fpu.c revision 335090
1/*-
2 * Copyright (c) 1990 William Jolitz.
3 * Copyright (c) 1991 The Regents of the University of California.
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 * 4. Neither the name of the University nor the names of its contributors
15 *    may be used to endorse or promote products derived from this software
16 *    without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 *	from: @(#)npx.c	7.2 (Berkeley) 5/12/91
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: stable/11/sys/amd64/amd64/fpu.c 335090 2018-06-13 21:10:33Z kib $");
35
36#include <sys/param.h>
37#include <sys/systm.h>
38#include <sys/bus.h>
39#include <sys/kernel.h>
40#include <sys/lock.h>
41#include <sys/malloc.h>
42#include <sys/module.h>
43#include <sys/mutex.h>
44#include <sys/mutex.h>
45#include <sys/proc.h>
46#include <sys/sysctl.h>
47#include <machine/bus.h>
48#include <sys/rman.h>
49#include <sys/signalvar.h>
50#include <vm/uma.h>
51
52#include <machine/cputypes.h>
53#include <machine/frame.h>
54#include <machine/intr_machdep.h>
55#include <machine/md_var.h>
56#include <machine/pcb.h>
57#include <machine/psl.h>
58#include <machine/resource.h>
59#include <machine/specialreg.h>
60#include <machine/segments.h>
61#include <machine/ucontext.h>
62
63/*
64 * Floating point support.
65 */
66
67#if defined(__GNUCLIKE_ASM) && !defined(lint)
68
69#define	fldcw(cw)		__asm __volatile("fldcw %0" : : "m" (cw))
70#define	fnclex()		__asm __volatile("fnclex")
71#define	fninit()		__asm __volatile("fninit")
72#define	fnstcw(addr)		__asm __volatile("fnstcw %0" : "=m" (*(addr)))
73#define	fnstsw(addr)		__asm __volatile("fnstsw %0" : "=am" (*(addr)))
74#define	fxrstor(addr)		__asm __volatile("fxrstor %0" : : "m" (*(addr)))
75#define	fxsave(addr)		__asm __volatile("fxsave %0" : "=m" (*(addr)))
76#define	ldmxcsr(csr)		__asm __volatile("ldmxcsr %0" : : "m" (csr))
77#define	stmxcsr(addr)		__asm __volatile("stmxcsr %0" : : "m" (*(addr)))
78
79static __inline void
80xrstor(char *addr, uint64_t mask)
81{
82	uint32_t low, hi;
83
84	low = mask;
85	hi = mask >> 32;
86	__asm __volatile("xrstor %0" : : "m" (*addr), "a" (low), "d" (hi));
87}
88
89static __inline void
90xsave(char *addr, uint64_t mask)
91{
92	uint32_t low, hi;
93
94	low = mask;
95	hi = mask >> 32;
96	__asm __volatile("xsave %0" : "=m" (*addr) : "a" (low), "d" (hi) :
97	    "memory");
98}
99
100#else	/* !(__GNUCLIKE_ASM && !lint) */
101
102void	fldcw(u_short cw);
103void	fnclex(void);
104void	fninit(void);
105void	fnstcw(caddr_t addr);
106void	fnstsw(caddr_t addr);
107void	fxsave(caddr_t addr);
108void	fxrstor(caddr_t addr);
109void	ldmxcsr(u_int csr);
110void	stmxcsr(u_int *csr);
111void	xrstor(char *addr, uint64_t mask);
112void	xsave(char *addr, uint64_t mask);
113
114#endif	/* __GNUCLIKE_ASM && !lint */
115
116#define	start_emulating()	load_cr0(rcr0() | CR0_TS)
117#define	stop_emulating()	clts()
118
119CTASSERT(sizeof(struct savefpu) == 512);
120CTASSERT(sizeof(struct xstate_hdr) == 64);
121CTASSERT(sizeof(struct savefpu_ymm) == 832);
122
123/*
124 * This requirement is to make it easier for asm code to calculate
125 * offset of the fpu save area from the pcb address. FPU save area
126 * must be 64-byte aligned.
127 */
128CTASSERT(sizeof(struct pcb) % XSAVE_AREA_ALIGN == 0);
129
130/*
131 * Ensure the copy of XCR0 saved in a core is contained in the padding
132 * area.
133 */
134CTASSERT(X86_XSTATE_XCR0_OFFSET >= offsetof(struct savefpu, sv_pad) &&
135    X86_XSTATE_XCR0_OFFSET + sizeof(uint64_t) <= sizeof(struct savefpu));
136
137static	void	fpu_clean_state(void);
138
139SYSCTL_INT(_hw, HW_FLOATINGPT, floatingpoint, CTLFLAG_RD,
140    SYSCTL_NULL_INT_PTR, 1, "Floating point instructions executed in hardware");
141
142int lazy_fpu_switch = 0;
143SYSCTL_INT(_hw, OID_AUTO, lazy_fpu_switch, CTLFLAG_RWTUN | CTLFLAG_NOFETCH,
144    &lazy_fpu_switch, 0,
145    "Lazily load FPU context after context switch");
146
147int use_xsave;			/* non-static for cpu_switch.S */
148uint64_t xsave_mask;		/* the same */
149static	uma_zone_t fpu_save_area_zone;
150static	struct savefpu *fpu_initialstate;
151
152struct xsave_area_elm_descr {
153	u_int	offset;
154	u_int	size;
155} *xsave_area_desc;
156
157void
158fpusave(void *addr)
159{
160
161	if (use_xsave)
162		xsave((char *)addr, xsave_mask);
163	else
164		fxsave((char *)addr);
165}
166
167void
168fpurestore(void *addr)
169{
170
171	if (use_xsave)
172		xrstor((char *)addr, xsave_mask);
173	else
174		fxrstor((char *)addr);
175}
176
177void
178fpususpend(void *addr)
179{
180	u_long cr0;
181
182	cr0 = rcr0();
183	stop_emulating();
184	fpusave(addr);
185	load_cr0(cr0);
186}
187
188void
189fpuresume(void *addr)
190{
191	u_long cr0;
192
193	cr0 = rcr0();
194	stop_emulating();
195	fninit();
196	if (use_xsave)
197		load_xcr(XCR0, xsave_mask);
198	fpurestore(addr);
199	load_cr0(cr0);
200}
201
202/*
203 * Enable XSAVE if supported and allowed by user.
204 * Calculate the xsave_mask.
205 */
206static void
207fpuinit_bsp1(void)
208{
209	u_int cp[4];
210	uint64_t xsave_mask_user;
211
212	TUNABLE_INT_FETCH("hw.lazy_fpu_switch", &lazy_fpu_switch);
213	if ((cpu_feature2 & CPUID2_XSAVE) != 0) {
214		use_xsave = 1;
215		TUNABLE_INT_FETCH("hw.use_xsave", &use_xsave);
216	}
217	if (!use_xsave)
218		return;
219
220	cpuid_count(0xd, 0x0, cp);
221	xsave_mask = XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
222	if ((cp[0] & xsave_mask) != xsave_mask)
223		panic("CPU0 does not support X87 or SSE: %x", cp[0]);
224	xsave_mask = ((uint64_t)cp[3] << 32) | cp[0];
225	xsave_mask_user = xsave_mask;
226	TUNABLE_ULONG_FETCH("hw.xsave_mask", &xsave_mask_user);
227	xsave_mask_user |= XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
228	xsave_mask &= xsave_mask_user;
229	if ((xsave_mask & XFEATURE_AVX512) != XFEATURE_AVX512)
230		xsave_mask &= ~XFEATURE_AVX512;
231	if ((xsave_mask & XFEATURE_MPX) != XFEATURE_MPX)
232		xsave_mask &= ~XFEATURE_MPX;
233
234	cpuid_count(0xd, 0x1, cp);
235	if ((cp[0] & CPUID_EXTSTATE_XSAVEOPT) != 0) {
236		/*
237		 * Patch the XSAVE instruction in the cpu_switch code
238		 * to XSAVEOPT.  We assume that XSAVE encoding used
239		 * REX byte, and set the bit 4 of the r/m byte.
240		 */
241		ctx_switch_xsave[3] |= 0x10;
242	}
243}
244
245/*
246 * Calculate the fpu save area size.
247 */
248static void
249fpuinit_bsp2(void)
250{
251	u_int cp[4];
252
253	if (use_xsave) {
254		cpuid_count(0xd, 0x0, cp);
255		cpu_max_ext_state_size = cp[1];
256
257		/*
258		 * Reload the cpu_feature2, since we enabled OSXSAVE.
259		 */
260		do_cpuid(1, cp);
261		cpu_feature2 = cp[2];
262	} else
263		cpu_max_ext_state_size = sizeof(struct savefpu);
264}
265
266/*
267 * Initialize the floating point unit.
268 */
269void
270fpuinit(void)
271{
272	register_t saveintr;
273	u_int mxcsr;
274	u_short control;
275
276	if (IS_BSP())
277		fpuinit_bsp1();
278
279	if (use_xsave) {
280		load_cr4(rcr4() | CR4_XSAVE);
281		load_xcr(XCR0, xsave_mask);
282	}
283
284	/*
285	 * XCR0 shall be set up before CPU can report the save area size.
286	 */
287	if (IS_BSP())
288		fpuinit_bsp2();
289
290	/*
291	 * It is too early for critical_enter() to work on AP.
292	 */
293	saveintr = intr_disable();
294	stop_emulating();
295	fninit();
296	control = __INITIAL_FPUCW__;
297	fldcw(control);
298	mxcsr = __INITIAL_MXCSR__;
299	ldmxcsr(mxcsr);
300	start_emulating();
301	intr_restore(saveintr);
302}
303
304/*
305 * On the boot CPU we generate a clean state that is used to
306 * initialize the floating point unit when it is first used by a
307 * process.
308 */
309static void
310fpuinitstate(void *arg __unused)
311{
312	register_t saveintr;
313	int cp[4], i, max_ext_n;
314
315	fpu_initialstate = malloc(cpu_max_ext_state_size, M_DEVBUF,
316	    M_WAITOK | M_ZERO);
317	saveintr = intr_disable();
318	stop_emulating();
319
320	fpusave(fpu_initialstate);
321	if (fpu_initialstate->sv_env.en_mxcsr_mask)
322		cpu_mxcsr_mask = fpu_initialstate->sv_env.en_mxcsr_mask;
323	else
324		cpu_mxcsr_mask = 0xFFBF;
325
326	/*
327	 * The fninit instruction does not modify XMM registers or x87
328	 * registers (MM/ST).  The fpusave call dumped the garbage
329	 * contained in the registers after reset to the initial state
330	 * saved.  Clear XMM and x87 registers file image to make the
331	 * startup program state and signal handler XMM/x87 register
332	 * content predictable.
333	 */
334	bzero(fpu_initialstate->sv_fp, sizeof(fpu_initialstate->sv_fp));
335	bzero(fpu_initialstate->sv_xmm, sizeof(fpu_initialstate->sv_xmm));
336
337	/*
338	 * Create a table describing the layout of the CPU Extended
339	 * Save Area.
340	 */
341	if (use_xsave) {
342		max_ext_n = flsl(xsave_mask);
343		xsave_area_desc = malloc(max_ext_n * sizeof(struct
344		    xsave_area_elm_descr), M_DEVBUF, M_WAITOK | M_ZERO);
345		/* x87 state */
346		xsave_area_desc[0].offset = 0;
347		xsave_area_desc[0].size = 160;
348		/* XMM */
349		xsave_area_desc[1].offset = 160;
350		xsave_area_desc[1].size = 288 - 160;
351
352		for (i = 2; i < max_ext_n; i++) {
353			cpuid_count(0xd, i, cp);
354			xsave_area_desc[i].offset = cp[1];
355			xsave_area_desc[i].size = cp[0];
356		}
357	}
358
359	fpu_save_area_zone = uma_zcreate("FPU_save_area",
360	    cpu_max_ext_state_size, NULL, NULL, NULL, NULL,
361	    XSAVE_AREA_ALIGN - 1, 0);
362
363	start_emulating();
364	intr_restore(saveintr);
365}
366/* EFIRT needs this to be initialized before we can enter our EFI environment */
367SYSINIT(fpuinitstate, SI_SUB_DRIVERS, SI_ORDER_FIRST, fpuinitstate, NULL);
368
369/*
370 * Free coprocessor (if we have it).
371 */
372void
373fpuexit(struct thread *td)
374{
375
376	critical_enter();
377	if (curthread == PCPU_GET(fpcurthread)) {
378		stop_emulating();
379		fpusave(curpcb->pcb_save);
380		start_emulating();
381		PCPU_SET(fpcurthread, NULL);
382	}
383	critical_exit();
384}
385
386int
387fpuformat(void)
388{
389
390	return (_MC_FPFMT_XMM);
391}
392
393/*
394 * The following mechanism is used to ensure that the FPE_... value
395 * that is passed as a trapcode to the signal handler of the user
396 * process does not have more than one bit set.
397 *
398 * Multiple bits may be set if the user process modifies the control
399 * word while a status word bit is already set.  While this is a sign
400 * of bad coding, we have no choise than to narrow them down to one
401 * bit, since we must not send a trapcode that is not exactly one of
402 * the FPE_ macros.
403 *
404 * The mechanism has a static table with 127 entries.  Each combination
405 * of the 7 FPU status word exception bits directly translates to a
406 * position in this table, where a single FPE_... value is stored.
407 * This FPE_... value stored there is considered the "most important"
408 * of the exception bits and will be sent as the signal code.  The
409 * precedence of the bits is based upon Intel Document "Numerical
410 * Applications", Chapter "Special Computational Situations".
411 *
412 * The macro to choose one of these values does these steps: 1) Throw
413 * away status word bits that cannot be masked.  2) Throw away the bits
414 * currently masked in the control word, assuming the user isn't
415 * interested in them anymore.  3) Reinsert status word bit 7 (stack
416 * fault) if it is set, which cannot be masked but must be presered.
417 * 4) Use the remaining bits to point into the trapcode table.
418 *
419 * The 6 maskable bits in order of their preference, as stated in the
420 * above referenced Intel manual:
421 * 1  Invalid operation (FP_X_INV)
422 * 1a   Stack underflow
423 * 1b   Stack overflow
424 * 1c   Operand of unsupported format
425 * 1d   SNaN operand.
426 * 2  QNaN operand (not an exception, irrelavant here)
427 * 3  Any other invalid-operation not mentioned above or zero divide
428 *      (FP_X_INV, FP_X_DZ)
429 * 4  Denormal operand (FP_X_DNML)
430 * 5  Numeric over/underflow (FP_X_OFL, FP_X_UFL)
431 * 6  Inexact result (FP_X_IMP)
432 */
433static char fpetable[128] = {
434	0,
435	FPE_FLTINV,	/*  1 - INV */
436	FPE_FLTUND,	/*  2 - DNML */
437	FPE_FLTINV,	/*  3 - INV | DNML */
438	FPE_FLTDIV,	/*  4 - DZ */
439	FPE_FLTINV,	/*  5 - INV | DZ */
440	FPE_FLTDIV,	/*  6 - DNML | DZ */
441	FPE_FLTINV,	/*  7 - INV | DNML | DZ */
442	FPE_FLTOVF,	/*  8 - OFL */
443	FPE_FLTINV,	/*  9 - INV | OFL */
444	FPE_FLTUND,	/*  A - DNML | OFL */
445	FPE_FLTINV,	/*  B - INV | DNML | OFL */
446	FPE_FLTDIV,	/*  C - DZ | OFL */
447	FPE_FLTINV,	/*  D - INV | DZ | OFL */
448	FPE_FLTDIV,	/*  E - DNML | DZ | OFL */
449	FPE_FLTINV,	/*  F - INV | DNML | DZ | OFL */
450	FPE_FLTUND,	/* 10 - UFL */
451	FPE_FLTINV,	/* 11 - INV | UFL */
452	FPE_FLTUND,	/* 12 - DNML | UFL */
453	FPE_FLTINV,	/* 13 - INV | DNML | UFL */
454	FPE_FLTDIV,	/* 14 - DZ | UFL */
455	FPE_FLTINV,	/* 15 - INV | DZ | UFL */
456	FPE_FLTDIV,	/* 16 - DNML | DZ | UFL */
457	FPE_FLTINV,	/* 17 - INV | DNML | DZ | UFL */
458	FPE_FLTOVF,	/* 18 - OFL | UFL */
459	FPE_FLTINV,	/* 19 - INV | OFL | UFL */
460	FPE_FLTUND,	/* 1A - DNML | OFL | UFL */
461	FPE_FLTINV,	/* 1B - INV | DNML | OFL | UFL */
462	FPE_FLTDIV,	/* 1C - DZ | OFL | UFL */
463	FPE_FLTINV,	/* 1D - INV | DZ | OFL | UFL */
464	FPE_FLTDIV,	/* 1E - DNML | DZ | OFL | UFL */
465	FPE_FLTINV,	/* 1F - INV | DNML | DZ | OFL | UFL */
466	FPE_FLTRES,	/* 20 - IMP */
467	FPE_FLTINV,	/* 21 - INV | IMP */
468	FPE_FLTUND,	/* 22 - DNML | IMP */
469	FPE_FLTINV,	/* 23 - INV | DNML | IMP */
470	FPE_FLTDIV,	/* 24 - DZ | IMP */
471	FPE_FLTINV,	/* 25 - INV | DZ | IMP */
472	FPE_FLTDIV,	/* 26 - DNML | DZ | IMP */
473	FPE_FLTINV,	/* 27 - INV | DNML | DZ | IMP */
474	FPE_FLTOVF,	/* 28 - OFL | IMP */
475	FPE_FLTINV,	/* 29 - INV | OFL | IMP */
476	FPE_FLTUND,	/* 2A - DNML | OFL | IMP */
477	FPE_FLTINV,	/* 2B - INV | DNML | OFL | IMP */
478	FPE_FLTDIV,	/* 2C - DZ | OFL | IMP */
479	FPE_FLTINV,	/* 2D - INV | DZ | OFL | IMP */
480	FPE_FLTDIV,	/* 2E - DNML | DZ | OFL | IMP */
481	FPE_FLTINV,	/* 2F - INV | DNML | DZ | OFL | IMP */
482	FPE_FLTUND,	/* 30 - UFL | IMP */
483	FPE_FLTINV,	/* 31 - INV | UFL | IMP */
484	FPE_FLTUND,	/* 32 - DNML | UFL | IMP */
485	FPE_FLTINV,	/* 33 - INV | DNML | UFL | IMP */
486	FPE_FLTDIV,	/* 34 - DZ | UFL | IMP */
487	FPE_FLTINV,	/* 35 - INV | DZ | UFL | IMP */
488	FPE_FLTDIV,	/* 36 - DNML | DZ | UFL | IMP */
489	FPE_FLTINV,	/* 37 - INV | DNML | DZ | UFL | IMP */
490	FPE_FLTOVF,	/* 38 - OFL | UFL | IMP */
491	FPE_FLTINV,	/* 39 - INV | OFL | UFL | IMP */
492	FPE_FLTUND,	/* 3A - DNML | OFL | UFL | IMP */
493	FPE_FLTINV,	/* 3B - INV | DNML | OFL | UFL | IMP */
494	FPE_FLTDIV,	/* 3C - DZ | OFL | UFL | IMP */
495	FPE_FLTINV,	/* 3D - INV | DZ | OFL | UFL | IMP */
496	FPE_FLTDIV,	/* 3E - DNML | DZ | OFL | UFL | IMP */
497	FPE_FLTINV,	/* 3F - INV | DNML | DZ | OFL | UFL | IMP */
498	FPE_FLTSUB,	/* 40 - STK */
499	FPE_FLTSUB,	/* 41 - INV | STK */
500	FPE_FLTUND,	/* 42 - DNML | STK */
501	FPE_FLTSUB,	/* 43 - INV | DNML | STK */
502	FPE_FLTDIV,	/* 44 - DZ | STK */
503	FPE_FLTSUB,	/* 45 - INV | DZ | STK */
504	FPE_FLTDIV,	/* 46 - DNML | DZ | STK */
505	FPE_FLTSUB,	/* 47 - INV | DNML | DZ | STK */
506	FPE_FLTOVF,	/* 48 - OFL | STK */
507	FPE_FLTSUB,	/* 49 - INV | OFL | STK */
508	FPE_FLTUND,	/* 4A - DNML | OFL | STK */
509	FPE_FLTSUB,	/* 4B - INV | DNML | OFL | STK */
510	FPE_FLTDIV,	/* 4C - DZ | OFL | STK */
511	FPE_FLTSUB,	/* 4D - INV | DZ | OFL | STK */
512	FPE_FLTDIV,	/* 4E - DNML | DZ | OFL | STK */
513	FPE_FLTSUB,	/* 4F - INV | DNML | DZ | OFL | STK */
514	FPE_FLTUND,	/* 50 - UFL | STK */
515	FPE_FLTSUB,	/* 51 - INV | UFL | STK */
516	FPE_FLTUND,	/* 52 - DNML | UFL | STK */
517	FPE_FLTSUB,	/* 53 - INV | DNML | UFL | STK */
518	FPE_FLTDIV,	/* 54 - DZ | UFL | STK */
519	FPE_FLTSUB,	/* 55 - INV | DZ | UFL | STK */
520	FPE_FLTDIV,	/* 56 - DNML | DZ | UFL | STK */
521	FPE_FLTSUB,	/* 57 - INV | DNML | DZ | UFL | STK */
522	FPE_FLTOVF,	/* 58 - OFL | UFL | STK */
523	FPE_FLTSUB,	/* 59 - INV | OFL | UFL | STK */
524	FPE_FLTUND,	/* 5A - DNML | OFL | UFL | STK */
525	FPE_FLTSUB,	/* 5B - INV | DNML | OFL | UFL | STK */
526	FPE_FLTDIV,	/* 5C - DZ | OFL | UFL | STK */
527	FPE_FLTSUB,	/* 5D - INV | DZ | OFL | UFL | STK */
528	FPE_FLTDIV,	/* 5E - DNML | DZ | OFL | UFL | STK */
529	FPE_FLTSUB,	/* 5F - INV | DNML | DZ | OFL | UFL | STK */
530	FPE_FLTRES,	/* 60 - IMP | STK */
531	FPE_FLTSUB,	/* 61 - INV | IMP | STK */
532	FPE_FLTUND,	/* 62 - DNML | IMP | STK */
533	FPE_FLTSUB,	/* 63 - INV | DNML | IMP | STK */
534	FPE_FLTDIV,	/* 64 - DZ | IMP | STK */
535	FPE_FLTSUB,	/* 65 - INV | DZ | IMP | STK */
536	FPE_FLTDIV,	/* 66 - DNML | DZ | IMP | STK */
537	FPE_FLTSUB,	/* 67 - INV | DNML | DZ | IMP | STK */
538	FPE_FLTOVF,	/* 68 - OFL | IMP | STK */
539	FPE_FLTSUB,	/* 69 - INV | OFL | IMP | STK */
540	FPE_FLTUND,	/* 6A - DNML | OFL | IMP | STK */
541	FPE_FLTSUB,	/* 6B - INV | DNML | OFL | IMP | STK */
542	FPE_FLTDIV,	/* 6C - DZ | OFL | IMP | STK */
543	FPE_FLTSUB,	/* 6D - INV | DZ | OFL | IMP | STK */
544	FPE_FLTDIV,	/* 6E - DNML | DZ | OFL | IMP | STK */
545	FPE_FLTSUB,	/* 6F - INV | DNML | DZ | OFL | IMP | STK */
546	FPE_FLTUND,	/* 70 - UFL | IMP | STK */
547	FPE_FLTSUB,	/* 71 - INV | UFL | IMP | STK */
548	FPE_FLTUND,	/* 72 - DNML | UFL | IMP | STK */
549	FPE_FLTSUB,	/* 73 - INV | DNML | UFL | IMP | STK */
550	FPE_FLTDIV,	/* 74 - DZ | UFL | IMP | STK */
551	FPE_FLTSUB,	/* 75 - INV | DZ | UFL | IMP | STK */
552	FPE_FLTDIV,	/* 76 - DNML | DZ | UFL | IMP | STK */
553	FPE_FLTSUB,	/* 77 - INV | DNML | DZ | UFL | IMP | STK */
554	FPE_FLTOVF,	/* 78 - OFL | UFL | IMP | STK */
555	FPE_FLTSUB,	/* 79 - INV | OFL | UFL | IMP | STK */
556	FPE_FLTUND,	/* 7A - DNML | OFL | UFL | IMP | STK */
557	FPE_FLTSUB,	/* 7B - INV | DNML | OFL | UFL | IMP | STK */
558	FPE_FLTDIV,	/* 7C - DZ | OFL | UFL | IMP | STK */
559	FPE_FLTSUB,	/* 7D - INV | DZ | OFL | UFL | IMP | STK */
560	FPE_FLTDIV,	/* 7E - DNML | DZ | OFL | UFL | IMP | STK */
561	FPE_FLTSUB,	/* 7F - INV | DNML | DZ | OFL | UFL | IMP | STK */
562};
563
564/*
565 * Read the FP status and control words, then generate si_code value
566 * for SIGFPE.  The error code chosen will be one of the
567 * FPE_... macros.  It will be sent as the second argument to old
568 * BSD-style signal handlers and as "siginfo_t->si_code" (second
569 * argument) to SA_SIGINFO signal handlers.
570 *
571 * Some time ago, we cleared the x87 exceptions with FNCLEX there.
572 * Clearing exceptions was necessary mainly to avoid IRQ13 bugs.  The
573 * usermode code which understands the FPU hardware enough to enable
574 * the exceptions, can also handle clearing the exception state in the
575 * handler.  The only consequence of not clearing the exception is the
576 * rethrow of the SIGFPE on return from the signal handler and
577 * reexecution of the corresponding instruction.
578 *
579 * For XMM traps, the exceptions were never cleared.
580 */
581int
582fputrap_x87(void)
583{
584	struct savefpu *pcb_save;
585	u_short control, status;
586
587	critical_enter();
588
589	/*
590	 * Interrupt handling (for another interrupt) may have pushed the
591	 * state to memory.  Fetch the relevant parts of the state from
592	 * wherever they are.
593	 */
594	if (PCPU_GET(fpcurthread) != curthread) {
595		pcb_save = curpcb->pcb_save;
596		control = pcb_save->sv_env.en_cw;
597		status = pcb_save->sv_env.en_sw;
598	} else {
599		fnstcw(&control);
600		fnstsw(&status);
601	}
602
603	critical_exit();
604	return (fpetable[status & ((~control & 0x3f) | 0x40)]);
605}
606
607int
608fputrap_sse(void)
609{
610	u_int mxcsr;
611
612	critical_enter();
613	if (PCPU_GET(fpcurthread) != curthread)
614		mxcsr = curpcb->pcb_save->sv_env.en_mxcsr;
615	else
616		stmxcsr(&mxcsr);
617	critical_exit();
618	return (fpetable[(mxcsr & (~mxcsr >> 7)) & 0x3f]);
619}
620
621static void
622restore_fpu_curthread(struct thread *td)
623{
624	struct pcb *pcb;
625
626	/*
627	 * Record new context early in case frstor causes a trap.
628	 */
629	PCPU_SET(fpcurthread, td);
630
631	stop_emulating();
632	fpu_clean_state();
633	pcb = td->td_pcb;
634
635	if ((pcb->pcb_flags & PCB_FPUINITDONE) == 0) {
636		/*
637		 * This is the first time this thread has used the FPU or
638		 * the PCB doesn't contain a clean FPU state.  Explicitly
639		 * load an initial state.
640		 *
641		 * We prefer to restore the state from the actual save
642		 * area in PCB instead of directly loading from
643		 * fpu_initialstate, to ignite the XSAVEOPT
644		 * tracking engine.
645		 */
646		bcopy(fpu_initialstate, pcb->pcb_save,
647		    cpu_max_ext_state_size);
648		fpurestore(pcb->pcb_save);
649		if (pcb->pcb_initial_fpucw != __INITIAL_FPUCW__)
650			fldcw(pcb->pcb_initial_fpucw);
651		if (PCB_USER_FPU(pcb))
652			set_pcb_flags(pcb, PCB_FPUINITDONE |
653			    PCB_USERFPUINITDONE);
654		else
655			set_pcb_flags(pcb, PCB_FPUINITDONE);
656	} else
657		fpurestore(pcb->pcb_save);
658}
659
660/*
661 * Device Not Available (DNA, #NM) exception handler.
662 *
663 * It would be better to switch FP context here (if curthread !=
664 * fpcurthread) and not necessarily for every context switch, but it
665 * is too hard to access foreign pcb's.
666 */
667void
668fpudna(void)
669{
670	struct thread *td;
671
672	td = curthread;
673	/*
674	 * This handler is entered with interrupts enabled, so context
675	 * switches may occur before critical_enter() is executed.  If
676	 * a context switch occurs, then when we regain control, our
677	 * state will have been completely restored.  The CPU may
678	 * change underneath us, but the only part of our context that
679	 * lives in the CPU is CR0.TS and that will be "restored" by
680	 * setting it on the new CPU.
681	 */
682	critical_enter();
683
684	KASSERT((curpcb->pcb_flags & PCB_FPUNOSAVE) == 0,
685	    ("fpudna while in fpu_kern_enter(FPU_KERN_NOCTX)"));
686	if (PCPU_GET(fpcurthread) == td) {
687		printf("fpudna: fpcurthread == curthread\n");
688		stop_emulating();
689		critical_exit();
690		return;
691	}
692	if (PCPU_GET(fpcurthread) != NULL) {
693		panic("fpudna: fpcurthread = %p (%d), curthread = %p (%d)\n",
694		    PCPU_GET(fpcurthread), PCPU_GET(fpcurthread)->td_tid,
695		    td, td->td_tid);
696	}
697	restore_fpu_curthread(td);
698	critical_exit();
699}
700
701void fpu_activate_sw(struct thread *td); /* Called from the context switch */
702void
703fpu_activate_sw(struct thread *td)
704{
705
706	if (lazy_fpu_switch || (td->td_pflags & TDP_KTHREAD) != 0 ||
707	    !PCB_USER_FPU(td->td_pcb)) {
708		PCPU_SET(fpcurthread, NULL);
709		start_emulating();
710	} else if (PCPU_GET(fpcurthread) != td) {
711		restore_fpu_curthread(td);
712	}
713}
714
715void
716fpudrop(void)
717{
718	struct thread *td;
719
720	td = PCPU_GET(fpcurthread);
721	KASSERT(td == curthread, ("fpudrop: fpcurthread != curthread"));
722	CRITICAL_ASSERT(td);
723	PCPU_SET(fpcurthread, NULL);
724	clear_pcb_flags(td->td_pcb, PCB_FPUINITDONE);
725	start_emulating();
726}
727
728/*
729 * Get the user state of the FPU into pcb->pcb_user_save without
730 * dropping ownership (if possible).  It returns the FPU ownership
731 * status.
732 */
733int
734fpugetregs(struct thread *td)
735{
736	struct pcb *pcb;
737	uint64_t *xstate_bv, bit;
738	char *sa;
739	int max_ext_n, i, owned;
740
741	pcb = td->td_pcb;
742	if ((pcb->pcb_flags & PCB_USERFPUINITDONE) == 0) {
743		bcopy(fpu_initialstate, get_pcb_user_save_pcb(pcb),
744		    cpu_max_ext_state_size);
745		get_pcb_user_save_pcb(pcb)->sv_env.en_cw =
746		    pcb->pcb_initial_fpucw;
747		fpuuserinited(td);
748		return (_MC_FPOWNED_PCB);
749	}
750	critical_enter();
751	if (td == PCPU_GET(fpcurthread) && PCB_USER_FPU(pcb)) {
752		fpusave(get_pcb_user_save_pcb(pcb));
753		owned = _MC_FPOWNED_FPU;
754	} else {
755		owned = _MC_FPOWNED_PCB;
756	}
757	critical_exit();
758	if (use_xsave) {
759		/*
760		 * Handle partially saved state.
761		 */
762		sa = (char *)get_pcb_user_save_pcb(pcb);
763		xstate_bv = (uint64_t *)(sa + sizeof(struct savefpu) +
764		    offsetof(struct xstate_hdr, xstate_bv));
765		max_ext_n = flsl(xsave_mask);
766		for (i = 0; i < max_ext_n; i++) {
767			bit = 1ULL << i;
768			if ((xsave_mask & bit) == 0 || (*xstate_bv & bit) != 0)
769				continue;
770			bcopy((char *)fpu_initialstate +
771			    xsave_area_desc[i].offset,
772			    sa + xsave_area_desc[i].offset,
773			    xsave_area_desc[i].size);
774			*xstate_bv |= bit;
775		}
776	}
777	return (owned);
778}
779
780void
781fpuuserinited(struct thread *td)
782{
783	struct pcb *pcb;
784
785	pcb = td->td_pcb;
786	if (PCB_USER_FPU(pcb))
787		set_pcb_flags(pcb,
788		    PCB_FPUINITDONE | PCB_USERFPUINITDONE);
789	else
790		set_pcb_flags(pcb, PCB_FPUINITDONE);
791}
792
793int
794fpusetxstate(struct thread *td, char *xfpustate, size_t xfpustate_size)
795{
796	struct xstate_hdr *hdr, *ehdr;
797	size_t len, max_len;
798	uint64_t bv;
799
800	/* XXXKIB should we clear all extended state in xstate_bv instead ? */
801	if (xfpustate == NULL)
802		return (0);
803	if (!use_xsave)
804		return (EOPNOTSUPP);
805
806	len = xfpustate_size;
807	if (len < sizeof(struct xstate_hdr))
808		return (EINVAL);
809	max_len = cpu_max_ext_state_size - sizeof(struct savefpu);
810	if (len > max_len)
811		return (EINVAL);
812
813	ehdr = (struct xstate_hdr *)xfpustate;
814	bv = ehdr->xstate_bv;
815
816	/*
817	 * Avoid #gp.
818	 */
819	if (bv & ~xsave_mask)
820		return (EINVAL);
821
822	hdr = (struct xstate_hdr *)(get_pcb_user_save_td(td) + 1);
823
824	hdr->xstate_bv = bv;
825	bcopy(xfpustate + sizeof(struct xstate_hdr),
826	    (char *)(hdr + 1), len - sizeof(struct xstate_hdr));
827
828	return (0);
829}
830
831/*
832 * Set the state of the FPU.
833 */
834int
835fpusetregs(struct thread *td, struct savefpu *addr, char *xfpustate,
836    size_t xfpustate_size)
837{
838	struct pcb *pcb;
839	int error;
840
841	addr->sv_env.en_mxcsr &= cpu_mxcsr_mask;
842	pcb = td->td_pcb;
843	critical_enter();
844	if (td == PCPU_GET(fpcurthread) && PCB_USER_FPU(pcb)) {
845		error = fpusetxstate(td, xfpustate, xfpustate_size);
846		if (error != 0) {
847			critical_exit();
848			return (error);
849		}
850		bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr));
851		fpurestore(get_pcb_user_save_td(td));
852		critical_exit();
853		set_pcb_flags(pcb, PCB_FPUINITDONE | PCB_USERFPUINITDONE);
854	} else {
855		critical_exit();
856		error = fpusetxstate(td, xfpustate, xfpustate_size);
857		if (error != 0)
858			return (error);
859		bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr));
860		fpuuserinited(td);
861	}
862	return (0);
863}
864
865/*
866 * On AuthenticAMD processors, the fxrstor instruction does not restore
867 * the x87's stored last instruction pointer, last data pointer, and last
868 * opcode values, except in the rare case in which the exception summary
869 * (ES) bit in the x87 status word is set to 1.
870 *
871 * In order to avoid leaking this information across processes, we clean
872 * these values by performing a dummy load before executing fxrstor().
873 */
874static void
875fpu_clean_state(void)
876{
877	static float dummy_variable = 0.0;
878	u_short status;
879
880	/*
881	 * Clear the ES bit in the x87 status word if it is currently
882	 * set, in order to avoid causing a fault in the upcoming load.
883	 */
884	fnstsw(&status);
885	if (status & 0x80)
886		fnclex();
887
888	/*
889	 * Load the dummy variable into the x87 stack.  This mangles
890	 * the x87 stack, but we don't care since we're about to call
891	 * fxrstor() anyway.
892	 */
893	__asm __volatile("ffree %%st(7); flds %0" : : "m" (dummy_variable));
894}
895
896/*
897 * This really sucks.  We want the acpi version only, but it requires
898 * the isa_if.h file in order to get the definitions.
899 */
900#include "opt_isa.h"
901#ifdef DEV_ISA
902#include <isa/isavar.h>
903/*
904 * This sucks up the legacy ISA support assignments from PNPBIOS/ACPI.
905 */
906static struct isa_pnp_id fpupnp_ids[] = {
907	{ 0x040cd041, "Legacy ISA coprocessor support" }, /* PNP0C04 */
908	{ 0 }
909};
910
911static int
912fpupnp_probe(device_t dev)
913{
914	int result;
915
916	result = ISA_PNP_PROBE(device_get_parent(dev), dev, fpupnp_ids);
917	if (result <= 0)
918		device_quiet(dev);
919	return (result);
920}
921
922static int
923fpupnp_attach(device_t dev)
924{
925
926	return (0);
927}
928
929static device_method_t fpupnp_methods[] = {
930	/* Device interface */
931	DEVMETHOD(device_probe,		fpupnp_probe),
932	DEVMETHOD(device_attach,	fpupnp_attach),
933	DEVMETHOD(device_detach,	bus_generic_detach),
934	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
935	DEVMETHOD(device_suspend,	bus_generic_suspend),
936	DEVMETHOD(device_resume,	bus_generic_resume),
937
938	{ 0, 0 }
939};
940
941static driver_t fpupnp_driver = {
942	"fpupnp",
943	fpupnp_methods,
944	1,			/* no softc */
945};
946
947static devclass_t fpupnp_devclass;
948
949DRIVER_MODULE(fpupnp, acpi, fpupnp_driver, fpupnp_devclass, 0, 0);
950#endif	/* DEV_ISA */
951
952static MALLOC_DEFINE(M_FPUKERN_CTX, "fpukern_ctx",
953    "Kernel contexts for FPU state");
954
955#define	FPU_KERN_CTX_FPUINITDONE 0x01
956#define	FPU_KERN_CTX_DUMMY	 0x02	/* avoided save for the kern thread */
957#define	FPU_KERN_CTX_INUSE	 0x04
958
959struct fpu_kern_ctx {
960	struct savefpu *prev;
961	uint32_t flags;
962	char hwstate1[];
963};
964
965struct fpu_kern_ctx *
966fpu_kern_alloc_ctx(u_int flags)
967{
968	struct fpu_kern_ctx *res;
969	size_t sz;
970
971	sz = sizeof(struct fpu_kern_ctx) + XSAVE_AREA_ALIGN +
972	    cpu_max_ext_state_size;
973	res = malloc(sz, M_FPUKERN_CTX, ((flags & FPU_KERN_NOWAIT) ?
974	    M_NOWAIT : M_WAITOK) | M_ZERO);
975	return (res);
976}
977
978void
979fpu_kern_free_ctx(struct fpu_kern_ctx *ctx)
980{
981
982	KASSERT((ctx->flags & FPU_KERN_CTX_INUSE) == 0, ("free'ing inuse ctx"));
983	/* XXXKIB clear the memory ? */
984	free(ctx, M_FPUKERN_CTX);
985}
986
987static struct savefpu *
988fpu_kern_ctx_savefpu(struct fpu_kern_ctx *ctx)
989{
990	vm_offset_t p;
991
992	p = (vm_offset_t)&ctx->hwstate1;
993	p = roundup2(p, XSAVE_AREA_ALIGN);
994	return ((struct savefpu *)p);
995}
996
997int
998fpu_kern_enter(struct thread *td, struct fpu_kern_ctx *ctx, u_int flags)
999{
1000	struct pcb *pcb;
1001
1002	pcb = td->td_pcb;
1003	KASSERT((flags & FPU_KERN_NOCTX) != 0 || ctx != NULL,
1004	    ("ctx is required when !FPU_KERN_NOCTX"));
1005	KASSERT(ctx == NULL || (ctx->flags & FPU_KERN_CTX_INUSE) == 0,
1006	    ("using inuse ctx"));
1007	KASSERT((pcb->pcb_flags & PCB_FPUNOSAVE) == 0,
1008	    ("recursive fpu_kern_enter while in PCB_FPUNOSAVE state"));
1009
1010	if ((flags & FPU_KERN_NOCTX) != 0) {
1011		critical_enter();
1012		stop_emulating();
1013		if (curthread == PCPU_GET(fpcurthread)) {
1014			fpusave(curpcb->pcb_save);
1015			PCPU_SET(fpcurthread, NULL);
1016		} else {
1017			KASSERT(PCPU_GET(fpcurthread) == NULL,
1018			    ("invalid fpcurthread"));
1019		}
1020
1021		/*
1022		 * This breaks XSAVEOPT tracker, but
1023		 * PCB_FPUNOSAVE state is supposed to never need to
1024		 * save FPU context at all.
1025		 */
1026		fpurestore(fpu_initialstate);
1027		set_pcb_flags(pcb, PCB_KERNFPU | PCB_FPUNOSAVE |
1028		    PCB_FPUINITDONE);
1029		return (0);
1030	}
1031	if ((flags & FPU_KERN_KTHR) != 0 && is_fpu_kern_thread(0)) {
1032		ctx->flags = FPU_KERN_CTX_DUMMY | FPU_KERN_CTX_INUSE;
1033		return (0);
1034	}
1035	KASSERT(!PCB_USER_FPU(pcb) || pcb->pcb_save ==
1036	    get_pcb_user_save_pcb(pcb), ("mangled pcb_save"));
1037	ctx->flags = FPU_KERN_CTX_INUSE;
1038	if ((pcb->pcb_flags & PCB_FPUINITDONE) != 0)
1039		ctx->flags |= FPU_KERN_CTX_FPUINITDONE;
1040	fpuexit(td);
1041	ctx->prev = pcb->pcb_save;
1042	pcb->pcb_save = fpu_kern_ctx_savefpu(ctx);
1043	set_pcb_flags(pcb, PCB_KERNFPU);
1044	clear_pcb_flags(pcb, PCB_FPUINITDONE);
1045	return (0);
1046}
1047
1048int
1049fpu_kern_leave(struct thread *td, struct fpu_kern_ctx *ctx)
1050{
1051	struct pcb *pcb;
1052
1053	pcb = td->td_pcb;
1054
1055	if ((pcb->pcb_flags & PCB_FPUNOSAVE) != 0) {
1056		KASSERT(ctx == NULL, ("non-null ctx after FPU_KERN_NOCTX"));
1057		KASSERT(PCPU_GET(fpcurthread) == NULL,
1058		    ("non-NULL fpcurthread for PCB_FPUNOSAVE"));
1059		CRITICAL_ASSERT(td);
1060
1061		clear_pcb_flags(pcb,  PCB_FPUNOSAVE | PCB_FPUINITDONE);
1062		start_emulating();
1063		critical_exit();
1064	} else {
1065		KASSERT((ctx->flags & FPU_KERN_CTX_INUSE) != 0,
1066		    ("leaving not inuse ctx"));
1067		ctx->flags &= ~FPU_KERN_CTX_INUSE;
1068
1069		if (is_fpu_kern_thread(0) &&
1070		    (ctx->flags & FPU_KERN_CTX_DUMMY) != 0)
1071			return (0);
1072		KASSERT((ctx->flags & FPU_KERN_CTX_DUMMY) == 0,
1073		    ("dummy ctx"));
1074		critical_enter();
1075		if (curthread == PCPU_GET(fpcurthread))
1076			fpudrop();
1077		critical_exit();
1078		pcb->pcb_save = ctx->prev;
1079	}
1080
1081	if (pcb->pcb_save == get_pcb_user_save_pcb(pcb)) {
1082		if ((pcb->pcb_flags & PCB_USERFPUINITDONE) != 0) {
1083			set_pcb_flags(pcb, PCB_FPUINITDONE);
1084			clear_pcb_flags(pcb, PCB_KERNFPU);
1085		} else
1086			clear_pcb_flags(pcb, PCB_FPUINITDONE | PCB_KERNFPU);
1087	} else {
1088		if ((ctx->flags & FPU_KERN_CTX_FPUINITDONE) != 0)
1089			set_pcb_flags(pcb, PCB_FPUINITDONE);
1090		else
1091			clear_pcb_flags(pcb, PCB_FPUINITDONE);
1092		KASSERT(!PCB_USER_FPU(pcb), ("unpaired fpu_kern_leave"));
1093	}
1094	return (0);
1095}
1096
1097int
1098fpu_kern_thread(u_int flags)
1099{
1100
1101	KASSERT((curthread->td_pflags & TDP_KTHREAD) != 0,
1102	    ("Only kthread may use fpu_kern_thread"));
1103	KASSERT(curpcb->pcb_save == get_pcb_user_save_pcb(curpcb),
1104	    ("mangled pcb_save"));
1105	KASSERT(PCB_USER_FPU(curpcb), ("recursive call"));
1106
1107	set_pcb_flags(curpcb, PCB_KERNFPU);
1108	return (0);
1109}
1110
1111int
1112is_fpu_kern_thread(u_int flags)
1113{
1114
1115	if ((curthread->td_pflags & TDP_KTHREAD) == 0)
1116		return (0);
1117	return ((curpcb->pcb_flags & PCB_KERNFPU) != 0);
1118}
1119
1120/*
1121 * FPU save area alloc/free/init utility routines
1122 */
1123struct savefpu *
1124fpu_save_area_alloc(void)
1125{
1126
1127	return (uma_zalloc(fpu_save_area_zone, 0));
1128}
1129
1130void
1131fpu_save_area_free(struct savefpu *fsa)
1132{
1133
1134	uma_zfree(fpu_save_area_zone, fsa);
1135}
1136
1137void
1138fpu_save_area_reset(struct savefpu *fsa)
1139{
1140
1141	bcopy(fpu_initialstate, fsa, cpu_max_ext_state_size);
1142}
1143