fpu.c revision 330897
1/*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1990 William Jolitz.
5 * Copyright (c) 1991 The Regents of the University of California.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	from: @(#)npx.c	7.2 (Berkeley) 5/12/91
33 */
34
35#include <sys/cdefs.h>
36__FBSDID("$FreeBSD: stable/11/sys/amd64/amd64/fpu.c 330897 2018-03-14 03:19:51Z eadler $");
37
38#include <sys/param.h>
39#include <sys/systm.h>
40#include <sys/bus.h>
41#include <sys/kernel.h>
42#include <sys/lock.h>
43#include <sys/malloc.h>
44#include <sys/module.h>
45#include <sys/mutex.h>
46#include <sys/mutex.h>
47#include <sys/proc.h>
48#include <sys/sysctl.h>
49#include <machine/bus.h>
50#include <sys/rman.h>
51#include <sys/signalvar.h>
52#include <vm/uma.h>
53
54#include <machine/cputypes.h>
55#include <machine/frame.h>
56#include <machine/intr_machdep.h>
57#include <machine/md_var.h>
58#include <machine/pcb.h>
59#include <machine/psl.h>
60#include <machine/resource.h>
61#include <machine/specialreg.h>
62#include <machine/segments.h>
63#include <machine/ucontext.h>
64
65/*
66 * Floating point support.
67 */
68
69#if defined(__GNUCLIKE_ASM) && !defined(lint)
70
71#define	fldcw(cw)		__asm __volatile("fldcw %0" : : "m" (cw))
72#define	fnclex()		__asm __volatile("fnclex")
73#define	fninit()		__asm __volatile("fninit")
74#define	fnstcw(addr)		__asm __volatile("fnstcw %0" : "=m" (*(addr)))
75#define	fnstsw(addr)		__asm __volatile("fnstsw %0" : "=am" (*(addr)))
76#define	fxrstor(addr)		__asm __volatile("fxrstor %0" : : "m" (*(addr)))
77#define	fxsave(addr)		__asm __volatile("fxsave %0" : "=m" (*(addr)))
78#define	ldmxcsr(csr)		__asm __volatile("ldmxcsr %0" : : "m" (csr))
79#define	stmxcsr(addr)		__asm __volatile("stmxcsr %0" : : "m" (*(addr)))
80
81static __inline void
82xrstor(char *addr, uint64_t mask)
83{
84	uint32_t low, hi;
85
86	low = mask;
87	hi = mask >> 32;
88	__asm __volatile("xrstor %0" : : "m" (*addr), "a" (low), "d" (hi));
89}
90
91static __inline void
92xsave(char *addr, uint64_t mask)
93{
94	uint32_t low, hi;
95
96	low = mask;
97	hi = mask >> 32;
98	__asm __volatile("xsave %0" : "=m" (*addr) : "a" (low), "d" (hi) :
99	    "memory");
100}
101
102#else	/* !(__GNUCLIKE_ASM && !lint) */
103
104void	fldcw(u_short cw);
105void	fnclex(void);
106void	fninit(void);
107void	fnstcw(caddr_t addr);
108void	fnstsw(caddr_t addr);
109void	fxsave(caddr_t addr);
110void	fxrstor(caddr_t addr);
111void	ldmxcsr(u_int csr);
112void	stmxcsr(u_int *csr);
113void	xrstor(char *addr, uint64_t mask);
114void	xsave(char *addr, uint64_t mask);
115
116#endif	/* __GNUCLIKE_ASM && !lint */
117
118#define	start_emulating()	load_cr0(rcr0() | CR0_TS)
119#define	stop_emulating()	clts()
120
121CTASSERT(sizeof(struct savefpu) == 512);
122CTASSERT(sizeof(struct xstate_hdr) == 64);
123CTASSERT(sizeof(struct savefpu_ymm) == 832);
124
125/*
126 * This requirement is to make it easier for asm code to calculate
127 * offset of the fpu save area from the pcb address. FPU save area
128 * must be 64-byte aligned.
129 */
130CTASSERT(sizeof(struct pcb) % XSAVE_AREA_ALIGN == 0);
131
132/*
133 * Ensure the copy of XCR0 saved in a core is contained in the padding
134 * area.
135 */
136CTASSERT(X86_XSTATE_XCR0_OFFSET >= offsetof(struct savefpu, sv_pad) &&
137    X86_XSTATE_XCR0_OFFSET + sizeof(uint64_t) <= sizeof(struct savefpu));
138
139static	void	fpu_clean_state(void);
140
141SYSCTL_INT(_hw, HW_FLOATINGPT, floatingpoint, CTLFLAG_RD,
142    SYSCTL_NULL_INT_PTR, 1, "Floating point instructions executed in hardware");
143
144int use_xsave;			/* non-static for cpu_switch.S */
145uint64_t xsave_mask;		/* the same */
146static	uma_zone_t fpu_save_area_zone;
147static	struct savefpu *fpu_initialstate;
148
149struct xsave_area_elm_descr {
150	u_int	offset;
151	u_int	size;
152} *xsave_area_desc;
153
154void
155fpusave(void *addr)
156{
157
158	if (use_xsave)
159		xsave((char *)addr, xsave_mask);
160	else
161		fxsave((char *)addr);
162}
163
164void
165fpurestore(void *addr)
166{
167
168	if (use_xsave)
169		xrstor((char *)addr, xsave_mask);
170	else
171		fxrstor((char *)addr);
172}
173
174void
175fpususpend(void *addr)
176{
177	u_long cr0;
178
179	cr0 = rcr0();
180	stop_emulating();
181	fpusave(addr);
182	load_cr0(cr0);
183}
184
185void
186fpuresume(void *addr)
187{
188	u_long cr0;
189
190	cr0 = rcr0();
191	stop_emulating();
192	fninit();
193	if (use_xsave)
194		load_xcr(XCR0, xsave_mask);
195	fpurestore(addr);
196	load_cr0(cr0);
197}
198
199/*
200 * Enable XSAVE if supported and allowed by user.
201 * Calculate the xsave_mask.
202 */
203static void
204fpuinit_bsp1(void)
205{
206	u_int cp[4];
207	uint64_t xsave_mask_user;
208
209	if ((cpu_feature2 & CPUID2_XSAVE) != 0) {
210		use_xsave = 1;
211		TUNABLE_INT_FETCH("hw.use_xsave", &use_xsave);
212	}
213	if (!use_xsave)
214		return;
215
216	cpuid_count(0xd, 0x0, cp);
217	xsave_mask = XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
218	if ((cp[0] & xsave_mask) != xsave_mask)
219		panic("CPU0 does not support X87 or SSE: %x", cp[0]);
220	xsave_mask = ((uint64_t)cp[3] << 32) | cp[0];
221	xsave_mask_user = xsave_mask;
222	TUNABLE_ULONG_FETCH("hw.xsave_mask", &xsave_mask_user);
223	xsave_mask_user |= XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
224	xsave_mask &= xsave_mask_user;
225	if ((xsave_mask & XFEATURE_AVX512) != XFEATURE_AVX512)
226		xsave_mask &= ~XFEATURE_AVX512;
227	if ((xsave_mask & XFEATURE_MPX) != XFEATURE_MPX)
228		xsave_mask &= ~XFEATURE_MPX;
229
230	cpuid_count(0xd, 0x1, cp);
231	if ((cp[0] & CPUID_EXTSTATE_XSAVEOPT) != 0) {
232		/*
233		 * Patch the XSAVE instruction in the cpu_switch code
234		 * to XSAVEOPT.  We assume that XSAVE encoding used
235		 * REX byte, and set the bit 4 of the r/m byte.
236		 */
237		ctx_switch_xsave[3] |= 0x10;
238	}
239}
240
241/*
242 * Calculate the fpu save area size.
243 */
244static void
245fpuinit_bsp2(void)
246{
247	u_int cp[4];
248
249	if (use_xsave) {
250		cpuid_count(0xd, 0x0, cp);
251		cpu_max_ext_state_size = cp[1];
252
253		/*
254		 * Reload the cpu_feature2, since we enabled OSXSAVE.
255		 */
256		do_cpuid(1, cp);
257		cpu_feature2 = cp[2];
258	} else
259		cpu_max_ext_state_size = sizeof(struct savefpu);
260}
261
262/*
263 * Initialize the floating point unit.
264 */
265void
266fpuinit(void)
267{
268	register_t saveintr;
269	u_int mxcsr;
270	u_short control;
271
272	if (IS_BSP())
273		fpuinit_bsp1();
274
275	if (use_xsave) {
276		load_cr4(rcr4() | CR4_XSAVE);
277		load_xcr(XCR0, xsave_mask);
278	}
279
280	/*
281	 * XCR0 shall be set up before CPU can report the save area size.
282	 */
283	if (IS_BSP())
284		fpuinit_bsp2();
285
286	/*
287	 * It is too early for critical_enter() to work on AP.
288	 */
289	saveintr = intr_disable();
290	stop_emulating();
291	fninit();
292	control = __INITIAL_FPUCW__;
293	fldcw(control);
294	mxcsr = __INITIAL_MXCSR__;
295	ldmxcsr(mxcsr);
296	start_emulating();
297	intr_restore(saveintr);
298}
299
300/*
301 * On the boot CPU we generate a clean state that is used to
302 * initialize the floating point unit when it is first used by a
303 * process.
304 */
305static void
306fpuinitstate(void *arg __unused)
307{
308	register_t saveintr;
309	int cp[4], i, max_ext_n;
310
311	fpu_initialstate = malloc(cpu_max_ext_state_size, M_DEVBUF,
312	    M_WAITOK | M_ZERO);
313	saveintr = intr_disable();
314	stop_emulating();
315
316	fpusave(fpu_initialstate);
317	if (fpu_initialstate->sv_env.en_mxcsr_mask)
318		cpu_mxcsr_mask = fpu_initialstate->sv_env.en_mxcsr_mask;
319	else
320		cpu_mxcsr_mask = 0xFFBF;
321
322	/*
323	 * The fninit instruction does not modify XMM registers or x87
324	 * registers (MM/ST).  The fpusave call dumped the garbage
325	 * contained in the registers after reset to the initial state
326	 * saved.  Clear XMM and x87 registers file image to make the
327	 * startup program state and signal handler XMM/x87 register
328	 * content predictable.
329	 */
330	bzero(fpu_initialstate->sv_fp, sizeof(fpu_initialstate->sv_fp));
331	bzero(fpu_initialstate->sv_xmm, sizeof(fpu_initialstate->sv_xmm));
332
333	/*
334	 * Create a table describing the layout of the CPU Extended
335	 * Save Area.
336	 */
337	if (use_xsave) {
338		max_ext_n = flsl(xsave_mask);
339		xsave_area_desc = malloc(max_ext_n * sizeof(struct
340		    xsave_area_elm_descr), M_DEVBUF, M_WAITOK | M_ZERO);
341		/* x87 state */
342		xsave_area_desc[0].offset = 0;
343		xsave_area_desc[0].size = 160;
344		/* XMM */
345		xsave_area_desc[1].offset = 160;
346		xsave_area_desc[1].size = 288 - 160;
347
348		for (i = 2; i < max_ext_n; i++) {
349			cpuid_count(0xd, i, cp);
350			xsave_area_desc[i].offset = cp[1];
351			xsave_area_desc[i].size = cp[0];
352		}
353	}
354
355	fpu_save_area_zone = uma_zcreate("FPU_save_area",
356	    cpu_max_ext_state_size, NULL, NULL, NULL, NULL,
357	    XSAVE_AREA_ALIGN - 1, 0);
358
359	start_emulating();
360	intr_restore(saveintr);
361}
362SYSINIT(fpuinitstate, SI_SUB_DRIVERS, SI_ORDER_ANY, fpuinitstate, NULL);
363
364/*
365 * Free coprocessor (if we have it).
366 */
367void
368fpuexit(struct thread *td)
369{
370
371	critical_enter();
372	if (curthread == PCPU_GET(fpcurthread)) {
373		stop_emulating();
374		fpusave(curpcb->pcb_save);
375		start_emulating();
376		PCPU_SET(fpcurthread, NULL);
377	}
378	critical_exit();
379}
380
381int
382fpuformat(void)
383{
384
385	return (_MC_FPFMT_XMM);
386}
387
388/*
389 * The following mechanism is used to ensure that the FPE_... value
390 * that is passed as a trapcode to the signal handler of the user
391 * process does not have more than one bit set.
392 *
393 * Multiple bits may be set if the user process modifies the control
394 * word while a status word bit is already set.  While this is a sign
395 * of bad coding, we have no choise than to narrow them down to one
396 * bit, since we must not send a trapcode that is not exactly one of
397 * the FPE_ macros.
398 *
399 * The mechanism has a static table with 127 entries.  Each combination
400 * of the 7 FPU status word exception bits directly translates to a
401 * position in this table, where a single FPE_... value is stored.
402 * This FPE_... value stored there is considered the "most important"
403 * of the exception bits and will be sent as the signal code.  The
404 * precedence of the bits is based upon Intel Document "Numerical
405 * Applications", Chapter "Special Computational Situations".
406 *
407 * The macro to choose one of these values does these steps: 1) Throw
408 * away status word bits that cannot be masked.  2) Throw away the bits
409 * currently masked in the control word, assuming the user isn't
410 * interested in them anymore.  3) Reinsert status word bit 7 (stack
411 * fault) if it is set, which cannot be masked but must be presered.
412 * 4) Use the remaining bits to point into the trapcode table.
413 *
414 * The 6 maskable bits in order of their preference, as stated in the
415 * above referenced Intel manual:
416 * 1  Invalid operation (FP_X_INV)
417 * 1a   Stack underflow
418 * 1b   Stack overflow
419 * 1c   Operand of unsupported format
420 * 1d   SNaN operand.
421 * 2  QNaN operand (not an exception, irrelavant here)
422 * 3  Any other invalid-operation not mentioned above or zero divide
423 *      (FP_X_INV, FP_X_DZ)
424 * 4  Denormal operand (FP_X_DNML)
425 * 5  Numeric over/underflow (FP_X_OFL, FP_X_UFL)
426 * 6  Inexact result (FP_X_IMP)
427 */
428static char fpetable[128] = {
429	0,
430	FPE_FLTINV,	/*  1 - INV */
431	FPE_FLTUND,	/*  2 - DNML */
432	FPE_FLTINV,	/*  3 - INV | DNML */
433	FPE_FLTDIV,	/*  4 - DZ */
434	FPE_FLTINV,	/*  5 - INV | DZ */
435	FPE_FLTDIV,	/*  6 - DNML | DZ */
436	FPE_FLTINV,	/*  7 - INV | DNML | DZ */
437	FPE_FLTOVF,	/*  8 - OFL */
438	FPE_FLTINV,	/*  9 - INV | OFL */
439	FPE_FLTUND,	/*  A - DNML | OFL */
440	FPE_FLTINV,	/*  B - INV | DNML | OFL */
441	FPE_FLTDIV,	/*  C - DZ | OFL */
442	FPE_FLTINV,	/*  D - INV | DZ | OFL */
443	FPE_FLTDIV,	/*  E - DNML | DZ | OFL */
444	FPE_FLTINV,	/*  F - INV | DNML | DZ | OFL */
445	FPE_FLTUND,	/* 10 - UFL */
446	FPE_FLTINV,	/* 11 - INV | UFL */
447	FPE_FLTUND,	/* 12 - DNML | UFL */
448	FPE_FLTINV,	/* 13 - INV | DNML | UFL */
449	FPE_FLTDIV,	/* 14 - DZ | UFL */
450	FPE_FLTINV,	/* 15 - INV | DZ | UFL */
451	FPE_FLTDIV,	/* 16 - DNML | DZ | UFL */
452	FPE_FLTINV,	/* 17 - INV | DNML | DZ | UFL */
453	FPE_FLTOVF,	/* 18 - OFL | UFL */
454	FPE_FLTINV,	/* 19 - INV | OFL | UFL */
455	FPE_FLTUND,	/* 1A - DNML | OFL | UFL */
456	FPE_FLTINV,	/* 1B - INV | DNML | OFL | UFL */
457	FPE_FLTDIV,	/* 1C - DZ | OFL | UFL */
458	FPE_FLTINV,	/* 1D - INV | DZ | OFL | UFL */
459	FPE_FLTDIV,	/* 1E - DNML | DZ | OFL | UFL */
460	FPE_FLTINV,	/* 1F - INV | DNML | DZ | OFL | UFL */
461	FPE_FLTRES,	/* 20 - IMP */
462	FPE_FLTINV,	/* 21 - INV | IMP */
463	FPE_FLTUND,	/* 22 - DNML | IMP */
464	FPE_FLTINV,	/* 23 - INV | DNML | IMP */
465	FPE_FLTDIV,	/* 24 - DZ | IMP */
466	FPE_FLTINV,	/* 25 - INV | DZ | IMP */
467	FPE_FLTDIV,	/* 26 - DNML | DZ | IMP */
468	FPE_FLTINV,	/* 27 - INV | DNML | DZ | IMP */
469	FPE_FLTOVF,	/* 28 - OFL | IMP */
470	FPE_FLTINV,	/* 29 - INV | OFL | IMP */
471	FPE_FLTUND,	/* 2A - DNML | OFL | IMP */
472	FPE_FLTINV,	/* 2B - INV | DNML | OFL | IMP */
473	FPE_FLTDIV,	/* 2C - DZ | OFL | IMP */
474	FPE_FLTINV,	/* 2D - INV | DZ | OFL | IMP */
475	FPE_FLTDIV,	/* 2E - DNML | DZ | OFL | IMP */
476	FPE_FLTINV,	/* 2F - INV | DNML | DZ | OFL | IMP */
477	FPE_FLTUND,	/* 30 - UFL | IMP */
478	FPE_FLTINV,	/* 31 - INV | UFL | IMP */
479	FPE_FLTUND,	/* 32 - DNML | UFL | IMP */
480	FPE_FLTINV,	/* 33 - INV | DNML | UFL | IMP */
481	FPE_FLTDIV,	/* 34 - DZ | UFL | IMP */
482	FPE_FLTINV,	/* 35 - INV | DZ | UFL | IMP */
483	FPE_FLTDIV,	/* 36 - DNML | DZ | UFL | IMP */
484	FPE_FLTINV,	/* 37 - INV | DNML | DZ | UFL | IMP */
485	FPE_FLTOVF,	/* 38 - OFL | UFL | IMP */
486	FPE_FLTINV,	/* 39 - INV | OFL | UFL | IMP */
487	FPE_FLTUND,	/* 3A - DNML | OFL | UFL | IMP */
488	FPE_FLTINV,	/* 3B - INV | DNML | OFL | UFL | IMP */
489	FPE_FLTDIV,	/* 3C - DZ | OFL | UFL | IMP */
490	FPE_FLTINV,	/* 3D - INV | DZ | OFL | UFL | IMP */
491	FPE_FLTDIV,	/* 3E - DNML | DZ | OFL | UFL | IMP */
492	FPE_FLTINV,	/* 3F - INV | DNML | DZ | OFL | UFL | IMP */
493	FPE_FLTSUB,	/* 40 - STK */
494	FPE_FLTSUB,	/* 41 - INV | STK */
495	FPE_FLTUND,	/* 42 - DNML | STK */
496	FPE_FLTSUB,	/* 43 - INV | DNML | STK */
497	FPE_FLTDIV,	/* 44 - DZ | STK */
498	FPE_FLTSUB,	/* 45 - INV | DZ | STK */
499	FPE_FLTDIV,	/* 46 - DNML | DZ | STK */
500	FPE_FLTSUB,	/* 47 - INV | DNML | DZ | STK */
501	FPE_FLTOVF,	/* 48 - OFL | STK */
502	FPE_FLTSUB,	/* 49 - INV | OFL | STK */
503	FPE_FLTUND,	/* 4A - DNML | OFL | STK */
504	FPE_FLTSUB,	/* 4B - INV | DNML | OFL | STK */
505	FPE_FLTDIV,	/* 4C - DZ | OFL | STK */
506	FPE_FLTSUB,	/* 4D - INV | DZ | OFL | STK */
507	FPE_FLTDIV,	/* 4E - DNML | DZ | OFL | STK */
508	FPE_FLTSUB,	/* 4F - INV | DNML | DZ | OFL | STK */
509	FPE_FLTUND,	/* 50 - UFL | STK */
510	FPE_FLTSUB,	/* 51 - INV | UFL | STK */
511	FPE_FLTUND,	/* 52 - DNML | UFL | STK */
512	FPE_FLTSUB,	/* 53 - INV | DNML | UFL | STK */
513	FPE_FLTDIV,	/* 54 - DZ | UFL | STK */
514	FPE_FLTSUB,	/* 55 - INV | DZ | UFL | STK */
515	FPE_FLTDIV,	/* 56 - DNML | DZ | UFL | STK */
516	FPE_FLTSUB,	/* 57 - INV | DNML | DZ | UFL | STK */
517	FPE_FLTOVF,	/* 58 - OFL | UFL | STK */
518	FPE_FLTSUB,	/* 59 - INV | OFL | UFL | STK */
519	FPE_FLTUND,	/* 5A - DNML | OFL | UFL | STK */
520	FPE_FLTSUB,	/* 5B - INV | DNML | OFL | UFL | STK */
521	FPE_FLTDIV,	/* 5C - DZ | OFL | UFL | STK */
522	FPE_FLTSUB,	/* 5D - INV | DZ | OFL | UFL | STK */
523	FPE_FLTDIV,	/* 5E - DNML | DZ | OFL | UFL | STK */
524	FPE_FLTSUB,	/* 5F - INV | DNML | DZ | OFL | UFL | STK */
525	FPE_FLTRES,	/* 60 - IMP | STK */
526	FPE_FLTSUB,	/* 61 - INV | IMP | STK */
527	FPE_FLTUND,	/* 62 - DNML | IMP | STK */
528	FPE_FLTSUB,	/* 63 - INV | DNML | IMP | STK */
529	FPE_FLTDIV,	/* 64 - DZ | IMP | STK */
530	FPE_FLTSUB,	/* 65 - INV | DZ | IMP | STK */
531	FPE_FLTDIV,	/* 66 - DNML | DZ | IMP | STK */
532	FPE_FLTSUB,	/* 67 - INV | DNML | DZ | IMP | STK */
533	FPE_FLTOVF,	/* 68 - OFL | IMP | STK */
534	FPE_FLTSUB,	/* 69 - INV | OFL | IMP | STK */
535	FPE_FLTUND,	/* 6A - DNML | OFL | IMP | STK */
536	FPE_FLTSUB,	/* 6B - INV | DNML | OFL | IMP | STK */
537	FPE_FLTDIV,	/* 6C - DZ | OFL | IMP | STK */
538	FPE_FLTSUB,	/* 6D - INV | DZ | OFL | IMP | STK */
539	FPE_FLTDIV,	/* 6E - DNML | DZ | OFL | IMP | STK */
540	FPE_FLTSUB,	/* 6F - INV | DNML | DZ | OFL | IMP | STK */
541	FPE_FLTUND,	/* 70 - UFL | IMP | STK */
542	FPE_FLTSUB,	/* 71 - INV | UFL | IMP | STK */
543	FPE_FLTUND,	/* 72 - DNML | UFL | IMP | STK */
544	FPE_FLTSUB,	/* 73 - INV | DNML | UFL | IMP | STK */
545	FPE_FLTDIV,	/* 74 - DZ | UFL | IMP | STK */
546	FPE_FLTSUB,	/* 75 - INV | DZ | UFL | IMP | STK */
547	FPE_FLTDIV,	/* 76 - DNML | DZ | UFL | IMP | STK */
548	FPE_FLTSUB,	/* 77 - INV | DNML | DZ | UFL | IMP | STK */
549	FPE_FLTOVF,	/* 78 - OFL | UFL | IMP | STK */
550	FPE_FLTSUB,	/* 79 - INV | OFL | UFL | IMP | STK */
551	FPE_FLTUND,	/* 7A - DNML | OFL | UFL | IMP | STK */
552	FPE_FLTSUB,	/* 7B - INV | DNML | OFL | UFL | IMP | STK */
553	FPE_FLTDIV,	/* 7C - DZ | OFL | UFL | IMP | STK */
554	FPE_FLTSUB,	/* 7D - INV | DZ | OFL | UFL | IMP | STK */
555	FPE_FLTDIV,	/* 7E - DNML | DZ | OFL | UFL | IMP | STK */
556	FPE_FLTSUB,	/* 7F - INV | DNML | DZ | OFL | UFL | IMP | STK */
557};
558
559/*
560 * Read the FP status and control words, then generate si_code value
561 * for SIGFPE.  The error code chosen will be one of the
562 * FPE_... macros.  It will be sent as the second argument to old
563 * BSD-style signal handlers and as "siginfo_t->si_code" (second
564 * argument) to SA_SIGINFO signal handlers.
565 *
566 * Some time ago, we cleared the x87 exceptions with FNCLEX there.
567 * Clearing exceptions was necessary mainly to avoid IRQ13 bugs.  The
568 * usermode code which understands the FPU hardware enough to enable
569 * the exceptions, can also handle clearing the exception state in the
570 * handler.  The only consequence of not clearing the exception is the
571 * rethrow of the SIGFPE on return from the signal handler and
572 * reexecution of the corresponding instruction.
573 *
574 * For XMM traps, the exceptions were never cleared.
575 */
576int
577fputrap_x87(void)
578{
579	struct savefpu *pcb_save;
580	u_short control, status;
581
582	critical_enter();
583
584	/*
585	 * Interrupt handling (for another interrupt) may have pushed the
586	 * state to memory.  Fetch the relevant parts of the state from
587	 * wherever they are.
588	 */
589	if (PCPU_GET(fpcurthread) != curthread) {
590		pcb_save = curpcb->pcb_save;
591		control = pcb_save->sv_env.en_cw;
592		status = pcb_save->sv_env.en_sw;
593	} else {
594		fnstcw(&control);
595		fnstsw(&status);
596	}
597
598	critical_exit();
599	return (fpetable[status & ((~control & 0x3f) | 0x40)]);
600}
601
602int
603fputrap_sse(void)
604{
605	u_int mxcsr;
606
607	critical_enter();
608	if (PCPU_GET(fpcurthread) != curthread)
609		mxcsr = curpcb->pcb_save->sv_env.en_mxcsr;
610	else
611		stmxcsr(&mxcsr);
612	critical_exit();
613	return (fpetable[(mxcsr & (~mxcsr >> 7)) & 0x3f]);
614}
615
616/*
617 * Device Not Available (DNA, #NM) exception handler.
618 *
619 * It would be better to switch FP context here (if curthread !=
620 * fpcurthread) and not necessarily for every context switch, but it
621 * is too hard to access foreign pcb's.
622 */
623void
624fpudna(void)
625{
626
627	/*
628	 * This handler is entered with interrupts enabled, so context
629	 * switches may occur before critical_enter() is executed.  If
630	 * a context switch occurs, then when we regain control, our
631	 * state will have been completely restored.  The CPU may
632	 * change underneath us, but the only part of our context that
633	 * lives in the CPU is CR0.TS and that will be "restored" by
634	 * setting it on the new CPU.
635	 */
636	critical_enter();
637
638	KASSERT((curpcb->pcb_flags & PCB_FPUNOSAVE) == 0,
639	    ("fpudna while in fpu_kern_enter(FPU_KERN_NOCTX)"));
640	if (PCPU_GET(fpcurthread) == curthread) {
641		printf("fpudna: fpcurthread == curthread\n");
642		stop_emulating();
643		critical_exit();
644		return;
645	}
646	if (PCPU_GET(fpcurthread) != NULL) {
647		panic("fpudna: fpcurthread = %p (%d), curthread = %p (%d)\n",
648		    PCPU_GET(fpcurthread), PCPU_GET(fpcurthread)->td_tid,
649		    curthread, curthread->td_tid);
650	}
651	stop_emulating();
652	/*
653	 * Record new context early in case frstor causes a trap.
654	 */
655	PCPU_SET(fpcurthread, curthread);
656
657	fpu_clean_state();
658
659	if ((curpcb->pcb_flags & PCB_FPUINITDONE) == 0) {
660		/*
661		 * This is the first time this thread has used the FPU or
662		 * the PCB doesn't contain a clean FPU state.  Explicitly
663		 * load an initial state.
664		 *
665		 * We prefer to restore the state from the actual save
666		 * area in PCB instead of directly loading from
667		 * fpu_initialstate, to ignite the XSAVEOPT
668		 * tracking engine.
669		 */
670		bcopy(fpu_initialstate, curpcb->pcb_save,
671		    cpu_max_ext_state_size);
672		fpurestore(curpcb->pcb_save);
673		if (curpcb->pcb_initial_fpucw != __INITIAL_FPUCW__)
674			fldcw(curpcb->pcb_initial_fpucw);
675		if (PCB_USER_FPU(curpcb))
676			set_pcb_flags(curpcb,
677			    PCB_FPUINITDONE | PCB_USERFPUINITDONE);
678		else
679			set_pcb_flags(curpcb, PCB_FPUINITDONE);
680	} else
681		fpurestore(curpcb->pcb_save);
682	critical_exit();
683}
684
685void
686fpudrop(void)
687{
688	struct thread *td;
689
690	td = PCPU_GET(fpcurthread);
691	KASSERT(td == curthread, ("fpudrop: fpcurthread != curthread"));
692	CRITICAL_ASSERT(td);
693	PCPU_SET(fpcurthread, NULL);
694	clear_pcb_flags(td->td_pcb, PCB_FPUINITDONE);
695	start_emulating();
696}
697
698/*
699 * Get the user state of the FPU into pcb->pcb_user_save without
700 * dropping ownership (if possible).  It returns the FPU ownership
701 * status.
702 */
703int
704fpugetregs(struct thread *td)
705{
706	struct pcb *pcb;
707	uint64_t *xstate_bv, bit;
708	char *sa;
709	int max_ext_n, i, owned;
710
711	pcb = td->td_pcb;
712	if ((pcb->pcb_flags & PCB_USERFPUINITDONE) == 0) {
713		bcopy(fpu_initialstate, get_pcb_user_save_pcb(pcb),
714		    cpu_max_ext_state_size);
715		get_pcb_user_save_pcb(pcb)->sv_env.en_cw =
716		    pcb->pcb_initial_fpucw;
717		fpuuserinited(td);
718		return (_MC_FPOWNED_PCB);
719	}
720	critical_enter();
721	if (td == PCPU_GET(fpcurthread) && PCB_USER_FPU(pcb)) {
722		fpusave(get_pcb_user_save_pcb(pcb));
723		owned = _MC_FPOWNED_FPU;
724	} else {
725		owned = _MC_FPOWNED_PCB;
726	}
727	critical_exit();
728	if (use_xsave) {
729		/*
730		 * Handle partially saved state.
731		 */
732		sa = (char *)get_pcb_user_save_pcb(pcb);
733		xstate_bv = (uint64_t *)(sa + sizeof(struct savefpu) +
734		    offsetof(struct xstate_hdr, xstate_bv));
735		max_ext_n = flsl(xsave_mask);
736		for (i = 0; i < max_ext_n; i++) {
737			bit = 1ULL << i;
738			if ((xsave_mask & bit) == 0 || (*xstate_bv & bit) != 0)
739				continue;
740			bcopy((char *)fpu_initialstate +
741			    xsave_area_desc[i].offset,
742			    sa + xsave_area_desc[i].offset,
743			    xsave_area_desc[i].size);
744			*xstate_bv |= bit;
745		}
746	}
747	return (owned);
748}
749
750void
751fpuuserinited(struct thread *td)
752{
753	struct pcb *pcb;
754
755	pcb = td->td_pcb;
756	if (PCB_USER_FPU(pcb))
757		set_pcb_flags(pcb,
758		    PCB_FPUINITDONE | PCB_USERFPUINITDONE);
759	else
760		set_pcb_flags(pcb, PCB_FPUINITDONE);
761}
762
763int
764fpusetxstate(struct thread *td, char *xfpustate, size_t xfpustate_size)
765{
766	struct xstate_hdr *hdr, *ehdr;
767	size_t len, max_len;
768	uint64_t bv;
769
770	/* XXXKIB should we clear all extended state in xstate_bv instead ? */
771	if (xfpustate == NULL)
772		return (0);
773	if (!use_xsave)
774		return (EOPNOTSUPP);
775
776	len = xfpustate_size;
777	if (len < sizeof(struct xstate_hdr))
778		return (EINVAL);
779	max_len = cpu_max_ext_state_size - sizeof(struct savefpu);
780	if (len > max_len)
781		return (EINVAL);
782
783	ehdr = (struct xstate_hdr *)xfpustate;
784	bv = ehdr->xstate_bv;
785
786	/*
787	 * Avoid #gp.
788	 */
789	if (bv & ~xsave_mask)
790		return (EINVAL);
791
792	hdr = (struct xstate_hdr *)(get_pcb_user_save_td(td) + 1);
793
794	hdr->xstate_bv = bv;
795	bcopy(xfpustate + sizeof(struct xstate_hdr),
796	    (char *)(hdr + 1), len - sizeof(struct xstate_hdr));
797
798	return (0);
799}
800
801/*
802 * Set the state of the FPU.
803 */
804int
805fpusetregs(struct thread *td, struct savefpu *addr, char *xfpustate,
806    size_t xfpustate_size)
807{
808	struct pcb *pcb;
809	int error;
810
811	addr->sv_env.en_mxcsr &= cpu_mxcsr_mask;
812	pcb = td->td_pcb;
813	critical_enter();
814	if (td == PCPU_GET(fpcurthread) && PCB_USER_FPU(pcb)) {
815		error = fpusetxstate(td, xfpustate, xfpustate_size);
816		if (error != 0) {
817			critical_exit();
818			return (error);
819		}
820		bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr));
821		fpurestore(get_pcb_user_save_td(td));
822		critical_exit();
823		set_pcb_flags(pcb, PCB_FPUINITDONE | PCB_USERFPUINITDONE);
824	} else {
825		critical_exit();
826		error = fpusetxstate(td, xfpustate, xfpustate_size);
827		if (error != 0)
828			return (error);
829		bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr));
830		fpuuserinited(td);
831	}
832	return (0);
833}
834
835/*
836 * On AuthenticAMD processors, the fxrstor instruction does not restore
837 * the x87's stored last instruction pointer, last data pointer, and last
838 * opcode values, except in the rare case in which the exception summary
839 * (ES) bit in the x87 status word is set to 1.
840 *
841 * In order to avoid leaking this information across processes, we clean
842 * these values by performing a dummy load before executing fxrstor().
843 */
844static void
845fpu_clean_state(void)
846{
847	static float dummy_variable = 0.0;
848	u_short status;
849
850	/*
851	 * Clear the ES bit in the x87 status word if it is currently
852	 * set, in order to avoid causing a fault in the upcoming load.
853	 */
854	fnstsw(&status);
855	if (status & 0x80)
856		fnclex();
857
858	/*
859	 * Load the dummy variable into the x87 stack.  This mangles
860	 * the x87 stack, but we don't care since we're about to call
861	 * fxrstor() anyway.
862	 */
863	__asm __volatile("ffree %%st(7); flds %0" : : "m" (dummy_variable));
864}
865
866/*
867 * This really sucks.  We want the acpi version only, but it requires
868 * the isa_if.h file in order to get the definitions.
869 */
870#include "opt_isa.h"
871#ifdef DEV_ISA
872#include <isa/isavar.h>
873/*
874 * This sucks up the legacy ISA support assignments from PNPBIOS/ACPI.
875 */
876static struct isa_pnp_id fpupnp_ids[] = {
877	{ 0x040cd041, "Legacy ISA coprocessor support" }, /* PNP0C04 */
878	{ 0 }
879};
880
881static int
882fpupnp_probe(device_t dev)
883{
884	int result;
885
886	result = ISA_PNP_PROBE(device_get_parent(dev), dev, fpupnp_ids);
887	if (result <= 0)
888		device_quiet(dev);
889	return (result);
890}
891
892static int
893fpupnp_attach(device_t dev)
894{
895
896	return (0);
897}
898
899static device_method_t fpupnp_methods[] = {
900	/* Device interface */
901	DEVMETHOD(device_probe,		fpupnp_probe),
902	DEVMETHOD(device_attach,	fpupnp_attach),
903	DEVMETHOD(device_detach,	bus_generic_detach),
904	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
905	DEVMETHOD(device_suspend,	bus_generic_suspend),
906	DEVMETHOD(device_resume,	bus_generic_resume),
907
908	{ 0, 0 }
909};
910
911static driver_t fpupnp_driver = {
912	"fpupnp",
913	fpupnp_methods,
914	1,			/* no softc */
915};
916
917static devclass_t fpupnp_devclass;
918
919DRIVER_MODULE(fpupnp, acpi, fpupnp_driver, fpupnp_devclass, 0, 0);
920#endif	/* DEV_ISA */
921
922static MALLOC_DEFINE(M_FPUKERN_CTX, "fpukern_ctx",
923    "Kernel contexts for FPU state");
924
925#define	FPU_KERN_CTX_FPUINITDONE 0x01
926#define	FPU_KERN_CTX_DUMMY	 0x02	/* avoided save for the kern thread */
927#define	FPU_KERN_CTX_INUSE	 0x04
928
929struct fpu_kern_ctx {
930	struct savefpu *prev;
931	uint32_t flags;
932	char hwstate1[];
933};
934
935struct fpu_kern_ctx *
936fpu_kern_alloc_ctx(u_int flags)
937{
938	struct fpu_kern_ctx *res;
939	size_t sz;
940
941	sz = sizeof(struct fpu_kern_ctx) + XSAVE_AREA_ALIGN +
942	    cpu_max_ext_state_size;
943	res = malloc(sz, M_FPUKERN_CTX, ((flags & FPU_KERN_NOWAIT) ?
944	    M_NOWAIT : M_WAITOK) | M_ZERO);
945	return (res);
946}
947
948void
949fpu_kern_free_ctx(struct fpu_kern_ctx *ctx)
950{
951
952	KASSERT((ctx->flags & FPU_KERN_CTX_INUSE) == 0, ("free'ing inuse ctx"));
953	/* XXXKIB clear the memory ? */
954	free(ctx, M_FPUKERN_CTX);
955}
956
957static struct savefpu *
958fpu_kern_ctx_savefpu(struct fpu_kern_ctx *ctx)
959{
960	vm_offset_t p;
961
962	p = (vm_offset_t)&ctx->hwstate1;
963	p = roundup2(p, XSAVE_AREA_ALIGN);
964	return ((struct savefpu *)p);
965}
966
967int
968fpu_kern_enter(struct thread *td, struct fpu_kern_ctx *ctx, u_int flags)
969{
970	struct pcb *pcb;
971
972	pcb = td->td_pcb;
973	KASSERT((flags & FPU_KERN_NOCTX) != 0 || ctx != NULL,
974	    ("ctx is required when !FPU_KERN_NOCTX"));
975	KASSERT(ctx == NULL || (ctx->flags & FPU_KERN_CTX_INUSE) == 0,
976	    ("using inuse ctx"));
977	KASSERT((pcb->pcb_flags & PCB_FPUNOSAVE) == 0,
978	    ("recursive fpu_kern_enter while in PCB_FPUNOSAVE state"));
979
980	if ((flags & FPU_KERN_NOCTX) != 0) {
981		critical_enter();
982		stop_emulating();
983		if (curthread == PCPU_GET(fpcurthread)) {
984			fpusave(curpcb->pcb_save);
985			PCPU_SET(fpcurthread, NULL);
986		} else {
987			KASSERT(PCPU_GET(fpcurthread) == NULL,
988			    ("invalid fpcurthread"));
989		}
990
991		/*
992		 * This breaks XSAVEOPT tracker, but
993		 * PCB_FPUNOSAVE state is supposed to never need to
994		 * save FPU context at all.
995		 */
996		fpurestore(fpu_initialstate);
997		set_pcb_flags(pcb, PCB_KERNFPU | PCB_FPUNOSAVE |
998		    PCB_FPUINITDONE);
999		return (0);
1000	}
1001	if ((flags & FPU_KERN_KTHR) != 0 && is_fpu_kern_thread(0)) {
1002		ctx->flags = FPU_KERN_CTX_DUMMY | FPU_KERN_CTX_INUSE;
1003		return (0);
1004	}
1005	KASSERT(!PCB_USER_FPU(pcb) || pcb->pcb_save ==
1006	    get_pcb_user_save_pcb(pcb), ("mangled pcb_save"));
1007	ctx->flags = FPU_KERN_CTX_INUSE;
1008	if ((pcb->pcb_flags & PCB_FPUINITDONE) != 0)
1009		ctx->flags |= FPU_KERN_CTX_FPUINITDONE;
1010	fpuexit(td);
1011	ctx->prev = pcb->pcb_save;
1012	pcb->pcb_save = fpu_kern_ctx_savefpu(ctx);
1013	set_pcb_flags(pcb, PCB_KERNFPU);
1014	clear_pcb_flags(pcb, PCB_FPUINITDONE);
1015	return (0);
1016}
1017
1018int
1019fpu_kern_leave(struct thread *td, struct fpu_kern_ctx *ctx)
1020{
1021	struct pcb *pcb;
1022
1023	pcb = td->td_pcb;
1024
1025	if ((pcb->pcb_flags & PCB_FPUNOSAVE) != 0) {
1026		KASSERT(ctx == NULL, ("non-null ctx after FPU_KERN_NOCTX"));
1027		KASSERT(PCPU_GET(fpcurthread) == NULL,
1028		    ("non-NULL fpcurthread for PCB_FPUNOSAVE"));
1029		CRITICAL_ASSERT(td);
1030
1031		clear_pcb_flags(pcb,  PCB_FPUNOSAVE | PCB_FPUINITDONE);
1032		start_emulating();
1033		critical_exit();
1034	} else {
1035		KASSERT((ctx->flags & FPU_KERN_CTX_INUSE) != 0,
1036		    ("leaving not inuse ctx"));
1037		ctx->flags &= ~FPU_KERN_CTX_INUSE;
1038
1039		if (is_fpu_kern_thread(0) &&
1040		    (ctx->flags & FPU_KERN_CTX_DUMMY) != 0)
1041			return (0);
1042		KASSERT((ctx->flags & FPU_KERN_CTX_DUMMY) == 0,
1043		    ("dummy ctx"));
1044		critical_enter();
1045		if (curthread == PCPU_GET(fpcurthread))
1046			fpudrop();
1047		critical_exit();
1048		pcb->pcb_save = ctx->prev;
1049	}
1050
1051	if (pcb->pcb_save == get_pcb_user_save_pcb(pcb)) {
1052		if ((pcb->pcb_flags & PCB_USERFPUINITDONE) != 0) {
1053			set_pcb_flags(pcb, PCB_FPUINITDONE);
1054			clear_pcb_flags(pcb, PCB_KERNFPU);
1055		} else
1056			clear_pcb_flags(pcb, PCB_FPUINITDONE | PCB_KERNFPU);
1057	} else {
1058		if ((ctx->flags & FPU_KERN_CTX_FPUINITDONE) != 0)
1059			set_pcb_flags(pcb, PCB_FPUINITDONE);
1060		else
1061			clear_pcb_flags(pcb, PCB_FPUINITDONE);
1062		KASSERT(!PCB_USER_FPU(pcb), ("unpaired fpu_kern_leave"));
1063	}
1064	return (0);
1065}
1066
1067int
1068fpu_kern_thread(u_int flags)
1069{
1070
1071	KASSERT((curthread->td_pflags & TDP_KTHREAD) != 0,
1072	    ("Only kthread may use fpu_kern_thread"));
1073	KASSERT(curpcb->pcb_save == get_pcb_user_save_pcb(curpcb),
1074	    ("mangled pcb_save"));
1075	KASSERT(PCB_USER_FPU(curpcb), ("recursive call"));
1076
1077	set_pcb_flags(curpcb, PCB_KERNFPU);
1078	return (0);
1079}
1080
1081int
1082is_fpu_kern_thread(u_int flags)
1083{
1084
1085	if ((curthread->td_pflags & TDP_KTHREAD) == 0)
1086		return (0);
1087	return ((curpcb->pcb_flags & PCB_KERNFPU) != 0);
1088}
1089
1090/*
1091 * FPU save area alloc/free/init utility routines
1092 */
1093struct savefpu *
1094fpu_save_area_alloc(void)
1095{
1096
1097	return (uma_zalloc(fpu_save_area_zone, 0));
1098}
1099
1100void
1101fpu_save_area_free(struct savefpu *fsa)
1102{
1103
1104	uma_zfree(fpu_save_area_zone, fsa);
1105}
1106
1107void
1108fpu_save_area_reset(struct savefpu *fsa)
1109{
1110
1111	bcopy(fpu_initialstate, fsa, cpu_max_ext_state_size);
1112}
1113