fpu.c revision 40565
1/*-
2 * Copyright (c) 1990 William Jolitz.
3 * Copyright (c) 1991 The Regents of the University of California.
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 * 3. All advertising materials mentioning features or use of this software
15 *    must display the following acknowledgement:
16 *	This product includes software developed by the University of
17 *	California, Berkeley and its contributors.
18 * 4. Neither the name of the University nor the names of its contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 *	from: @(#)npx.c	7.2 (Berkeley) 5/12/91
35 *	$Id: npx.c,v 1.61 1998/06/21 18:02:39 bde Exp $
36 */
37
38#include "npx.h"
39#if NNPX > 0
40
41#include "opt_debug_npx.h"
42#include "opt_math_emulate.h"
43
44#include <sys/param.h>
45#include <sys/systm.h>
46#include <sys/kernel.h>
47#include <sys/malloc.h>
48#include <sys/sysctl.h>
49#include <sys/proc.h>
50#ifdef NPX_DEBUG
51#include <sys/syslog.h>
52#endif
53#include <sys/signalvar.h>
54
55#ifndef SMP
56#include <machine/asmacros.h>
57#endif
58#include <machine/cputypes.h>
59#include <machine/frame.h>
60#include <machine/ipl.h>
61#ifndef SMP
62#include <machine/md_var.h>
63#endif
64#include <machine/pcb.h>
65#include <machine/psl.h>
66#ifndef SMP
67#include <machine/clock.h>
68#endif
69#include <machine/specialreg.h>
70#include <machine/segments.h>
71
72#ifndef SMP
73#include <i386/isa/icu.h>
74#include <i386/isa/intr_machdep.h>
75#include <i386/isa/isa.h>
76#endif
77#include <i386/isa/isa_device.h>
78
79/*
80 * 387 and 287 Numeric Coprocessor Extension (NPX) Driver.
81 */
82
83/* Configuration flags. */
84#define	NPX_DISABLE_I586_OPTIMIZED_BCOPY	(1 << 0)
85#define	NPX_DISABLE_I586_OPTIMIZED_BZERO	(1 << 1)
86#define	NPX_DISABLE_I586_OPTIMIZED_COPYIO	(1 << 2)
87
88/* XXX - should be in header file. */
89extern void (*bcopy_vector) __P((const void *from, void *to, size_t len));
90extern void (*ovbcopy_vector) __P((const void *from, void *to, size_t len));
91extern int (*copyin_vector) __P((const void *udaddr, void *kaddr, size_t len));
92extern int (*copyout_vector) __P((const void *kaddr, void *udaddr, size_t len));
93
94void	i586_bcopy __P((const void *from, void *to, size_t len));
95void	i586_bzero __P((void *buf, size_t len));
96int	i586_copyin __P((const void *udaddr, void *kaddr, size_t len));
97int	i586_copyout __P((const void *kaddr, void *udaddr, size_t len));
98ointhand2_t	npxintr;
99
100#ifdef	__GNUC__
101
102#define	fldcw(addr)		__asm("fldcw %0" : : "m" (*(addr)))
103#define	fnclex()		__asm("fnclex")
104#define	fninit()		__asm("fninit")
105#define	fnop()			__asm("fnop")
106#define	fnsave(addr)		__asm __volatile("fnsave %0" : "=m" (*(addr)))
107#define	fnstcw(addr)		__asm __volatile("fnstcw %0" : "=m" (*(addr)))
108#define	fnstsw(addr)		__asm __volatile("fnstsw %0" : "=m" (*(addr)))
109#define	fp_divide_by_0()	__asm("fldz; fld1; fdiv %st,%st(1); fnop")
110#define	frstor(addr)		__asm("frstor %0" : : "m" (*(addr)))
111#define	start_emulating()	__asm("smsw %%ax; orb %0,%%al; lmsw %%ax" \
112				      : : "n" (CR0_TS) : "ax")
113#define	stop_emulating()	__asm("clts")
114
115#else	/* not __GNUC__ */
116
117void	fldcw		__P((caddr_t addr));
118void	fnclex		__P((void));
119void	fninit		__P((void));
120void	fnop		__P((void));
121void	fnsave		__P((caddr_t addr));
122void	fnstcw		__P((caddr_t addr));
123void	fnstsw		__P((caddr_t addr));
124void	fp_divide_by_0	__P((void));
125void	frstor		__P((caddr_t addr));
126void	start_emulating	__P((void));
127void	stop_emulating	__P((void));
128
129#endif	/* __GNUC__ */
130
131typedef u_char bool_t;
132
133static	int	npxattach	__P((struct isa_device *dvp));
134static	int	npxprobe	__P((struct isa_device *dvp));
135static	int	npxprobe1	__P((struct isa_device *dvp));
136static	long	timezero	__P((const char *funcname,
137				     void (*func)(void *buf, size_t len)));
138
139struct	isa_driver npxdriver = {
140	npxprobe, npxattach, "npx",
141};
142
143int	hw_float;		/* XXX currently just alias for npx_exists */
144
145SYSCTL_INT(_hw,HW_FLOATINGPT, floatingpoint,
146	CTLFLAG_RD, &hw_float, 0,
147	"Floatingpoint instructions executed in hardware");
148
149static u_int	npx0_imask = SWI_CLOCK_MASK;
150
151static	bool_t			npx_ex16;
152static	bool_t			npx_exists;
153static	struct gate_descriptor	npx_idt_probeintr;
154static	int			npx_intrno;
155static	volatile u_int		npx_intrs_while_probing;
156static	bool_t			npx_irq13;
157static	volatile u_int		npx_traps_while_probing;
158
159#ifndef SMP
160/*
161 * Special interrupt handlers.  Someday intr0-intr15 will be used to count
162 * interrupts.  We'll still need a special exception 16 handler.  The busy
163 * latch stuff in probeintr() can be moved to npxprobe().
164 */
165inthand_t probeintr;
166__asm("								\n\
167	.text							\n\
168	.p2align 2,0x90						\n\
169" __XSTRING(CNAME(probeintr)) ":				\n\
170	ss							\n\
171	incl	" __XSTRING(CNAME(npx_intrs_while_probing)) "	\n\
172	pushl	%eax						\n\
173	movb	$0x20,%al	# EOI (asm in strings loses cpp features) \n\
174	outb	%al,$0xa0	# IO_ICU2			\n\
175	outb	%al,$0x20	# IO_ICU1			\n\
176	movb	$0,%al						\n\
177	outb	%al,$0xf0	# clear BUSY# latch		\n\
178	popl	%eax						\n\
179	iret							\n\
180");
181
182inthand_t probetrap;
183__asm("								\n\
184	.text							\n\
185	.p2align 2,0x90						\n\
186" __XSTRING(CNAME(probetrap)) ":				\n\
187	ss							\n\
188	incl	" __XSTRING(CNAME(npx_traps_while_probing)) "	\n\
189	fnclex							\n\
190	iret							\n\
191");
192#endif /* SMP */
193
194/*
195 * Probe routine.  Initialize cr0 to give correct behaviour for [f]wait
196 * whether the device exists or not (XXX should be elsewhere).  Set flags
197 * to tell npxattach() what to do.  Modify device struct if npx doesn't
198 * need to use interrupts.  Return 1 if device exists.
199 */
200static int
201npxprobe(dvp)
202	struct isa_device *dvp;
203{
204#ifdef SMP
205
206	return npxprobe1(dvp);
207
208#else /* SMP */
209
210	int	result;
211	u_long	save_eflags;
212	u_char	save_icu1_mask;
213	u_char	save_icu2_mask;
214	struct	gate_descriptor save_idt_npxintr;
215	struct	gate_descriptor save_idt_npxtrap;
216	/*
217	 * This routine is now just a wrapper for npxprobe1(), to install
218	 * special npx interrupt and trap handlers, to enable npx interrupts
219	 * and to disable other interrupts.  Someday isa_configure() will
220	 * install suitable handlers and run with interrupts enabled so we
221	 * won't need to do so much here.
222	 */
223	npx_intrno = NRSVIDT + ffs(dvp->id_irq) - 1;
224	save_eflags = read_eflags();
225	disable_intr();
226	save_icu1_mask = inb(IO_ICU1 + 1);
227	save_icu2_mask = inb(IO_ICU2 + 1);
228	save_idt_npxintr = idt[npx_intrno];
229	save_idt_npxtrap = idt[16];
230	outb(IO_ICU1 + 1, ~(IRQ_SLAVE | dvp->id_irq));
231	outb(IO_ICU2 + 1, ~(dvp->id_irq >> 8));
232	setidt(16, probetrap, SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
233	setidt(npx_intrno, probeintr, SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
234	npx_idt_probeintr = idt[npx_intrno];
235	enable_intr();
236	result = npxprobe1(dvp);
237	disable_intr();
238	outb(IO_ICU1 + 1, save_icu1_mask);
239	outb(IO_ICU2 + 1, save_icu2_mask);
240	idt[npx_intrno] = save_idt_npxintr;
241	idt[16] = save_idt_npxtrap;
242	write_eflags(save_eflags);
243	return (result);
244
245#endif /* SMP */
246}
247
248static int
249npxprobe1(dvp)
250	struct isa_device *dvp;
251{
252	u_short control;
253	u_short status;
254
255	/*
256	 * Partially reset the coprocessor, if any.  Some BIOS's don't reset
257	 * it after a warm boot.
258	 */
259	outb(0xf1, 0);		/* full reset on some systems, NOP on others */
260	outb(0xf0, 0);		/* clear BUSY# latch */
261	/*
262	 * Prepare to trap all ESC (i.e., NPX) instructions and all WAIT
263	 * instructions.  We must set the CR0_MP bit and use the CR0_TS
264	 * bit to control the trap, because setting the CR0_EM bit does
265	 * not cause WAIT instructions to trap.  It's important to trap
266	 * WAIT instructions - otherwise the "wait" variants of no-wait
267	 * control instructions would degenerate to the "no-wait" variants
268	 * after FP context switches but work correctly otherwise.  It's
269	 * particularly important to trap WAITs when there is no NPX -
270	 * otherwise the "wait" variants would always degenerate.
271	 *
272	 * Try setting CR0_NE to get correct error reporting on 486DX's.
273	 * Setting it should fail or do nothing on lesser processors.
274	 */
275	load_cr0(rcr0() | CR0_MP | CR0_NE);
276	/*
277	 * But don't trap while we're probing.
278	 */
279	stop_emulating();
280	/*
281	 * Finish resetting the coprocessor, if any.  If there is an error
282	 * pending, then we may get a bogus IRQ13, but probeintr() will handle
283	 * it OK.  Bogus halts have never been observed, but we enabled
284	 * IRQ13 and cleared the BUSY# latch early to handle them anyway.
285	 */
286	fninit();
287
288#ifdef SMP
289
290	/*
291	 * Exception 16 MUST work for SMP.
292	 */
293	npx_irq13 = 0;
294	npx_ex16 = hw_float = npx_exists = 1;
295	dvp->id_irq = 0;	/* zap the interrupt */
296	/*
297	 * special return value to flag that we do not
298	 * actually use any I/O registers
299	 */
300	return (-1);
301
302#else /* SMP */
303
304	/*
305	 * Don't use fwait here because it might hang.
306	 * Don't use fnop here because it usually hangs if there is no FPU.
307	 */
308	DELAY(1000);		/* wait for any IRQ13 */
309#ifdef DIAGNOSTIC
310	if (npx_intrs_while_probing != 0)
311		printf("fninit caused %u bogus npx interrupt(s)\n",
312		       npx_intrs_while_probing);
313	if (npx_traps_while_probing != 0)
314		printf("fninit caused %u bogus npx trap(s)\n",
315		       npx_traps_while_probing);
316#endif
317	/*
318	 * Check for a status of mostly zero.
319	 */
320	status = 0x5a5a;
321	fnstsw(&status);
322	if ((status & 0xb8ff) == 0) {
323		/*
324		 * Good, now check for a proper control word.
325		 */
326		control = 0x5a5a;
327		fnstcw(&control);
328		if ((control & 0x1f3f) == 0x033f) {
329			hw_float = npx_exists = 1;
330			/*
331			 * We have an npx, now divide by 0 to see if exception
332			 * 16 works.
333			 */
334			control &= ~(1 << 2);	/* enable divide by 0 trap */
335			fldcw(&control);
336			npx_traps_while_probing = npx_intrs_while_probing = 0;
337			fp_divide_by_0();
338			if (npx_traps_while_probing != 0) {
339				/*
340				 * Good, exception 16 works.
341				 */
342				npx_ex16 = 1;
343				dvp->id_irq = 0;	/* zap the interrupt */
344				/*
345				 * special return value to flag that we do not
346				 * actually use any I/O registers
347				 */
348				return (-1);
349			}
350			if (npx_intrs_while_probing != 0) {
351				/*
352				 * Bad, we are stuck with IRQ13.
353				 */
354				npx_irq13 = 1;
355				/*
356				 * npxattach would be too late to set npx0_imask.
357				 */
358				npx0_imask |= dvp->id_irq;
359				return (IO_NPXSIZE);
360			}
361			/*
362			 * Worse, even IRQ13 is broken.  Use emulator.
363			 */
364		}
365	}
366	/*
367	 * Probe failed, but we want to get to npxattach to initialize the
368	 * emulator and say that it has been installed.  XXX handle devices
369	 * that aren't really devices better.
370	 */
371	dvp->id_irq = 0;
372	/*
373	 * special return value to flag that we do not
374	 * actually use any I/O registers
375	 */
376	return (-1);
377
378#endif /* SMP */
379}
380
381/*
382 * Attach routine - announce which it is, and wire into system
383 */
384int
385npxattach(dvp)
386	struct isa_device *dvp;
387{
388	dvp->id_ointr = npxintr;
389
390	/* The caller has printed "irq 13" for the npx_irq13 case. */
391	if (!npx_irq13) {
392		printf("npx%d: ", dvp->id_unit);
393		if (npx_ex16)
394			printf("INT 16 interface\n");
395#if defined(MATH_EMULATE) || defined(GPL_MATH_EMULATE)
396		else if (npx_exists) {
397			printf("error reporting broken; using 387 emulator\n");
398			hw_float = npx_exists = 0;
399		} else
400			printf("387 emulator\n");
401#else
402		else
403			printf("no 387 emulator in kernel!\n");
404#endif
405	}
406	npxinit(__INITIAL_NPXCW__);
407
408#ifdef I586_CPU
409	if (cpu_class == CPUCLASS_586 && npx_ex16 &&
410	    timezero("i586_bzero()", i586_bzero) <
411	    timezero("bzero()", bzero) * 4 / 5) {
412		if (!(dvp->id_flags & NPX_DISABLE_I586_OPTIMIZED_BCOPY)) {
413			bcopy_vector = i586_bcopy;
414			ovbcopy_vector = i586_bcopy;
415		}
416		if (!(dvp->id_flags & NPX_DISABLE_I586_OPTIMIZED_BZERO))
417			bzero = i586_bzero;
418		if (!(dvp->id_flags & NPX_DISABLE_I586_OPTIMIZED_COPYIO)) {
419			copyin_vector = i586_copyin;
420			copyout_vector = i586_copyout;
421		}
422	}
423#endif
424
425	return (1);		/* XXX unused */
426}
427
428/*
429 * Initialize floating point unit.
430 */
431void
432npxinit(control)
433	u_short control;
434{
435	struct save87 dummy;
436
437	if (!npx_exists)
438		return;
439	/*
440	 * fninit has the same h/w bugs as fnsave.  Use the detoxified
441	 * fnsave to throw away any junk in the fpu.  npxsave() initializes
442	 * the fpu and sets npxproc = NULL as important side effects.
443	 */
444	npxsave(&dummy);
445	stop_emulating();
446	fldcw(&control);
447	if (curpcb != NULL)
448		fnsave(&curpcb->pcb_savefpu);
449	start_emulating();
450}
451
452/*
453 * Free coprocessor (if we have it).
454 */
455void
456npxexit(p)
457	struct proc *p;
458{
459
460	if (p == npxproc)
461		npxsave(&curpcb->pcb_savefpu);
462#ifdef NPX_DEBUG
463	if (npx_exists) {
464		u_int	masked_exceptions;
465
466		masked_exceptions = curpcb->pcb_savefpu.sv_env.en_cw
467				    & curpcb->pcb_savefpu.sv_env.en_sw & 0x7f;
468		/*
469		 * Log exceptions that would have trapped with the old
470		 * control word (overflow, divide by 0, and invalid operand).
471		 */
472		if (masked_exceptions & 0x0d)
473			log(LOG_ERR,
474	"pid %d (%s) exited with masked floating point exceptions 0x%02x\n",
475			    p->p_pid, p->p_comm, masked_exceptions);
476	}
477#endif
478}
479
480/*
481 * Preserve the FP status word, clear FP exceptions, then generate a SIGFPE.
482 *
483 * Clearing exceptions is necessary mainly to avoid IRQ13 bugs.  We now
484 * depend on longjmp() restoring a usable state.  Restoring the state
485 * or examining it might fail if we didn't clear exceptions.
486 *
487 * XXX there is no standard way to tell SIGFPE handlers about the error
488 * state.  The old interface:
489 *
490 *	void handler(int sig, int code, struct sigcontext *scp);
491 *
492 * is broken because it is non-ANSI and because the FP state is not in
493 * struct sigcontext.
494 *
495 * XXX the FP state is not preserved across signal handlers.  So signal
496 * handlers cannot afford to do FP unless they preserve the state or
497 * longjmp() out.  Both preserving the state and longjmp()ing may be
498 * destroyed by IRQ13 bugs.  Clearing FP exceptions is not an acceptable
499 * solution for signals other than SIGFPE.
500 */
501void
502npxintr(unit)
503	int unit;
504{
505	int code;
506	struct intrframe *frame;
507
508	if (npxproc == NULL || !npx_exists) {
509		printf("npxintr: npxproc = %p, curproc = %p, npx_exists = %d\n",
510		       npxproc, curproc, npx_exists);
511		panic("npxintr from nowhere");
512	}
513	if (npxproc != curproc) {
514		printf("npxintr: npxproc = %p, curproc = %p, npx_exists = %d\n",
515		       npxproc, curproc, npx_exists);
516		panic("npxintr from non-current process");
517	}
518
519	outb(0xf0, 0);
520	fnstsw(&curpcb->pcb_savefpu.sv_ex_sw);
521	fnclex();
522
523	/*
524	 * Pass exception to process.
525	 */
526	frame = (struct intrframe *)&unit;	/* XXX */
527	if ((ISPL(frame->if_cs) == SEL_UPL) || (frame->if_eflags & PSL_VM)) {
528		/*
529		 * Interrupt is essentially a trap, so we can afford to call
530		 * the SIGFPE handler (if any) as soon as the interrupt
531		 * returns.
532		 *
533		 * XXX little or nothing is gained from this, and plenty is
534		 * lost - the interrupt frame has to contain the trap frame
535		 * (this is otherwise only necessary for the rescheduling trap
536		 * in doreti, and the frame for that could easily be set up
537		 * just before it is used).
538		 */
539		curproc->p_md.md_regs = (struct trapframe *)&frame->if_es;
540#ifdef notyet
541		/*
542		 * Encode the appropriate code for detailed information on
543		 * this exception.
544		 */
545		code = XXX_ENCODE(curpcb->pcb_savefpu.sv_ex_sw);
546#else
547		code = 0;	/* XXX */
548#endif
549		trapsignal(curproc, SIGFPE, code);
550	} else {
551		/*
552		 * Nested interrupt.  These losers occur when:
553		 *	o an IRQ13 is bogusly generated at a bogus time, e.g.:
554		 *		o immediately after an fnsave or frstor of an
555		 *		  error state.
556		 *		o a couple of 386 instructions after
557		 *		  "fstpl _memvar" causes a stack overflow.
558		 *	  These are especially nasty when combined with a
559		 *	  trace trap.
560		 *	o an IRQ13 occurs at the same time as another higher-
561		 *	  priority interrupt.
562		 *
563		 * Treat them like a true async interrupt.
564		 */
565		psignal(curproc, SIGFPE);
566	}
567}
568
569/*
570 * Implement device not available (DNA) exception
571 *
572 * It would be better to switch FP context here (if curproc != npxproc)
573 * and not necessarily for every context switch, but it is too hard to
574 * access foreign pcb's.
575 */
576int
577npxdna()
578{
579	if (!npx_exists)
580		return (0);
581	if (npxproc != NULL) {
582		printf("npxdna: npxproc = %p, curproc = %p\n",
583		       npxproc, curproc);
584		panic("npxdna");
585	}
586	stop_emulating();
587	/*
588	 * Record new context early in case frstor causes an IRQ13.
589	 */
590	npxproc = curproc;
591	curpcb->pcb_savefpu.sv_ex_sw = 0;
592	/*
593	 * The following frstor may cause an IRQ13 when the state being
594	 * restored has a pending error.  The error will appear to have been
595	 * triggered by the current (npx) user instruction even when that
596	 * instruction is a no-wait instruction that should not trigger an
597	 * error (e.g., fnclex).  On at least one 486 system all of the
598	 * no-wait instructions are broken the same as frstor, so our
599	 * treatment does not amplify the breakage.  On at least one
600	 * 386/Cyrix 387 system, fnclex works correctly while frstor and
601	 * fnsave are broken, so our treatment breaks fnclex if it is the
602	 * first FPU instruction after a context switch.
603	 */
604	frstor(&curpcb->pcb_savefpu);
605
606	return (1);
607}
608
609/*
610 * Wrapper for fnsave instruction to handle h/w bugs.  If there is an error
611 * pending, then fnsave generates a bogus IRQ13 on some systems.  Force
612 * any IRQ13 to be handled immediately, and then ignore it.  This routine is
613 * often called at splhigh so it must not use many system services.  In
614 * particular, it's much easier to install a special handler than to
615 * guarantee that it's safe to use npxintr() and its supporting code.
616 */
617void
618npxsave(addr)
619	struct save87 *addr;
620{
621#ifdef SMP
622
623	stop_emulating();
624	fnsave(addr);
625	/* fnop(); */
626	start_emulating();
627	npxproc = NULL;
628
629#else /* SMP */
630
631	u_char	icu1_mask;
632	u_char	icu2_mask;
633	u_char	old_icu1_mask;
634	u_char	old_icu2_mask;
635	struct gate_descriptor	save_idt_npxintr;
636
637	disable_intr();
638	old_icu1_mask = inb(IO_ICU1 + 1);
639	old_icu2_mask = inb(IO_ICU2 + 1);
640	save_idt_npxintr = idt[npx_intrno];
641	outb(IO_ICU1 + 1, old_icu1_mask & ~(IRQ_SLAVE | npx0_imask));
642	outb(IO_ICU2 + 1, old_icu2_mask & ~(npx0_imask >> 8));
643	idt[npx_intrno] = npx_idt_probeintr;
644	enable_intr();
645	stop_emulating();
646	fnsave(addr);
647	fnop();
648	start_emulating();
649	npxproc = NULL;
650	disable_intr();
651	icu1_mask = inb(IO_ICU1 + 1);	/* masks may have changed */
652	icu2_mask = inb(IO_ICU2 + 1);
653	outb(IO_ICU1 + 1,
654	     (icu1_mask & ~npx0_imask) | (old_icu1_mask & npx0_imask));
655	outb(IO_ICU2 + 1,
656	     (icu2_mask & ~(npx0_imask >> 8))
657	     | (old_icu2_mask & (npx0_imask >> 8)));
658	idt[npx_intrno] = save_idt_npxintr;
659	enable_intr();		/* back to usual state */
660
661#endif /* SMP */
662}
663
664#ifdef I586_CPU
665static long
666timezero(funcname, func)
667	const char *funcname;
668	void (*func) __P((void *buf, size_t len));
669
670{
671	void *buf;
672#define	BUFSIZE		1000000
673	long usec;
674	struct timeval finish, start;
675
676	buf = malloc(BUFSIZE, M_TEMP, M_NOWAIT);
677	if (buf == NULL)
678		return (BUFSIZE);
679	microtime(&start);
680	(*func)(buf, BUFSIZE);
681	microtime(&finish);
682	usec = 1000000 * (finish.tv_sec - start.tv_sec) +
683	    finish.tv_usec - start.tv_usec;
684	if (usec <= 0)
685		usec = 1;
686	if (bootverbose)
687		printf("%s bandwidth = %ld bytes/sec\n",
688		    funcname, (long)(BUFSIZE * (int64_t)1000000 / usec));
689	free(buf, M_TEMP);
690	return (usec);
691}
692#endif /* I586_CPU */
693
694#endif /* NNPX > 0 */
695