fpu.c revision 306314
1/*-
2 * Copyright (c) 1990 William Jolitz.
3 * Copyright (c) 1991 The Regents of the University of California.
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 * 4. Neither the name of the University nor the names of its contributors
15 *    may be used to endorse or promote products derived from this software
16 *    without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 *	from: @(#)npx.c	7.2 (Berkeley) 5/12/91
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: stable/11/sys/amd64/amd64/fpu.c 306314 2016-09-25 17:24:10Z kib $");
35
36#include <sys/param.h>
37#include <sys/systm.h>
38#include <sys/bus.h>
39#include <sys/kernel.h>
40#include <sys/lock.h>
41#include <sys/malloc.h>
42#include <sys/module.h>
43#include <sys/mutex.h>
44#include <sys/mutex.h>
45#include <sys/proc.h>
46#include <sys/sysctl.h>
47#include <machine/bus.h>
48#include <sys/rman.h>
49#include <sys/signalvar.h>
50#include <vm/uma.h>
51
52#include <machine/cputypes.h>
53#include <machine/frame.h>
54#include <machine/intr_machdep.h>
55#include <machine/md_var.h>
56#include <machine/pcb.h>
57#include <machine/psl.h>
58#include <machine/resource.h>
59#include <machine/specialreg.h>
60#include <machine/segments.h>
61#include <machine/ucontext.h>
62
63/*
64 * Floating point support.
65 */
66
67#if defined(__GNUCLIKE_ASM) && !defined(lint)
68
69#define	fldcw(cw)		__asm __volatile("fldcw %0" : : "m" (cw))
70#define	fnclex()		__asm __volatile("fnclex")
71#define	fninit()		__asm __volatile("fninit")
72#define	fnstcw(addr)		__asm __volatile("fnstcw %0" : "=m" (*(addr)))
73#define	fnstsw(addr)		__asm __volatile("fnstsw %0" : "=am" (*(addr)))
74#define	fxrstor(addr)		__asm __volatile("fxrstor %0" : : "m" (*(addr)))
75#define	fxsave(addr)		__asm __volatile("fxsave %0" : "=m" (*(addr)))
76#define	ldmxcsr(csr)		__asm __volatile("ldmxcsr %0" : : "m" (csr))
77#define	stmxcsr(addr)		__asm __volatile("stmxcsr %0" : : "m" (*(addr)))
78
79static __inline void
80xrstor(char *addr, uint64_t mask)
81{
82	uint32_t low, hi;
83
84	low = mask;
85	hi = mask >> 32;
86	__asm __volatile("xrstor %0" : : "m" (*addr), "a" (low), "d" (hi));
87}
88
89static __inline void
90xsave(char *addr, uint64_t mask)
91{
92	uint32_t low, hi;
93
94	low = mask;
95	hi = mask >> 32;
96	__asm __volatile("xsave %0" : "=m" (*addr) : "a" (low), "d" (hi) :
97	    "memory");
98}
99
100#else	/* !(__GNUCLIKE_ASM && !lint) */
101
102void	fldcw(u_short cw);
103void	fnclex(void);
104void	fninit(void);
105void	fnstcw(caddr_t addr);
106void	fnstsw(caddr_t addr);
107void	fxsave(caddr_t addr);
108void	fxrstor(caddr_t addr);
109void	ldmxcsr(u_int csr);
110void	stmxcsr(u_int *csr);
111void	xrstor(char *addr, uint64_t mask);
112void	xsave(char *addr, uint64_t mask);
113
114#endif	/* __GNUCLIKE_ASM && !lint */
115
116#define	start_emulating()	load_cr0(rcr0() | CR0_TS)
117#define	stop_emulating()	clts()
118
119CTASSERT(sizeof(struct savefpu) == 512);
120CTASSERT(sizeof(struct xstate_hdr) == 64);
121CTASSERT(sizeof(struct savefpu_ymm) == 832);
122
123/*
124 * This requirement is to make it easier for asm code to calculate
125 * offset of the fpu save area from the pcb address. FPU save area
126 * must be 64-byte aligned.
127 */
128CTASSERT(sizeof(struct pcb) % XSAVE_AREA_ALIGN == 0);
129
130/*
131 * Ensure the copy of XCR0 saved in a core is contained in the padding
132 * area.
133 */
134CTASSERT(X86_XSTATE_XCR0_OFFSET >= offsetof(struct savefpu, sv_pad) &&
135    X86_XSTATE_XCR0_OFFSET + sizeof(uint64_t) <= sizeof(struct savefpu));
136
137static	void	fpu_clean_state(void);
138
139SYSCTL_INT(_hw, HW_FLOATINGPT, floatingpoint, CTLFLAG_RD,
140    SYSCTL_NULL_INT_PTR, 1, "Floating point instructions executed in hardware");
141
142int use_xsave;			/* non-static for cpu_switch.S */
143uint64_t xsave_mask;		/* the same */
144static	uma_zone_t fpu_save_area_zone;
145static	struct savefpu *fpu_initialstate;
146
147struct xsave_area_elm_descr {
148	u_int	offset;
149	u_int	size;
150} *xsave_area_desc;
151
152void
153fpusave(void *addr)
154{
155
156	if (use_xsave)
157		xsave((char *)addr, xsave_mask);
158	else
159		fxsave((char *)addr);
160}
161
162void
163fpurestore(void *addr)
164{
165
166	if (use_xsave)
167		xrstor((char *)addr, xsave_mask);
168	else
169		fxrstor((char *)addr);
170}
171
172void
173fpususpend(void *addr)
174{
175	u_long cr0;
176
177	cr0 = rcr0();
178	stop_emulating();
179	fpusave(addr);
180	load_cr0(cr0);
181}
182
183void
184fpuresume(void *addr)
185{
186	u_long cr0;
187
188	cr0 = rcr0();
189	stop_emulating();
190	fninit();
191	if (use_xsave)
192		load_xcr(XCR0, xsave_mask);
193	fpurestore(addr);
194	load_cr0(cr0);
195}
196
197/*
198 * Enable XSAVE if supported and allowed by user.
199 * Calculate the xsave_mask.
200 */
201static void
202fpuinit_bsp1(void)
203{
204	u_int cp[4];
205	uint64_t xsave_mask_user;
206
207	if ((cpu_feature2 & CPUID2_XSAVE) != 0) {
208		use_xsave = 1;
209		TUNABLE_INT_FETCH("hw.use_xsave", &use_xsave);
210	}
211	if (!use_xsave)
212		return;
213
214	cpuid_count(0xd, 0x0, cp);
215	xsave_mask = XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
216	if ((cp[0] & xsave_mask) != xsave_mask)
217		panic("CPU0 does not support X87 or SSE: %x", cp[0]);
218	xsave_mask = ((uint64_t)cp[3] << 32) | cp[0];
219	xsave_mask_user = xsave_mask;
220	TUNABLE_ULONG_FETCH("hw.xsave_mask", &xsave_mask_user);
221	xsave_mask_user |= XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
222	xsave_mask &= xsave_mask_user;
223	if ((xsave_mask & XFEATURE_AVX512) != XFEATURE_AVX512)
224		xsave_mask &= ~XFEATURE_AVX512;
225	if ((xsave_mask & XFEATURE_MPX) != XFEATURE_MPX)
226		xsave_mask &= ~XFEATURE_MPX;
227
228	cpuid_count(0xd, 0x1, cp);
229	if ((cp[0] & CPUID_EXTSTATE_XSAVEOPT) != 0) {
230		/*
231		 * Patch the XSAVE instruction in the cpu_switch code
232		 * to XSAVEOPT.  We assume that XSAVE encoding used
233		 * REX byte, and set the bit 4 of the r/m byte.
234		 */
235		ctx_switch_xsave[3] |= 0x10;
236	}
237}
238
239/*
240 * Calculate the fpu save area size.
241 */
242static void
243fpuinit_bsp2(void)
244{
245	u_int cp[4];
246
247	if (use_xsave) {
248		cpuid_count(0xd, 0x0, cp);
249		cpu_max_ext_state_size = cp[1];
250
251		/*
252		 * Reload the cpu_feature2, since we enabled OSXSAVE.
253		 */
254		do_cpuid(1, cp);
255		cpu_feature2 = cp[2];
256	} else
257		cpu_max_ext_state_size = sizeof(struct savefpu);
258}
259
260/*
261 * Initialize the floating point unit.
262 */
263void
264fpuinit(void)
265{
266	register_t saveintr;
267	u_int mxcsr;
268	u_short control;
269
270	if (IS_BSP())
271		fpuinit_bsp1();
272
273	if (use_xsave) {
274		load_cr4(rcr4() | CR4_XSAVE);
275		load_xcr(XCR0, xsave_mask);
276	}
277
278	/*
279	 * XCR0 shall be set up before CPU can report the save area size.
280	 */
281	if (IS_BSP())
282		fpuinit_bsp2();
283
284	/*
285	 * It is too early for critical_enter() to work on AP.
286	 */
287	saveintr = intr_disable();
288	stop_emulating();
289	fninit();
290	control = __INITIAL_FPUCW__;
291	fldcw(control);
292	mxcsr = __INITIAL_MXCSR__;
293	ldmxcsr(mxcsr);
294	start_emulating();
295	intr_restore(saveintr);
296}
297
298/*
299 * On the boot CPU we generate a clean state that is used to
300 * initialize the floating point unit when it is first used by a
301 * process.
302 */
303static void
304fpuinitstate(void *arg __unused)
305{
306	register_t saveintr;
307	int cp[4], i, max_ext_n;
308
309	fpu_initialstate = malloc(cpu_max_ext_state_size, M_DEVBUF,
310	    M_WAITOK | M_ZERO);
311	saveintr = intr_disable();
312	stop_emulating();
313
314	fpusave(fpu_initialstate);
315	if (fpu_initialstate->sv_env.en_mxcsr_mask)
316		cpu_mxcsr_mask = fpu_initialstate->sv_env.en_mxcsr_mask;
317	else
318		cpu_mxcsr_mask = 0xFFBF;
319
320	/*
321	 * The fninit instruction does not modify XMM registers or x87
322	 * registers (MM/ST).  The fpusave call dumped the garbage
323	 * contained in the registers after reset to the initial state
324	 * saved.  Clear XMM and x87 registers file image to make the
325	 * startup program state and signal handler XMM/x87 register
326	 * content predictable.
327	 */
328	bzero(fpu_initialstate->sv_fp, sizeof(fpu_initialstate->sv_fp));
329	bzero(fpu_initialstate->sv_xmm, sizeof(fpu_initialstate->sv_xmm));
330
331	/*
332	 * Create a table describing the layout of the CPU Extended
333	 * Save Area.
334	 */
335	if (use_xsave) {
336		max_ext_n = flsl(xsave_mask);
337		xsave_area_desc = malloc(max_ext_n * sizeof(struct
338		    xsave_area_elm_descr), M_DEVBUF, M_WAITOK | M_ZERO);
339		/* x87 state */
340		xsave_area_desc[0].offset = 0;
341		xsave_area_desc[0].size = 160;
342		/* XMM */
343		xsave_area_desc[1].offset = 160;
344		xsave_area_desc[1].size = 288 - 160;
345
346		for (i = 2; i < max_ext_n; i++) {
347			cpuid_count(0xd, i, cp);
348			xsave_area_desc[i].offset = cp[1];
349			xsave_area_desc[i].size = cp[0];
350		}
351	}
352
353	fpu_save_area_zone = uma_zcreate("FPU_save_area",
354	    cpu_max_ext_state_size, NULL, NULL, NULL, NULL,
355	    XSAVE_AREA_ALIGN - 1, 0);
356
357	start_emulating();
358	intr_restore(saveintr);
359}
360SYSINIT(fpuinitstate, SI_SUB_DRIVERS, SI_ORDER_ANY, fpuinitstate, NULL);
361
362/*
363 * Free coprocessor (if we have it).
364 */
365void
366fpuexit(struct thread *td)
367{
368
369	critical_enter();
370	if (curthread == PCPU_GET(fpcurthread)) {
371		stop_emulating();
372		fpusave(curpcb->pcb_save);
373		start_emulating();
374		PCPU_SET(fpcurthread, NULL);
375	}
376	critical_exit();
377}
378
379int
380fpuformat(void)
381{
382
383	return (_MC_FPFMT_XMM);
384}
385
386/*
387 * The following mechanism is used to ensure that the FPE_... value
388 * that is passed as a trapcode to the signal handler of the user
389 * process does not have more than one bit set.
390 *
391 * Multiple bits may be set if the user process modifies the control
392 * word while a status word bit is already set.  While this is a sign
393 * of bad coding, we have no choise than to narrow them down to one
394 * bit, since we must not send a trapcode that is not exactly one of
395 * the FPE_ macros.
396 *
397 * The mechanism has a static table with 127 entries.  Each combination
398 * of the 7 FPU status word exception bits directly translates to a
399 * position in this table, where a single FPE_... value is stored.
400 * This FPE_... value stored there is considered the "most important"
401 * of the exception bits and will be sent as the signal code.  The
402 * precedence of the bits is based upon Intel Document "Numerical
403 * Applications", Chapter "Special Computational Situations".
404 *
405 * The macro to choose one of these values does these steps: 1) Throw
406 * away status word bits that cannot be masked.  2) Throw away the bits
407 * currently masked in the control word, assuming the user isn't
408 * interested in them anymore.  3) Reinsert status word bit 7 (stack
409 * fault) if it is set, which cannot be masked but must be presered.
410 * 4) Use the remaining bits to point into the trapcode table.
411 *
412 * The 6 maskable bits in order of their preference, as stated in the
413 * above referenced Intel manual:
414 * 1  Invalid operation (FP_X_INV)
415 * 1a   Stack underflow
416 * 1b   Stack overflow
417 * 1c   Operand of unsupported format
418 * 1d   SNaN operand.
419 * 2  QNaN operand (not an exception, irrelavant here)
420 * 3  Any other invalid-operation not mentioned above or zero divide
421 *      (FP_X_INV, FP_X_DZ)
422 * 4  Denormal operand (FP_X_DNML)
423 * 5  Numeric over/underflow (FP_X_OFL, FP_X_UFL)
424 * 6  Inexact result (FP_X_IMP)
425 */
426static char fpetable[128] = {
427	0,
428	FPE_FLTINV,	/*  1 - INV */
429	FPE_FLTUND,	/*  2 - DNML */
430	FPE_FLTINV,	/*  3 - INV | DNML */
431	FPE_FLTDIV,	/*  4 - DZ */
432	FPE_FLTINV,	/*  5 - INV | DZ */
433	FPE_FLTDIV,	/*  6 - DNML | DZ */
434	FPE_FLTINV,	/*  7 - INV | DNML | DZ */
435	FPE_FLTOVF,	/*  8 - OFL */
436	FPE_FLTINV,	/*  9 - INV | OFL */
437	FPE_FLTUND,	/*  A - DNML | OFL */
438	FPE_FLTINV,	/*  B - INV | DNML | OFL */
439	FPE_FLTDIV,	/*  C - DZ | OFL */
440	FPE_FLTINV,	/*  D - INV | DZ | OFL */
441	FPE_FLTDIV,	/*  E - DNML | DZ | OFL */
442	FPE_FLTINV,	/*  F - INV | DNML | DZ | OFL */
443	FPE_FLTUND,	/* 10 - UFL */
444	FPE_FLTINV,	/* 11 - INV | UFL */
445	FPE_FLTUND,	/* 12 - DNML | UFL */
446	FPE_FLTINV,	/* 13 - INV | DNML | UFL */
447	FPE_FLTDIV,	/* 14 - DZ | UFL */
448	FPE_FLTINV,	/* 15 - INV | DZ | UFL */
449	FPE_FLTDIV,	/* 16 - DNML | DZ | UFL */
450	FPE_FLTINV,	/* 17 - INV | DNML | DZ | UFL */
451	FPE_FLTOVF,	/* 18 - OFL | UFL */
452	FPE_FLTINV,	/* 19 - INV | OFL | UFL */
453	FPE_FLTUND,	/* 1A - DNML | OFL | UFL */
454	FPE_FLTINV,	/* 1B - INV | DNML | OFL | UFL */
455	FPE_FLTDIV,	/* 1C - DZ | OFL | UFL */
456	FPE_FLTINV,	/* 1D - INV | DZ | OFL | UFL */
457	FPE_FLTDIV,	/* 1E - DNML | DZ | OFL | UFL */
458	FPE_FLTINV,	/* 1F - INV | DNML | DZ | OFL | UFL */
459	FPE_FLTRES,	/* 20 - IMP */
460	FPE_FLTINV,	/* 21 - INV | IMP */
461	FPE_FLTUND,	/* 22 - DNML | IMP */
462	FPE_FLTINV,	/* 23 - INV | DNML | IMP */
463	FPE_FLTDIV,	/* 24 - DZ | IMP */
464	FPE_FLTINV,	/* 25 - INV | DZ | IMP */
465	FPE_FLTDIV,	/* 26 - DNML | DZ | IMP */
466	FPE_FLTINV,	/* 27 - INV | DNML | DZ | IMP */
467	FPE_FLTOVF,	/* 28 - OFL | IMP */
468	FPE_FLTINV,	/* 29 - INV | OFL | IMP */
469	FPE_FLTUND,	/* 2A - DNML | OFL | IMP */
470	FPE_FLTINV,	/* 2B - INV | DNML | OFL | IMP */
471	FPE_FLTDIV,	/* 2C - DZ | OFL | IMP */
472	FPE_FLTINV,	/* 2D - INV | DZ | OFL | IMP */
473	FPE_FLTDIV,	/* 2E - DNML | DZ | OFL | IMP */
474	FPE_FLTINV,	/* 2F - INV | DNML | DZ | OFL | IMP */
475	FPE_FLTUND,	/* 30 - UFL | IMP */
476	FPE_FLTINV,	/* 31 - INV | UFL | IMP */
477	FPE_FLTUND,	/* 32 - DNML | UFL | IMP */
478	FPE_FLTINV,	/* 33 - INV | DNML | UFL | IMP */
479	FPE_FLTDIV,	/* 34 - DZ | UFL | IMP */
480	FPE_FLTINV,	/* 35 - INV | DZ | UFL | IMP */
481	FPE_FLTDIV,	/* 36 - DNML | DZ | UFL | IMP */
482	FPE_FLTINV,	/* 37 - INV | DNML | DZ | UFL | IMP */
483	FPE_FLTOVF,	/* 38 - OFL | UFL | IMP */
484	FPE_FLTINV,	/* 39 - INV | OFL | UFL | IMP */
485	FPE_FLTUND,	/* 3A - DNML | OFL | UFL | IMP */
486	FPE_FLTINV,	/* 3B - INV | DNML | OFL | UFL | IMP */
487	FPE_FLTDIV,	/* 3C - DZ | OFL | UFL | IMP */
488	FPE_FLTINV,	/* 3D - INV | DZ | OFL | UFL | IMP */
489	FPE_FLTDIV,	/* 3E - DNML | DZ | OFL | UFL | IMP */
490	FPE_FLTINV,	/* 3F - INV | DNML | DZ | OFL | UFL | IMP */
491	FPE_FLTSUB,	/* 40 - STK */
492	FPE_FLTSUB,	/* 41 - INV | STK */
493	FPE_FLTUND,	/* 42 - DNML | STK */
494	FPE_FLTSUB,	/* 43 - INV | DNML | STK */
495	FPE_FLTDIV,	/* 44 - DZ | STK */
496	FPE_FLTSUB,	/* 45 - INV | DZ | STK */
497	FPE_FLTDIV,	/* 46 - DNML | DZ | STK */
498	FPE_FLTSUB,	/* 47 - INV | DNML | DZ | STK */
499	FPE_FLTOVF,	/* 48 - OFL | STK */
500	FPE_FLTSUB,	/* 49 - INV | OFL | STK */
501	FPE_FLTUND,	/* 4A - DNML | OFL | STK */
502	FPE_FLTSUB,	/* 4B - INV | DNML | OFL | STK */
503	FPE_FLTDIV,	/* 4C - DZ | OFL | STK */
504	FPE_FLTSUB,	/* 4D - INV | DZ | OFL | STK */
505	FPE_FLTDIV,	/* 4E - DNML | DZ | OFL | STK */
506	FPE_FLTSUB,	/* 4F - INV | DNML | DZ | OFL | STK */
507	FPE_FLTUND,	/* 50 - UFL | STK */
508	FPE_FLTSUB,	/* 51 - INV | UFL | STK */
509	FPE_FLTUND,	/* 52 - DNML | UFL | STK */
510	FPE_FLTSUB,	/* 53 - INV | DNML | UFL | STK */
511	FPE_FLTDIV,	/* 54 - DZ | UFL | STK */
512	FPE_FLTSUB,	/* 55 - INV | DZ | UFL | STK */
513	FPE_FLTDIV,	/* 56 - DNML | DZ | UFL | STK */
514	FPE_FLTSUB,	/* 57 - INV | DNML | DZ | UFL | STK */
515	FPE_FLTOVF,	/* 58 - OFL | UFL | STK */
516	FPE_FLTSUB,	/* 59 - INV | OFL | UFL | STK */
517	FPE_FLTUND,	/* 5A - DNML | OFL | UFL | STK */
518	FPE_FLTSUB,	/* 5B - INV | DNML | OFL | UFL | STK */
519	FPE_FLTDIV,	/* 5C - DZ | OFL | UFL | STK */
520	FPE_FLTSUB,	/* 5D - INV | DZ | OFL | UFL | STK */
521	FPE_FLTDIV,	/* 5E - DNML | DZ | OFL | UFL | STK */
522	FPE_FLTSUB,	/* 5F - INV | DNML | DZ | OFL | UFL | STK */
523	FPE_FLTRES,	/* 60 - IMP | STK */
524	FPE_FLTSUB,	/* 61 - INV | IMP | STK */
525	FPE_FLTUND,	/* 62 - DNML | IMP | STK */
526	FPE_FLTSUB,	/* 63 - INV | DNML | IMP | STK */
527	FPE_FLTDIV,	/* 64 - DZ | IMP | STK */
528	FPE_FLTSUB,	/* 65 - INV | DZ | IMP | STK */
529	FPE_FLTDIV,	/* 66 - DNML | DZ | IMP | STK */
530	FPE_FLTSUB,	/* 67 - INV | DNML | DZ | IMP | STK */
531	FPE_FLTOVF,	/* 68 - OFL | IMP | STK */
532	FPE_FLTSUB,	/* 69 - INV | OFL | IMP | STK */
533	FPE_FLTUND,	/* 6A - DNML | OFL | IMP | STK */
534	FPE_FLTSUB,	/* 6B - INV | DNML | OFL | IMP | STK */
535	FPE_FLTDIV,	/* 6C - DZ | OFL | IMP | STK */
536	FPE_FLTSUB,	/* 6D - INV | DZ | OFL | IMP | STK */
537	FPE_FLTDIV,	/* 6E - DNML | DZ | OFL | IMP | STK */
538	FPE_FLTSUB,	/* 6F - INV | DNML | DZ | OFL | IMP | STK */
539	FPE_FLTUND,	/* 70 - UFL | IMP | STK */
540	FPE_FLTSUB,	/* 71 - INV | UFL | IMP | STK */
541	FPE_FLTUND,	/* 72 - DNML | UFL | IMP | STK */
542	FPE_FLTSUB,	/* 73 - INV | DNML | UFL | IMP | STK */
543	FPE_FLTDIV,	/* 74 - DZ | UFL | IMP | STK */
544	FPE_FLTSUB,	/* 75 - INV | DZ | UFL | IMP | STK */
545	FPE_FLTDIV,	/* 76 - DNML | DZ | UFL | IMP | STK */
546	FPE_FLTSUB,	/* 77 - INV | DNML | DZ | UFL | IMP | STK */
547	FPE_FLTOVF,	/* 78 - OFL | UFL | IMP | STK */
548	FPE_FLTSUB,	/* 79 - INV | OFL | UFL | IMP | STK */
549	FPE_FLTUND,	/* 7A - DNML | OFL | UFL | IMP | STK */
550	FPE_FLTSUB,	/* 7B - INV | DNML | OFL | UFL | IMP | STK */
551	FPE_FLTDIV,	/* 7C - DZ | OFL | UFL | IMP | STK */
552	FPE_FLTSUB,	/* 7D - INV | DZ | OFL | UFL | IMP | STK */
553	FPE_FLTDIV,	/* 7E - DNML | DZ | OFL | UFL | IMP | STK */
554	FPE_FLTSUB,	/* 7F - INV | DNML | DZ | OFL | UFL | IMP | STK */
555};
556
557/*
558 * Read the FP status and control words, then generate si_code value
559 * for SIGFPE.  The error code chosen will be one of the
560 * FPE_... macros.  It will be sent as the second argument to old
561 * BSD-style signal handlers and as "siginfo_t->si_code" (second
562 * argument) to SA_SIGINFO signal handlers.
563 *
564 * Some time ago, we cleared the x87 exceptions with FNCLEX there.
565 * Clearing exceptions was necessary mainly to avoid IRQ13 bugs.  The
566 * usermode code which understands the FPU hardware enough to enable
567 * the exceptions, can also handle clearing the exception state in the
568 * handler.  The only consequence of not clearing the exception is the
569 * rethrow of the SIGFPE on return from the signal handler and
570 * reexecution of the corresponding instruction.
571 *
572 * For XMM traps, the exceptions were never cleared.
573 */
574int
575fputrap_x87(void)
576{
577	struct savefpu *pcb_save;
578	u_short control, status;
579
580	critical_enter();
581
582	/*
583	 * Interrupt handling (for another interrupt) may have pushed the
584	 * state to memory.  Fetch the relevant parts of the state from
585	 * wherever they are.
586	 */
587	if (PCPU_GET(fpcurthread) != curthread) {
588		pcb_save = curpcb->pcb_save;
589		control = pcb_save->sv_env.en_cw;
590		status = pcb_save->sv_env.en_sw;
591	} else {
592		fnstcw(&control);
593		fnstsw(&status);
594	}
595
596	critical_exit();
597	return (fpetable[status & ((~control & 0x3f) | 0x40)]);
598}
599
600int
601fputrap_sse(void)
602{
603	u_int mxcsr;
604
605	critical_enter();
606	if (PCPU_GET(fpcurthread) != curthread)
607		mxcsr = curpcb->pcb_save->sv_env.en_mxcsr;
608	else
609		stmxcsr(&mxcsr);
610	critical_exit();
611	return (fpetable[(mxcsr & (~mxcsr >> 7)) & 0x3f]);
612}
613
614/*
615 * Device Not Available (DNA, #NM) exception handler.
616 *
617 * It would be better to switch FP context here (if curthread !=
618 * fpcurthread) and not necessarily for every context switch, but it
619 * is too hard to access foreign pcb's.
620 */
621void
622fpudna(void)
623{
624
625	/*
626	 * This handler is entered with interrupts enabled, so context
627	 * switches may occur before critical_enter() is executed.  If
628	 * a context switch occurs, then when we regain control, our
629	 * state will have been completely restored.  The CPU may
630	 * change underneath us, but the only part of our context that
631	 * lives in the CPU is CR0.TS and that will be "restored" by
632	 * setting it on the new CPU.
633	 */
634	critical_enter();
635
636	KASSERT((curpcb->pcb_flags & PCB_FPUNOSAVE) == 0,
637	    ("fpudna while in fpu_kern_enter(FPU_KERN_NOCTX)"));
638	if (PCPU_GET(fpcurthread) == curthread) {
639		printf("fpudna: fpcurthread == curthread\n");
640		stop_emulating();
641		critical_exit();
642		return;
643	}
644	if (PCPU_GET(fpcurthread) != NULL) {
645		panic("fpudna: fpcurthread = %p (%d), curthread = %p (%d)\n",
646		    PCPU_GET(fpcurthread), PCPU_GET(fpcurthread)->td_tid,
647		    curthread, curthread->td_tid);
648	}
649	stop_emulating();
650	/*
651	 * Record new context early in case frstor causes a trap.
652	 */
653	PCPU_SET(fpcurthread, curthread);
654
655	fpu_clean_state();
656
657	if ((curpcb->pcb_flags & PCB_FPUINITDONE) == 0) {
658		/*
659		 * This is the first time this thread has used the FPU or
660		 * the PCB doesn't contain a clean FPU state.  Explicitly
661		 * load an initial state.
662		 *
663		 * We prefer to restore the state from the actual save
664		 * area in PCB instead of directly loading from
665		 * fpu_initialstate, to ignite the XSAVEOPT
666		 * tracking engine.
667		 */
668		bcopy(fpu_initialstate, curpcb->pcb_save,
669		    cpu_max_ext_state_size);
670		fpurestore(curpcb->pcb_save);
671		if (curpcb->pcb_initial_fpucw != __INITIAL_FPUCW__)
672			fldcw(curpcb->pcb_initial_fpucw);
673		if (PCB_USER_FPU(curpcb))
674			set_pcb_flags(curpcb,
675			    PCB_FPUINITDONE | PCB_USERFPUINITDONE);
676		else
677			set_pcb_flags(curpcb, PCB_FPUINITDONE);
678	} else
679		fpurestore(curpcb->pcb_save);
680	critical_exit();
681}
682
683void
684fpudrop(void)
685{
686	struct thread *td;
687
688	td = PCPU_GET(fpcurthread);
689	KASSERT(td == curthread, ("fpudrop: fpcurthread != curthread"));
690	CRITICAL_ASSERT(td);
691	PCPU_SET(fpcurthread, NULL);
692	clear_pcb_flags(td->td_pcb, PCB_FPUINITDONE);
693	start_emulating();
694}
695
696/*
697 * Get the user state of the FPU into pcb->pcb_user_save without
698 * dropping ownership (if possible).  It returns the FPU ownership
699 * status.
700 */
701int
702fpugetregs(struct thread *td)
703{
704	struct pcb *pcb;
705	uint64_t *xstate_bv, bit;
706	char *sa;
707	int max_ext_n, i, owned;
708
709	pcb = td->td_pcb;
710	if ((pcb->pcb_flags & PCB_USERFPUINITDONE) == 0) {
711		bcopy(fpu_initialstate, get_pcb_user_save_pcb(pcb),
712		    cpu_max_ext_state_size);
713		get_pcb_user_save_pcb(pcb)->sv_env.en_cw =
714		    pcb->pcb_initial_fpucw;
715		fpuuserinited(td);
716		return (_MC_FPOWNED_PCB);
717	}
718	critical_enter();
719	if (td == PCPU_GET(fpcurthread) && PCB_USER_FPU(pcb)) {
720		fpusave(get_pcb_user_save_pcb(pcb));
721		owned = _MC_FPOWNED_FPU;
722	} else {
723		owned = _MC_FPOWNED_PCB;
724	}
725	critical_exit();
726	if (use_xsave) {
727		/*
728		 * Handle partially saved state.
729		 */
730		sa = (char *)get_pcb_user_save_pcb(pcb);
731		xstate_bv = (uint64_t *)(sa + sizeof(struct savefpu) +
732		    offsetof(struct xstate_hdr, xstate_bv));
733		max_ext_n = flsl(xsave_mask);
734		for (i = 0; i < max_ext_n; i++) {
735			bit = 1ULL << i;
736			if ((xsave_mask & bit) == 0 || (*xstate_bv & bit) != 0)
737				continue;
738			bcopy((char *)fpu_initialstate +
739			    xsave_area_desc[i].offset,
740			    sa + xsave_area_desc[i].offset,
741			    xsave_area_desc[i].size);
742			*xstate_bv |= bit;
743		}
744	}
745	return (owned);
746}
747
748void
749fpuuserinited(struct thread *td)
750{
751	struct pcb *pcb;
752
753	pcb = td->td_pcb;
754	if (PCB_USER_FPU(pcb))
755		set_pcb_flags(pcb,
756		    PCB_FPUINITDONE | PCB_USERFPUINITDONE);
757	else
758		set_pcb_flags(pcb, PCB_FPUINITDONE);
759}
760
761int
762fpusetxstate(struct thread *td, char *xfpustate, size_t xfpustate_size)
763{
764	struct xstate_hdr *hdr, *ehdr;
765	size_t len, max_len;
766	uint64_t bv;
767
768	/* XXXKIB should we clear all extended state in xstate_bv instead ? */
769	if (xfpustate == NULL)
770		return (0);
771	if (!use_xsave)
772		return (EOPNOTSUPP);
773
774	len = xfpustate_size;
775	if (len < sizeof(struct xstate_hdr))
776		return (EINVAL);
777	max_len = cpu_max_ext_state_size - sizeof(struct savefpu);
778	if (len > max_len)
779		return (EINVAL);
780
781	ehdr = (struct xstate_hdr *)xfpustate;
782	bv = ehdr->xstate_bv;
783
784	/*
785	 * Avoid #gp.
786	 */
787	if (bv & ~xsave_mask)
788		return (EINVAL);
789
790	hdr = (struct xstate_hdr *)(get_pcb_user_save_td(td) + 1);
791
792	hdr->xstate_bv = bv;
793	bcopy(xfpustate + sizeof(struct xstate_hdr),
794	    (char *)(hdr + 1), len - sizeof(struct xstate_hdr));
795
796	return (0);
797}
798
799/*
800 * Set the state of the FPU.
801 */
802int
803fpusetregs(struct thread *td, struct savefpu *addr, char *xfpustate,
804    size_t xfpustate_size)
805{
806	struct pcb *pcb;
807	int error;
808
809	pcb = td->td_pcb;
810	critical_enter();
811	if (td == PCPU_GET(fpcurthread) && PCB_USER_FPU(pcb)) {
812		error = fpusetxstate(td, xfpustate, xfpustate_size);
813		if (error != 0) {
814			critical_exit();
815			return (error);
816		}
817		bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr));
818		fpurestore(get_pcb_user_save_td(td));
819		critical_exit();
820		set_pcb_flags(pcb, PCB_FPUINITDONE | PCB_USERFPUINITDONE);
821	} else {
822		critical_exit();
823		error = fpusetxstate(td, xfpustate, xfpustate_size);
824		if (error != 0)
825			return (error);
826		bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr));
827		fpuuserinited(td);
828	}
829	return (0);
830}
831
832/*
833 * On AuthenticAMD processors, the fxrstor instruction does not restore
834 * the x87's stored last instruction pointer, last data pointer, and last
835 * opcode values, except in the rare case in which the exception summary
836 * (ES) bit in the x87 status word is set to 1.
837 *
838 * In order to avoid leaking this information across processes, we clean
839 * these values by performing a dummy load before executing fxrstor().
840 */
841static void
842fpu_clean_state(void)
843{
844	static float dummy_variable = 0.0;
845	u_short status;
846
847	/*
848	 * Clear the ES bit in the x87 status word if it is currently
849	 * set, in order to avoid causing a fault in the upcoming load.
850	 */
851	fnstsw(&status);
852	if (status & 0x80)
853		fnclex();
854
855	/*
856	 * Load the dummy variable into the x87 stack.  This mangles
857	 * the x87 stack, but we don't care since we're about to call
858	 * fxrstor() anyway.
859	 */
860	__asm __volatile("ffree %%st(7); flds %0" : : "m" (dummy_variable));
861}
862
863/*
864 * This really sucks.  We want the acpi version only, but it requires
865 * the isa_if.h file in order to get the definitions.
866 */
867#include "opt_isa.h"
868#ifdef DEV_ISA
869#include <isa/isavar.h>
870/*
871 * This sucks up the legacy ISA support assignments from PNPBIOS/ACPI.
872 */
873static struct isa_pnp_id fpupnp_ids[] = {
874	{ 0x040cd041, "Legacy ISA coprocessor support" }, /* PNP0C04 */
875	{ 0 }
876};
877
878static int
879fpupnp_probe(device_t dev)
880{
881	int result;
882
883	result = ISA_PNP_PROBE(device_get_parent(dev), dev, fpupnp_ids);
884	if (result <= 0)
885		device_quiet(dev);
886	return (result);
887}
888
889static int
890fpupnp_attach(device_t dev)
891{
892
893	return (0);
894}
895
896static device_method_t fpupnp_methods[] = {
897	/* Device interface */
898	DEVMETHOD(device_probe,		fpupnp_probe),
899	DEVMETHOD(device_attach,	fpupnp_attach),
900	DEVMETHOD(device_detach,	bus_generic_detach),
901	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
902	DEVMETHOD(device_suspend,	bus_generic_suspend),
903	DEVMETHOD(device_resume,	bus_generic_resume),
904
905	{ 0, 0 }
906};
907
908static driver_t fpupnp_driver = {
909	"fpupnp",
910	fpupnp_methods,
911	1,			/* no softc */
912};
913
914static devclass_t fpupnp_devclass;
915
916DRIVER_MODULE(fpupnp, acpi, fpupnp_driver, fpupnp_devclass, 0, 0);
917#endif	/* DEV_ISA */
918
919static MALLOC_DEFINE(M_FPUKERN_CTX, "fpukern_ctx",
920    "Kernel contexts for FPU state");
921
922#define	FPU_KERN_CTX_FPUINITDONE 0x01
923#define	FPU_KERN_CTX_DUMMY	 0x02	/* avoided save for the kern thread */
924#define	FPU_KERN_CTX_INUSE	 0x04
925
926struct fpu_kern_ctx {
927	struct savefpu *prev;
928	uint32_t flags;
929	char hwstate1[];
930};
931
932struct fpu_kern_ctx *
933fpu_kern_alloc_ctx(u_int flags)
934{
935	struct fpu_kern_ctx *res;
936	size_t sz;
937
938	sz = sizeof(struct fpu_kern_ctx) + XSAVE_AREA_ALIGN +
939	    cpu_max_ext_state_size;
940	res = malloc(sz, M_FPUKERN_CTX, ((flags & FPU_KERN_NOWAIT) ?
941	    M_NOWAIT : M_WAITOK) | M_ZERO);
942	return (res);
943}
944
945void
946fpu_kern_free_ctx(struct fpu_kern_ctx *ctx)
947{
948
949	KASSERT((ctx->flags & FPU_KERN_CTX_INUSE) == 0, ("free'ing inuse ctx"));
950	/* XXXKIB clear the memory ? */
951	free(ctx, M_FPUKERN_CTX);
952}
953
954static struct savefpu *
955fpu_kern_ctx_savefpu(struct fpu_kern_ctx *ctx)
956{
957	vm_offset_t p;
958
959	p = (vm_offset_t)&ctx->hwstate1;
960	p = roundup2(p, XSAVE_AREA_ALIGN);
961	return ((struct savefpu *)p);
962}
963
964int
965fpu_kern_enter(struct thread *td, struct fpu_kern_ctx *ctx, u_int flags)
966{
967	struct pcb *pcb;
968
969	pcb = td->td_pcb;
970	KASSERT((flags & FPU_KERN_NOCTX) != 0 || ctx != NULL,
971	    ("ctx is required when !FPU_KERN_NOCTX"));
972	KASSERT(ctx == NULL || (ctx->flags & FPU_KERN_CTX_INUSE) == 0,
973	    ("using inuse ctx"));
974	KASSERT((pcb->pcb_flags & PCB_FPUNOSAVE) == 0,
975	    ("recursive fpu_kern_enter while in PCB_FPUNOSAVE state"));
976
977	if ((flags & FPU_KERN_NOCTX) != 0) {
978		critical_enter();
979		stop_emulating();
980		if (curthread == PCPU_GET(fpcurthread)) {
981			fpusave(curpcb->pcb_save);
982			PCPU_SET(fpcurthread, NULL);
983		} else {
984			KASSERT(PCPU_GET(fpcurthread) == NULL,
985			    ("invalid fpcurthread"));
986		}
987
988		/*
989		 * This breaks XSAVEOPT tracker, but
990		 * PCB_FPUNOSAVE state is supposed to never need to
991		 * save FPU context at all.
992		 */
993		fpurestore(fpu_initialstate);
994		set_pcb_flags(pcb, PCB_KERNFPU | PCB_FPUNOSAVE |
995		    PCB_FPUINITDONE);
996		return (0);
997	}
998	if ((flags & FPU_KERN_KTHR) != 0 && is_fpu_kern_thread(0)) {
999		ctx->flags = FPU_KERN_CTX_DUMMY | FPU_KERN_CTX_INUSE;
1000		return (0);
1001	}
1002	KASSERT(!PCB_USER_FPU(pcb) || pcb->pcb_save ==
1003	    get_pcb_user_save_pcb(pcb), ("mangled pcb_save"));
1004	ctx->flags = FPU_KERN_CTX_INUSE;
1005	if ((pcb->pcb_flags & PCB_FPUINITDONE) != 0)
1006		ctx->flags |= FPU_KERN_CTX_FPUINITDONE;
1007	fpuexit(td);
1008	ctx->prev = pcb->pcb_save;
1009	pcb->pcb_save = fpu_kern_ctx_savefpu(ctx);
1010	set_pcb_flags(pcb, PCB_KERNFPU);
1011	clear_pcb_flags(pcb, PCB_FPUINITDONE);
1012	return (0);
1013}
1014
1015int
1016fpu_kern_leave(struct thread *td, struct fpu_kern_ctx *ctx)
1017{
1018	struct pcb *pcb;
1019
1020	pcb = td->td_pcb;
1021
1022	if ((pcb->pcb_flags & PCB_FPUNOSAVE) != 0) {
1023		KASSERT(ctx == NULL, ("non-null ctx after FPU_KERN_NOCTX"));
1024		KASSERT(PCPU_GET(fpcurthread) == NULL,
1025		    ("non-NULL fpcurthread for PCB_FPUNOSAVE"));
1026		CRITICAL_ASSERT(td);
1027
1028		clear_pcb_flags(pcb,  PCB_FPUNOSAVE | PCB_FPUINITDONE);
1029		start_emulating();
1030		critical_exit();
1031	} else {
1032		KASSERT((ctx->flags & FPU_KERN_CTX_INUSE) != 0,
1033		    ("leaving not inuse ctx"));
1034		ctx->flags &= ~FPU_KERN_CTX_INUSE;
1035
1036		if (is_fpu_kern_thread(0) &&
1037		    (ctx->flags & FPU_KERN_CTX_DUMMY) != 0)
1038			return (0);
1039		KASSERT((ctx->flags & FPU_KERN_CTX_DUMMY) == 0,
1040		    ("dummy ctx"));
1041		critical_enter();
1042		if (curthread == PCPU_GET(fpcurthread))
1043			fpudrop();
1044		critical_exit();
1045		pcb->pcb_save = ctx->prev;
1046	}
1047
1048	if (pcb->pcb_save == get_pcb_user_save_pcb(pcb)) {
1049		if ((pcb->pcb_flags & PCB_USERFPUINITDONE) != 0) {
1050			set_pcb_flags(pcb, PCB_FPUINITDONE);
1051			clear_pcb_flags(pcb, PCB_KERNFPU);
1052		} else
1053			clear_pcb_flags(pcb, PCB_FPUINITDONE | PCB_KERNFPU);
1054	} else {
1055		if ((ctx->flags & FPU_KERN_CTX_FPUINITDONE) != 0)
1056			set_pcb_flags(pcb, PCB_FPUINITDONE);
1057		else
1058			clear_pcb_flags(pcb, PCB_FPUINITDONE);
1059		KASSERT(!PCB_USER_FPU(pcb), ("unpaired fpu_kern_leave"));
1060	}
1061	return (0);
1062}
1063
1064int
1065fpu_kern_thread(u_int flags)
1066{
1067
1068	KASSERT((curthread->td_pflags & TDP_KTHREAD) != 0,
1069	    ("Only kthread may use fpu_kern_thread"));
1070	KASSERT(curpcb->pcb_save == get_pcb_user_save_pcb(curpcb),
1071	    ("mangled pcb_save"));
1072	KASSERT(PCB_USER_FPU(curpcb), ("recursive call"));
1073
1074	set_pcb_flags(curpcb, PCB_KERNFPU);
1075	return (0);
1076}
1077
1078int
1079is_fpu_kern_thread(u_int flags)
1080{
1081
1082	if ((curthread->td_pflags & TDP_KTHREAD) == 0)
1083		return (0);
1084	return ((curpcb->pcb_flags & PCB_KERNFPU) != 0);
1085}
1086
1087/*
1088 * FPU save area alloc/free/init utility routines
1089 */
1090struct savefpu *
1091fpu_save_area_alloc(void)
1092{
1093
1094	return (uma_zalloc(fpu_save_area_zone, 0));
1095}
1096
1097void
1098fpu_save_area_free(struct savefpu *fsa)
1099{
1100
1101	uma_zfree(fpu_save_area_zone, fsa);
1102}
1103
1104void
1105fpu_save_area_reset(struct savefpu *fsa)
1106{
1107
1108	bcopy(fpu_initialstate, fsa, cpu_max_ext_state_size);
1109}
1110