fpu.c revision 250415
1/*-
2 * Copyright (c) 1990 William Jolitz.
3 * Copyright (c) 1991 The Regents of the University of California.
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 * 4. Neither the name of the University nor the names of its contributors
15 *    may be used to endorse or promote products derived from this software
16 *    without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 *	from: @(#)npx.c	7.2 (Berkeley) 5/12/91
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: head/sys/amd64/amd64/fpu.c 250415 2013-05-09 17:25:29Z kib $");
35
36#include <sys/param.h>
37#include <sys/systm.h>
38#include <sys/bus.h>
39#include <sys/kernel.h>
40#include <sys/lock.h>
41#include <sys/malloc.h>
42#include <sys/module.h>
43#include <sys/mutex.h>
44#include <sys/mutex.h>
45#include <sys/proc.h>
46#include <sys/sysctl.h>
47#include <machine/bus.h>
48#include <sys/rman.h>
49#include <sys/signalvar.h>
50#include <vm/uma.h>
51
52#include <machine/cputypes.h>
53#include <machine/frame.h>
54#include <machine/intr_machdep.h>
55#include <machine/md_var.h>
56#include <machine/pcb.h>
57#include <machine/psl.h>
58#include <machine/resource.h>
59#include <machine/specialreg.h>
60#include <machine/segments.h>
61#include <machine/ucontext.h>
62
63/*
64 * Floating point support.
65 */
66
67#if defined(__GNUCLIKE_ASM) && !defined(lint)
68
69#define	fldcw(cw)		__asm __volatile("fldcw %0" : : "m" (cw))
70#define	fnclex()		__asm __volatile("fnclex")
71#define	fninit()		__asm __volatile("fninit")
72#define	fnstcw(addr)		__asm __volatile("fnstcw %0" : "=m" (*(addr)))
73#define	fnstsw(addr)		__asm __volatile("fnstsw %0" : "=am" (*(addr)))
74#define	fxrstor(addr)		__asm __volatile("fxrstor %0" : : "m" (*(addr)))
75#define	fxsave(addr)		__asm __volatile("fxsave %0" : "=m" (*(addr)))
76#define	ldmxcsr(csr)		__asm __volatile("ldmxcsr %0" : : "m" (csr))
77#define	stmxcsr(addr)		__asm __volatile("stmxcsr %0" : : "m" (*(addr)))
78
79static __inline void
80xrstor(char *addr, uint64_t mask)
81{
82	uint32_t low, hi;
83
84	low = mask;
85	hi = mask >> 32;
86	__asm __volatile("xrstor %0" : : "m" (*addr), "a" (low), "d" (hi));
87}
88
89static __inline void
90xsave(char *addr, uint64_t mask)
91{
92	uint32_t low, hi;
93
94	low = mask;
95	hi = mask >> 32;
96	__asm __volatile("xsave %0" : "=m" (*addr) : "a" (low), "d" (hi) :
97	    "memory");
98}
99
100#else	/* !(__GNUCLIKE_ASM && !lint) */
101
102void	fldcw(u_short cw);
103void	fnclex(void);
104void	fninit(void);
105void	fnstcw(caddr_t addr);
106void	fnstsw(caddr_t addr);
107void	fxsave(caddr_t addr);
108void	fxrstor(caddr_t addr);
109void	ldmxcsr(u_int csr);
110void	stmxcsr(u_int *csr);
111void	xrstor(char *addr, uint64_t mask);
112void	xsave(char *addr, uint64_t mask);
113
114#endif	/* __GNUCLIKE_ASM && !lint */
115
116#define	start_emulating()	load_cr0(rcr0() | CR0_TS)
117#define	stop_emulating()	clts()
118
119CTASSERT(sizeof(struct savefpu) == 512);
120CTASSERT(sizeof(struct xstate_hdr) == 64);
121CTASSERT(sizeof(struct savefpu_ymm) == 832);
122
123/*
124 * This requirement is to make it easier for asm code to calculate
125 * offset of the fpu save area from the pcb address. FPU save area
126 * must be 64-byte aligned.
127 */
128CTASSERT(sizeof(struct pcb) % XSAVE_AREA_ALIGN == 0);
129
130static	void	fpu_clean_state(void);
131
132SYSCTL_INT(_hw, HW_FLOATINGPT, floatingpoint, CTLFLAG_RD,
133    NULL, 1, "Floating point instructions executed in hardware");
134
135int use_xsave;			/* non-static for cpu_switch.S */
136uint64_t xsave_mask;		/* the same */
137static	uma_zone_t fpu_save_area_zone;
138static	struct savefpu *fpu_initialstate;
139
140struct xsave_area_elm_descr {
141	u_int	offset;
142	u_int	size;
143} *xsave_area_desc;
144
145void
146fpusave(void *addr)
147{
148
149	if (use_xsave)
150		xsave((char *)addr, xsave_mask);
151	else
152		fxsave((char *)addr);
153}
154
155void
156fpurestore(void *addr)
157{
158
159	if (use_xsave)
160		xrstor((char *)addr, xsave_mask);
161	else
162		fxrstor((char *)addr);
163}
164
165/*
166 * Enable XSAVE if supported and allowed by user.
167 * Calculate the xsave_mask.
168 */
169static void
170fpuinit_bsp1(void)
171{
172	u_int cp[4];
173	uint64_t xsave_mask_user;
174
175	if ((cpu_feature2 & CPUID2_XSAVE) != 0) {
176		use_xsave = 1;
177		TUNABLE_INT_FETCH("hw.use_xsave", &use_xsave);
178	}
179	if (!use_xsave)
180		return;
181
182	cpuid_count(0xd, 0x0, cp);
183	xsave_mask = XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
184	if ((cp[0] & xsave_mask) != xsave_mask)
185		panic("CPU0 does not support X87 or SSE: %x", cp[0]);
186	xsave_mask = ((uint64_t)cp[3] << 32) | cp[0];
187	xsave_mask_user = xsave_mask;
188	TUNABLE_ULONG_FETCH("hw.xsave_mask", &xsave_mask_user);
189	xsave_mask_user |= XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
190	xsave_mask &= xsave_mask_user;
191
192	cpuid_count(0xd, 0x1, cp);
193	if ((cp[0] & CPUID_EXTSTATE_XSAVEOPT) != 0) {
194		/*
195		 * Patch the XSAVE instruction in the cpu_switch code
196		 * to XSAVEOPT.  We assume that XSAVE encoding used
197		 * REX byte, and set the bit 4 of the r/m byte.
198		 */
199		ctx_switch_xsave[3] |= 0x10;
200	}
201}
202
203/*
204 * Calculate the fpu save area size.
205 */
206static void
207fpuinit_bsp2(void)
208{
209	u_int cp[4];
210
211	if (use_xsave) {
212		cpuid_count(0xd, 0x0, cp);
213		cpu_max_ext_state_size = cp[1];
214
215		/*
216		 * Reload the cpu_feature2, since we enabled OSXSAVE.
217		 */
218		do_cpuid(1, cp);
219		cpu_feature2 = cp[2];
220	} else
221		cpu_max_ext_state_size = sizeof(struct savefpu);
222}
223
224/*
225 * Initialize the floating point unit.
226 */
227void
228fpuinit(void)
229{
230	register_t saveintr;
231	u_int mxcsr;
232	u_short control;
233
234	if (IS_BSP())
235		fpuinit_bsp1();
236
237	if (use_xsave) {
238		load_cr4(rcr4() | CR4_XSAVE);
239		load_xcr(XCR0, xsave_mask);
240	}
241
242	/*
243	 * XCR0 shall be set up before CPU can report the save area size.
244	 */
245	if (IS_BSP())
246		fpuinit_bsp2();
247
248	/*
249	 * It is too early for critical_enter() to work on AP.
250	 */
251	saveintr = intr_disable();
252	stop_emulating();
253	fninit();
254	control = __INITIAL_FPUCW__;
255	fldcw(control);
256	mxcsr = __INITIAL_MXCSR__;
257	ldmxcsr(mxcsr);
258	start_emulating();
259	intr_restore(saveintr);
260}
261
262/*
263 * On the boot CPU we generate a clean state that is used to
264 * initialize the floating point unit when it is first used by a
265 * process.
266 */
267static void
268fpuinitstate(void *arg __unused)
269{
270	register_t saveintr;
271	int cp[4], i, max_ext_n;
272
273	fpu_initialstate = malloc(cpu_max_ext_state_size, M_DEVBUF,
274	    M_WAITOK | M_ZERO);
275	saveintr = intr_disable();
276	stop_emulating();
277
278	fpusave(fpu_initialstate);
279	if (fpu_initialstate->sv_env.en_mxcsr_mask)
280		cpu_mxcsr_mask = fpu_initialstate->sv_env.en_mxcsr_mask;
281	else
282		cpu_mxcsr_mask = 0xFFBF;
283
284	/*
285	 * The fninit instruction does not modify XMM registers.  The
286	 * fpusave call dumped the garbage contained in the registers
287	 * after reset to the initial state saved.  Clear XMM
288	 * registers file image to make the startup program state and
289	 * signal handler XMM register content predictable.
290	 */
291	bzero(&fpu_initialstate->sv_xmm[0], sizeof(struct xmmacc));
292
293	/*
294	 * Create a table describing the layout of the CPU Extended
295	 * Save Area.
296	 */
297	if (use_xsave) {
298		max_ext_n = flsl(xsave_mask);
299		xsave_area_desc = malloc(max_ext_n * sizeof(struct
300		    xsave_area_elm_descr), M_DEVBUF, M_WAITOK | M_ZERO);
301		/* x87 state */
302		xsave_area_desc[0].offset = 0;
303		xsave_area_desc[0].size = 160;
304		/* XMM */
305		xsave_area_desc[1].offset = 160;
306		xsave_area_desc[1].size = 288 - 160;
307
308		for (i = 2; i < max_ext_n; i++) {
309			cpuid_count(0xd, i, cp);
310			xsave_area_desc[i].offset = cp[1];
311			xsave_area_desc[i].size = cp[0];
312		}
313	}
314
315	fpu_save_area_zone = uma_zcreate("FPU_save_area",
316	    cpu_max_ext_state_size, NULL, NULL, NULL, NULL,
317	    XSAVE_AREA_ALIGN - 1, 0);
318
319	start_emulating();
320	intr_restore(saveintr);
321}
322SYSINIT(fpuinitstate, SI_SUB_DRIVERS, SI_ORDER_ANY, fpuinitstate, NULL);
323
324/*
325 * Free coprocessor (if we have it).
326 */
327void
328fpuexit(struct thread *td)
329{
330
331	critical_enter();
332	if (curthread == PCPU_GET(fpcurthread)) {
333		stop_emulating();
334		fpusave(curpcb->pcb_save);
335		start_emulating();
336		PCPU_SET(fpcurthread, 0);
337	}
338	critical_exit();
339}
340
341int
342fpuformat()
343{
344
345	return (_MC_FPFMT_XMM);
346}
347
348/*
349 * The following mechanism is used to ensure that the FPE_... value
350 * that is passed as a trapcode to the signal handler of the user
351 * process does not have more than one bit set.
352 *
353 * Multiple bits may be set if the user process modifies the control
354 * word while a status word bit is already set.  While this is a sign
355 * of bad coding, we have no choise than to narrow them down to one
356 * bit, since we must not send a trapcode that is not exactly one of
357 * the FPE_ macros.
358 *
359 * The mechanism has a static table with 127 entries.  Each combination
360 * of the 7 FPU status word exception bits directly translates to a
361 * position in this table, where a single FPE_... value is stored.
362 * This FPE_... value stored there is considered the "most important"
363 * of the exception bits and will be sent as the signal code.  The
364 * precedence of the bits is based upon Intel Document "Numerical
365 * Applications", Chapter "Special Computational Situations".
366 *
367 * The macro to choose one of these values does these steps: 1) Throw
368 * away status word bits that cannot be masked.  2) Throw away the bits
369 * currently masked in the control word, assuming the user isn't
370 * interested in them anymore.  3) Reinsert status word bit 7 (stack
371 * fault) if it is set, which cannot be masked but must be presered.
372 * 4) Use the remaining bits to point into the trapcode table.
373 *
374 * The 6 maskable bits in order of their preference, as stated in the
375 * above referenced Intel manual:
376 * 1  Invalid operation (FP_X_INV)
377 * 1a   Stack underflow
378 * 1b   Stack overflow
379 * 1c   Operand of unsupported format
380 * 1d   SNaN operand.
381 * 2  QNaN operand (not an exception, irrelavant here)
382 * 3  Any other invalid-operation not mentioned above or zero divide
383 *      (FP_X_INV, FP_X_DZ)
384 * 4  Denormal operand (FP_X_DNML)
385 * 5  Numeric over/underflow (FP_X_OFL, FP_X_UFL)
386 * 6  Inexact result (FP_X_IMP)
387 */
388static char fpetable[128] = {
389	0,
390	FPE_FLTINV,	/*  1 - INV */
391	FPE_FLTUND,	/*  2 - DNML */
392	FPE_FLTINV,	/*  3 - INV | DNML */
393	FPE_FLTDIV,	/*  4 - DZ */
394	FPE_FLTINV,	/*  5 - INV | DZ */
395	FPE_FLTDIV,	/*  6 - DNML | DZ */
396	FPE_FLTINV,	/*  7 - INV | DNML | DZ */
397	FPE_FLTOVF,	/*  8 - OFL */
398	FPE_FLTINV,	/*  9 - INV | OFL */
399	FPE_FLTUND,	/*  A - DNML | OFL */
400	FPE_FLTINV,	/*  B - INV | DNML | OFL */
401	FPE_FLTDIV,	/*  C - DZ | OFL */
402	FPE_FLTINV,	/*  D - INV | DZ | OFL */
403	FPE_FLTDIV,	/*  E - DNML | DZ | OFL */
404	FPE_FLTINV,	/*  F - INV | DNML | DZ | OFL */
405	FPE_FLTUND,	/* 10 - UFL */
406	FPE_FLTINV,	/* 11 - INV | UFL */
407	FPE_FLTUND,	/* 12 - DNML | UFL */
408	FPE_FLTINV,	/* 13 - INV | DNML | UFL */
409	FPE_FLTDIV,	/* 14 - DZ | UFL */
410	FPE_FLTINV,	/* 15 - INV | DZ | UFL */
411	FPE_FLTDIV,	/* 16 - DNML | DZ | UFL */
412	FPE_FLTINV,	/* 17 - INV | DNML | DZ | UFL */
413	FPE_FLTOVF,	/* 18 - OFL | UFL */
414	FPE_FLTINV,	/* 19 - INV | OFL | UFL */
415	FPE_FLTUND,	/* 1A - DNML | OFL | UFL */
416	FPE_FLTINV,	/* 1B - INV | DNML | OFL | UFL */
417	FPE_FLTDIV,	/* 1C - DZ | OFL | UFL */
418	FPE_FLTINV,	/* 1D - INV | DZ | OFL | UFL */
419	FPE_FLTDIV,	/* 1E - DNML | DZ | OFL | UFL */
420	FPE_FLTINV,	/* 1F - INV | DNML | DZ | OFL | UFL */
421	FPE_FLTRES,	/* 20 - IMP */
422	FPE_FLTINV,	/* 21 - INV | IMP */
423	FPE_FLTUND,	/* 22 - DNML | IMP */
424	FPE_FLTINV,	/* 23 - INV | DNML | IMP */
425	FPE_FLTDIV,	/* 24 - DZ | IMP */
426	FPE_FLTINV,	/* 25 - INV | DZ | IMP */
427	FPE_FLTDIV,	/* 26 - DNML | DZ | IMP */
428	FPE_FLTINV,	/* 27 - INV | DNML | DZ | IMP */
429	FPE_FLTOVF,	/* 28 - OFL | IMP */
430	FPE_FLTINV,	/* 29 - INV | OFL | IMP */
431	FPE_FLTUND,	/* 2A - DNML | OFL | IMP */
432	FPE_FLTINV,	/* 2B - INV | DNML | OFL | IMP */
433	FPE_FLTDIV,	/* 2C - DZ | OFL | IMP */
434	FPE_FLTINV,	/* 2D - INV | DZ | OFL | IMP */
435	FPE_FLTDIV,	/* 2E - DNML | DZ | OFL | IMP */
436	FPE_FLTINV,	/* 2F - INV | DNML | DZ | OFL | IMP */
437	FPE_FLTUND,	/* 30 - UFL | IMP */
438	FPE_FLTINV,	/* 31 - INV | UFL | IMP */
439	FPE_FLTUND,	/* 32 - DNML | UFL | IMP */
440	FPE_FLTINV,	/* 33 - INV | DNML | UFL | IMP */
441	FPE_FLTDIV,	/* 34 - DZ | UFL | IMP */
442	FPE_FLTINV,	/* 35 - INV | DZ | UFL | IMP */
443	FPE_FLTDIV,	/* 36 - DNML | DZ | UFL | IMP */
444	FPE_FLTINV,	/* 37 - INV | DNML | DZ | UFL | IMP */
445	FPE_FLTOVF,	/* 38 - OFL | UFL | IMP */
446	FPE_FLTINV,	/* 39 - INV | OFL | UFL | IMP */
447	FPE_FLTUND,	/* 3A - DNML | OFL | UFL | IMP */
448	FPE_FLTINV,	/* 3B - INV | DNML | OFL | UFL | IMP */
449	FPE_FLTDIV,	/* 3C - DZ | OFL | UFL | IMP */
450	FPE_FLTINV,	/* 3D - INV | DZ | OFL | UFL | IMP */
451	FPE_FLTDIV,	/* 3E - DNML | DZ | OFL | UFL | IMP */
452	FPE_FLTINV,	/* 3F - INV | DNML | DZ | OFL | UFL | IMP */
453	FPE_FLTSUB,	/* 40 - STK */
454	FPE_FLTSUB,	/* 41 - INV | STK */
455	FPE_FLTUND,	/* 42 - DNML | STK */
456	FPE_FLTSUB,	/* 43 - INV | DNML | STK */
457	FPE_FLTDIV,	/* 44 - DZ | STK */
458	FPE_FLTSUB,	/* 45 - INV | DZ | STK */
459	FPE_FLTDIV,	/* 46 - DNML | DZ | STK */
460	FPE_FLTSUB,	/* 47 - INV | DNML | DZ | STK */
461	FPE_FLTOVF,	/* 48 - OFL | STK */
462	FPE_FLTSUB,	/* 49 - INV | OFL | STK */
463	FPE_FLTUND,	/* 4A - DNML | OFL | STK */
464	FPE_FLTSUB,	/* 4B - INV | DNML | OFL | STK */
465	FPE_FLTDIV,	/* 4C - DZ | OFL | STK */
466	FPE_FLTSUB,	/* 4D - INV | DZ | OFL | STK */
467	FPE_FLTDIV,	/* 4E - DNML | DZ | OFL | STK */
468	FPE_FLTSUB,	/* 4F - INV | DNML | DZ | OFL | STK */
469	FPE_FLTUND,	/* 50 - UFL | STK */
470	FPE_FLTSUB,	/* 51 - INV | UFL | STK */
471	FPE_FLTUND,	/* 52 - DNML | UFL | STK */
472	FPE_FLTSUB,	/* 53 - INV | DNML | UFL | STK */
473	FPE_FLTDIV,	/* 54 - DZ | UFL | STK */
474	FPE_FLTSUB,	/* 55 - INV | DZ | UFL | STK */
475	FPE_FLTDIV,	/* 56 - DNML | DZ | UFL | STK */
476	FPE_FLTSUB,	/* 57 - INV | DNML | DZ | UFL | STK */
477	FPE_FLTOVF,	/* 58 - OFL | UFL | STK */
478	FPE_FLTSUB,	/* 59 - INV | OFL | UFL | STK */
479	FPE_FLTUND,	/* 5A - DNML | OFL | UFL | STK */
480	FPE_FLTSUB,	/* 5B - INV | DNML | OFL | UFL | STK */
481	FPE_FLTDIV,	/* 5C - DZ | OFL | UFL | STK */
482	FPE_FLTSUB,	/* 5D - INV | DZ | OFL | UFL | STK */
483	FPE_FLTDIV,	/* 5E - DNML | DZ | OFL | UFL | STK */
484	FPE_FLTSUB,	/* 5F - INV | DNML | DZ | OFL | UFL | STK */
485	FPE_FLTRES,	/* 60 - IMP | STK */
486	FPE_FLTSUB,	/* 61 - INV | IMP | STK */
487	FPE_FLTUND,	/* 62 - DNML | IMP | STK */
488	FPE_FLTSUB,	/* 63 - INV | DNML | IMP | STK */
489	FPE_FLTDIV,	/* 64 - DZ | IMP | STK */
490	FPE_FLTSUB,	/* 65 - INV | DZ | IMP | STK */
491	FPE_FLTDIV,	/* 66 - DNML | DZ | IMP | STK */
492	FPE_FLTSUB,	/* 67 - INV | DNML | DZ | IMP | STK */
493	FPE_FLTOVF,	/* 68 - OFL | IMP | STK */
494	FPE_FLTSUB,	/* 69 - INV | OFL | IMP | STK */
495	FPE_FLTUND,	/* 6A - DNML | OFL | IMP | STK */
496	FPE_FLTSUB,	/* 6B - INV | DNML | OFL | IMP | STK */
497	FPE_FLTDIV,	/* 6C - DZ | OFL | IMP | STK */
498	FPE_FLTSUB,	/* 6D - INV | DZ | OFL | IMP | STK */
499	FPE_FLTDIV,	/* 6E - DNML | DZ | OFL | IMP | STK */
500	FPE_FLTSUB,	/* 6F - INV | DNML | DZ | OFL | IMP | STK */
501	FPE_FLTUND,	/* 70 - UFL | IMP | STK */
502	FPE_FLTSUB,	/* 71 - INV | UFL | IMP | STK */
503	FPE_FLTUND,	/* 72 - DNML | UFL | IMP | STK */
504	FPE_FLTSUB,	/* 73 - INV | DNML | UFL | IMP | STK */
505	FPE_FLTDIV,	/* 74 - DZ | UFL | IMP | STK */
506	FPE_FLTSUB,	/* 75 - INV | DZ | UFL | IMP | STK */
507	FPE_FLTDIV,	/* 76 - DNML | DZ | UFL | IMP | STK */
508	FPE_FLTSUB,	/* 77 - INV | DNML | DZ | UFL | IMP | STK */
509	FPE_FLTOVF,	/* 78 - OFL | UFL | IMP | STK */
510	FPE_FLTSUB,	/* 79 - INV | OFL | UFL | IMP | STK */
511	FPE_FLTUND,	/* 7A - DNML | OFL | UFL | IMP | STK */
512	FPE_FLTSUB,	/* 7B - INV | DNML | OFL | UFL | IMP | STK */
513	FPE_FLTDIV,	/* 7C - DZ | OFL | UFL | IMP | STK */
514	FPE_FLTSUB,	/* 7D - INV | DZ | OFL | UFL | IMP | STK */
515	FPE_FLTDIV,	/* 7E - DNML | DZ | OFL | UFL | IMP | STK */
516	FPE_FLTSUB,	/* 7F - INV | DNML | DZ | OFL | UFL | IMP | STK */
517};
518
519/*
520 * Read the FP status and control words, then generate si_code value
521 * for SIGFPE.  The error code chosen will be one of the
522 * FPE_... macros.  It will be sent as the second argument to old
523 * BSD-style signal handlers and as "siginfo_t->si_code" (second
524 * argument) to SA_SIGINFO signal handlers.
525 *
526 * Some time ago, we cleared the x87 exceptions with FNCLEX there.
527 * Clearing exceptions was necessary mainly to avoid IRQ13 bugs.  The
528 * usermode code which understands the FPU hardware enough to enable
529 * the exceptions, can also handle clearing the exception state in the
530 * handler.  The only consequence of not clearing the exception is the
531 * rethrow of the SIGFPE on return from the signal handler and
532 * reexecution of the corresponding instruction.
533 *
534 * For XMM traps, the exceptions were never cleared.
535 */
536int
537fputrap_x87(void)
538{
539	struct savefpu *pcb_save;
540	u_short control, status;
541
542	critical_enter();
543
544	/*
545	 * Interrupt handling (for another interrupt) may have pushed the
546	 * state to memory.  Fetch the relevant parts of the state from
547	 * wherever they are.
548	 */
549	if (PCPU_GET(fpcurthread) != curthread) {
550		pcb_save = curpcb->pcb_save;
551		control = pcb_save->sv_env.en_cw;
552		status = pcb_save->sv_env.en_sw;
553	} else {
554		fnstcw(&control);
555		fnstsw(&status);
556	}
557
558	critical_exit();
559	return (fpetable[status & ((~control & 0x3f) | 0x40)]);
560}
561
562int
563fputrap_sse(void)
564{
565	u_int mxcsr;
566
567	critical_enter();
568	if (PCPU_GET(fpcurthread) != curthread)
569		mxcsr = curpcb->pcb_save->sv_env.en_mxcsr;
570	else
571		stmxcsr(&mxcsr);
572	critical_exit();
573	return (fpetable[(mxcsr & (~mxcsr >> 7)) & 0x3f]);
574}
575
576/*
577 * Implement device not available (DNA) exception
578 *
579 * It would be better to switch FP context here (if curthread != fpcurthread)
580 * and not necessarily for every context switch, but it is too hard to
581 * access foreign pcb's.
582 */
583
584static int err_count = 0;
585
586void
587fpudna(void)
588{
589
590	critical_enter();
591	if (PCPU_GET(fpcurthread) == curthread) {
592		printf("fpudna: fpcurthread == curthread %d times\n",
593		    ++err_count);
594		stop_emulating();
595		critical_exit();
596		return;
597	}
598	if (PCPU_GET(fpcurthread) != NULL) {
599		printf("fpudna: fpcurthread = %p (%d), curthread = %p (%d)\n",
600		       PCPU_GET(fpcurthread),
601		       PCPU_GET(fpcurthread)->td_proc->p_pid,
602		       curthread, curthread->td_proc->p_pid);
603		panic("fpudna");
604	}
605	stop_emulating();
606	/*
607	 * Record new context early in case frstor causes a trap.
608	 */
609	PCPU_SET(fpcurthread, curthread);
610
611	fpu_clean_state();
612
613	if ((curpcb->pcb_flags & PCB_FPUINITDONE) == 0) {
614		/*
615		 * This is the first time this thread has used the FPU or
616		 * the PCB doesn't contain a clean FPU state.  Explicitly
617		 * load an initial state.
618		 *
619		 * We prefer to restore the state from the actual save
620		 * area in PCB instead of directly loading from
621		 * fpu_initialstate, to ignite the XSAVEOPT
622		 * tracking engine.
623		 */
624		bcopy(fpu_initialstate, curpcb->pcb_save, cpu_max_ext_state_size);
625		fpurestore(curpcb->pcb_save);
626		if (curpcb->pcb_initial_fpucw != __INITIAL_FPUCW__)
627			fldcw(curpcb->pcb_initial_fpucw);
628		if (PCB_USER_FPU(curpcb))
629			set_pcb_flags(curpcb,
630			    PCB_FPUINITDONE | PCB_USERFPUINITDONE);
631		else
632			set_pcb_flags(curpcb, PCB_FPUINITDONE);
633	} else
634		fpurestore(curpcb->pcb_save);
635	critical_exit();
636}
637
638void
639fpudrop()
640{
641	struct thread *td;
642
643	td = PCPU_GET(fpcurthread);
644	KASSERT(td == curthread, ("fpudrop: fpcurthread != curthread"));
645	CRITICAL_ASSERT(td);
646	PCPU_SET(fpcurthread, NULL);
647	clear_pcb_flags(td->td_pcb, PCB_FPUINITDONE);
648	start_emulating();
649}
650
651/*
652 * Get the user state of the FPU into pcb->pcb_user_save without
653 * dropping ownership (if possible).  It returns the FPU ownership
654 * status.
655 */
656int
657fpugetregs(struct thread *td)
658{
659	struct pcb *pcb;
660	uint64_t *xstate_bv, bit;
661	char *sa;
662	int max_ext_n, i, owned;
663
664	pcb = td->td_pcb;
665	if ((pcb->pcb_flags & PCB_USERFPUINITDONE) == 0) {
666		bcopy(fpu_initialstate, get_pcb_user_save_pcb(pcb),
667		    cpu_max_ext_state_size);
668		get_pcb_user_save_pcb(pcb)->sv_env.en_cw =
669		    pcb->pcb_initial_fpucw;
670		fpuuserinited(td);
671		return (_MC_FPOWNED_PCB);
672	}
673	critical_enter();
674	if (td == PCPU_GET(fpcurthread) && PCB_USER_FPU(pcb)) {
675		fpusave(get_pcb_user_save_pcb(pcb));
676		owned = _MC_FPOWNED_FPU;
677	} else {
678		owned = _MC_FPOWNED_PCB;
679	}
680	critical_exit();
681	if (use_xsave) {
682		/*
683		 * Handle partially saved state.
684		 */
685		sa = (char *)get_pcb_user_save_pcb(pcb);
686		xstate_bv = (uint64_t *)(sa + sizeof(struct savefpu) +
687		    offsetof(struct xstate_hdr, xstate_bv));
688		max_ext_n = flsl(xsave_mask);
689		for (i = 0; i < max_ext_n; i++) {
690			bit = 1ULL << i;
691			if ((xsave_mask & bit) == 0 || (*xstate_bv & bit) != 0)
692				continue;
693			bcopy((char *)fpu_initialstate +
694			    xsave_area_desc[i].offset,
695			    sa + xsave_area_desc[i].offset,
696			    xsave_area_desc[i].size);
697			*xstate_bv |= bit;
698		}
699	}
700	return (owned);
701}
702
703void
704fpuuserinited(struct thread *td)
705{
706	struct pcb *pcb;
707
708	pcb = td->td_pcb;
709	if (PCB_USER_FPU(pcb))
710		set_pcb_flags(pcb,
711		    PCB_FPUINITDONE | PCB_USERFPUINITDONE);
712	else
713		set_pcb_flags(pcb, PCB_FPUINITDONE);
714}
715
716int
717fpusetxstate(struct thread *td, char *xfpustate, size_t xfpustate_size)
718{
719	struct xstate_hdr *hdr, *ehdr;
720	size_t len, max_len;
721	uint64_t bv;
722
723	/* XXXKIB should we clear all extended state in xstate_bv instead ? */
724	if (xfpustate == NULL)
725		return (0);
726	if (!use_xsave)
727		return (EOPNOTSUPP);
728
729	len = xfpustate_size;
730	if (len < sizeof(struct xstate_hdr))
731		return (EINVAL);
732	max_len = cpu_max_ext_state_size - sizeof(struct savefpu);
733	if (len > max_len)
734		return (EINVAL);
735
736	ehdr = (struct xstate_hdr *)xfpustate;
737	bv = ehdr->xstate_bv;
738
739	/*
740	 * Avoid #gp.
741	 */
742	if (bv & ~xsave_mask)
743		return (EINVAL);
744
745	hdr = (struct xstate_hdr *)(get_pcb_user_save_td(td) + 1);
746
747	hdr->xstate_bv = bv;
748	bcopy(xfpustate + sizeof(struct xstate_hdr),
749	    (char *)(hdr + 1), len - sizeof(struct xstate_hdr));
750
751	return (0);
752}
753
754/*
755 * Set the state of the FPU.
756 */
757int
758fpusetregs(struct thread *td, struct savefpu *addr, char *xfpustate,
759    size_t xfpustate_size)
760{
761	struct pcb *pcb;
762	int error;
763
764	pcb = td->td_pcb;
765	critical_enter();
766	if (td == PCPU_GET(fpcurthread) && PCB_USER_FPU(pcb)) {
767		error = fpusetxstate(td, xfpustate, xfpustate_size);
768		if (error != 0) {
769			critical_exit();
770			return (error);
771		}
772		bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr));
773		fpurestore(get_pcb_user_save_td(td));
774		critical_exit();
775		set_pcb_flags(pcb, PCB_FPUINITDONE | PCB_USERFPUINITDONE);
776	} else {
777		critical_exit();
778		error = fpusetxstate(td, xfpustate, xfpustate_size);
779		if (error != 0)
780			return (error);
781		bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr));
782		fpuuserinited(td);
783	}
784	return (0);
785}
786
787/*
788 * On AuthenticAMD processors, the fxrstor instruction does not restore
789 * the x87's stored last instruction pointer, last data pointer, and last
790 * opcode values, except in the rare case in which the exception summary
791 * (ES) bit in the x87 status word is set to 1.
792 *
793 * In order to avoid leaking this information across processes, we clean
794 * these values by performing a dummy load before executing fxrstor().
795 */
796static void
797fpu_clean_state(void)
798{
799	static float dummy_variable = 0.0;
800	u_short status;
801
802	/*
803	 * Clear the ES bit in the x87 status word if it is currently
804	 * set, in order to avoid causing a fault in the upcoming load.
805	 */
806	fnstsw(&status);
807	if (status & 0x80)
808		fnclex();
809
810	/*
811	 * Load the dummy variable into the x87 stack.  This mangles
812	 * the x87 stack, but we don't care since we're about to call
813	 * fxrstor() anyway.
814	 */
815	__asm __volatile("ffree %%st(7); flds %0" : : "m" (dummy_variable));
816}
817
818/*
819 * This really sucks.  We want the acpi version only, but it requires
820 * the isa_if.h file in order to get the definitions.
821 */
822#include "opt_isa.h"
823#ifdef DEV_ISA
824#include <isa/isavar.h>
825/*
826 * This sucks up the legacy ISA support assignments from PNPBIOS/ACPI.
827 */
828static struct isa_pnp_id fpupnp_ids[] = {
829	{ 0x040cd041, "Legacy ISA coprocessor support" }, /* PNP0C04 */
830	{ 0 }
831};
832
833static int
834fpupnp_probe(device_t dev)
835{
836	int result;
837
838	result = ISA_PNP_PROBE(device_get_parent(dev), dev, fpupnp_ids);
839	if (result <= 0)
840		device_quiet(dev);
841	return (result);
842}
843
844static int
845fpupnp_attach(device_t dev)
846{
847
848	return (0);
849}
850
851static device_method_t fpupnp_methods[] = {
852	/* Device interface */
853	DEVMETHOD(device_probe,		fpupnp_probe),
854	DEVMETHOD(device_attach,	fpupnp_attach),
855	DEVMETHOD(device_detach,	bus_generic_detach),
856	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
857	DEVMETHOD(device_suspend,	bus_generic_suspend),
858	DEVMETHOD(device_resume,	bus_generic_resume),
859
860	{ 0, 0 }
861};
862
863static driver_t fpupnp_driver = {
864	"fpupnp",
865	fpupnp_methods,
866	1,			/* no softc */
867};
868
869static devclass_t fpupnp_devclass;
870
871DRIVER_MODULE(fpupnp, acpi, fpupnp_driver, fpupnp_devclass, 0, 0);
872#endif	/* DEV_ISA */
873
874static MALLOC_DEFINE(M_FPUKERN_CTX, "fpukern_ctx",
875    "Kernel contexts for FPU state");
876
877#define	FPU_KERN_CTX_FPUINITDONE 0x01
878
879struct fpu_kern_ctx {
880	struct savefpu *prev;
881	uint32_t flags;
882	char hwstate1[];
883};
884
885struct fpu_kern_ctx *
886fpu_kern_alloc_ctx(u_int flags)
887{
888	struct fpu_kern_ctx *res;
889	size_t sz;
890
891	sz = sizeof(struct fpu_kern_ctx) + XSAVE_AREA_ALIGN +
892	    cpu_max_ext_state_size;
893	res = malloc(sz, M_FPUKERN_CTX, ((flags & FPU_KERN_NOWAIT) ?
894	    M_NOWAIT : M_WAITOK) | M_ZERO);
895	return (res);
896}
897
898void
899fpu_kern_free_ctx(struct fpu_kern_ctx *ctx)
900{
901
902	/* XXXKIB clear the memory ? */
903	free(ctx, M_FPUKERN_CTX);
904}
905
906static struct savefpu *
907fpu_kern_ctx_savefpu(struct fpu_kern_ctx *ctx)
908{
909	vm_offset_t p;
910
911	p = (vm_offset_t)&ctx->hwstate1;
912	p = roundup2(p, XSAVE_AREA_ALIGN);
913	return ((struct savefpu *)p);
914}
915
916int
917fpu_kern_enter(struct thread *td, struct fpu_kern_ctx *ctx, u_int flags)
918{
919	struct pcb *pcb;
920
921	pcb = td->td_pcb;
922	KASSERT(!PCB_USER_FPU(pcb) || pcb->pcb_save ==
923	    get_pcb_user_save_pcb(pcb), ("mangled pcb_save"));
924	ctx->flags = 0;
925	if ((pcb->pcb_flags & PCB_FPUINITDONE) != 0)
926		ctx->flags |= FPU_KERN_CTX_FPUINITDONE;
927	fpuexit(td);
928	ctx->prev = pcb->pcb_save;
929	pcb->pcb_save = fpu_kern_ctx_savefpu(ctx);
930	set_pcb_flags(pcb, PCB_KERNFPU);
931	clear_pcb_flags(pcb, PCB_FPUINITDONE);
932	return (0);
933}
934
935int
936fpu_kern_leave(struct thread *td, struct fpu_kern_ctx *ctx)
937{
938	struct pcb *pcb;
939
940	pcb = td->td_pcb;
941	critical_enter();
942	if (curthread == PCPU_GET(fpcurthread))
943		fpudrop();
944	critical_exit();
945	pcb->pcb_save = ctx->prev;
946	if (pcb->pcb_save == get_pcb_user_save_pcb(pcb)) {
947		if ((pcb->pcb_flags & PCB_USERFPUINITDONE) != 0) {
948			set_pcb_flags(pcb, PCB_FPUINITDONE);
949			clear_pcb_flags(pcb, PCB_KERNFPU);
950		} else
951			clear_pcb_flags(pcb, PCB_FPUINITDONE | PCB_KERNFPU);
952	} else {
953		if ((ctx->flags & FPU_KERN_CTX_FPUINITDONE) != 0)
954			set_pcb_flags(pcb, PCB_FPUINITDONE);
955		else
956			clear_pcb_flags(pcb, PCB_FPUINITDONE);
957		KASSERT(!PCB_USER_FPU(pcb), ("unpaired fpu_kern_leave"));
958	}
959	return (0);
960}
961
962int
963fpu_kern_thread(u_int flags)
964{
965
966	KASSERT((curthread->td_pflags & TDP_KTHREAD) != 0,
967	    ("Only kthread may use fpu_kern_thread"));
968	KASSERT(curpcb->pcb_save == get_pcb_user_save_pcb(curpcb),
969	    ("mangled pcb_save"));
970	KASSERT(PCB_USER_FPU(curpcb), ("recursive call"));
971
972	set_pcb_flags(curpcb, PCB_KERNFPU);
973	return (0);
974}
975
976int
977is_fpu_kern_thread(u_int flags)
978{
979
980	if ((curthread->td_pflags & TDP_KTHREAD) == 0)
981		return (0);
982	return ((curpcb->pcb_flags & PCB_KERNFPU) != 0);
983}
984
985/*
986 * FPU save area alloc/free/init utility routines
987 */
988struct savefpu *
989fpu_save_area_alloc(void)
990{
991
992	return (uma_zalloc(fpu_save_area_zone, 0));
993}
994
995void
996fpu_save_area_free(struct savefpu *fsa)
997{
998
999	uma_zfree(fpu_save_area_zone, fsa);
1000}
1001
1002void
1003fpu_save_area_reset(struct savefpu *fsa)
1004{
1005
1006	bcopy(fpu_initialstate, fsa, cpu_max_ext_state_size);
1007}
1008