fpu.c revision 271924
1/*-
2 * Copyright (c) 1990 William Jolitz.
3 * Copyright (c) 1991 The Regents of the University of California.
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 * 4. Neither the name of the University nor the names of its contributors
15 *    may be used to endorse or promote products derived from this software
16 *    without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 *	from: @(#)npx.c	7.2 (Berkeley) 5/12/91
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: head/sys/amd64/amd64/fpu.c 271924 2014-09-21 09:06:50Z kib $");
35
36#include <sys/param.h>
37#include <sys/systm.h>
38#include <sys/bus.h>
39#include <sys/kernel.h>
40#include <sys/lock.h>
41#include <sys/malloc.h>
42#include <sys/module.h>
43#include <sys/mutex.h>
44#include <sys/mutex.h>
45#include <sys/proc.h>
46#include <sys/sysctl.h>
47#include <machine/bus.h>
48#include <sys/rman.h>
49#include <sys/signalvar.h>
50#include <vm/uma.h>
51
52#include <machine/cputypes.h>
53#include <machine/frame.h>
54#include <machine/intr_machdep.h>
55#include <machine/md_var.h>
56#include <machine/pcb.h>
57#include <machine/psl.h>
58#include <machine/resource.h>
59#include <machine/specialreg.h>
60#include <machine/segments.h>
61#include <machine/ucontext.h>
62
63/*
64 * Floating point support.
65 */
66
67#if defined(__GNUCLIKE_ASM) && !defined(lint)
68
69#define	fldcw(cw)		__asm __volatile("fldcw %0" : : "m" (cw))
70#define	fnclex()		__asm __volatile("fnclex")
71#define	fninit()		__asm __volatile("fninit")
72#define	fnstcw(addr)		__asm __volatile("fnstcw %0" : "=m" (*(addr)))
73#define	fnstsw(addr)		__asm __volatile("fnstsw %0" : "=am" (*(addr)))
74#define	fxrstor(addr)		__asm __volatile("fxrstor %0" : : "m" (*(addr)))
75#define	fxsave(addr)		__asm __volatile("fxsave %0" : "=m" (*(addr)))
76#define	ldmxcsr(csr)		__asm __volatile("ldmxcsr %0" : : "m" (csr))
77#define	stmxcsr(addr)		__asm __volatile("stmxcsr %0" : : "m" (*(addr)))
78
79static __inline void
80xrstor(char *addr, uint64_t mask)
81{
82	uint32_t low, hi;
83
84	low = mask;
85	hi = mask >> 32;
86	__asm __volatile("xrstor %0" : : "m" (*addr), "a" (low), "d" (hi));
87}
88
89static __inline void
90xsave(char *addr, uint64_t mask)
91{
92	uint32_t low, hi;
93
94	low = mask;
95	hi = mask >> 32;
96	__asm __volatile("xsave %0" : "=m" (*addr) : "a" (low), "d" (hi) :
97	    "memory");
98}
99
100#else	/* !(__GNUCLIKE_ASM && !lint) */
101
102void	fldcw(u_short cw);
103void	fnclex(void);
104void	fninit(void);
105void	fnstcw(caddr_t addr);
106void	fnstsw(caddr_t addr);
107void	fxsave(caddr_t addr);
108void	fxrstor(caddr_t addr);
109void	ldmxcsr(u_int csr);
110void	stmxcsr(u_int *csr);
111void	xrstor(char *addr, uint64_t mask);
112void	xsave(char *addr, uint64_t mask);
113
114#endif	/* __GNUCLIKE_ASM && !lint */
115
116#define	start_emulating()	load_cr0(rcr0() | CR0_TS)
117#define	stop_emulating()	clts()
118
119CTASSERT(sizeof(struct savefpu) == 512);
120CTASSERT(sizeof(struct xstate_hdr) == 64);
121CTASSERT(sizeof(struct savefpu_ymm) == 832);
122
123/*
124 * This requirement is to make it easier for asm code to calculate
125 * offset of the fpu save area from the pcb address. FPU save area
126 * must be 64-byte aligned.
127 */
128CTASSERT(sizeof(struct pcb) % XSAVE_AREA_ALIGN == 0);
129
130static	void	fpu_clean_state(void);
131
132SYSCTL_INT(_hw, HW_FLOATINGPT, floatingpoint, CTLFLAG_RD,
133    NULL, 1, "Floating point instructions executed in hardware");
134
135int use_xsave;			/* non-static for cpu_switch.S */
136uint64_t xsave_mask;		/* the same */
137static	uma_zone_t fpu_save_area_zone;
138static	struct savefpu *fpu_initialstate;
139
140struct xsave_area_elm_descr {
141	u_int	offset;
142	u_int	size;
143} *xsave_area_desc;
144
145void
146fpusave(void *addr)
147{
148
149	if (use_xsave)
150		xsave((char *)addr, xsave_mask);
151	else
152		fxsave((char *)addr);
153}
154
155void
156fpurestore(void *addr)
157{
158
159	if (use_xsave)
160		xrstor((char *)addr, xsave_mask);
161	else
162		fxrstor((char *)addr);
163}
164
165void
166fpususpend(void *addr)
167{
168	u_long cr0;
169
170	cr0 = rcr0();
171	stop_emulating();
172	fpusave(addr);
173	load_cr0(cr0);
174}
175
176void
177fpuresume(void *addr)
178{
179	u_long cr0;
180
181	cr0 = rcr0();
182	stop_emulating();
183	fninit();
184	if (use_xsave)
185		load_xcr(XCR0, xsave_mask);
186	fpurestore(addr);
187	load_cr0(cr0);
188}
189
190/*
191 * Enable XSAVE if supported and allowed by user.
192 * Calculate the xsave_mask.
193 */
194static void
195fpuinit_bsp1(void)
196{
197	u_int cp[4];
198	uint64_t xsave_mask_user;
199
200	if ((cpu_feature2 & CPUID2_XSAVE) != 0) {
201		use_xsave = 1;
202		TUNABLE_INT_FETCH("hw.use_xsave", &use_xsave);
203	}
204	if (!use_xsave)
205		return;
206
207	cpuid_count(0xd, 0x0, cp);
208	xsave_mask = XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
209	if ((cp[0] & xsave_mask) != xsave_mask)
210		panic("CPU0 does not support X87 or SSE: %x", cp[0]);
211	xsave_mask = ((uint64_t)cp[3] << 32) | cp[0];
212	xsave_mask_user = xsave_mask;
213	TUNABLE_ULONG_FETCH("hw.xsave_mask", &xsave_mask_user);
214	xsave_mask_user |= XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
215	xsave_mask &= xsave_mask_user;
216	if ((xsave_mask & XFEATURE_AVX512) != XFEATURE_AVX512)
217		xsave_mask &= ~XFEATURE_AVX512;
218	if ((xsave_mask & XFEATURE_MPX) != XFEATURE_MPX)
219		xsave_mask &= ~XFEATURE_MPX;
220
221	cpuid_count(0xd, 0x1, cp);
222	if ((cp[0] & CPUID_EXTSTATE_XSAVEOPT) != 0) {
223		/*
224		 * Patch the XSAVE instruction in the cpu_switch code
225		 * to XSAVEOPT.  We assume that XSAVE encoding used
226		 * REX byte, and set the bit 4 of the r/m byte.
227		 */
228		ctx_switch_xsave[3] |= 0x10;
229	}
230}
231
232/*
233 * Calculate the fpu save area size.
234 */
235static void
236fpuinit_bsp2(void)
237{
238	u_int cp[4];
239
240	if (use_xsave) {
241		cpuid_count(0xd, 0x0, cp);
242		cpu_max_ext_state_size = cp[1];
243
244		/*
245		 * Reload the cpu_feature2, since we enabled OSXSAVE.
246		 */
247		do_cpuid(1, cp);
248		cpu_feature2 = cp[2];
249	} else
250		cpu_max_ext_state_size = sizeof(struct savefpu);
251}
252
253/*
254 * Initialize the floating point unit.
255 */
256void
257fpuinit(void)
258{
259	register_t saveintr;
260	u_int mxcsr;
261	u_short control;
262
263	if (IS_BSP())
264		fpuinit_bsp1();
265
266	if (use_xsave) {
267		load_cr4(rcr4() | CR4_XSAVE);
268		load_xcr(XCR0, xsave_mask);
269	}
270
271	/*
272	 * XCR0 shall be set up before CPU can report the save area size.
273	 */
274	if (IS_BSP())
275		fpuinit_bsp2();
276
277	/*
278	 * It is too early for critical_enter() to work on AP.
279	 */
280	saveintr = intr_disable();
281	stop_emulating();
282	fninit();
283	control = __INITIAL_FPUCW__;
284	fldcw(control);
285	mxcsr = __INITIAL_MXCSR__;
286	ldmxcsr(mxcsr);
287	start_emulating();
288	intr_restore(saveintr);
289}
290
291/*
292 * On the boot CPU we generate a clean state that is used to
293 * initialize the floating point unit when it is first used by a
294 * process.
295 */
296static void
297fpuinitstate(void *arg __unused)
298{
299	register_t saveintr;
300	int cp[4], i, max_ext_n;
301
302	fpu_initialstate = malloc(cpu_max_ext_state_size, M_DEVBUF,
303	    M_WAITOK | M_ZERO);
304	saveintr = intr_disable();
305	stop_emulating();
306
307	fpusave(fpu_initialstate);
308	if (fpu_initialstate->sv_env.en_mxcsr_mask)
309		cpu_mxcsr_mask = fpu_initialstate->sv_env.en_mxcsr_mask;
310	else
311		cpu_mxcsr_mask = 0xFFBF;
312
313	/*
314	 * The fninit instruction does not modify XMM registers.  The
315	 * fpusave call dumped the garbage contained in the registers
316	 * after reset to the initial state saved.  Clear XMM
317	 * registers file image to make the startup program state and
318	 * signal handler XMM register content predictable.
319	 */
320	bzero(&fpu_initialstate->sv_xmm[0], sizeof(struct xmmacc));
321
322	/*
323	 * Create a table describing the layout of the CPU Extended
324	 * Save Area.
325	 */
326	if (use_xsave) {
327		max_ext_n = flsl(xsave_mask);
328		xsave_area_desc = malloc(max_ext_n * sizeof(struct
329		    xsave_area_elm_descr), M_DEVBUF, M_WAITOK | M_ZERO);
330		/* x87 state */
331		xsave_area_desc[0].offset = 0;
332		xsave_area_desc[0].size = 160;
333		/* XMM */
334		xsave_area_desc[1].offset = 160;
335		xsave_area_desc[1].size = 288 - 160;
336
337		for (i = 2; i < max_ext_n; i++) {
338			cpuid_count(0xd, i, cp);
339			xsave_area_desc[i].offset = cp[1];
340			xsave_area_desc[i].size = cp[0];
341		}
342	}
343
344	fpu_save_area_zone = uma_zcreate("FPU_save_area",
345	    cpu_max_ext_state_size, NULL, NULL, NULL, NULL,
346	    XSAVE_AREA_ALIGN - 1, 0);
347
348	start_emulating();
349	intr_restore(saveintr);
350}
351SYSINIT(fpuinitstate, SI_SUB_DRIVERS, SI_ORDER_ANY, fpuinitstate, NULL);
352
353/*
354 * Free coprocessor (if we have it).
355 */
356void
357fpuexit(struct thread *td)
358{
359
360	critical_enter();
361	if (curthread == PCPU_GET(fpcurthread)) {
362		stop_emulating();
363		fpusave(curpcb->pcb_save);
364		start_emulating();
365		PCPU_SET(fpcurthread, NULL);
366	}
367	critical_exit();
368}
369
370int
371fpuformat()
372{
373
374	return (_MC_FPFMT_XMM);
375}
376
377/*
378 * The following mechanism is used to ensure that the FPE_... value
379 * that is passed as a trapcode to the signal handler of the user
380 * process does not have more than one bit set.
381 *
382 * Multiple bits may be set if the user process modifies the control
383 * word while a status word bit is already set.  While this is a sign
384 * of bad coding, we have no choise than to narrow them down to one
385 * bit, since we must not send a trapcode that is not exactly one of
386 * the FPE_ macros.
387 *
388 * The mechanism has a static table with 127 entries.  Each combination
389 * of the 7 FPU status word exception bits directly translates to a
390 * position in this table, where a single FPE_... value is stored.
391 * This FPE_... value stored there is considered the "most important"
392 * of the exception bits and will be sent as the signal code.  The
393 * precedence of the bits is based upon Intel Document "Numerical
394 * Applications", Chapter "Special Computational Situations".
395 *
396 * The macro to choose one of these values does these steps: 1) Throw
397 * away status word bits that cannot be masked.  2) Throw away the bits
398 * currently masked in the control word, assuming the user isn't
399 * interested in them anymore.  3) Reinsert status word bit 7 (stack
400 * fault) if it is set, which cannot be masked but must be presered.
401 * 4) Use the remaining bits to point into the trapcode table.
402 *
403 * The 6 maskable bits in order of their preference, as stated in the
404 * above referenced Intel manual:
405 * 1  Invalid operation (FP_X_INV)
406 * 1a   Stack underflow
407 * 1b   Stack overflow
408 * 1c   Operand of unsupported format
409 * 1d   SNaN operand.
410 * 2  QNaN operand (not an exception, irrelavant here)
411 * 3  Any other invalid-operation not mentioned above or zero divide
412 *      (FP_X_INV, FP_X_DZ)
413 * 4  Denormal operand (FP_X_DNML)
414 * 5  Numeric over/underflow (FP_X_OFL, FP_X_UFL)
415 * 6  Inexact result (FP_X_IMP)
416 */
417static char fpetable[128] = {
418	0,
419	FPE_FLTINV,	/*  1 - INV */
420	FPE_FLTUND,	/*  2 - DNML */
421	FPE_FLTINV,	/*  3 - INV | DNML */
422	FPE_FLTDIV,	/*  4 - DZ */
423	FPE_FLTINV,	/*  5 - INV | DZ */
424	FPE_FLTDIV,	/*  6 - DNML | DZ */
425	FPE_FLTINV,	/*  7 - INV | DNML | DZ */
426	FPE_FLTOVF,	/*  8 - OFL */
427	FPE_FLTINV,	/*  9 - INV | OFL */
428	FPE_FLTUND,	/*  A - DNML | OFL */
429	FPE_FLTINV,	/*  B - INV | DNML | OFL */
430	FPE_FLTDIV,	/*  C - DZ | OFL */
431	FPE_FLTINV,	/*  D - INV | DZ | OFL */
432	FPE_FLTDIV,	/*  E - DNML | DZ | OFL */
433	FPE_FLTINV,	/*  F - INV | DNML | DZ | OFL */
434	FPE_FLTUND,	/* 10 - UFL */
435	FPE_FLTINV,	/* 11 - INV | UFL */
436	FPE_FLTUND,	/* 12 - DNML | UFL */
437	FPE_FLTINV,	/* 13 - INV | DNML | UFL */
438	FPE_FLTDIV,	/* 14 - DZ | UFL */
439	FPE_FLTINV,	/* 15 - INV | DZ | UFL */
440	FPE_FLTDIV,	/* 16 - DNML | DZ | UFL */
441	FPE_FLTINV,	/* 17 - INV | DNML | DZ | UFL */
442	FPE_FLTOVF,	/* 18 - OFL | UFL */
443	FPE_FLTINV,	/* 19 - INV | OFL | UFL */
444	FPE_FLTUND,	/* 1A - DNML | OFL | UFL */
445	FPE_FLTINV,	/* 1B - INV | DNML | OFL | UFL */
446	FPE_FLTDIV,	/* 1C - DZ | OFL | UFL */
447	FPE_FLTINV,	/* 1D - INV | DZ | OFL | UFL */
448	FPE_FLTDIV,	/* 1E - DNML | DZ | OFL | UFL */
449	FPE_FLTINV,	/* 1F - INV | DNML | DZ | OFL | UFL */
450	FPE_FLTRES,	/* 20 - IMP */
451	FPE_FLTINV,	/* 21 - INV | IMP */
452	FPE_FLTUND,	/* 22 - DNML | IMP */
453	FPE_FLTINV,	/* 23 - INV | DNML | IMP */
454	FPE_FLTDIV,	/* 24 - DZ | IMP */
455	FPE_FLTINV,	/* 25 - INV | DZ | IMP */
456	FPE_FLTDIV,	/* 26 - DNML | DZ | IMP */
457	FPE_FLTINV,	/* 27 - INV | DNML | DZ | IMP */
458	FPE_FLTOVF,	/* 28 - OFL | IMP */
459	FPE_FLTINV,	/* 29 - INV | OFL | IMP */
460	FPE_FLTUND,	/* 2A - DNML | OFL | IMP */
461	FPE_FLTINV,	/* 2B - INV | DNML | OFL | IMP */
462	FPE_FLTDIV,	/* 2C - DZ | OFL | IMP */
463	FPE_FLTINV,	/* 2D - INV | DZ | OFL | IMP */
464	FPE_FLTDIV,	/* 2E - DNML | DZ | OFL | IMP */
465	FPE_FLTINV,	/* 2F - INV | DNML | DZ | OFL | IMP */
466	FPE_FLTUND,	/* 30 - UFL | IMP */
467	FPE_FLTINV,	/* 31 - INV | UFL | IMP */
468	FPE_FLTUND,	/* 32 - DNML | UFL | IMP */
469	FPE_FLTINV,	/* 33 - INV | DNML | UFL | IMP */
470	FPE_FLTDIV,	/* 34 - DZ | UFL | IMP */
471	FPE_FLTINV,	/* 35 - INV | DZ | UFL | IMP */
472	FPE_FLTDIV,	/* 36 - DNML | DZ | UFL | IMP */
473	FPE_FLTINV,	/* 37 - INV | DNML | DZ | UFL | IMP */
474	FPE_FLTOVF,	/* 38 - OFL | UFL | IMP */
475	FPE_FLTINV,	/* 39 - INV | OFL | UFL | IMP */
476	FPE_FLTUND,	/* 3A - DNML | OFL | UFL | IMP */
477	FPE_FLTINV,	/* 3B - INV | DNML | OFL | UFL | IMP */
478	FPE_FLTDIV,	/* 3C - DZ | OFL | UFL | IMP */
479	FPE_FLTINV,	/* 3D - INV | DZ | OFL | UFL | IMP */
480	FPE_FLTDIV,	/* 3E - DNML | DZ | OFL | UFL | IMP */
481	FPE_FLTINV,	/* 3F - INV | DNML | DZ | OFL | UFL | IMP */
482	FPE_FLTSUB,	/* 40 - STK */
483	FPE_FLTSUB,	/* 41 - INV | STK */
484	FPE_FLTUND,	/* 42 - DNML | STK */
485	FPE_FLTSUB,	/* 43 - INV | DNML | STK */
486	FPE_FLTDIV,	/* 44 - DZ | STK */
487	FPE_FLTSUB,	/* 45 - INV | DZ | STK */
488	FPE_FLTDIV,	/* 46 - DNML | DZ | STK */
489	FPE_FLTSUB,	/* 47 - INV | DNML | DZ | STK */
490	FPE_FLTOVF,	/* 48 - OFL | STK */
491	FPE_FLTSUB,	/* 49 - INV | OFL | STK */
492	FPE_FLTUND,	/* 4A - DNML | OFL | STK */
493	FPE_FLTSUB,	/* 4B - INV | DNML | OFL | STK */
494	FPE_FLTDIV,	/* 4C - DZ | OFL | STK */
495	FPE_FLTSUB,	/* 4D - INV | DZ | OFL | STK */
496	FPE_FLTDIV,	/* 4E - DNML | DZ | OFL | STK */
497	FPE_FLTSUB,	/* 4F - INV | DNML | DZ | OFL | STK */
498	FPE_FLTUND,	/* 50 - UFL | STK */
499	FPE_FLTSUB,	/* 51 - INV | UFL | STK */
500	FPE_FLTUND,	/* 52 - DNML | UFL | STK */
501	FPE_FLTSUB,	/* 53 - INV | DNML | UFL | STK */
502	FPE_FLTDIV,	/* 54 - DZ | UFL | STK */
503	FPE_FLTSUB,	/* 55 - INV | DZ | UFL | STK */
504	FPE_FLTDIV,	/* 56 - DNML | DZ | UFL | STK */
505	FPE_FLTSUB,	/* 57 - INV | DNML | DZ | UFL | STK */
506	FPE_FLTOVF,	/* 58 - OFL | UFL | STK */
507	FPE_FLTSUB,	/* 59 - INV | OFL | UFL | STK */
508	FPE_FLTUND,	/* 5A - DNML | OFL | UFL | STK */
509	FPE_FLTSUB,	/* 5B - INV | DNML | OFL | UFL | STK */
510	FPE_FLTDIV,	/* 5C - DZ | OFL | UFL | STK */
511	FPE_FLTSUB,	/* 5D - INV | DZ | OFL | UFL | STK */
512	FPE_FLTDIV,	/* 5E - DNML | DZ | OFL | UFL | STK */
513	FPE_FLTSUB,	/* 5F - INV | DNML | DZ | OFL | UFL | STK */
514	FPE_FLTRES,	/* 60 - IMP | STK */
515	FPE_FLTSUB,	/* 61 - INV | IMP | STK */
516	FPE_FLTUND,	/* 62 - DNML | IMP | STK */
517	FPE_FLTSUB,	/* 63 - INV | DNML | IMP | STK */
518	FPE_FLTDIV,	/* 64 - DZ | IMP | STK */
519	FPE_FLTSUB,	/* 65 - INV | DZ | IMP | STK */
520	FPE_FLTDIV,	/* 66 - DNML | DZ | IMP | STK */
521	FPE_FLTSUB,	/* 67 - INV | DNML | DZ | IMP | STK */
522	FPE_FLTOVF,	/* 68 - OFL | IMP | STK */
523	FPE_FLTSUB,	/* 69 - INV | OFL | IMP | STK */
524	FPE_FLTUND,	/* 6A - DNML | OFL | IMP | STK */
525	FPE_FLTSUB,	/* 6B - INV | DNML | OFL | IMP | STK */
526	FPE_FLTDIV,	/* 6C - DZ | OFL | IMP | STK */
527	FPE_FLTSUB,	/* 6D - INV | DZ | OFL | IMP | STK */
528	FPE_FLTDIV,	/* 6E - DNML | DZ | OFL | IMP | STK */
529	FPE_FLTSUB,	/* 6F - INV | DNML | DZ | OFL | IMP | STK */
530	FPE_FLTUND,	/* 70 - UFL | IMP | STK */
531	FPE_FLTSUB,	/* 71 - INV | UFL | IMP | STK */
532	FPE_FLTUND,	/* 72 - DNML | UFL | IMP | STK */
533	FPE_FLTSUB,	/* 73 - INV | DNML | UFL | IMP | STK */
534	FPE_FLTDIV,	/* 74 - DZ | UFL | IMP | STK */
535	FPE_FLTSUB,	/* 75 - INV | DZ | UFL | IMP | STK */
536	FPE_FLTDIV,	/* 76 - DNML | DZ | UFL | IMP | STK */
537	FPE_FLTSUB,	/* 77 - INV | DNML | DZ | UFL | IMP | STK */
538	FPE_FLTOVF,	/* 78 - OFL | UFL | IMP | STK */
539	FPE_FLTSUB,	/* 79 - INV | OFL | UFL | IMP | STK */
540	FPE_FLTUND,	/* 7A - DNML | OFL | UFL | IMP | STK */
541	FPE_FLTSUB,	/* 7B - INV | DNML | OFL | UFL | IMP | STK */
542	FPE_FLTDIV,	/* 7C - DZ | OFL | UFL | IMP | STK */
543	FPE_FLTSUB,	/* 7D - INV | DZ | OFL | UFL | IMP | STK */
544	FPE_FLTDIV,	/* 7E - DNML | DZ | OFL | UFL | IMP | STK */
545	FPE_FLTSUB,	/* 7F - INV | DNML | DZ | OFL | UFL | IMP | STK */
546};
547
548/*
549 * Read the FP status and control words, then generate si_code value
550 * for SIGFPE.  The error code chosen will be one of the
551 * FPE_... macros.  It will be sent as the second argument to old
552 * BSD-style signal handlers and as "siginfo_t->si_code" (second
553 * argument) to SA_SIGINFO signal handlers.
554 *
555 * Some time ago, we cleared the x87 exceptions with FNCLEX there.
556 * Clearing exceptions was necessary mainly to avoid IRQ13 bugs.  The
557 * usermode code which understands the FPU hardware enough to enable
558 * the exceptions, can also handle clearing the exception state in the
559 * handler.  The only consequence of not clearing the exception is the
560 * rethrow of the SIGFPE on return from the signal handler and
561 * reexecution of the corresponding instruction.
562 *
563 * For XMM traps, the exceptions were never cleared.
564 */
565int
566fputrap_x87(void)
567{
568	struct savefpu *pcb_save;
569	u_short control, status;
570
571	critical_enter();
572
573	/*
574	 * Interrupt handling (for another interrupt) may have pushed the
575	 * state to memory.  Fetch the relevant parts of the state from
576	 * wherever they are.
577	 */
578	if (PCPU_GET(fpcurthread) != curthread) {
579		pcb_save = curpcb->pcb_save;
580		control = pcb_save->sv_env.en_cw;
581		status = pcb_save->sv_env.en_sw;
582	} else {
583		fnstcw(&control);
584		fnstsw(&status);
585	}
586
587	critical_exit();
588	return (fpetable[status & ((~control & 0x3f) | 0x40)]);
589}
590
591int
592fputrap_sse(void)
593{
594	u_int mxcsr;
595
596	critical_enter();
597	if (PCPU_GET(fpcurthread) != curthread)
598		mxcsr = curpcb->pcb_save->sv_env.en_mxcsr;
599	else
600		stmxcsr(&mxcsr);
601	critical_exit();
602	return (fpetable[(mxcsr & (~mxcsr >> 7)) & 0x3f]);
603}
604
605/*
606 * Device Not Available (DNA, #NM) exception handler.
607 *
608 * It would be better to switch FP context here (if curthread !=
609 * fpcurthread) and not necessarily for every context switch, but it
610 * is too hard to access foreign pcb's.
611 */
612void
613fpudna(void)
614{
615
616	/*
617	 * This handler is entered with interrupts enabled, so context
618	 * switches may occur before critical_enter() is executed.  If
619	 * a context switch occurs, then when we regain control, our
620	 * state will have been completely restored.  The CPU may
621	 * change underneath us, but the only part of our context that
622	 * lives in the CPU is CR0.TS and that will be "restored" by
623	 * setting it on the new CPU.
624	 */
625	critical_enter();
626
627	if (PCPU_GET(fpcurthread) == curthread) {
628		printf("fpudna: fpcurthread == curthread\n");
629		stop_emulating();
630		critical_exit();
631		return;
632	}
633	if (PCPU_GET(fpcurthread) != NULL) {
634		panic("fpudna: fpcurthread = %p (%d), curthread = %p (%d)\n",
635		    PCPU_GET(fpcurthread), PCPU_GET(fpcurthread)->td_tid,
636		    curthread, curthread->td_tid);
637	}
638	stop_emulating();
639	/*
640	 * Record new context early in case frstor causes a trap.
641	 */
642	PCPU_SET(fpcurthread, curthread);
643
644	fpu_clean_state();
645
646	if ((curpcb->pcb_flags & PCB_FPUINITDONE) == 0) {
647		/*
648		 * This is the first time this thread has used the FPU or
649		 * the PCB doesn't contain a clean FPU state.  Explicitly
650		 * load an initial state.
651		 *
652		 * We prefer to restore the state from the actual save
653		 * area in PCB instead of directly loading from
654		 * fpu_initialstate, to ignite the XSAVEOPT
655		 * tracking engine.
656		 */
657		bcopy(fpu_initialstate, curpcb->pcb_save, cpu_max_ext_state_size);
658		fpurestore(curpcb->pcb_save);
659		if (curpcb->pcb_initial_fpucw != __INITIAL_FPUCW__)
660			fldcw(curpcb->pcb_initial_fpucw);
661		if (PCB_USER_FPU(curpcb))
662			set_pcb_flags(curpcb,
663			    PCB_FPUINITDONE | PCB_USERFPUINITDONE);
664		else
665			set_pcb_flags(curpcb, PCB_FPUINITDONE);
666	} else
667		fpurestore(curpcb->pcb_save);
668	critical_exit();
669}
670
671void
672fpudrop()
673{
674	struct thread *td;
675
676	td = PCPU_GET(fpcurthread);
677	KASSERT(td == curthread, ("fpudrop: fpcurthread != curthread"));
678	CRITICAL_ASSERT(td);
679	PCPU_SET(fpcurthread, NULL);
680	clear_pcb_flags(td->td_pcb, PCB_FPUINITDONE);
681	start_emulating();
682}
683
684/*
685 * Get the user state of the FPU into pcb->pcb_user_save without
686 * dropping ownership (if possible).  It returns the FPU ownership
687 * status.
688 */
689int
690fpugetregs(struct thread *td)
691{
692	struct pcb *pcb;
693	uint64_t *xstate_bv, bit;
694	char *sa;
695	int max_ext_n, i, owned;
696
697	pcb = td->td_pcb;
698	if ((pcb->pcb_flags & PCB_USERFPUINITDONE) == 0) {
699		bcopy(fpu_initialstate, get_pcb_user_save_pcb(pcb),
700		    cpu_max_ext_state_size);
701		get_pcb_user_save_pcb(pcb)->sv_env.en_cw =
702		    pcb->pcb_initial_fpucw;
703		fpuuserinited(td);
704		return (_MC_FPOWNED_PCB);
705	}
706	critical_enter();
707	if (td == PCPU_GET(fpcurthread) && PCB_USER_FPU(pcb)) {
708		fpusave(get_pcb_user_save_pcb(pcb));
709		owned = _MC_FPOWNED_FPU;
710	} else {
711		owned = _MC_FPOWNED_PCB;
712	}
713	critical_exit();
714	if (use_xsave) {
715		/*
716		 * Handle partially saved state.
717		 */
718		sa = (char *)get_pcb_user_save_pcb(pcb);
719		xstate_bv = (uint64_t *)(sa + sizeof(struct savefpu) +
720		    offsetof(struct xstate_hdr, xstate_bv));
721		max_ext_n = flsl(xsave_mask);
722		for (i = 0; i < max_ext_n; i++) {
723			bit = 1ULL << i;
724			if ((xsave_mask & bit) == 0 || (*xstate_bv & bit) != 0)
725				continue;
726			bcopy((char *)fpu_initialstate +
727			    xsave_area_desc[i].offset,
728			    sa + xsave_area_desc[i].offset,
729			    xsave_area_desc[i].size);
730			*xstate_bv |= bit;
731		}
732	}
733	return (owned);
734}
735
736void
737fpuuserinited(struct thread *td)
738{
739	struct pcb *pcb;
740
741	pcb = td->td_pcb;
742	if (PCB_USER_FPU(pcb))
743		set_pcb_flags(pcb,
744		    PCB_FPUINITDONE | PCB_USERFPUINITDONE);
745	else
746		set_pcb_flags(pcb, PCB_FPUINITDONE);
747}
748
749int
750fpusetxstate(struct thread *td, char *xfpustate, size_t xfpustate_size)
751{
752	struct xstate_hdr *hdr, *ehdr;
753	size_t len, max_len;
754	uint64_t bv;
755
756	/* XXXKIB should we clear all extended state in xstate_bv instead ? */
757	if (xfpustate == NULL)
758		return (0);
759	if (!use_xsave)
760		return (EOPNOTSUPP);
761
762	len = xfpustate_size;
763	if (len < sizeof(struct xstate_hdr))
764		return (EINVAL);
765	max_len = cpu_max_ext_state_size - sizeof(struct savefpu);
766	if (len > max_len)
767		return (EINVAL);
768
769	ehdr = (struct xstate_hdr *)xfpustate;
770	bv = ehdr->xstate_bv;
771
772	/*
773	 * Avoid #gp.
774	 */
775	if (bv & ~xsave_mask)
776		return (EINVAL);
777
778	hdr = (struct xstate_hdr *)(get_pcb_user_save_td(td) + 1);
779
780	hdr->xstate_bv = bv;
781	bcopy(xfpustate + sizeof(struct xstate_hdr),
782	    (char *)(hdr + 1), len - sizeof(struct xstate_hdr));
783
784	return (0);
785}
786
787/*
788 * Set the state of the FPU.
789 */
790int
791fpusetregs(struct thread *td, struct savefpu *addr, char *xfpustate,
792    size_t xfpustate_size)
793{
794	struct pcb *pcb;
795	int error;
796
797	pcb = td->td_pcb;
798	critical_enter();
799	if (td == PCPU_GET(fpcurthread) && PCB_USER_FPU(pcb)) {
800		error = fpusetxstate(td, xfpustate, xfpustate_size);
801		if (error != 0) {
802			critical_exit();
803			return (error);
804		}
805		bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr));
806		fpurestore(get_pcb_user_save_td(td));
807		critical_exit();
808		set_pcb_flags(pcb, PCB_FPUINITDONE | PCB_USERFPUINITDONE);
809	} else {
810		critical_exit();
811		error = fpusetxstate(td, xfpustate, xfpustate_size);
812		if (error != 0)
813			return (error);
814		bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr));
815		fpuuserinited(td);
816	}
817	return (0);
818}
819
820/*
821 * On AuthenticAMD processors, the fxrstor instruction does not restore
822 * the x87's stored last instruction pointer, last data pointer, and last
823 * opcode values, except in the rare case in which the exception summary
824 * (ES) bit in the x87 status word is set to 1.
825 *
826 * In order to avoid leaking this information across processes, we clean
827 * these values by performing a dummy load before executing fxrstor().
828 */
829static void
830fpu_clean_state(void)
831{
832	static float dummy_variable = 0.0;
833	u_short status;
834
835	/*
836	 * Clear the ES bit in the x87 status word if it is currently
837	 * set, in order to avoid causing a fault in the upcoming load.
838	 */
839	fnstsw(&status);
840	if (status & 0x80)
841		fnclex();
842
843	/*
844	 * Load the dummy variable into the x87 stack.  This mangles
845	 * the x87 stack, but we don't care since we're about to call
846	 * fxrstor() anyway.
847	 */
848	__asm __volatile("ffree %%st(7); flds %0" : : "m" (dummy_variable));
849}
850
851/*
852 * This really sucks.  We want the acpi version only, but it requires
853 * the isa_if.h file in order to get the definitions.
854 */
855#include "opt_isa.h"
856#ifdef DEV_ISA
857#include <isa/isavar.h>
858/*
859 * This sucks up the legacy ISA support assignments from PNPBIOS/ACPI.
860 */
861static struct isa_pnp_id fpupnp_ids[] = {
862	{ 0x040cd041, "Legacy ISA coprocessor support" }, /* PNP0C04 */
863	{ 0 }
864};
865
866static int
867fpupnp_probe(device_t dev)
868{
869	int result;
870
871	result = ISA_PNP_PROBE(device_get_parent(dev), dev, fpupnp_ids);
872	if (result <= 0)
873		device_quiet(dev);
874	return (result);
875}
876
877static int
878fpupnp_attach(device_t dev)
879{
880
881	return (0);
882}
883
884static device_method_t fpupnp_methods[] = {
885	/* Device interface */
886	DEVMETHOD(device_probe,		fpupnp_probe),
887	DEVMETHOD(device_attach,	fpupnp_attach),
888	DEVMETHOD(device_detach,	bus_generic_detach),
889	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
890	DEVMETHOD(device_suspend,	bus_generic_suspend),
891	DEVMETHOD(device_resume,	bus_generic_resume),
892
893	{ 0, 0 }
894};
895
896static driver_t fpupnp_driver = {
897	"fpupnp",
898	fpupnp_methods,
899	1,			/* no softc */
900};
901
902static devclass_t fpupnp_devclass;
903
904DRIVER_MODULE(fpupnp, acpi, fpupnp_driver, fpupnp_devclass, 0, 0);
905#endif	/* DEV_ISA */
906
907static MALLOC_DEFINE(M_FPUKERN_CTX, "fpukern_ctx",
908    "Kernel contexts for FPU state");
909
910#define	FPU_KERN_CTX_FPUINITDONE 0x01
911#define	FPU_KERN_CTX_DUMMY	 0x02	/* avoided save for the kern thread */
912
913struct fpu_kern_ctx {
914	struct savefpu *prev;
915	uint32_t flags;
916	char hwstate1[];
917};
918
919struct fpu_kern_ctx *
920fpu_kern_alloc_ctx(u_int flags)
921{
922	struct fpu_kern_ctx *res;
923	size_t sz;
924
925	sz = sizeof(struct fpu_kern_ctx) + XSAVE_AREA_ALIGN +
926	    cpu_max_ext_state_size;
927	res = malloc(sz, M_FPUKERN_CTX, ((flags & FPU_KERN_NOWAIT) ?
928	    M_NOWAIT : M_WAITOK) | M_ZERO);
929	return (res);
930}
931
932void
933fpu_kern_free_ctx(struct fpu_kern_ctx *ctx)
934{
935
936	/* XXXKIB clear the memory ? */
937	free(ctx, M_FPUKERN_CTX);
938}
939
940static struct savefpu *
941fpu_kern_ctx_savefpu(struct fpu_kern_ctx *ctx)
942{
943	vm_offset_t p;
944
945	p = (vm_offset_t)&ctx->hwstate1;
946	p = roundup2(p, XSAVE_AREA_ALIGN);
947	return ((struct savefpu *)p);
948}
949
950int
951fpu_kern_enter(struct thread *td, struct fpu_kern_ctx *ctx, u_int flags)
952{
953	struct pcb *pcb;
954
955	if ((flags & FPU_KERN_KTHR) != 0 && is_fpu_kern_thread(0)) {
956		ctx->flags = FPU_KERN_CTX_DUMMY;
957		return (0);
958	}
959	pcb = td->td_pcb;
960	KASSERT(!PCB_USER_FPU(pcb) || pcb->pcb_save ==
961	    get_pcb_user_save_pcb(pcb), ("mangled pcb_save"));
962	ctx->flags = 0;
963	if ((pcb->pcb_flags & PCB_FPUINITDONE) != 0)
964		ctx->flags |= FPU_KERN_CTX_FPUINITDONE;
965	fpuexit(td);
966	ctx->prev = pcb->pcb_save;
967	pcb->pcb_save = fpu_kern_ctx_savefpu(ctx);
968	set_pcb_flags(pcb, PCB_KERNFPU);
969	clear_pcb_flags(pcb, PCB_FPUINITDONE);
970	return (0);
971}
972
973int
974fpu_kern_leave(struct thread *td, struct fpu_kern_ctx *ctx)
975{
976	struct pcb *pcb;
977
978	if (is_fpu_kern_thread(0) && (ctx->flags & FPU_KERN_CTX_DUMMY) != 0)
979		return (0);
980	KASSERT((ctx->flags & FPU_KERN_CTX_DUMMY) == 0, ("dummy ctx"));
981	pcb = td->td_pcb;
982	critical_enter();
983	if (curthread == PCPU_GET(fpcurthread))
984		fpudrop();
985	critical_exit();
986	pcb->pcb_save = ctx->prev;
987	if (pcb->pcb_save == get_pcb_user_save_pcb(pcb)) {
988		if ((pcb->pcb_flags & PCB_USERFPUINITDONE) != 0) {
989			set_pcb_flags(pcb, PCB_FPUINITDONE);
990			clear_pcb_flags(pcb, PCB_KERNFPU);
991		} else
992			clear_pcb_flags(pcb, PCB_FPUINITDONE | PCB_KERNFPU);
993	} else {
994		if ((ctx->flags & FPU_KERN_CTX_FPUINITDONE) != 0)
995			set_pcb_flags(pcb, PCB_FPUINITDONE);
996		else
997			clear_pcb_flags(pcb, PCB_FPUINITDONE);
998		KASSERT(!PCB_USER_FPU(pcb), ("unpaired fpu_kern_leave"));
999	}
1000	return (0);
1001}
1002
1003int
1004fpu_kern_thread(u_int flags)
1005{
1006
1007	KASSERT((curthread->td_pflags & TDP_KTHREAD) != 0,
1008	    ("Only kthread may use fpu_kern_thread"));
1009	KASSERT(curpcb->pcb_save == get_pcb_user_save_pcb(curpcb),
1010	    ("mangled pcb_save"));
1011	KASSERT(PCB_USER_FPU(curpcb), ("recursive call"));
1012
1013	set_pcb_flags(curpcb, PCB_KERNFPU);
1014	return (0);
1015}
1016
1017int
1018is_fpu_kern_thread(u_int flags)
1019{
1020
1021	if ((curthread->td_pflags & TDP_KTHREAD) == 0)
1022		return (0);
1023	return ((curpcb->pcb_flags & PCB_KERNFPU) != 0);
1024}
1025
1026/*
1027 * FPU save area alloc/free/init utility routines
1028 */
1029struct savefpu *
1030fpu_save_area_alloc(void)
1031{
1032
1033	return (uma_zalloc(fpu_save_area_zone, 0));
1034}
1035
1036void
1037fpu_save_area_free(struct savefpu *fsa)
1038{
1039
1040	uma_zfree(fpu_save_area_zone, fsa);
1041}
1042
1043void
1044fpu_save_area_reset(struct savefpu *fsa)
1045{
1046
1047	bcopy(fpu_initialstate, fsa, cpu_max_ext_state_size);
1048}
1049