page units)*/ },
1183	/* Code Descriptor for user */
1184{	0x0,			/* segment base address  */
1185	0xfffff,		/* length - all address space */
1186	SDT_MEMERA,		/* segment type */
1187	SEL_UPL,		/* segment descriptor priority level */
1188	1,			/* segment descriptor present */
1189	0, 0,
1190	1,			/* default 32 vs 16 bit size */
1191	1  			/* limit granularity (byte/page units)*/ },
1192	/* Null Descriptor - overwritten by call gate */
1193{	0x0,			/* segment base address  */
1194	0x0,			/* length - all address space */
1195	0,			/* segment type */
1196	0,			/* segment descriptor priority level */
1197	0,			/* segment descriptor present */
1198	0, 0,
1199	0,			/* default 32 vs 16 bit size */
1200	0  			/* limit granularity (byte/page units)*/ },
1201	/* Data Descriptor for user */
1202{	0x0,			/* segment base address  */
1203	0xfffff,		/* length - all address space */
1204	SDT_MEMRWA,		/* segment type */
1205	SEL_UPL,		/* segment descriptor priority level */
1206	1,			/* segment descriptor present */
1207	0, 0,
1208	1,			/* default 32 vs 16 bit size */
1209	1  			/* limit granularity (byte/page units)*/ },
1210};
1211
1212void
1213setidt(idx, func, typ, dpl, selec)
1214	int idx;
1215	inthand_t *func;
1216	int typ;
1217	int dpl;
1218	int selec;
1219{
1220	struct gate_descriptor *ip;
1221
1222	ip = idt + idx;
1223	ip->gd_looffset = (int)func;
1224	ip->gd_selector = selec;
1225	ip->gd_stkcpy = 0;
1226	ip->gd_xx = 0;
1227	ip->gd_type = typ;
1228	ip->gd_dpl = dpl;
1229	ip->gd_p = 1;
1230	ip->gd_hioffset = ((int)func)>>16 ;
1231}
1232
1233#define	IDTVEC(name)	__CONCAT(X,name)
1234
1235extern inthand_t
1236	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
1237	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
1238	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
1239	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
1240	IDTVEC(xmm), IDTVEC(lcall_syscall), IDTVEC(int0x80_syscall);
1241
1242void
1243sdtossd(sd, ssd)
1244	struct segment_descriptor *sd;
1245	struct soft_segment_descriptor *ssd;
1246{
1247	ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
1248	ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
1249	ssd->ssd_type  = sd->sd_type;
1250	ssd->ssd_dpl   = sd->sd_dpl;
1251	ssd->ssd_p     = sd->sd_p;
1252	ssd->ssd_def32 = sd->sd_def32;
1253	ssd->ssd_gran  = sd->sd_gran;
1254}
1255
1256#define PHYSMAP_SIZE	(2 * 8)
1257
1258/*
1259 * Populate the (physmap) array with base/bound pairs describing the
1260 * available physical memory in the system, then test this memory and
1261 * build the phys_avail array describing the actually-available memory.
1262 *
1263 * If we cannot accurately determine the physical memory map, then use
1264 * value from the 0xE801 call, and failing that, the RTC.
1265 *
1266 * Total memory size may be set by the kernel environment variable
1267 * hw.physmem or the compile-time define MAXMEM.
1268 */
1269static void
1270getmemsize(int first)
1271{
1272	int i, physmap_idx, pa_indx;
1273	u_int basemem, extmem;
1274	struct vm86frame vmf;
1275	struct vm86context vmc;
1276	vm_offset_t pa, physmap[PHYSMAP_SIZE];
1277	pt_entry_t *pte;
1278	char *cp;
1279	struct bios_smap *smap;
1280
1281	bzero(&vmf, sizeof(struct vm86frame));
1282	bzero(physmap, sizeof(physmap));
1283
1284	/*
1285	 * Perform "base memory" related probes & setup
1286	 */
1287	vm86_intcall(0x12, &vmf);
1288	basemem = vmf.vmf_ax;
1289	if (basemem > 640) {
1290		printf("Preposterous BIOS basemem of %uK, truncating to 640K\n",
1291			basemem);
1292		basemem = 640;
1293	}
1294
1295	/*
1296	 * XXX if biosbasemem is now < 640, there is a `hole'
1297	 * between the end of base memory and the start of
1298	 * ISA memory.  The hole may be empty or it may
1299	 * contain BIOS code or data.  Map it read/write so
1300	 * that the BIOS can write to it.  (Memory from 0 to
1301	 * the physical end of the kernel is mapped read-only
1302	 * to begin with and then parts of it are remapped.
1303	 * The parts that aren't remapped form holes that
1304	 * remain read-only and are unused by the kernel.
1305	 * The base memory area is below the physical end of
1306	 * the kernel and right now forms a read-only hole.
1307	 * The part of it from PAGE_SIZE to
1308	 * (trunc_page(biosbasemem * 1024) - 1) will be
1309	 * remapped and used by the kernel later.)
1310	 *
1311	 * This code is similar to the code used in
1312	 * pmap_mapdev, but since no memory needs to be
1313	 * allocated we simply change the mapping.
1314	 */
1315	for (pa = trunc_page(basemem * 1024);
1316	     pa < ISA_HOLE_START; pa += PAGE_SIZE)
1317		pmap_kenter(KERNBASE + pa, pa);
1318
1319	/*
1320	 * if basemem != 640, map pages r/w into vm86 page table so
1321	 * that the bios can scribble on it.
1322	 */
1323	pte = (pt_entry_t *)vm86paddr;
1324	for (i = basemem / 4; i < 160; i++)
1325		pte[i] = (i << PAGE_SHIFT) | PG_V | PG_RW | PG_U;
1326
1327	/*
1328	 * map page 1 R/W into the kernel page table so we can use it
1329	 * as a buffer.  The kernel will unmap this page later.
1330	 */
1331	pmap_kenter(KERNBASE + (1 << PAGE_SHIFT), 1);
1332
1333	/*
1334	 * get memory map with INT 15:E820
1335	 */
1336	vmc.npages = 0;
1337	smap = (void *)vm86_addpage(&vmc, 1, KERNBASE + (1 << PAGE_SHIFT));
1338	vm86_getptr(&vmc, (vm_offset_t)smap, &vmf.vmf_es, &vmf.vmf_di);
1339
1340	physmap_idx = 0;
1341	vmf.vmf_ebx = 0;
1342	do {
1343		vmf.vmf_eax = 0xE820;
1344		vmf.vmf_edx = SMAP_SIG;
1345		vmf.vmf_ecx = sizeof(struct bios_smap);
1346		i = vm86_datacall(0x15, &vmf, &vmc);
1347		if (i || vmf.vmf_eax != SMAP_SIG)
1348			break;
1349		if (boothowto & RB_VERBOSE)
1350			printf("SMAP type=%02x base=%08x %08x len=%08x %08x\n",
1351				smap->type,
1352				*(u_int32_t *)((char *)&smap->base + 4),
1353				(u_int32_t)smap->base,
1354				*(u_int32_t *)((char *)&smap->length + 4),
1355				(u_int32_t)smap->length);
1356
1357		if (smap->type != 0x01)
1358			goto next_run;
1359
1360		if (smap->length == 0)
1361			goto next_run;
1362
1363		if (smap->base >= 0xffffffff) {
1364			printf("%uK of memory above 4GB ignored\n",
1365			    (u_int)(smap->length / 1024));
1366			goto next_run;
1367		}
1368
1369		for (i = 0; i <= physmap_idx; i += 2) {
1370			if (smap->base < physmap[i + 1]) {
1371				if (boothowto & RB_VERBOSE)
1372					printf(
1373	"Overlapping or non-montonic memory region, ignoring second region\n");
1374				goto next_run;
1375			}
1376		}
1377
1378		if (smap->base == physmap[physmap_idx + 1]) {
1379			physmap[physmap_idx + 1] += smap->length;
1380			goto next_run;
1381		}
1382
1383		physmap_idx += 2;
1384		if (physmap_idx == PHYSMAP_SIZE) {
1385			printf(
1386		"Too many segments in the physical address map, giving up\n");
1387			break;
1388		}
1389		physmap[physmap_idx] = smap->base;
1390		physmap[physmap_idx + 1] = smap->base + smap->length;
1391next_run: ;
1392	} while (vmf.vmf_ebx != 0);
1393
1394	if (physmap[1] != 0)
1395		goto physmap_done;
1396
1397	/*
1398	 * If we failed above, try memory map with INT 15:E801
1399	 */
1400	vmf.vmf_ax = 0xE801;
1401	if (vm86_intcall(0x15, &vmf) == 0) {
1402		extmem = vmf.vmf_cx + vmf.vmf_dx * 64;
1403	} else {
1404#if 0
1405		vmf.vmf_ah = 0x88;
1406		vm86_intcall(0x15, &vmf);
1407		extmem = vmf.vmf_ax;
1408#else
1409		/*
1410		 * Prefer the RTC value for extended memory.
1411		 */
1412		extmem = rtcin(RTC_EXTLO) + (rtcin(RTC_EXTHI) << 8);
1413#endif
1414	}
1415
1416	/*
1417	 * Special hack for chipsets that still remap the 384k hole when
1418	 * there's 16MB of memory - this really confuses people that
1419	 * are trying to use bus mastering ISA controllers with the
1420	 * "16MB limit"; they only have 16MB, but the remapping puts
1421	 * them beyond the limit.
1422	 *
1423	 * If extended memory is between 15-16MB (16-17MB phys address range),
1424	 *	chop it to 15MB.
1425	 */
1426	if ((extmem > 15 * 1024) && (extmem < 16 * 1024))
1427		extmem = 15 * 1024;
1428
1429	physmap[0] = 0;
1430	physmap[1] = basemem * 1024;
1431	physmap_idx = 2;
1432	physmap[physmap_idx] = 0x100000;
1433	physmap[physmap_idx + 1] = physmap[physmap_idx] + extmem * 1024;
1434
1435physmap_done:
1436	/*
1437	 * Now, physmap contains a map of physical memory.
1438	 */
1439
1440#ifdef SMP
1441	/* make hole for AP bootstrap code */
1442	physmap[1] = mp_bootaddress(physmap[1] / 1024);
1443
1444	/* look for the MP hardware - needed for apic addresses */
1445	i386_mp_probe();
1446#endif
1447
1448	/*
1449	 * Maxmem isn't the "maximum memory", it's one larger than the
1450	 * highest page of the physical address space.  It should be
1451	 * called something like "Maxphyspage".  We may adjust this
1452	 * based on ``hw.physmem'' and the results of the memory test.
1453	 */
1454	Maxmem = atop(physmap[physmap_idx + 1]);
1455
1456#ifdef MAXMEM
1457	Maxmem = MAXMEM / 4;
1458#endif
1459
1460	/*
1461	 * hw.physmem is a size in bytes; we also allow k, m, and g suffixes
1462	 * for the appropriate modifiers.  This overrides MAXMEM.
1463	 */
1464	if ((cp = getenv("hw.physmem")) != NULL) {
1465		u_int64_t AllowMem, sanity;
1466		char *ep;
1467
1468		sanity = AllowMem = strtouq(cp, &ep, 0);
1469		if ((ep != cp) && (*ep != 0)) {
1470			switch(*ep) {
1471			case 'g':
1472			case 'G':
1473				AllowMem <<= 10;
1474			case 'm':
1475			case 'M':
1476				AllowMem <<= 10;
1477			case 'k':
1478			case 'K':
1479				AllowMem <<= 10;
1480				break;
1481			default:
1482				AllowMem = sanity = 0;
1483			}
1484			if (AllowMem < sanity)
1485				AllowMem = 0;
1486		}
1487		if (AllowMem == 0)
1488			printf("Ignoring invalid memory size of '%s'\n", cp);
1489		else
1490			Maxmem = atop(AllowMem);
1491		freeenv(cp);
1492	}
1493
1494	if (atop(physmap[physmap_idx + 1]) != Maxmem &&
1495	    (boothowto & RB_VERBOSE))
1496		printf("Physical memory use set to %ldK\n", Maxmem * 4);
1497
1498	/*
1499	 * If Maxmem has been increased beyond what the system has detected,
1500	 * extend the last memory segment to the new limit.
1501	 */
1502	if (atop(physmap[physmap_idx + 1]) < Maxmem)
1503		physmap[physmap_idx + 1] = ptoa(Maxmem);
1504
1505	/* call pmap initialization to make new kernel address space */
1506	pmap_bootstrap(first, 0);
1507
1508	/*
1509	 * Size up each available chunk of physical memory.
1510	 */
1511	physmap[0] = PAGE_SIZE;		/* mask off page 0 */
1512	pa_indx = 0;
1513	phys_avail[pa_indx++] = physmap[0];
1514	phys_avail[pa_indx] = physmap[0];
1515	pte = CMAP1;
1516
1517	/*
1518	 * physmap is in bytes, so when converting to page boundaries,
1519	 * round up the start address and round down the end address.
1520	 */
1521	for (i = 0; i <= physmap_idx; i += 2) {
1522		vm_offset_t end;
1523
1524		end = ptoa(Maxmem);
1525		if (physmap[i + 1] < end)
1526			end = trunc_page(physmap[i + 1]);
1527		for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
1528			int tmp, page_bad;
1529			int *ptr = (int *)CADDR1;
1530
1531			/*
1532			 * block out kernel memory as not available.
1533			 */
1534			if (pa >= 0x100000 && pa < first)
1535				continue;
1536
1537			page_bad = FALSE;
1538
1539			/*
1540			 * map page into kernel: valid, read/write,non-cacheable
1541			 */
1542			*pte = pa | PG_V | PG_RW | PG_N;
1543			invltlb();
1544
1545			tmp = *(int *)ptr;
1546			/*
1547			 * Test for alternating 1's and 0's
1548			 */
1549			*(volatile int *)ptr = 0xaaaaaaaa;
1550			if (*(volatile int *)ptr != 0xaaaaaaaa) {
1551				page_bad = TRUE;
1552			}
1553			/*
1554			 * Test for alternating 0's and 1's
1555			 */
1556			*(volatile int *)ptr = 0x55555555;
1557			if (*(volatile int *)ptr != 0x55555555) {
1558			page_bad = TRUE;
1559			}
1560			/*
1561			 * Test for all 1's
1562			 */
1563			*(volatile int *)ptr = 0xffffffff;
1564			if (*(volatile int *)ptr != 0xffffffff) {
1565				page_bad = TRUE;
1566			}
1567			/*
1568			 * Test for all 0's
1569			 */
1570			*(volatile int *)ptr = 0x0;
1571			if (*(volatile int *)ptr != 0x0) {
1572				page_bad = TRUE;
1573			}
1574			/*
1575			 * Restore original value.
1576			 */
1577			*(int *)ptr = tmp;
1578
1579			/*
1580			 * Adjust array of valid/good pages.
1581			 */
1582			if (page_bad == TRUE) {
1583				continue;
1584			}
1585			/*
1586			 * If this good page is a continuation of the
1587			 * previous set of good pages, then just increase
1588			 * the end pointer. Otherwise start a new chunk.
1589			 * Note that "end" points one higher than end,
1590			 * making the range >= start and < end.
1591			 * If we're also doing a speculative memory
1592			 * test and we at or past the end, bump up Maxmem
1593			 * so that we keep going. The first bad page
1594			 * will terminate the loop.
1595			 */
1596			if (phys_avail[pa_indx] == pa) {
1597				phys_avail[pa_indx] += PAGE_SIZE;
1598			} else {
1599				pa_indx++;
1600				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
1601					printf(
1602		"Too many holes in the physical address space, giving up\n");
1603					pa_indx--;
1604					break;
1605				}
1606				phys_avail[pa_indx++] = pa;	/* start */
1607				phys_avail[pa_indx] = pa + PAGE_SIZE;	/* end */
1608			}
1609			physmem++;
1610		}
1611	}
1612	*pte = 0;
1613	invltlb();
1614
1615	/*
1616	 * XXX
1617	 * The last chunk must contain at least one page plus the message
1618	 * buffer to avoid complicating other code (message buffer address
1619	 * calculation, etc.).
1620	 */
1621	while (phys_avail[pa_indx - 1] + PAGE_SIZE +
1622	    round_page(MSGBUF_SIZE) >= phys_avail[pa_indx]) {
1623		physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
1624		phys_avail[pa_indx--] = 0;
1625		phys_avail[pa_indx--] = 0;
1626	}
1627
1628	Maxmem = atop(phys_avail[pa_indx]);
1629
1630	/* Trim off space for the message buffer. */
1631	phys_avail[pa_indx] -= round_page(MSGBUF_SIZE);
1632
1633	avail_end = phys_avail[pa_indx];
1634}
1635
1636void
1637init386(first)
1638	int first;
1639{
1640	struct gate_descriptor *gdp;
1641	int gsel_tss, metadata_missing, off, x;
1642#ifndef SMP
1643	/* table descriptors - used to load tables by microp */
1644	struct region_descriptor r_gdt, r_idt;
1645#endif
1646	struct pcpu *pc;
1647
1648	proc0.p_uarea = proc0uarea;
1649	thread0.td_kstack = proc0kstack;
1650	thread0.td_pcb = (struct pcb *)
1651	   (thread0.td_kstack + KSTACK_PAGES * PAGE_SIZE) - 1;
1652	atdevbase = ISA_HOLE_START + KERNBASE;
1653
1654	/*
1655 	 * This may be done better later if it gets more high level
1656 	 * components in it. If so just link td->td_proc here.
1657	 */
1658	proc_linkup(&proc0, &ksegrp0, &kse0, &thread0);
1659
1660	metadata_missing = 0;
1661	if (bootinfo.bi_modulep) {
1662		preload_metadata = (caddr_t)bootinfo.bi_modulep + KERNBASE;
1663		preload_bootstrap_relocate(KERNBASE);
1664	} else {
1665		metadata_missing = 1;
1666	}
1667	if (envmode == 1)
1668		kern_envp = static_env;
1669	else if (bootinfo.bi_envp)
1670		kern_envp = (caddr_t)bootinfo.bi_envp + KERNBASE;
1671
1672	/* Init basic tunables, hz etc */
1673	init_param1();
1674
1675	/*
1676	 * make gdt memory segments, the code segment goes up to end of the
1677	 * page with etext in it, the data segment goes to the end of
1678	 * the address space
1679	 */
1680	/*
1681	 * XXX text protection is temporarily (?) disabled.  The limit was
1682	 * i386_btop(round_page(etext)) - 1.
1683	 */
1684	gdt_segs[GCODE_SEL].ssd_limit = atop(0 - 1);
1685	gdt_segs[GDATA_SEL].ssd_limit = atop(0 - 1);
1686#ifdef SMP
1687	pc = &SMP_prvspace[0].pcpu;
1688	gdt_segs[GPRIV_SEL].ssd_limit =
1689		atop(sizeof(struct privatespace) - 1);
1690#else
1691	pc = &__pcpu;
1692	gdt_segs[GPRIV_SEL].ssd_limit =
1693		atop(sizeof(struct pcpu) - 1);
1694#endif
1695	gdt_segs[GPRIV_SEL].ssd_base = (int) pc;
1696	gdt_segs[GPROC0_SEL].ssd_base = (int) &pc->pc_common_tss;
1697
1698	for (x = 0; x < NGDT; x++) {
1699#ifdef BDE_DEBUGGER
1700		/* avoid overwriting db entries with APM ones */
1701		if (x >= GAPMCODE32_SEL && x <= GAPMDATA_SEL)
1702			continue;
1703#endif
1704		ssdtosd(&gdt_segs[x], &gdt[x].sd);
1705	}
1706
1707	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
1708	r_gdt.rd_base =  (int) gdt;
1709	lgdt(&r_gdt);
1710
1711	pcpu_init(pc, 0, sizeof(struct pcpu));
1712	PCPU_SET(prvspace, pc);
1713	PCPU_SET(curthread, &thread0);
1714
1715	/*
1716	 * Initialize mutexes.
1717	 *
1718	 * icu_lock: in order to allow an interrupt to occur in a critical
1719	 * 	     section, to set pcpu->ipending (etc...) properly, we
1720	 *	     must be able to get the icu lock, so it can't be
1721	 *	     under witness.
1722	 */
1723	mutex_init();
1724	mtx_init(&clock_lock, "clk", NULL, MTX_SPIN | MTX_RECURSE);
1725	mtx_init(&icu_lock, "icu", NULL, MTX_SPIN | MTX_NOWITNESS);
1726
1727	/* make ldt memory segments */
1728	/*
1729	 * XXX - VM_MAXUSER_ADDRESS is an end address, not a max.  And it
1730	 * should be spelled ...MAX_USER...
1731	 */
1732	ldt_segs[LUCODE_SEL].ssd_limit = atop(VM_MAXUSER_ADDRESS - 1);
1733	ldt_segs[LUDATA_SEL].ssd_limit = atop(VM_MAXUSER_ADDRESS - 1);
1734	for (x = 0; x < sizeof ldt_segs / sizeof ldt_segs[0]; x++)
1735		ssdtosd(&ldt_segs[x], &ldt[x].sd);
1736
1737	_default_ldt = GSEL(GLDT_SEL, SEL_KPL);
1738	lldt(_default_ldt);
1739	PCPU_SET(currentldt, _default_ldt);
1740
1741	/* exceptions */
1742	for (x = 0; x < NIDT; x++)
1743		setidt(x, &IDTVEC(rsvd), SDT_SYS386TGT, SEL_KPL,
1744		    GSEL(GCODE_SEL, SEL_KPL));
1745	setidt(0, &IDTVEC(div),  SDT_SYS386TGT, SEL_KPL,
1746	    GSEL(GCODE_SEL, SEL_KPL));
1747	setidt(1, &IDTVEC(dbg),  SDT_SYS386IGT, SEL_KPL,
1748	    GSEL(GCODE_SEL, SEL_KPL));
1749	setidt(2, &IDTVEC(nmi),  SDT_SYS386TGT, SEL_KPL,
1750	    GSEL(GCODE_SEL, SEL_KPL));
1751 	setidt(3, &IDTVEC(bpt),  SDT_SYS386IGT, SEL_UPL,
1752	    GSEL(GCODE_SEL, SEL_KPL));
1753	setidt(4, &IDTVEC(ofl),  SDT_SYS386TGT, SEL_UPL,
1754	    GSEL(GCODE_SEL, SEL_KPL));
1755	setidt(5, &IDTVEC(bnd),  SDT_SYS386TGT, SEL_KPL,
1756	    GSEL(GCODE_SEL, SEL_KPL));
1757	setidt(6, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL,
1758	    GSEL(GCODE_SEL, SEL_KPL));
1759	setidt(7, &IDTVEC(dna),  SDT_SYS386TGT, SEL_KPL
1760	    , GSEL(GCODE_SEL, SEL_KPL));
1761	setidt(8, 0,  SDT_SYSTASKGT, SEL_KPL, GSEL(GPANIC_SEL, SEL_KPL));
1762	setidt(9, &IDTVEC(fpusegm),  SDT_SYS386TGT, SEL_KPL,
1763	    GSEL(GCODE_SEL, SEL_KPL));
1764	setidt(10, &IDTVEC(tss),  SDT_SYS386TGT, SEL_KPL,
1765	    GSEL(GCODE_SEL, SEL_KPL));
1766	setidt(11, &IDTVEC(missing),  SDT_SYS386TGT, SEL_KPL,
1767	    GSEL(GCODE_SEL, SEL_KPL));
1768	setidt(12, &IDTVEC(stk),  SDT_SYS386TGT, SEL_KPL,
1769	    GSEL(GCODE_SEL, SEL_KPL));
1770	setidt(13, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL,
1771	    GSEL(GCODE_SEL, SEL_KPL));
1772	setidt(14, &IDTVEC(page),  SDT_SYS386IGT, SEL_KPL,
1773	    GSEL(GCODE_SEL, SEL_KPL));
1774	setidt(15, &IDTVEC(rsvd),  SDT_SYS386TGT, SEL_KPL,
1775	    GSEL(GCODE_SEL, SEL_KPL));
1776	setidt(16, &IDTVEC(fpu),  SDT_SYS386TGT, SEL_KPL,
1777	    GSEL(GCODE_SEL, SEL_KPL));
1778	setidt(17, &IDTVEC(align), SDT_SYS386TGT, SEL_KPL,
1779	    GSEL(GCODE_SEL, SEL_KPL));
1780	setidt(18, &IDTVEC(mchk),  SDT_SYS386TGT, SEL_KPL,
1781	    GSEL(GCODE_SEL, SEL_KPL));
1782	setidt(19, &IDTVEC(xmm), SDT_SYS386TGT, SEL_KPL,
1783	    GSEL(GCODE_SEL, SEL_KPL));
1784 	setidt(0x80, &IDTVEC(int0x80_syscall), SDT_SYS386TGT, SEL_UPL,
1785	    GSEL(GCODE_SEL, SEL_KPL));
1786
1787	r_idt.rd_limit = sizeof(idt0) - 1;
1788	r_idt.rd_base = (int) idt;
1789	lidt(&r_idt);
1790
1791	/*
1792	 * Initialize the console before we print anything out.
1793	 */
1794	cninit();
1795
1796	if (metadata_missing)
1797		printf("WARNING: loader(8) metadata is missing!\n");
1798
1799#ifdef DEV_ISA
1800	isa_defaultirq();
1801#endif
1802
1803#ifdef DDB
1804	kdb_init();
1805	if (boothowto & RB_KDB)
1806		Debugger("Boot flags requested debugger");
1807#endif
1808
1809	finishidentcpu();	/* Final stage of CPU initialization */
1810	setidt(6, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL,
1811	    GSEL(GCODE_SEL, SEL_KPL));
1812	setidt(13, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL,
1813	    GSEL(GCODE_SEL, SEL_KPL));
1814	initializecpu();	/* Initialize CPU registers */
1815
1816	/* make an initial tss so cpu can get interrupt stack on syscall! */
1817	/* Note: -16 is so we can grow the trapframe if we came from vm86 */
1818	PCPU_SET(common_tss.tss_esp0, thread0.td_kstack +
1819	    KSTACK_PAGES * PAGE_SIZE - sizeof(struct pcb) - 16);
1820	PCPU_SET(common_tss.tss_ss0, GSEL(GDATA_SEL, SEL_KPL));
1821	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
1822	private_tss = 0;
1823	PCPU_SET(tss_gdt, &gdt[GPROC0_SEL].sd);
1824	PCPU_SET(common_tssd, *PCPU_GET(tss_gdt));
1825	PCPU_SET(common_tss.tss_ioopt, (sizeof (struct i386tss)) << 16);
1826	ltr(gsel_tss);
1827
1828	dblfault_tss.tss_esp = dblfault_tss.tss_esp0 = dblfault_tss.tss_esp1 =
1829	    dblfault_tss.tss_esp2 = (int)&dblfault_stack[sizeof(dblfault_stack)];
1830	dblfault_tss.tss_ss = dblfault_tss.tss_ss0 = dblfault_tss.tss_ss1 =
1831	    dblfault_tss.tss_ss2 = GSEL(GDATA_SEL, SEL_KPL);
1832	dblfault_tss.tss_cr3 = (int)IdlePTD;
1833	dblfault_tss.tss_eip = (int)dblfault_handler;
1834	dblfault_tss.tss_eflags = PSL_KERNEL;
1835	dblfault_tss.tss_ds = dblfault_tss.tss_es =
1836	    dblfault_tss.tss_gs = GSEL(GDATA_SEL, SEL_KPL);
1837	dblfault_tss.tss_fs = GSEL(GPRIV_SEL, SEL_KPL);
1838	dblfault_tss.tss_cs = GSEL(GCODE_SEL, SEL_KPL);
1839	dblfault_tss.tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
1840
1841	vm86_initialize();
1842	getmemsize(first);
1843	init_param2(physmem);
1844
1845	/* now running on new page tables, configured,and u/iom is accessible */
1846
1847	/* Map the message buffer. */
1848	for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE)
1849		pmap_kenter((vm_offset_t)msgbufp + off, avail_end + off);
1850
1851	msgbufinit(msgbufp, MSGBUF_SIZE);
1852
1853	/* make a call gate to reenter kernel with */
1854	gdp = &ldt[LSYS5CALLS_SEL].gd;
1855
1856	x = (int) &IDTVEC(lcall_syscall);
1857	gdp->gd_looffset = x;
1858	gdp->gd_selector = GSEL(GCODE_SEL,SEL_KPL);
1859	gdp->gd_stkcpy = 1;
1860	gdp->gd_type = SDT_SYS386CGT;
1861	gdp->gd_dpl = SEL_UPL;
1862	gdp->gd_p = 1;
1863	gdp->gd_hioffset = x >> 16;
1864
1865	/* XXX does this work? */
1866	ldt[LBSDICALLS_SEL] = ldt[LSYS5CALLS_SEL];
1867	ldt[LSOL26CALLS_SEL] = ldt[LSYS5CALLS_SEL];
1868
1869	/* transfer to user mode */
1870
1871	_ucodesel = LSEL(LUCODE_SEL, SEL_UPL);
1872	_udatasel = LSEL(LUDATA_SEL, SEL_UPL);
1873
1874	/* setup proc 0's pcb */
1875	thread0.td_pcb->pcb_flags = 0; /* XXXKSE */
1876	thread0.td_pcb->pcb_cr3 = (int)IdlePTD;
1877	thread0.td_pcb->pcb_ext = 0;
1878	thread0.td_frame = &proc0_tf;
1879}
1880
1881void
1882cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
1883{
1884}
1885
1886#if defined(I586_CPU) && !defined(NO_F00F_HACK)
1887static void f00f_hack(void *unused);
1888SYSINIT(f00f_hack, SI_SUB_INTRINSIC, SI_ORDER_FIRST, f00f_hack, NULL);
1889
1890static void
1891f00f_hack(void *unused) {
1892	struct gate_descriptor *new_idt;
1893#ifndef SMP
1894	struct region_descriptor r_idt;
1895#endif
1896	vm_offset_t tmp;
1897
1898	if (!has_f00f_bug)
1899		return;
1900
1901	GIANT_REQUIRED;
1902
1903	printf("Intel Pentium detected, installing workaround for F00F bug\n");
1904
1905	r_idt.rd_limit = sizeof(idt0) - 1;
1906
1907	tmp = kmem_alloc(kernel_map, PAGE_SIZE * 2);
1908	if (tmp == 0)
1909		panic("kmem_alloc returned 0");
1910	if (((unsigned int)tmp & (PAGE_SIZE-1)) != 0)
1911		panic("kmem_alloc returned non-page-aligned memory");
1912	/* Put the first seven entries in the lower page */
1913	new_idt = (struct gate_descriptor*)(tmp + PAGE_SIZE - (7*8));
1914	bcopy(idt, new_idt, sizeof(idt0));
1915	r_idt.rd_base = (int)new_idt;
1916	lidt(&r_idt);
1917	idt = new_idt;
1918	if (vm_map_protect(kernel_map, tmp, tmp + PAGE_SIZE,
1919			   VM_PROT_READ, FALSE) != KERN_SUCCESS)
1920		panic("vm_map_protect failed");
1921	return;
1922}
1923#endif /* defined(I586_CPU) && !NO_F00F_HACK */
1924
1925int
1926ptrace_set_pc(struct thread *td, unsigned long addr)
1927{
1928	td->td_frame->tf_eip = addr;
1929	return (0);
1930}
1931
1932int
1933ptrace_single_step(struct thread *td)
1934{
1935	td->td_frame->tf_eflags |= PSL_T;
1936	return (0);
1937}
1938
1939int
1940fill_regs(struct thread *td, struct reg *regs)
1941{
1942	struct pcb *pcb;
1943	struct trapframe *tp;
1944
1945	tp = td->td_frame;
1946	regs->r_fs = tp->tf_fs;
1947	regs->r_es = tp->tf_es;
1948	regs->r_ds = tp->tf_ds;
1949	regs->r_edi = tp->tf_edi;
1950	regs->r_esi = tp->tf_esi;
1951	regs->r_ebp = tp->tf_ebp;
1952	regs->r_ebx = tp->tf_ebx;
1953	regs->r_edx = tp->tf_edx;
1954	regs->r_ecx = tp->tf_ecx;
1955	regs->r_eax = tp->tf_eax;
1956	regs->r_eip = tp->tf_eip;
1957	regs->r_cs = tp->tf_cs;
1958	regs->r_eflags = tp->tf_eflags;
1959	regs->r_esp = tp->tf_esp;
1960	regs->r_ss = tp->tf_ss;
1961	pcb = td->td_pcb;
1962	regs->r_gs = pcb->pcb_gs;
1963	return (0);
1964}
1965
1966int
1967set_regs(struct thread *td, struct reg *regs)
1968{
1969	struct pcb *pcb;
1970	struct trapframe *tp;
1971
1972	tp = td->td_frame;
1973	if (!EFL_SECURE(regs->r_eflags, tp->tf_eflags) ||
1974	    !CS_SECURE(regs->r_cs))
1975		return (EINVAL);
1976	tp->tf_fs = regs->r_fs;
1977	tp->tf_es = regs->r_es;
1978	tp->tf_ds = regs->r_ds;
1979	tp->tf_edi = regs->r_edi;
1980	tp->tf_esi = regs->r_esi;
1981	tp->tf_ebp = regs->r_ebp;
1982	tp->tf_ebx = regs->r_ebx;
1983	tp->tf_edx = regs->r_edx;
1984	tp->tf_ecx = regs->r_ecx;
1985	tp->tf_eax = regs->r_eax;
1986	tp->tf_eip = regs->r_eip;
1987	tp->tf_cs = regs->r_cs;
1988	tp->tf_eflags = regs->r_eflags;
1989	tp->tf_esp = regs->r_esp;
1990	tp->tf_ss = regs->r_ss;
1991	pcb = td->td_pcb;
1992	pcb->pcb_gs = regs->r_gs;
1993	return (0);
1994}
1995
1996#ifdef CPU_ENABLE_SSE
1997static void
1998fill_fpregs_xmm(sv_xmm, sv_87)
1999	struct savexmm *sv_xmm;
2000	struct save87 *sv_87;
2001{
2002	register struct env87 *penv_87 = &sv_87->sv_env;
2003	register struct envxmm *penv_xmm = &sv_xmm->sv_env;
2004	int i;
2005
2006	bzero(sv_87, sizeof(*sv_87));
2007
2008	/* FPU control/status */
2009	penv_87->en_cw = penv_xmm->en_cw;
2010	penv_87->en_sw = penv_xmm->en_sw;
2011	penv_87->en_tw = penv_xmm->en_tw;
2012	penv_87->en_fip = penv_xmm->en_fip;
2013	penv_87->en_fcs = penv_xmm->en_fcs;
2014	penv_87->en_opcode = penv_xmm->en_opcode;
2015	penv_87->en_foo = penv_xmm->en_foo;
2016	penv_87->en_fos = penv_xmm->en_fos;
2017
2018	/* FPU registers */
2019	for (i = 0; i < 8; ++i)
2020		sv_87->sv_ac[i] = sv_xmm->sv_fp[i].fp_acc;
2021}
2022
2023static void
2024set_fpregs_xmm(sv_87, sv_xmm)
2025	struct save87 *sv_87;
2026	struct savexmm *sv_xmm;
2027{
2028	register struct env87 *penv_87 = &sv_87->sv_env;
2029	register struct envxmm *penv_xmm = &sv_xmm->sv_env;
2030	int i;
2031
2032	/* FPU control/status */
2033	penv_xmm->en_cw = penv_87->en_cw;
2034	penv_xmm->en_sw = penv_87->en_sw;
2035	penv_xmm->en_tw = penv_87->en_tw;
2036	penv_xmm->en_fip = penv_87->en_fip;
2037	penv_xmm->en_fcs = penv_87->en_fcs;
2038	penv_xmm->en_opcode = penv_87->en_opcode;
2039	penv_xmm->en_foo = penv_87->en_foo;
2040	penv_xmm->en_fos = penv_87->en_fos;
2041
2042	/* FPU registers */
2043	for (i = 0; i < 8; ++i)
2044		sv_xmm->sv_fp[i].fp_acc = sv_87->sv_ac[i];
2045}
2046#endif /* CPU_ENABLE_SSE */
2047
2048int
2049fill_fpregs(struct thread *td, struct fpreg *fpregs)
2050{
2051#ifdef CPU_ENABLE_SSE
2052	if (cpu_fxsr) {
2053		fill_fpregs_xmm(&td->td_pcb->pcb_save.sv_xmm,
2054						(struct save87 *)fpregs);
2055		return (0);
2056	}
2057#endif /* CPU_ENABLE_SSE */
2058	bcopy(&td->td_pcb->pcb_save.sv_87, fpregs, sizeof *fpregs);
2059	return (0);
2060}
2061
2062int
2063set_fpregs(struct thread *td, struct fpreg *fpregs)
2064{
2065#ifdef CPU_ENABLE_SSE
2066	if (cpu_fxsr) {
2067		set_fpregs_xmm((struct save87 *)fpregs,
2068					   &td->td_pcb->pcb_save.sv_xmm);
2069		return (0);
2070	}
2071#endif /* CPU_ENABLE_SSE */
2072	bcopy(fpregs, &td->td_pcb->pcb_save.sv_87, sizeof *fpregs);
2073	return (0);
2074}
2075
2076/*
2077 * Get machine context.
2078 */
2079void
2080get_mcontext(struct thread *td, mcontext_t *mcp)
2081{
2082	struct trapframe *tp;
2083
2084	tp = td->td_frame;
2085
2086	mcp->mc_onstack = sigonstack(tp->tf_esp);
2087	mcp->mc_gs = td->td_pcb->pcb_gs;
2088	mcp->mc_fs = tp->tf_fs;
2089	mcp->mc_es = tp->tf_es;
2090	mcp->mc_ds = tp->tf_ds;
2091	mcp->mc_edi = tp->tf_edi;
2092	mcp->mc_esi = tp->tf_esi;
2093	mcp->mc_ebp = tp->tf_ebp;
2094	mcp->mc_isp = tp->tf_isp;
2095	mcp->mc_ebx = tp->tf_ebx;
2096	mcp->mc_edx = tp->tf_edx;
2097	mcp->mc_ecx = tp->tf_ecx;
2098	mcp->mc_eax = tp->tf_eax;
2099	mcp->mc_eip = tp->tf_eip;
2100	mcp->mc_cs = tp->tf_cs;
2101	mcp->mc_eflags = tp->tf_eflags;
2102	mcp->mc_esp = tp->tf_esp;
2103	mcp->mc_ss = tp->tf_ss;
2104	mcp->mc_len = sizeof(*mcp);
2105	get_fpcontext(td, mcp);
2106}
2107
2108/*
2109 * Set machine context.
2110 *
2111 * However, we don't set any but the user modifiable flags, and we won't
2112 * touch the cs selector.
2113 */
2114int
2115set_mcontext(struct thread *td, const mcontext_t *mcp)
2116{
2117	struct trapframe *tp;
2118	int eflags, ret;
2119
2120	tp = td->td_frame;
2121	if (mcp->mc_len != sizeof(*mcp))
2122		return (EINVAL);
2123	eflags = (mcp->mc_eflags & PSL_USERCHANGE) |
2124	    (tp->tf_eflags & ~PSL_USERCHANGE);
2125	if ((ret = set_fpcontext(td, mcp)) == 0) {
2126		tp->tf_fs = mcp->mc_fs;
2127		tp->tf_es = mcp->mc_es;
2128		tp->tf_ds = mcp->mc_ds;
2129		tp->tf_edi = mcp->mc_edi;
2130		tp->tf_esi = mcp->mc_esi;
2131		tp->tf_ebp = mcp->mc_ebp;
2132		tp->tf_ebx = mcp->mc_ebx;
2133		tp->tf_edx = mcp->mc_edx;
2134		tp->tf_ecx = mcp->mc_ecx;
2135		tp->tf_eax = mcp->mc_eax;
2136		tp->tf_eip = mcp->mc_eip;
2137		tp->tf_eflags = eflags;
2138		tp->tf_esp = mcp->mc_esp;
2139		tp->tf_ss = mcp->mc_ss;
2140		td->td_pcb->pcb_gs = mcp->mc_gs;
2141		ret = 0;
2142	}
2143	return (ret);
2144}
2145
2146static void
2147get_fpcontext(struct thread *td, mcontext_t *mcp)
2148{
2149#ifndef DEV_NPX
2150	mcp->mc_fpformat = _MC_FPFMT_NODEV;
2151	mcp->mc_ownedfp = _MC_FPOWNED_NONE;
2152#else /* DEV_NPX */
2153	union savefpu *addr;
2154
2155	/*
2156	 * XXX mc_fpstate might be misaligned, since its declaration is not
2157	 * unportabilized using __attribute__((aligned(16))) like the
2158	 * declaration of struct savemm, and anyway, alignment doesn't work
2159	 * for auto variables since we don't use gcc's pessimal stack
2160	 * alignment.  Work around this by abusing the spare fields after
2161	 * mcp->mc_fpstate.
2162	 *
2163	 * XXX unpessimize most cases by only aligning when fxsave might be
2164	 * called, although this requires knowing too much about
2165	 * npxgetregs()'s internals.
2166	 */
2167	addr = (union savefpu *)&mcp->mc_fpstate;
2168	if (td == PCPU_GET(fpcurthread) &&
2169#ifdef CPU_ENABLE_SSE
2170	    cpu_fxsr &&
2171#endif
2172	    ((uintptr_t)(void *)addr & 0xF)) {
2173		do
2174			addr = (void *)((char *)addr + 4);
2175		while ((uintptr_t)(void *)addr & 0xF);
2176	}
2177	mcp->mc_ownedfp = npxgetregs(td, addr);
2178	if (addr != (union savefpu *)&mcp->mc_fpstate) {
2179		bcopy(addr, &mcp->mc_fpstate, sizeof(mcp->mc_fpstate));
2180		bzero(&mcp->mc_spare2, sizeof(mcp->mc_spare2));
2181	}
2182	bcopy(&mcp->mc_fpstate, &td->td_pcb->pcb_save, sizeof(mcp->mc_fpstate));
2183	mcp->mc_fpformat = npxformat();
2184#endif /* !DEV_NPX */
2185}
2186
2187static int
2188set_fpcontext(struct thread *td, const mcontext_t *mcp)
2189{
2190	union savefpu *addr;
2191
2192	if (mcp->mc_fpformat == _MC_FPFMT_NODEV)
2193		return (0);
2194	if (mcp->mc_ownedfp == _MC_FPOWNED_NONE)
2195		/* We don't care what state is left in the FPU or PCB. */
2196		fpstate_drop(td);
2197	else if (mcp->mc_ownedfp == _MC_FPOWNED_FPU ||
2198	    mcp->mc_ownedfp == _MC_FPOWNED_PCB) {
2199		/* XXX align as above. */
2200		addr = (union savefpu *)&mcp->mc_fpstate;
2201		if (td == PCPU_GET(fpcurthread) &&
2202#ifdef CPU_ENABLE_SSE
2203		    cpu_fxsr &&
2204#endif
2205		    ((uintptr_t)(void *)addr & 0xF)) {
2206			do
2207				addr = (void *)((char *)addr + 4);
2208			while ((uintptr_t)(void *)addr & 0xF);
2209			bcopy(&mcp->mc_fpstate, addr, sizeof(mcp->mc_fpstate));
2210		}
2211#ifdef DEV_NPX
2212		/*
2213		 * XXX we violate the dubious requirement that npxsetregs()
2214		 * be called with interrupts disabled.
2215		 */
2216		npxsetregs(td, addr);
2217		/*
2218		 * Don't bother putting things back where they were in the
2219		 * misaligned case, since we know that the caller won't use
2220		 * them again.
2221		 */
2222	} else {
2223		/*
2224		 * There is no valid FPU state in *mcp, so use the saved
2225		 * state in the PCB if there is one.  XXX the test for
2226		 * whether there is one seems to be quite broken.  We
2227		 * forcibly drop the state in sendsig().
2228		 */
2229		if ((td->td_pcb->pcb_flags & PCB_NPXINITDONE) != 0)
2230			npxsetregs(td, &td->td_pcb->pcb_save);
2231#endif
2232#if !defined(COMPAT_FREEBSD4) && !defined(COMPAT_43)
2233		return (EINVAL);
2234#endif
2235	}
2236	return (0);
2237}
2238
2239static void
2240fpstate_drop(struct thread *td)
2241{
2242	register_t s;
2243
2244	s = intr_disable();
2245#ifdef DEV_NPX
2246	if (PCPU_GET(fpcurthread) == td)
2247		npxdrop();
2248#endif
2249	/*
2250	 * XXX force a full drop of the npx.  The above only drops it if we
2251	 * owned it.  npxgetregs() has the same bug in the !cpu_fxsr case.
2252	 *
2253	 * XXX I don't much like npxgetregs()'s semantics of doing a full
2254	 * drop.  Dropping only to the pcb matches fnsave's behaviour.
2255	 * We only need to drop to !PCB_INITDONE in sendsig().  But
2256	 * sendsig() is the only caller of npxgetregs()... perhaps we just
2257	 * have too many layers.
2258	 */
2259	curthread->td_pcb->pcb_flags &= ~PCB_NPXINITDONE;
2260	intr_restore(s);
2261}
2262
2263int
2264fill_dbregs(struct thread *td, struct dbreg *dbregs)
2265{
2266	struct pcb *pcb;
2267
2268	if (td == NULL) {
2269		dbregs->dr0 = rdr0();
2270		dbregs->dr1 = rdr1();
2271		dbregs->dr2 = rdr2();
2272		dbregs->dr3 = rdr3();
2273		dbregs->dr4 = rdr4();
2274		dbregs->dr5 = rdr5();
2275		dbregs->dr6 = rdr6();
2276		dbregs->dr7 = rdr7();
2277	} else {
2278		pcb = td->td_pcb;
2279		dbregs->dr0 = pcb->pcb_dr0;
2280		dbregs->dr1 = pcb->pcb_dr1;
2281		dbregs->dr2 = pcb->pcb_dr2;
2282		dbregs->dr3 = pcb->pcb_dr3;
2283		dbregs->dr4 = 0;
2284		dbregs->dr5 = 0;
2285		dbregs->dr6 = pcb->pcb_dr6;
2286		dbregs->dr7 = pcb->pcb_dr7;
2287	}
2288	return (0);
2289}
2290
2291int
2292set_dbregs(struct thread *td, struct dbreg *dbregs)
2293{
2294	struct pcb *pcb;
2295	int i;
2296	u_int32_t mask1, mask2;
2297
2298	if (td == NULL) {
2299		load_dr0(dbregs->dr0);
2300		load_dr1(dbregs->dr1);
2301		load_dr2(dbregs->dr2);
2302		load_dr3(dbregs->dr3);
2303		load_dr4(dbregs->dr4);
2304		load_dr5(dbregs->dr5);
2305		load_dr6(dbregs->dr6);
2306		load_dr7(dbregs->dr7);
2307	} else {
2308		/*
2309		 * Don't let an illegal value for dr7 get set.	Specifically,
2310		 * check for undefined settings.  Setting these bit patterns
2311		 * result in undefined behaviour and can lead to an unexpected
2312		 * TRCTRAP.
2313		 */
2314		for (i = 0, mask1 = 0x3<<16, mask2 = 0x2<<16; i < 8;
2315		     i++, mask1 <<= 2, mask2 <<= 2)
2316			if ((dbregs->dr7 & mask1) == mask2)
2317				return (EINVAL);
2318
2319		pcb = td->td_pcb;
2320
2321		/*
2322		 * Don't let a process set a breakpoint that is not within the
2323		 * process's address space.  If a process could do this, it
2324		 * could halt the system by setting a breakpoint in the kernel
2325		 * (if ddb was enabled).  Thus, we need to check to make sure
2326		 * that no breakpoints are being enabled for addresses outside
2327		 * process's address space, unless, perhaps, we were called by
2328		 * uid 0.
2329		 *
2330		 * XXX - what about when the watched area of the user's
2331		 * address space is written into from within the kernel
2332		 * ... wouldn't that still cause a breakpoint to be generated
2333		 * from within kernel mode?
2334		 */
2335
2336		if (suser(td) != 0) {
2337			if (dbregs->dr7 & 0x3) {
2338				/* dr0 is enabled */
2339				if (dbregs->dr0 >= VM_MAXUSER_ADDRESS)
2340					return (EINVAL);
2341			}
2342
2343			if (dbregs->dr7 & (0x3<<2)) {
2344				/* dr1 is enabled */
2345				if (dbregs->dr1 >= VM_MAXUSER_ADDRESS)
2346					return (EINVAL);
2347			}
2348
2349			if (dbregs->dr7 & (0x3<<4)) {
2350				/* dr2 is enabled */
2351				if (dbregs->dr2 >= VM_MAXUSER_ADDRESS)
2352					return (EINVAL);
2353			}
2354
2355			if (dbregs->dr7 & (0x3<<6)) {
2356				/* dr3 is enabled */
2357				if (dbregs->dr3 >= VM_MAXUSER_ADDRESS)
2358					return (EINVAL);
2359			}
2360		}
2361
2362		pcb->pcb_dr0 = dbregs->dr0;
2363		pcb->pcb_dr1 = dbregs->dr1;
2364		pcb->pcb_dr2 = dbregs->dr2;
2365		pcb->pcb_dr3 = dbregs->dr3;
2366		pcb->pcb_dr6 = dbregs->dr6;
2367		pcb->pcb_dr7 = dbregs->dr7;
2368
2369		pcb->pcb_flags |= PCB_DBREGS;
2370	}
2371
2372	return (0);
2373}
2374
2375/*
2376 * Return > 0 if a hardware breakpoint has been hit, and the
2377 * breakpoint was in user space.  Return 0, otherwise.
2378 */
2379int
2380user_dbreg_trap(void)
2381{
2382        u_int32_t dr7, dr6; /* debug registers dr6 and dr7 */
2383        u_int32_t bp;       /* breakpoint bits extracted from dr6 */
2384        int nbp;            /* number of breakpoints that triggered */
2385        caddr_t addr[4];    /* breakpoint addresses */
2386        int i;
2387
2388        dr7 = rdr7();
2389        if ((dr7 & 0x000000ff) == 0) {
2390                /*
2391                 * all GE and LE bits in the dr7 register are zero,
2392                 * thus the trap couldn't have been caused by the
2393                 * hardware debug registers
2394                 */
2395                return 0;
2396        }
2397
2398        nbp = 0;
2399        dr6 = rdr6();
2400        bp = dr6 & 0x0000000f;
2401
2402        if (!bp) {
2403                /*
2404                 * None of the breakpoint bits are set meaning this
2405                 * trap was not caused by any of the debug registers
2406                 */
2407                return 0;
2408        }
2409
2410        /*
2411         * at least one of the breakpoints were hit, check to see
2412         * which ones and if any of them are user space addresses
2413         */
2414
2415        if (bp & 0x01) {
2416                addr[nbp++] = (caddr_t)rdr0();
2417        }
2418        if (bp & 0x02) {
2419                addr[nbp++] = (caddr_t)rdr1();
2420        }
2421        if (bp & 0x04) {
2422                addr[nbp++] = (caddr_t)rdr2();
2423        }
2424        if (bp & 0x08) {
2425                addr[nbp++] = (caddr_t)rdr3();
2426        }
2427
2428        for (i=0; i<nbp; i++) {
2429                if (addr[i] <
2430                    (caddr_t)VM_MAXUSER_ADDRESS) {
2431                        /*
2432                         * addr[i] is in user space
2433                         */
2434                        return nbp;
2435                }
2436        }
2437
2438        /*
2439         * None of the breakpoints are in user space.
2440         */
2441        return 0;
2442}
2443
2444
2445#ifndef DDB
2446void
2447Debugger(const char *msg)
2448{
2449	printf("Debugger(\"%s\") called.\n", msg);
2450}
2451#endif /* no DDB */
2452
2453#ifdef DDB
2454
2455/*
2456 * Provide inb() and outb() as functions.  They are normally only
2457 * available as macros calling inlined functions, thus cannot be
2458 * called inside DDB.
2459 *
2460 * The actual code is stolen from <machine/cpufunc.h>, and de-inlined.
2461 */
2462
2463#undef inb
2464#undef outb
2465
2466/* silence compiler warnings */
2467u_char inb(u_int);
2468void outb(u_int, u_char);
2469
2470u_char
2471inb(u_int port)
2472{
2473	u_char	data;
2474	/*
2475	 * We use %%dx and not %1 here because i/o is done at %dx and not at
2476	 * %edx, while gcc generates inferior code (movw instead of movl)
2477	 * if we tell it to load (u_short) port.
2478	 */
2479	__asm __volatile("inb %%dx,%0" : "=a" (data) : "d" (port));
2480	return (data);
2481}
2482
2483void
2484outb(u_int port, u_char data)
2485{
2486	u_char	al;
2487	/*
2488	 * Use an unnecessary assignment to help gcc's register allocator.
2489	 * This make a large difference for gcc-1.40 and a tiny difference
2490	 * for gcc-2.6.0.  For gcc-1.40, al had to be ``asm("ax")'' for
2491	 * best results.  gcc-2.6.0 can't handle this.
2492	 */
2493	al = data;
2494	__asm __volatile("outb %0,%%dx" : : "a" (al), "d" (port));
2495}
2496
2497#endif /* DDB */
2498