fpu.c revision 271747
1187160Sthompsa/*-
2187160Sthompsa * Copyright (c) 1990 William Jolitz.
3187160Sthompsa * Copyright (c) 1991 The Regents of the University of California.
4187160Sthompsa * All rights reserved.
5187160Sthompsa *
6187160Sthompsa * Redistribution and use in source and binary forms, with or without
7187160Sthompsa * modification, are permitted provided that the following conditions
8187160Sthompsa * are met:
9187160Sthompsa * 1. Redistributions of source code must retain the above copyright
10187160Sthompsa *    notice, this list of conditions and the following disclaimer.
11187160Sthompsa * 2. Redistributions in binary form must reproduce the above copyright
12187160Sthompsa *    notice, this list of conditions and the following disclaimer in the
13187160Sthompsa *    documentation and/or other materials provided with the distribution.
14187160Sthompsa * 4. Neither the name of the University nor the names of its contributors
15187160Sthompsa *    may be used to endorse or promote products derived from this software
16187160Sthompsa *    without specific prior written permission.
17187160Sthompsa *
18187160Sthompsa * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
19187160Sthompsa * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20187160Sthompsa * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21187160Sthompsa * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
22187160Sthompsa * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23187160Sthompsa * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24187160Sthompsa * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25187160Sthompsa * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26187160Sthompsa * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27187160Sthompsa * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28190754Sthompsa * SUCH DAMAGE.
29190754Sthompsa *
30187160Sthompsa *	from: @(#)npx.c	7.2 (Berkeley) 5/12/91
31187160Sthompsa */
32187160Sthompsa
33187160Sthompsa#include <sys/cdefs.h>
34187160Sthompsa__FBSDID("$FreeBSD: head/sys/amd64/amd64/fpu.c 271747 2014-09-18 09:13:20Z kib $");
35187160Sthompsa
36187160Sthompsa#include <sys/param.h>
37192446Sthompsa#include <sys/systm.h>
38192446Sthompsa#include <sys/bus.h>
39192446Sthompsa#include <sys/kernel.h>
40192446Sthompsa#include <sys/lock.h>
41187160Sthompsa#include <sys/malloc.h>
42187160Sthompsa#include <sys/module.h>
43187160Sthompsa#include <sys/mutex.h>
44187160Sthompsa#include <sys/mutex.h>
45187160Sthompsa#include <sys/proc.h>
46187160Sthompsa#include <sys/sysctl.h>
47187160Sthompsa#include <machine/bus.h>
48187160Sthompsa#include <sys/rman.h>
49187160Sthompsa#include <sys/signalvar.h>
50187160Sthompsa#include <vm/uma.h>
51187160Sthompsa
52187160Sthompsa#include <machine/cputypes.h>
53187160Sthompsa#include <machine/frame.h>
54187160Sthompsa#include <machine/intr_machdep.h>
55187160Sthompsa#include <machine/md_var.h>
56187160Sthompsa#include <machine/pcb.h>
57187160Sthompsa#include <machine/psl.h>
58187160Sthompsa#include <machine/resource.h>
59187160Sthompsa#include <machine/specialreg.h>
60187160Sthompsa#include <machine/segments.h>
61187160Sthompsa#include <machine/ucontext.h>
62187160Sthompsa
63187160Sthompsa/*
64187160Sthompsa * Floating point support.
65187160Sthompsa */
66187160Sthompsa
67187160Sthompsa#if defined(__GNUCLIKE_ASM) && !defined(lint)
68187160Sthompsa
69187160Sthompsa#define	fldcw(cw)		__asm __volatile("fldcw %0" : : "m" (cw))
70187160Sthompsa#define	fnclex()		__asm __volatile("fnclex")
71187160Sthompsa#define	fninit()		__asm __volatile("fninit")
72187160Sthompsa#define	fnstcw(addr)		__asm __volatile("fnstcw %0" : "=m" (*(addr)))
73187160Sthompsa#define	fnstsw(addr)		__asm __volatile("fnstsw %0" : "=am" (*(addr)))
74187160Sthompsa#define	fxrstor(addr)		__asm __volatile("fxrstor %0" : : "m" (*(addr)))
75187160Sthompsa#define	fxsave(addr)		__asm __volatile("fxsave %0" : "=m" (*(addr)))
76187160Sthompsa#define	ldmxcsr(csr)		__asm __volatile("ldmxcsr %0" : : "m" (csr))
77187160Sthompsa#define	stmxcsr(addr)		__asm __volatile("stmxcsr %0" : : "m" (*(addr)))
78187160Sthompsa
79187160Sthompsastatic __inline void
80187160Sthompsaxrstor(char *addr, uint64_t mask)
81187160Sthompsa{
82187160Sthompsa	uint32_t low, hi;
83187160Sthompsa
84187160Sthompsa	low = mask;
85187160Sthompsa	hi = mask >> 32;
86187160Sthompsa	__asm __volatile("xrstor %0" : : "m" (*addr), "a" (low), "d" (hi));
87187160Sthompsa}
88187160Sthompsa
89187160Sthompsastatic __inline void
90187160Sthompsaxsave(char *addr, uint64_t mask)
91187160Sthompsa{
92187160Sthompsa	uint32_t low, hi;
93187160Sthompsa
94187160Sthompsa	low = mask;
95187160Sthompsa	hi = mask >> 32;
96187160Sthompsa	__asm __volatile("xsave %0" : "=m" (*addr) : "a" (low), "d" (hi) :
97187160Sthompsa	    "memory");
98187160Sthompsa}
99187160Sthompsa
100187160Sthompsa#else	/* !(__GNUCLIKE_ASM && !lint) */
101187160Sthompsa
102187160Sthompsavoid	fldcw(u_short cw);
103187160Sthompsavoid	fnclex(void);
104187160Sthompsavoid	fninit(void);
105187160Sthompsavoid	fnstcw(caddr_t addr);
106187160Sthompsavoid	fnstsw(caddr_t addr);
107187160Sthompsavoid	fxsave(caddr_t addr);
108187160Sthompsavoid	fxrstor(caddr_t addr);
109187160Sthompsavoid	ldmxcsr(u_int csr);
110187160Sthompsavoid	stmxcsr(u_int *csr);
111187160Sthompsavoid	xrstor(char *addr, uint64_t mask);
112187160Sthompsavoid	xsave(char *addr, uint64_t mask);
113187160Sthompsa
114187160Sthompsa#endif	/* __GNUCLIKE_ASM && !lint */
115187160Sthompsa
116187160Sthompsa#define	start_emulating()	load_cr0(rcr0() | CR0_TS)
117187160Sthompsa#define	stop_emulating()	clts()
118187160Sthompsa
119187160SthompsaCTASSERT(sizeof(struct savefpu) == 512);
120187160SthompsaCTASSERT(sizeof(struct xstate_hdr) == 64);
121187160SthompsaCTASSERT(sizeof(struct savefpu_ymm) == 832);
122187160Sthompsa
123187160Sthompsa/*
124187160Sthompsa * This requirement is to make it easier for asm code to calculate
125187160Sthompsa * offset of the fpu save area from the pcb address. FPU save area
126187160Sthompsa * must be 64-byte aligned.
127187160Sthompsa */
128187160SthompsaCTASSERT(sizeof(struct pcb) % XSAVE_AREA_ALIGN == 0);
129187160Sthompsa
130187160Sthompsastatic	void	fpu_clean_state(void);
131187160Sthompsa
132187160SthompsaSYSCTL_INT(_hw, HW_FLOATINGPT, floatingpoint, CTLFLAG_RD,
133187160Sthompsa    NULL, 1, "Floating point instructions executed in hardware");
134187160Sthompsa
135187160Sthompsaint use_xsave;			/* non-static for cpu_switch.S */
136187160Sthompsauint64_t xsave_mask;		/* the same */
137187160Sthompsastatic	uma_zone_t fpu_save_area_zone;
138187160Sthompsastatic	struct savefpu *fpu_initialstate;
139187160Sthompsa
140187160Sthompsastruct xsave_area_elm_descr {
141187160Sthompsa	u_int	offset;
142187160Sthompsa	u_int	size;
143192446Sthompsa} *xsave_area_desc;
144192446Sthompsa
145192446Sthompsavoid
146192446Sthompsafpusave(void *addr)
147192446Sthompsa{
148192446Sthompsa
149192446Sthompsa	if (use_xsave)
150192446Sthompsa		xsave((char *)addr, xsave_mask);
151192446Sthompsa	else
152192446Sthompsa		fxsave((char *)addr);
153187160Sthompsa}
154187160Sthompsa
155192446Sthompsavoid
156187160Sthompsafpurestore(void *addr)
157187160Sthompsa{
158187160Sthompsa
159187160Sthompsa	if (use_xsave)
160187160Sthompsa		xrstor((char *)addr, xsave_mask);
161187160Sthompsa	else
162187160Sthompsa		fxrstor((char *)addr);
163192446Sthompsa}
164187160Sthompsa
165187160Sthompsavoid
166187160Sthompsafpususpend(void *addr)
167187160Sthompsa{
168187160Sthompsa	u_long cr0;
169187160Sthompsa
170189677Sthompsa	cr0 = rcr0();
171189677Sthompsa	stop_emulating();
172189677Sthompsa	fpusave(addr);
173187160Sthompsa	load_cr0(cr0);
174187160Sthompsa}
175187160Sthompsa
176187160Sthompsavoid
177187160Sthompsafpuresume(void *addr)
178187160Sthompsa{
179187160Sthompsa	u_long cr0;
180187160Sthompsa
181187160Sthompsa	cr0 = rcr0();
182187160Sthompsa	stop_emulating();
183187160Sthompsa	fninit();
184187160Sthompsa	if (use_xsave)
185187160Sthompsa		load_xcr(XCR0, xsave_mask);
186187160Sthompsa	fpurestore(addr);
187187160Sthompsa	load_cr0(cr0);
188187160Sthompsa}
189187160Sthompsa
190187160Sthompsa/*
191187160Sthompsa * Enable XSAVE if supported and allowed by user.
192187160Sthompsa * Calculate the xsave_mask.
193187160Sthompsa */
194192984Sthompsastatic void
195187160Sthompsafpuinit_bsp1(void)
196187160Sthompsa{
197187160Sthompsa	u_int cp[4];
198187160Sthompsa	uint64_t xsave_mask_user;
199192984Sthompsa
200187160Sthompsa	if ((cpu_feature2 & CPUID2_XSAVE) != 0) {
201187160Sthompsa		use_xsave = 1;
202187160Sthompsa		TUNABLE_INT_FETCH("hw.use_xsave", &use_xsave);
203187160Sthompsa	}
204187160Sthompsa	if (!use_xsave)
205187160Sthompsa		return;
206187160Sthompsa
207187160Sthompsa	cpuid_count(0xd, 0x0, cp);
208187160Sthompsa	xsave_mask = XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
209187160Sthompsa	if ((cp[0] & xsave_mask) != xsave_mask)
210187160Sthompsa		panic("CPU0 does not support X87 or SSE: %x", cp[0]);
211187160Sthompsa	xsave_mask = ((uint64_t)cp[3] << 32) | cp[0];
212187160Sthompsa	xsave_mask_user = xsave_mask;
213192984Sthompsa	TUNABLE_ULONG_FETCH("hw.xsave_mask", &xsave_mask_user);
214187160Sthompsa	xsave_mask_user |= XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
215187160Sthompsa	xsave_mask &= xsave_mask_user;
216187160Sthompsa	if ((xsave_mask & XFEATURE_AVX512) != XFEATURE_AVX512)
217187160Sthompsa		xsave_mask &= ~XFEATURE_AVX512;
218187160Sthompsa	if ((xsave_mask & XFEATURE_MPX) != XFEATURE_MPX)
219187160Sthompsa		xsave_mask &= ~XFEATURE_MPX;
220187160Sthompsa
221187160Sthompsa	cpuid_count(0xd, 0x1, cp);
222187160Sthompsa	if ((cp[0] & CPUID_EXTSTATE_XSAVEOPT) != 0) {
223187160Sthompsa		/*
224187160Sthompsa		 * Patch the XSAVE instruction in the cpu_switch code
225192552Sthompsa		 * to XSAVEOPT.  We assume that XSAVE encoding used
226187160Sthompsa		 * REX byte, and set the bit 4 of the r/m byte.
227187160Sthompsa		 */
228187160Sthompsa		ctx_switch_xsave[3] |= 0x10;
229192984Sthompsa	}
230192984Sthompsa}
231192984Sthompsa
232187160Sthompsa/*
233187160Sthompsa * Calculate the fpu save area size.
234187160Sthompsa */
235187160Sthompsastatic void
236192984Sthompsafpuinit_bsp2(void)
237187160Sthompsa{
238187160Sthompsa	u_int cp[4];
239187160Sthompsa
240187160Sthompsa	if (use_xsave) {
241187160Sthompsa		cpuid_count(0xd, 0x0, cp);
242187160Sthompsa		cpu_max_ext_state_size = cp[1];
243187160Sthompsa
244187160Sthompsa		/*
245187160Sthompsa		 * Reload the cpu_feature2, since we enabled OSXSAVE.
246187160Sthompsa		 */
247187160Sthompsa		do_cpuid(1, cp);
248187160Sthompsa		cpu_feature2 = cp[2];
249187160Sthompsa	} else
250187160Sthompsa		cpu_max_ext_state_size = sizeof(struct savefpu);
251187160Sthompsa}
252187160Sthompsa
253187160Sthompsa/*
254192984Sthompsa * Initialize the floating point unit.
255187160Sthompsa */
256187160Sthompsavoid
257187160Sthompsafpuinit(void)
258187160Sthompsa{
259187160Sthompsa	register_t saveintr;
260187160Sthompsa	u_int mxcsr;
261192984Sthompsa	u_short control;
262187160Sthompsa
263187160Sthompsa	if (IS_BSP())
264187160Sthompsa		fpuinit_bsp1();
265187160Sthompsa
266187160Sthompsa	if (use_xsave) {
267190735Sthompsa		load_cr4(rcr4() | CR4_XSAVE);
268187160Sthompsa		load_xcr(XCR0, xsave_mask);
269187160Sthompsa	}
270187160Sthompsa
271187160Sthompsa	/*
272187160Sthompsa	 * XCR0 shall be set up before CPU can report the save area size.
273187160Sthompsa	 */
274187160Sthompsa	if (IS_BSP())
275187160Sthompsa		fpuinit_bsp2();
276187160Sthompsa
277187160Sthompsa	/*
278187160Sthompsa	 * It is too early for critical_enter() to work on AP.
279193045Sthompsa	 */
280187160Sthompsa	saveintr = intr_disable();
281187160Sthompsa	stop_emulating();
282187160Sthompsa	fninit();
283187160Sthompsa	control = __INITIAL_FPUCW__;
284	fldcw(control);
285	mxcsr = __INITIAL_MXCSR__;
286	ldmxcsr(mxcsr);
287	start_emulating();
288	intr_restore(saveintr);
289}
290
291/*
292 * On the boot CPU we generate a clean state that is used to
293 * initialize the floating point unit when it is first used by a
294 * process.
295 */
296static void
297fpuinitstate(void *arg __unused)
298{
299	register_t saveintr;
300	int cp[4], i, max_ext_n;
301
302	fpu_initialstate = malloc(cpu_max_ext_state_size, M_DEVBUF,
303	    M_WAITOK | M_ZERO);
304	saveintr = intr_disable();
305	stop_emulating();
306
307	fpusave(fpu_initialstate);
308	if (fpu_initialstate->sv_env.en_mxcsr_mask)
309		cpu_mxcsr_mask = fpu_initialstate->sv_env.en_mxcsr_mask;
310	else
311		cpu_mxcsr_mask = 0xFFBF;
312
313	/*
314	 * The fninit instruction does not modify XMM registers.  The
315	 * fpusave call dumped the garbage contained in the registers
316	 * after reset to the initial state saved.  Clear XMM
317	 * registers file image to make the startup program state and
318	 * signal handler XMM register content predictable.
319	 */
320	bzero(&fpu_initialstate->sv_xmm[0], sizeof(struct xmmacc));
321
322	/*
323	 * Create a table describing the layout of the CPU Extended
324	 * Save Area.
325	 */
326	if (use_xsave) {
327		max_ext_n = flsl(xsave_mask);
328		xsave_area_desc = malloc(max_ext_n * sizeof(struct
329		    xsave_area_elm_descr), M_DEVBUF, M_WAITOK | M_ZERO);
330		/* x87 state */
331		xsave_area_desc[0].offset = 0;
332		xsave_area_desc[0].size = 160;
333		/* XMM */
334		xsave_area_desc[1].offset = 160;
335		xsave_area_desc[1].size = 288 - 160;
336
337		for (i = 2; i < max_ext_n; i++) {
338			cpuid_count(0xd, i, cp);
339			xsave_area_desc[i].offset = cp[1];
340			xsave_area_desc[i].size = cp[0];
341		}
342	}
343
344	fpu_save_area_zone = uma_zcreate("FPU_save_area",
345	    cpu_max_ext_state_size, NULL, NULL, NULL, NULL,
346	    XSAVE_AREA_ALIGN - 1, 0);
347
348	start_emulating();
349	intr_restore(saveintr);
350}
351SYSINIT(fpuinitstate, SI_SUB_DRIVERS, SI_ORDER_ANY, fpuinitstate, NULL);
352
353/*
354 * Free coprocessor (if we have it).
355 */
356void
357fpuexit(struct thread *td)
358{
359
360	critical_enter();
361	if (curthread == PCPU_GET(fpcurthread)) {
362		stop_emulating();
363		fpusave(curpcb->pcb_save);
364		start_emulating();
365		PCPU_SET(fpcurthread, NULL);
366	}
367	critical_exit();
368}
369
370int
371fpuformat()
372{
373
374	return (_MC_FPFMT_XMM);
375}
376
377/*
378 * The following mechanism is used to ensure that the FPE_... value
379 * that is passed as a trapcode to the signal handler of the user
380 * process does not have more than one bit set.
381 *
382 * Multiple bits may be set if the user process modifies the control
383 * word while a status word bit is already set.  While this is a sign
384 * of bad coding, we have no choise than to narrow them down to one
385 * bit, since we must not send a trapcode that is not exactly one of
386 * the FPE_ macros.
387 *
388 * The mechanism has a static table with 127 entries.  Each combination
389 * of the 7 FPU status word exception bits directly translates to a
390 * position in this table, where a single FPE_... value is stored.
391 * This FPE_... value stored there is considered the "most important"
392 * of the exception bits and will be sent as the signal code.  The
393 * precedence of the bits is based upon Intel Document "Numerical
394 * Applications", Chapter "Special Computational Situations".
395 *
396 * The macro to choose one of these values does these steps: 1) Throw
397 * away status word bits that cannot be masked.  2) Throw away the bits
398 * currently masked in the control word, assuming the user isn't
399 * interested in them anymore.  3) Reinsert status word bit 7 (stack
400 * fault) if it is set, which cannot be masked but must be presered.
401 * 4) Use the remaining bits to point into the trapcode table.
402 *
403 * The 6 maskable bits in order of their preference, as stated in the
404 * above referenced Intel manual:
405 * 1  Invalid operation (FP_X_INV)
406 * 1a   Stack underflow
407 * 1b   Stack overflow
408 * 1c   Operand of unsupported format
409 * 1d   SNaN operand.
410 * 2  QNaN operand (not an exception, irrelavant here)
411 * 3  Any other invalid-operation not mentioned above or zero divide
412 *      (FP_X_INV, FP_X_DZ)
413 * 4  Denormal operand (FP_X_DNML)
414 * 5  Numeric over/underflow (FP_X_OFL, FP_X_UFL)
415 * 6  Inexact result (FP_X_IMP)
416 */
417static char fpetable[128] = {
418	0,
419	FPE_FLTINV,	/*  1 - INV */
420	FPE_FLTUND,	/*  2 - DNML */
421	FPE_FLTINV,	/*  3 - INV | DNML */
422	FPE_FLTDIV,	/*  4 - DZ */
423	FPE_FLTINV,	/*  5 - INV | DZ */
424	FPE_FLTDIV,	/*  6 - DNML | DZ */
425	FPE_FLTINV,	/*  7 - INV | DNML | DZ */
426	FPE_FLTOVF,	/*  8 - OFL */
427	FPE_FLTINV,	/*  9 - INV | OFL */
428	FPE_FLTUND,	/*  A - DNML | OFL */
429	FPE_FLTINV,	/*  B - INV | DNML | OFL */
430	FPE_FLTDIV,	/*  C - DZ | OFL */
431	FPE_FLTINV,	/*  D - INV | DZ | OFL */
432	FPE_FLTDIV,	/*  E - DNML | DZ | OFL */
433	FPE_FLTINV,	/*  F - INV | DNML | DZ | OFL */
434	FPE_FLTUND,	/* 10 - UFL */
435	FPE_FLTINV,	/* 11 - INV | UFL */
436	FPE_FLTUND,	/* 12 - DNML | UFL */
437	FPE_FLTINV,	/* 13 - INV | DNML | UFL */
438	FPE_FLTDIV,	/* 14 - DZ | UFL */
439	FPE_FLTINV,	/* 15 - INV | DZ | UFL */
440	FPE_FLTDIV,	/* 16 - DNML | DZ | UFL */
441	FPE_FLTINV,	/* 17 - INV | DNML | DZ | UFL */
442	FPE_FLTOVF,	/* 18 - OFL | UFL */
443	FPE_FLTINV,	/* 19 - INV | OFL | UFL */
444	FPE_FLTUND,	/* 1A - DNML | OFL | UFL */
445	FPE_FLTINV,	/* 1B - INV | DNML | OFL | UFL */
446	FPE_FLTDIV,	/* 1C - DZ | OFL | UFL */
447	FPE_FLTINV,	/* 1D - INV | DZ | OFL | UFL */
448	FPE_FLTDIV,	/* 1E - DNML | DZ | OFL | UFL */
449	FPE_FLTINV,	/* 1F - INV | DNML | DZ | OFL | UFL */
450	FPE_FLTRES,	/* 20 - IMP */
451	FPE_FLTINV,	/* 21 - INV | IMP */
452	FPE_FLTUND,	/* 22 - DNML | IMP */
453	FPE_FLTINV,	/* 23 - INV | DNML | IMP */
454	FPE_FLTDIV,	/* 24 - DZ | IMP */
455	FPE_FLTINV,	/* 25 - INV | DZ | IMP */
456	FPE_FLTDIV,	/* 26 - DNML | DZ | IMP */
457	FPE_FLTINV,	/* 27 - INV | DNML | DZ | IMP */
458	FPE_FLTOVF,	/* 28 - OFL | IMP */
459	FPE_FLTINV,	/* 29 - INV | OFL | IMP */
460	FPE_FLTUND,	/* 2A - DNML | OFL | IMP */
461	FPE_FLTINV,	/* 2B - INV | DNML | OFL | IMP */
462	FPE_FLTDIV,	/* 2C - DZ | OFL | IMP */
463	FPE_FLTINV,	/* 2D - INV | DZ | OFL | IMP */
464	FPE_FLTDIV,	/* 2E - DNML | DZ | OFL | IMP */
465	FPE_FLTINV,	/* 2F - INV | DNML | DZ | OFL | IMP */
466	FPE_FLTUND,	/* 30 - UFL | IMP */
467	FPE_FLTINV,	/* 31 - INV | UFL | IMP */
468	FPE_FLTUND,	/* 32 - DNML | UFL | IMP */
469	FPE_FLTINV,	/* 33 - INV | DNML | UFL | IMP */
470	FPE_FLTDIV,	/* 34 - DZ | UFL | IMP */
471	FPE_FLTINV,	/* 35 - INV | DZ | UFL | IMP */
472	FPE_FLTDIV,	/* 36 - DNML | DZ | UFL | IMP */
473	FPE_FLTINV,	/* 37 - INV | DNML | DZ | UFL | IMP */
474	FPE_FLTOVF,	/* 38 - OFL | UFL | IMP */
475	FPE_FLTINV,	/* 39 - INV | OFL | UFL | IMP */
476	FPE_FLTUND,	/* 3A - DNML | OFL | UFL | IMP */
477	FPE_FLTINV,	/* 3B - INV | DNML | OFL | UFL | IMP */
478	FPE_FLTDIV,	/* 3C - DZ | OFL | UFL | IMP */
479	FPE_FLTINV,	/* 3D - INV | DZ | OFL | UFL | IMP */
480	FPE_FLTDIV,	/* 3E - DNML | DZ | OFL | UFL | IMP */
481	FPE_FLTINV,	/* 3F - INV | DNML | DZ | OFL | UFL | IMP */
482	FPE_FLTSUB,	/* 40 - STK */
483	FPE_FLTSUB,	/* 41 - INV | STK */
484	FPE_FLTUND,	/* 42 - DNML | STK */
485	FPE_FLTSUB,	/* 43 - INV | DNML | STK */
486	FPE_FLTDIV,	/* 44 - DZ | STK */
487	FPE_FLTSUB,	/* 45 - INV | DZ | STK */
488	FPE_FLTDIV,	/* 46 - DNML | DZ | STK */
489	FPE_FLTSUB,	/* 47 - INV | DNML | DZ | STK */
490	FPE_FLTOVF,	/* 48 - OFL | STK */
491	FPE_FLTSUB,	/* 49 - INV | OFL | STK */
492	FPE_FLTUND,	/* 4A - DNML | OFL | STK */
493	FPE_FLTSUB,	/* 4B - INV | DNML | OFL | STK */
494	FPE_FLTDIV,	/* 4C - DZ | OFL | STK */
495	FPE_FLTSUB,	/* 4D - INV | DZ | OFL | STK */
496	FPE_FLTDIV,	/* 4E - DNML | DZ | OFL | STK */
497	FPE_FLTSUB,	/* 4F - INV | DNML | DZ | OFL | STK */
498	FPE_FLTUND,	/* 50 - UFL | STK */
499	FPE_FLTSUB,	/* 51 - INV | UFL | STK */
500	FPE_FLTUND,	/* 52 - DNML | UFL | STK */
501	FPE_FLTSUB,	/* 53 - INV | DNML | UFL | STK */
502	FPE_FLTDIV,	/* 54 - DZ | UFL | STK */
503	FPE_FLTSUB,	/* 55 - INV | DZ | UFL | STK */
504	FPE_FLTDIV,	/* 56 - DNML | DZ | UFL | STK */
505	FPE_FLTSUB,	/* 57 - INV | DNML | DZ | UFL | STK */
506	FPE_FLTOVF,	/* 58 - OFL | UFL | STK */
507	FPE_FLTSUB,	/* 59 - INV | OFL | UFL | STK */
508	FPE_FLTUND,	/* 5A - DNML | OFL | UFL | STK */
509	FPE_FLTSUB,	/* 5B - INV | DNML | OFL | UFL | STK */
510	FPE_FLTDIV,	/* 5C - DZ | OFL | UFL | STK */
511	FPE_FLTSUB,	/* 5D - INV | DZ | OFL | UFL | STK */
512	FPE_FLTDIV,	/* 5E - DNML | DZ | OFL | UFL | STK */
513	FPE_FLTSUB,	/* 5F - INV | DNML | DZ | OFL | UFL | STK */
514	FPE_FLTRES,	/* 60 - IMP | STK */
515	FPE_FLTSUB,	/* 61 - INV | IMP | STK */
516	FPE_FLTUND,	/* 62 - DNML | IMP | STK */
517	FPE_FLTSUB,	/* 63 - INV | DNML | IMP | STK */
518	FPE_FLTDIV,	/* 64 - DZ | IMP | STK */
519	FPE_FLTSUB,	/* 65 - INV | DZ | IMP | STK */
520	FPE_FLTDIV,	/* 66 - DNML | DZ | IMP | STK */
521	FPE_FLTSUB,	/* 67 - INV | DNML | DZ | IMP | STK */
522	FPE_FLTOVF,	/* 68 - OFL | IMP | STK */
523	FPE_FLTSUB,	/* 69 - INV | OFL | IMP | STK */
524	FPE_FLTUND,	/* 6A - DNML | OFL | IMP | STK */
525	FPE_FLTSUB,	/* 6B - INV | DNML | OFL | IMP | STK */
526	FPE_FLTDIV,	/* 6C - DZ | OFL | IMP | STK */
527	FPE_FLTSUB,	/* 6D - INV | DZ | OFL | IMP | STK */
528	FPE_FLTDIV,	/* 6E - DNML | DZ | OFL | IMP | STK */
529	FPE_FLTSUB,	/* 6F - INV | DNML | DZ | OFL | IMP | STK */
530	FPE_FLTUND,	/* 70 - UFL | IMP | STK */
531	FPE_FLTSUB,	/* 71 - INV | UFL | IMP | STK */
532	FPE_FLTUND,	/* 72 - DNML | UFL | IMP | STK */
533	FPE_FLTSUB,	/* 73 - INV | DNML | UFL | IMP | STK */
534	FPE_FLTDIV,	/* 74 - DZ | UFL | IMP | STK */
535	FPE_FLTSUB,	/* 75 - INV | DZ | UFL | IMP | STK */
536	FPE_FLTDIV,	/* 76 - DNML | DZ | UFL | IMP | STK */
537	FPE_FLTSUB,	/* 77 - INV | DNML | DZ | UFL | IMP | STK */
538	FPE_FLTOVF,	/* 78 - OFL | UFL | IMP | STK */
539	FPE_FLTSUB,	/* 79 - INV | OFL | UFL | IMP | STK */
540	FPE_FLTUND,	/* 7A - DNML | OFL | UFL | IMP | STK */
541	FPE_FLTSUB,	/* 7B - INV | DNML | OFL | UFL | IMP | STK */
542	FPE_FLTDIV,	/* 7C - DZ | OFL | UFL | IMP | STK */
543	FPE_FLTSUB,	/* 7D - INV | DZ | OFL | UFL | IMP | STK */
544	FPE_FLTDIV,	/* 7E - DNML | DZ | OFL | UFL | IMP | STK */
545	FPE_FLTSUB,	/* 7F - INV | DNML | DZ | OFL | UFL | IMP | STK */
546};
547
548/*
549 * Read the FP status and control words, then generate si_code value
550 * for SIGFPE.  The error code chosen will be one of the
551 * FPE_... macros.  It will be sent as the second argument to old
552 * BSD-style signal handlers and as "siginfo_t->si_code" (second
553 * argument) to SA_SIGINFO signal handlers.
554 *
555 * Some time ago, we cleared the x87 exceptions with FNCLEX there.
556 * Clearing exceptions was necessary mainly to avoid IRQ13 bugs.  The
557 * usermode code which understands the FPU hardware enough to enable
558 * the exceptions, can also handle clearing the exception state in the
559 * handler.  The only consequence of not clearing the exception is the
560 * rethrow of the SIGFPE on return from the signal handler and
561 * reexecution of the corresponding instruction.
562 *
563 * For XMM traps, the exceptions were never cleared.
564 */
565int
566fputrap_x87(void)
567{
568	struct savefpu *pcb_save;
569	u_short control, status;
570
571	critical_enter();
572
573	/*
574	 * Interrupt handling (for another interrupt) may have pushed the
575	 * state to memory.  Fetch the relevant parts of the state from
576	 * wherever they are.
577	 */
578	if (PCPU_GET(fpcurthread) != curthread) {
579		pcb_save = curpcb->pcb_save;
580		control = pcb_save->sv_env.en_cw;
581		status = pcb_save->sv_env.en_sw;
582	} else {
583		fnstcw(&control);
584		fnstsw(&status);
585	}
586
587	critical_exit();
588	return (fpetable[status & ((~control & 0x3f) | 0x40)]);
589}
590
591int
592fputrap_sse(void)
593{
594	u_int mxcsr;
595
596	critical_enter();
597	if (PCPU_GET(fpcurthread) != curthread)
598		mxcsr = curpcb->pcb_save->sv_env.en_mxcsr;
599	else
600		stmxcsr(&mxcsr);
601	critical_exit();
602	return (fpetable[(mxcsr & (~mxcsr >> 7)) & 0x3f]);
603}
604
605static int err_count = 0;
606
607/*
608 * Device Not Available (DNA, #NM) exception handler.
609 *
610 * It would be better to switch FP context here (if curthread !=
611 * fpcurthread) and not necessarily for every context switch, but it
612 * is too hard to access foreign pcb's.
613 *
614 * The handler is entered with interrupts enabled, which allows the
615 * context switch to happen before critical enter() is executed, and
616 * causes restoration of FPU context on CPU other than that caused
617 * DNA.  It is fine, since context switch started emulation on the
618 * current CPU as well.
619 */
620void
621fpudna(void)
622{
623
624	critical_enter();
625	if (PCPU_GET(fpcurthread) == curthread) {
626		printf("fpudna: fpcurthread == curthread %d times\n",
627		    ++err_count);
628		stop_emulating();
629		critical_exit();
630		return;
631	}
632	if (PCPU_GET(fpcurthread) != NULL) {
633		panic("fpudna: fpcurthread = %p (%d), curthread = %p (%d)\n",
634		    PCPU_GET(fpcurthread), PCPU_GET(fpcurthread)->td_tid,
635		    curthread, curthread->td_tid);
636	}
637	stop_emulating();
638	/*
639	 * Record new context early in case frstor causes a trap.
640	 */
641	PCPU_SET(fpcurthread, curthread);
642
643	fpu_clean_state();
644
645	if ((curpcb->pcb_flags & PCB_FPUINITDONE) == 0) {
646		/*
647		 * This is the first time this thread has used the FPU or
648		 * the PCB doesn't contain a clean FPU state.  Explicitly
649		 * load an initial state.
650		 *
651		 * We prefer to restore the state from the actual save
652		 * area in PCB instead of directly loading from
653		 * fpu_initialstate, to ignite the XSAVEOPT
654		 * tracking engine.
655		 */
656		bcopy(fpu_initialstate, curpcb->pcb_save, cpu_max_ext_state_size);
657		fpurestore(curpcb->pcb_save);
658		if (curpcb->pcb_initial_fpucw != __INITIAL_FPUCW__)
659			fldcw(curpcb->pcb_initial_fpucw);
660		if (PCB_USER_FPU(curpcb))
661			set_pcb_flags(curpcb,
662			    PCB_FPUINITDONE | PCB_USERFPUINITDONE);
663		else
664			set_pcb_flags(curpcb, PCB_FPUINITDONE);
665	} else
666		fpurestore(curpcb->pcb_save);
667	critical_exit();
668}
669
670void
671fpudrop()
672{
673	struct thread *td;
674
675	td = PCPU_GET(fpcurthread);
676	KASSERT(td == curthread, ("fpudrop: fpcurthread != curthread"));
677	CRITICAL_ASSERT(td);
678	PCPU_SET(fpcurthread, NULL);
679	clear_pcb_flags(td->td_pcb, PCB_FPUINITDONE);
680	start_emulating();
681}
682
683/*
684 * Get the user state of the FPU into pcb->pcb_user_save without
685 * dropping ownership (if possible).  It returns the FPU ownership
686 * status.
687 */
688int
689fpugetregs(struct thread *td)
690{
691	struct pcb *pcb;
692	uint64_t *xstate_bv, bit;
693	char *sa;
694	int max_ext_n, i, owned;
695
696	pcb = td->td_pcb;
697	if ((pcb->pcb_flags & PCB_USERFPUINITDONE) == 0) {
698		bcopy(fpu_initialstate, get_pcb_user_save_pcb(pcb),
699		    cpu_max_ext_state_size);
700		get_pcb_user_save_pcb(pcb)->sv_env.en_cw =
701		    pcb->pcb_initial_fpucw;
702		fpuuserinited(td);
703		return (_MC_FPOWNED_PCB);
704	}
705	critical_enter();
706	if (td == PCPU_GET(fpcurthread) && PCB_USER_FPU(pcb)) {
707		fpusave(get_pcb_user_save_pcb(pcb));
708		owned = _MC_FPOWNED_FPU;
709	} else {
710		owned = _MC_FPOWNED_PCB;
711	}
712	critical_exit();
713	if (use_xsave) {
714		/*
715		 * Handle partially saved state.
716		 */
717		sa = (char *)get_pcb_user_save_pcb(pcb);
718		xstate_bv = (uint64_t *)(sa + sizeof(struct savefpu) +
719		    offsetof(struct xstate_hdr, xstate_bv));
720		max_ext_n = flsl(xsave_mask);
721		for (i = 0; i < max_ext_n; i++) {
722			bit = 1ULL << i;
723			if ((xsave_mask & bit) == 0 || (*xstate_bv & bit) != 0)
724				continue;
725			bcopy((char *)fpu_initialstate +
726			    xsave_area_desc[i].offset,
727			    sa + xsave_area_desc[i].offset,
728			    xsave_area_desc[i].size);
729			*xstate_bv |= bit;
730		}
731	}
732	return (owned);
733}
734
735void
736fpuuserinited(struct thread *td)
737{
738	struct pcb *pcb;
739
740	pcb = td->td_pcb;
741	if (PCB_USER_FPU(pcb))
742		set_pcb_flags(pcb,
743		    PCB_FPUINITDONE | PCB_USERFPUINITDONE);
744	else
745		set_pcb_flags(pcb, PCB_FPUINITDONE);
746}
747
748int
749fpusetxstate(struct thread *td, char *xfpustate, size_t xfpustate_size)
750{
751	struct xstate_hdr *hdr, *ehdr;
752	size_t len, max_len;
753	uint64_t bv;
754
755	/* XXXKIB should we clear all extended state in xstate_bv instead ? */
756	if (xfpustate == NULL)
757		return (0);
758	if (!use_xsave)
759		return (EOPNOTSUPP);
760
761	len = xfpustate_size;
762	if (len < sizeof(struct xstate_hdr))
763		return (EINVAL);
764	max_len = cpu_max_ext_state_size - sizeof(struct savefpu);
765	if (len > max_len)
766		return (EINVAL);
767
768	ehdr = (struct xstate_hdr *)xfpustate;
769	bv = ehdr->xstate_bv;
770
771	/*
772	 * Avoid #gp.
773	 */
774	if (bv & ~xsave_mask)
775		return (EINVAL);
776
777	hdr = (struct xstate_hdr *)(get_pcb_user_save_td(td) + 1);
778
779	hdr->xstate_bv = bv;
780	bcopy(xfpustate + sizeof(struct xstate_hdr),
781	    (char *)(hdr + 1), len - sizeof(struct xstate_hdr));
782
783	return (0);
784}
785
786/*
787 * Set the state of the FPU.
788 */
789int
790fpusetregs(struct thread *td, struct savefpu *addr, char *xfpustate,
791    size_t xfpustate_size)
792{
793	struct pcb *pcb;
794	int error;
795
796	pcb = td->td_pcb;
797	critical_enter();
798	if (td == PCPU_GET(fpcurthread) && PCB_USER_FPU(pcb)) {
799		error = fpusetxstate(td, xfpustate, xfpustate_size);
800		if (error != 0) {
801			critical_exit();
802			return (error);
803		}
804		bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr));
805		fpurestore(get_pcb_user_save_td(td));
806		critical_exit();
807		set_pcb_flags(pcb, PCB_FPUINITDONE | PCB_USERFPUINITDONE);
808	} else {
809		critical_exit();
810		error = fpusetxstate(td, xfpustate, xfpustate_size);
811		if (error != 0)
812			return (error);
813		bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr));
814		fpuuserinited(td);
815	}
816	return (0);
817}
818
819/*
820 * On AuthenticAMD processors, the fxrstor instruction does not restore
821 * the x87's stored last instruction pointer, last data pointer, and last
822 * opcode values, except in the rare case in which the exception summary
823 * (ES) bit in the x87 status word is set to 1.
824 *
825 * In order to avoid leaking this information across processes, we clean
826 * these values by performing a dummy load before executing fxrstor().
827 */
828static void
829fpu_clean_state(void)
830{
831	static float dummy_variable = 0.0;
832	u_short status;
833
834	/*
835	 * Clear the ES bit in the x87 status word if it is currently
836	 * set, in order to avoid causing a fault in the upcoming load.
837	 */
838	fnstsw(&status);
839	if (status & 0x80)
840		fnclex();
841
842	/*
843	 * Load the dummy variable into the x87 stack.  This mangles
844	 * the x87 stack, but we don't care since we're about to call
845	 * fxrstor() anyway.
846	 */
847	__asm __volatile("ffree %%st(7); flds %0" : : "m" (dummy_variable));
848}
849
850/*
851 * This really sucks.  We want the acpi version only, but it requires
852 * the isa_if.h file in order to get the definitions.
853 */
854#include "opt_isa.h"
855#ifdef DEV_ISA
856#include <isa/isavar.h>
857/*
858 * This sucks up the legacy ISA support assignments from PNPBIOS/ACPI.
859 */
860static struct isa_pnp_id fpupnp_ids[] = {
861	{ 0x040cd041, "Legacy ISA coprocessor support" }, /* PNP0C04 */
862	{ 0 }
863};
864
865static int
866fpupnp_probe(device_t dev)
867{
868	int result;
869
870	result = ISA_PNP_PROBE(device_get_parent(dev), dev, fpupnp_ids);
871	if (result <= 0)
872		device_quiet(dev);
873	return (result);
874}
875
876static int
877fpupnp_attach(device_t dev)
878{
879
880	return (0);
881}
882
883static device_method_t fpupnp_methods[] = {
884	/* Device interface */
885	DEVMETHOD(device_probe,		fpupnp_probe),
886	DEVMETHOD(device_attach,	fpupnp_attach),
887	DEVMETHOD(device_detach,	bus_generic_detach),
888	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
889	DEVMETHOD(device_suspend,	bus_generic_suspend),
890	DEVMETHOD(device_resume,	bus_generic_resume),
891
892	{ 0, 0 }
893};
894
895static driver_t fpupnp_driver = {
896	"fpupnp",
897	fpupnp_methods,
898	1,			/* no softc */
899};
900
901static devclass_t fpupnp_devclass;
902
903DRIVER_MODULE(fpupnp, acpi, fpupnp_driver, fpupnp_devclass, 0, 0);
904#endif	/* DEV_ISA */
905
906static MALLOC_DEFINE(M_FPUKERN_CTX, "fpukern_ctx",
907    "Kernel contexts for FPU state");
908
909#define	FPU_KERN_CTX_FPUINITDONE 0x01
910#define	FPU_KERN_CTX_DUMMY	 0x02	/* avoided save for the kern thread */
911
912struct fpu_kern_ctx {
913	struct savefpu *prev;
914	uint32_t flags;
915	char hwstate1[];
916};
917
918struct fpu_kern_ctx *
919fpu_kern_alloc_ctx(u_int flags)
920{
921	struct fpu_kern_ctx *res;
922	size_t sz;
923
924	sz = sizeof(struct fpu_kern_ctx) + XSAVE_AREA_ALIGN +
925	    cpu_max_ext_state_size;
926	res = malloc(sz, M_FPUKERN_CTX, ((flags & FPU_KERN_NOWAIT) ?
927	    M_NOWAIT : M_WAITOK) | M_ZERO);
928	return (res);
929}
930
931void
932fpu_kern_free_ctx(struct fpu_kern_ctx *ctx)
933{
934
935	/* XXXKIB clear the memory ? */
936	free(ctx, M_FPUKERN_CTX);
937}
938
939static struct savefpu *
940fpu_kern_ctx_savefpu(struct fpu_kern_ctx *ctx)
941{
942	vm_offset_t p;
943
944	p = (vm_offset_t)&ctx->hwstate1;
945	p = roundup2(p, XSAVE_AREA_ALIGN);
946	return ((struct savefpu *)p);
947}
948
949int
950fpu_kern_enter(struct thread *td, struct fpu_kern_ctx *ctx, u_int flags)
951{
952	struct pcb *pcb;
953
954	if ((flags & FPU_KERN_KTHR) != 0 && is_fpu_kern_thread(0)) {
955		ctx->flags = FPU_KERN_CTX_DUMMY;
956		return (0);
957	}
958	pcb = td->td_pcb;
959	KASSERT(!PCB_USER_FPU(pcb) || pcb->pcb_save ==
960	    get_pcb_user_save_pcb(pcb), ("mangled pcb_save"));
961	ctx->flags = 0;
962	if ((pcb->pcb_flags & PCB_FPUINITDONE) != 0)
963		ctx->flags |= FPU_KERN_CTX_FPUINITDONE;
964	fpuexit(td);
965	ctx->prev = pcb->pcb_save;
966	pcb->pcb_save = fpu_kern_ctx_savefpu(ctx);
967	set_pcb_flags(pcb, PCB_KERNFPU);
968	clear_pcb_flags(pcb, PCB_FPUINITDONE);
969	return (0);
970}
971
972int
973fpu_kern_leave(struct thread *td, struct fpu_kern_ctx *ctx)
974{
975	struct pcb *pcb;
976
977	if (is_fpu_kern_thread(0) && (ctx->flags & FPU_KERN_CTX_DUMMY) != 0)
978		return (0);
979	KASSERT((ctx->flags & FPU_KERN_CTX_DUMMY) == 0, ("dummy ctx"));
980	pcb = td->td_pcb;
981	critical_enter();
982	if (curthread == PCPU_GET(fpcurthread))
983		fpudrop();
984	critical_exit();
985	pcb->pcb_save = ctx->prev;
986	if (pcb->pcb_save == get_pcb_user_save_pcb(pcb)) {
987		if ((pcb->pcb_flags & PCB_USERFPUINITDONE) != 0) {
988			set_pcb_flags(pcb, PCB_FPUINITDONE);
989			clear_pcb_flags(pcb, PCB_KERNFPU);
990		} else
991			clear_pcb_flags(pcb, PCB_FPUINITDONE | PCB_KERNFPU);
992	} else {
993		if ((ctx->flags & FPU_KERN_CTX_FPUINITDONE) != 0)
994			set_pcb_flags(pcb, PCB_FPUINITDONE);
995		else
996			clear_pcb_flags(pcb, PCB_FPUINITDONE);
997		KASSERT(!PCB_USER_FPU(pcb), ("unpaired fpu_kern_leave"));
998	}
999	return (0);
1000}
1001
1002int
1003fpu_kern_thread(u_int flags)
1004{
1005
1006	KASSERT((curthread->td_pflags & TDP_KTHREAD) != 0,
1007	    ("Only kthread may use fpu_kern_thread"));
1008	KASSERT(curpcb->pcb_save == get_pcb_user_save_pcb(curpcb),
1009	    ("mangled pcb_save"));
1010	KASSERT(PCB_USER_FPU(curpcb), ("recursive call"));
1011
1012	set_pcb_flags(curpcb, PCB_KERNFPU);
1013	return (0);
1014}
1015
1016int
1017is_fpu_kern_thread(u_int flags)
1018{
1019
1020	if ((curthread->td_pflags & TDP_KTHREAD) == 0)
1021		return (0);
1022	return ((curpcb->pcb_flags & PCB_KERNFPU) != 0);
1023}
1024
1025/*
1026 * FPU save area alloc/free/init utility routines
1027 */
1028struct savefpu *
1029fpu_save_area_alloc(void)
1030{
1031
1032	return (uma_zalloc(fpu_save_area_zone, 0));
1033}
1034
1035void
1036fpu_save_area_free(struct savefpu *fsa)
1037{
1038
1039	uma_zfree(fpu_save_area_zone, fsa);
1040}
1041
1042void
1043fpu_save_area_reset(struct savefpu *fsa)
1044{
1045
1046	bcopy(fpu_initialstate, fsa, cpu_max_ext_state_size);
1047}
1048