main.c revision 344290
1/*-
2 * Initial implementation:
3 * Copyright (c) 2001 Robert Drehmel
4 * All rights reserved.
5 *
6 * As long as the above copyright statement and this notice remain
7 * unchanged, you can do what ever you want with this file.
8 */
9/*-
10 * Copyright (c) 2008 - 2012 Marius Strobl <marius@FreeBSD.org>
11 * All rights reserved.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 */
34
35#include <sys/cdefs.h>
36__FBSDID("$FreeBSD: stable/11/stand/sparc64/loader/main.c 344290 2019-02-19 18:48:17Z kevans $");
37
38/*
39 * FreeBSD/sparc64 kernel loader - machine dependent part
40 *
41 *  - implements copyin and readin functions that map kernel
42 *    pages on demand.  The machine independent code does not
43 *    know the size of the kernel early enough to pre-enter
44 *    TTEs and install just one 4MB mapping seemed to limiting
45 *    to me.
46 */
47
48#include <stand.h>
49#include <sys/param.h>
50#include <sys/exec.h>
51#include <sys/linker.h>
52#include <sys/queue.h>
53#include <sys/types.h>
54#ifdef LOADER_ZFS_SUPPORT
55#include <sys/vtoc.h>
56#include "../zfs/libzfs.h"
57#endif
58
59#include <vm/vm.h>
60#include <machine/asi.h>
61#include <machine/cmt.h>
62#include <machine/cpufunc.h>
63#include <machine/elf.h>
64#include <machine/fireplane.h>
65#include <machine/jbus.h>
66#include <machine/lsu.h>
67#include <machine/metadata.h>
68#include <machine/tte.h>
69#include <machine/tlb.h>
70#include <machine/upa.h>
71#include <machine/ver.h>
72#include <machine/vmparam.h>
73
74#include "bootstrap.h"
75#include "libofw.h"
76#include "dev_net.h"
77
78enum {
79	HEAPVA		= 0x800000,
80	HEAPSZ		= 0x3000000,
81	LOADSZ		= 0x1000000	/* for kernel and modules */
82};
83
84/* At least Sun Fire V1280 require page sized allocations to be claimed. */
85CTASSERT(HEAPSZ % PAGE_SIZE == 0);
86
87static struct mmu_ops {
88	void (*tlb_init)(void);
89	int (*mmu_mapin)(vm_offset_t va, vm_size_t len);
90} *mmu_ops;
91
92typedef void kernel_entry_t(vm_offset_t mdp, u_long o1, u_long o2, u_long o3,
93    void *openfirmware);
94
95static inline u_long dtlb_get_data_sun4u(u_int, u_int);
96static int dtlb_enter_sun4u(u_int, u_long data, vm_offset_t);
97static vm_offset_t dtlb_va_to_pa_sun4u(vm_offset_t);
98static inline u_long itlb_get_data_sun4u(u_int, u_int);
99static int itlb_enter_sun4u(u_int, u_long data, vm_offset_t);
100static vm_offset_t itlb_va_to_pa_sun4u(vm_offset_t);
101static void itlb_relocate_locked0_sun4u(void);
102static int sparc64_autoload(void);
103static ssize_t sparc64_readin(const int, vm_offset_t, const size_t);
104static ssize_t sparc64_copyin(const void *, vm_offset_t, size_t);
105static vm_offset_t claim_virt(vm_offset_t, size_t, int);
106static vm_offset_t alloc_phys(size_t, int);
107static int map_phys(int, size_t, vm_offset_t, vm_offset_t);
108static void release_phys(vm_offset_t, u_int);
109static int __elfN(exec)(struct preloaded_file *);
110static int mmu_mapin_sun4u(vm_offset_t, vm_size_t);
111static vm_offset_t init_heap(void);
112static phandle_t find_bsp_sun4u(phandle_t, uint32_t);
113const char *cpu_cpuid_prop_sun4u(void);
114uint32_t cpu_get_mid_sun4u(void);
115static void tlb_init_sun4u(void);
116
117#ifdef LOADER_DEBUG
118typedef uint64_t tte_t;
119
120static void pmap_print_tlb_sun4u(void);
121static void pmap_print_tte_sun4u(tte_t, tte_t);
122#endif
123
124static struct mmu_ops mmu_ops_sun4u = { tlb_init_sun4u, mmu_mapin_sun4u };
125
126/* sun4u */
127struct tlb_entry *dtlb_store;
128struct tlb_entry *itlb_store;
129u_int dtlb_slot;
130u_int itlb_slot;
131static int cpu_impl;
132static u_int dtlb_slot_max;
133static u_int itlb_slot_max;
134static u_int tlb_locked;
135
136static vm_offset_t curkva = 0;
137static vm_offset_t heapva;
138
139static char bootpath[64];
140static phandle_t root;
141
142#ifdef LOADER_ZFS_SUPPORT
143static struct zfs_devdesc zfs_currdev;
144#endif
145
146/*
147 * Machine dependent structures that the machine independent
148 * loader part uses.
149 */
150struct devsw *devsw[] = {
151#ifdef LOADER_DISK_SUPPORT
152	&ofwdisk,
153#endif
154#ifdef LOADER_NET_SUPPORT
155	&netdev,
156#endif
157#ifdef LOADER_ZFS_SUPPORT
158	&zfs_dev,
159#endif
160	NULL
161};
162
163struct arch_switch archsw;
164
165static struct file_format sparc64_elf = {
166	__elfN(loadfile),
167	__elfN(exec)
168};
169
170struct file_format *file_formats[] = {
171	&sparc64_elf,
172	NULL
173};
174
175struct fs_ops *file_system[] = {
176#ifdef LOADER_ZFS_SUPPORT
177	&zfs_fsops,
178#endif
179#ifdef LOADER_UFS_SUPPORT
180	&ufs_fsops,
181#endif
182#ifdef LOADER_CD9660_SUPPORT
183	&cd9660_fsops,
184#endif
185#ifdef LOADER_ZIP_SUPPORT
186	&zipfs_fsops,
187#endif
188#ifdef LOADER_GZIP_SUPPORT
189	&gzipfs_fsops,
190#endif
191#ifdef LOADER_BZIP2_SUPPORT
192	&bzipfs_fsops,
193#endif
194#ifdef LOADER_NFS_SUPPORT
195	&nfs_fsops,
196#endif
197#ifdef LOADER_TFTP_SUPPORT
198	&tftp_fsops,
199#endif
200	NULL
201};
202
203struct netif_driver *netif_drivers[] = {
204#ifdef LOADER_NET_SUPPORT
205	&ofwnet,
206#endif
207	NULL
208};
209
210extern struct console ofwconsole;
211struct console *consoles[] = {
212	&ofwconsole,
213	NULL
214};
215
216#ifdef LOADER_DEBUG
217static int
218watch_phys_set_mask(vm_offset_t pa, u_long mask)
219{
220	u_long lsucr;
221
222	stxa(AA_DMMU_PWPR, ASI_DMMU, pa & (((2UL << 38) - 1) << 3));
223	lsucr = ldxa(0, ASI_LSU_CTL_REG);
224	lsucr = ((lsucr | LSU_PW) & ~LSU_PM_MASK) |
225	    (mask << LSU_PM_SHIFT);
226	stxa(0, ASI_LSU_CTL_REG, lsucr);
227	return (0);
228}
229
230static int
231watch_phys_set(vm_offset_t pa, int sz)
232{
233	u_long off;
234
235	off = (u_long)pa & 7;
236	/* Test for misaligned watch points. */
237	if (off + sz > 8)
238		return (-1);
239	return (watch_phys_set_mask(pa, ((1 << sz) - 1) << off));
240}
241
242
243static int
244watch_virt_set_mask(vm_offset_t va, u_long mask)
245{
246	u_long lsucr;
247
248	stxa(AA_DMMU_VWPR, ASI_DMMU, va & (((2UL << 41) - 1) << 3));
249	lsucr = ldxa(0, ASI_LSU_CTL_REG);
250	lsucr = ((lsucr | LSU_VW) & ~LSU_VM_MASK) |
251	    (mask << LSU_VM_SHIFT);
252	stxa(0, ASI_LSU_CTL_REG, lsucr);
253	return (0);
254}
255
256static int
257watch_virt_set(vm_offset_t va, int sz)
258{
259	u_long off;
260
261	off = (u_long)va & 7;
262	/* Test for misaligned watch points. */
263	if (off + sz > 8)
264		return (-1);
265	return (watch_virt_set_mask(va, ((1 << sz) - 1) << off));
266}
267#endif
268
269/*
270 * archsw functions
271 */
272static int
273sparc64_autoload(void)
274{
275
276	return (0);
277}
278
279static ssize_t
280sparc64_readin(const int fd, vm_offset_t va, const size_t len)
281{
282
283	mmu_ops->mmu_mapin(va, len);
284	return (read(fd, (void *)va, len));
285}
286
287static ssize_t
288sparc64_copyin(const void *src, vm_offset_t dest, size_t len)
289{
290
291	mmu_ops->mmu_mapin(dest, len);
292	memcpy((void *)dest, src, len);
293	return (len);
294}
295
296/*
297 * other MD functions
298 */
299static vm_offset_t
300claim_virt(vm_offset_t virt, size_t size, int align)
301{
302	vm_offset_t mva;
303
304	if (OF_call_method("claim", mmu, 3, 1, virt, size, align, &mva) == -1)
305		return ((vm_offset_t)-1);
306	return (mva);
307}
308
309static vm_offset_t
310alloc_phys(size_t size, int align)
311{
312	cell_t phys_hi, phys_low;
313
314	if (OF_call_method("claim", memory, 2, 2, size, align, &phys_low,
315	    &phys_hi) == -1)
316		return ((vm_offset_t)-1);
317	return ((vm_offset_t)phys_hi << 32 | phys_low);
318}
319
320static int
321map_phys(int mode, size_t size, vm_offset_t virt, vm_offset_t phys)
322{
323
324	return (OF_call_method("map", mmu, 5, 0, (uint32_t)phys,
325	    (uint32_t)(phys >> 32), virt, size, mode));
326}
327
328static void
329release_phys(vm_offset_t phys, u_int size)
330{
331
332	(void)OF_call_method("release", memory, 3, 0, (uint32_t)phys,
333	    (uint32_t)(phys >> 32), size);
334}
335
336static int
337__elfN(exec)(struct preloaded_file *fp)
338{
339	struct file_metadata *fmp;
340	vm_offset_t mdp;
341	Elf_Addr entry;
342	Elf_Ehdr *e;
343	int error;
344
345	if ((fmp = file_findmetadata(fp, MODINFOMD_ELFHDR)) == 0)
346		return (EFTYPE);
347	e = (Elf_Ehdr *)&fmp->md_data;
348
349	if ((error = md_load64(fp->f_args, &mdp, NULL)) != 0)
350		return (error);
351
352	printf("jumping to kernel entry at %#lx.\n", e->e_entry);
353#ifdef LOADER_DEBUG
354	pmap_print_tlb_sun4u();
355#endif
356
357	dev_cleanup();
358
359	entry = e->e_entry;
360
361	OF_release((void *)heapva, HEAPSZ);
362
363	((kernel_entry_t *)entry)(mdp, 0, 0, 0, openfirmware);
364
365	panic("%s: exec returned", __func__);
366}
367
368static inline u_long
369dtlb_get_data_sun4u(u_int tlb, u_int slot)
370{
371	u_long data, pstate;
372
373	slot = TLB_DAR_SLOT(tlb, slot);
374	/*
375	 * We read ASI_DTLB_DATA_ACCESS_REG twice back-to-back in order to
376	 * work around errata of USIII and beyond.
377	 */
378	pstate = rdpr(pstate);
379	wrpr(pstate, pstate & ~PSTATE_IE, 0);
380	(void)ldxa(slot, ASI_DTLB_DATA_ACCESS_REG);
381	data = ldxa(slot, ASI_DTLB_DATA_ACCESS_REG);
382	wrpr(pstate, pstate, 0);
383	return (data);
384}
385
386static inline u_long
387itlb_get_data_sun4u(u_int tlb, u_int slot)
388{
389	u_long data, pstate;
390
391	slot = TLB_DAR_SLOT(tlb, slot);
392	/*
393	 * We read ASI_DTLB_DATA_ACCESS_REG twice back-to-back in order to
394	 * work around errata of USIII and beyond.
395	 */
396	pstate = rdpr(pstate);
397	wrpr(pstate, pstate & ~PSTATE_IE, 0);
398	(void)ldxa(slot, ASI_ITLB_DATA_ACCESS_REG);
399	data = ldxa(slot, ASI_ITLB_DATA_ACCESS_REG);
400	wrpr(pstate, pstate, 0);
401	return (data);
402}
403
404static vm_offset_t
405dtlb_va_to_pa_sun4u(vm_offset_t va)
406{
407	u_long pstate, reg;
408	u_int i, tlb;
409
410	pstate = rdpr(pstate);
411	wrpr(pstate, pstate & ~PSTATE_IE, 0);
412	for (i = 0; i < dtlb_slot_max; i++) {
413		reg = ldxa(TLB_DAR_SLOT(tlb_locked, i),
414		    ASI_DTLB_TAG_READ_REG);
415		if (TLB_TAR_VA(reg) != va)
416			continue;
417		reg = dtlb_get_data_sun4u(tlb_locked, i);
418		wrpr(pstate, pstate, 0);
419		reg >>= TD_PA_SHIFT;
420		if (cpu_impl == CPU_IMPL_SPARC64V ||
421		    cpu_impl >= CPU_IMPL_ULTRASPARCIII)
422			return (reg & TD_PA_CH_MASK);
423		return (reg & TD_PA_SF_MASK);
424	}
425	wrpr(pstate, pstate, 0);
426	return (-1);
427}
428
429static vm_offset_t
430itlb_va_to_pa_sun4u(vm_offset_t va)
431{
432	u_long pstate, reg;
433	int i;
434
435	pstate = rdpr(pstate);
436	wrpr(pstate, pstate & ~PSTATE_IE, 0);
437	for (i = 0; i < itlb_slot_max; i++) {
438		reg = ldxa(TLB_DAR_SLOT(tlb_locked, i),
439		    ASI_ITLB_TAG_READ_REG);
440		if (TLB_TAR_VA(reg) != va)
441			continue;
442		reg = itlb_get_data_sun4u(tlb_locked, i);
443		wrpr(pstate, pstate, 0);
444		reg >>= TD_PA_SHIFT;
445		if (cpu_impl == CPU_IMPL_SPARC64V ||
446		    cpu_impl >= CPU_IMPL_ULTRASPARCIII)
447			return (reg & TD_PA_CH_MASK);
448		return (reg & TD_PA_SF_MASK);
449	}
450	wrpr(pstate, pstate, 0);
451	return (-1);
452}
453
454static int
455dtlb_enter_sun4u(u_int index, u_long data, vm_offset_t virt)
456{
457
458	return (OF_call_method("SUNW,dtlb-load", mmu, 3, 0, index, data,
459	    virt));
460}
461
462static int
463itlb_enter_sun4u(u_int index, u_long data, vm_offset_t virt)
464{
465
466	if (cpu_impl == CPU_IMPL_ULTRASPARCIIIp && index == 0 &&
467	    (data & TD_L) != 0)
468		panic("%s: won't enter locked TLB entry at index 0 on USIII+",
469		    __func__);
470	return (OF_call_method("SUNW,itlb-load", mmu, 3, 0, index, data,
471	    virt));
472}
473
474static void
475itlb_relocate_locked0_sun4u(void)
476{
477	u_long data, pstate, tag;
478	int i;
479
480	if (cpu_impl != CPU_IMPL_ULTRASPARCIIIp)
481		return;
482
483	pstate = rdpr(pstate);
484	wrpr(pstate, pstate & ~PSTATE_IE, 0);
485
486	data = itlb_get_data_sun4u(tlb_locked, 0);
487	if ((data & (TD_V | TD_L)) != (TD_V | TD_L)) {
488		wrpr(pstate, pstate, 0);
489		return;
490	}
491
492	/* Flush the mapping of slot 0. */
493	tag = ldxa(TLB_DAR_SLOT(tlb_locked, 0), ASI_ITLB_TAG_READ_REG);
494	stxa(TLB_DEMAP_VA(TLB_TAR_VA(tag)) | TLB_DEMAP_PRIMARY |
495	    TLB_DEMAP_PAGE, ASI_IMMU_DEMAP, 0);
496	flush(0);	/* The USIII-family ignores the address. */
497
498	/*
499	 * Search a replacement slot != 0 and enter the data and tag
500	 * that formerly were in slot 0.
501	 */
502	for (i = 1; i < itlb_slot_max; i++) {
503		if ((itlb_get_data_sun4u(tlb_locked, i) & TD_V) != 0)
504			continue;
505
506		stxa(AA_IMMU_TAR, ASI_IMMU, tag);
507		stxa(TLB_DAR_SLOT(tlb_locked, i), ASI_ITLB_DATA_ACCESS_REG,
508		    data);
509		flush(0);	/* The USIII-family ignores the address. */
510		break;
511	}
512	wrpr(pstate, pstate, 0);
513	if (i == itlb_slot_max)
514		panic("%s: could not find a replacement slot", __func__);
515}
516
517static int
518mmu_mapin_sun4u(vm_offset_t va, vm_size_t len)
519{
520	vm_offset_t pa, mva;
521	u_long data;
522	u_int index;
523
524	if (va + len > curkva)
525		curkva = va + len;
526
527	pa = (vm_offset_t)-1;
528	len += va & PAGE_MASK_4M;
529	va &= ~PAGE_MASK_4M;
530	while (len) {
531		if (dtlb_va_to_pa_sun4u(va) == (vm_offset_t)-1 ||
532		    itlb_va_to_pa_sun4u(va) == (vm_offset_t)-1) {
533			/* Allocate a physical page, claim the virtual area. */
534			if (pa == (vm_offset_t)-1) {
535				pa = alloc_phys(PAGE_SIZE_4M, PAGE_SIZE_4M);
536				if (pa == (vm_offset_t)-1)
537					panic("%s: out of memory", __func__);
538				mva = claim_virt(va, PAGE_SIZE_4M, 0);
539				if (mva != va)
540					panic("%s: can't claim virtual page "
541					    "(wanted %#lx, got %#lx)",
542					    __func__, va, mva);
543				/*
544				 * The mappings may have changed, be paranoid.
545				 */
546				continue;
547			}
548			/*
549			 * Actually, we can only allocate two pages less at
550			 * most (depending on the kernel TSB size).
551			 */
552			if (dtlb_slot >= dtlb_slot_max)
553				panic("%s: out of dtlb_slots", __func__);
554			if (itlb_slot >= itlb_slot_max)
555				panic("%s: out of itlb_slots", __func__);
556			data = TD_V | TD_4M | TD_PA(pa) | TD_L | TD_CP |
557			    TD_CV | TD_P | TD_W;
558			dtlb_store[dtlb_slot].te_pa = pa;
559			dtlb_store[dtlb_slot].te_va = va;
560			index = dtlb_slot_max - dtlb_slot - 1;
561			if (dtlb_enter_sun4u(index, data, va) < 0)
562				panic("%s: can't enter dTLB slot %d data "
563				    "%#lx va %#lx", __func__, index, data,
564				    va);
565			dtlb_slot++;
566			itlb_store[itlb_slot].te_pa = pa;
567			itlb_store[itlb_slot].te_va = va;
568			index = itlb_slot_max - itlb_slot - 1;
569			if (itlb_enter_sun4u(index, data, va) < 0)
570				panic("%s: can't enter iTLB slot %d data "
571				    "%#lx va %#lxd", __func__, index, data,
572				    va);
573			itlb_slot++;
574			pa = (vm_offset_t)-1;
575		}
576		len -= len > PAGE_SIZE_4M ? PAGE_SIZE_4M : len;
577		va += PAGE_SIZE_4M;
578	}
579	if (pa != (vm_offset_t)-1)
580		release_phys(pa, PAGE_SIZE_4M);
581	return (0);
582}
583
584static vm_offset_t
585init_heap(void)
586{
587
588	/* There is no need for continuous physical heap memory. */
589	heapva = (vm_offset_t)OF_claim((void *)HEAPVA, HEAPSZ, 32);
590	return (heapva);
591}
592
593static phandle_t
594find_bsp_sun4u(phandle_t node, uint32_t bspid)
595{
596	char type[sizeof("cpu")];
597	phandle_t child;
598	uint32_t cpuid;
599
600	for (; node > 0; node = OF_peer(node)) {
601		child = OF_child(node);
602		if (child > 0) {
603			child = find_bsp_sun4u(child, bspid);
604			if (child > 0)
605				return (child);
606		} else {
607			if (OF_getprop(node, "device_type", type,
608			    sizeof(type)) <= 0)
609				continue;
610			if (strcmp(type, "cpu") != 0)
611				continue;
612			if (OF_getprop(node, cpu_cpuid_prop_sun4u(), &cpuid,
613			    sizeof(cpuid)) <= 0)
614				continue;
615			if (cpuid == bspid)
616				return (node);
617		}
618	}
619	return (0);
620}
621
622const char *
623cpu_cpuid_prop_sun4u(void)
624{
625
626	switch (cpu_impl) {
627	case CPU_IMPL_SPARC64:
628	case CPU_IMPL_SPARC64V:
629	case CPU_IMPL_ULTRASPARCI:
630	case CPU_IMPL_ULTRASPARCII:
631	case CPU_IMPL_ULTRASPARCIIi:
632	case CPU_IMPL_ULTRASPARCIIe:
633		return ("upa-portid");
634	case CPU_IMPL_ULTRASPARCIII:
635	case CPU_IMPL_ULTRASPARCIIIp:
636	case CPU_IMPL_ULTRASPARCIIIi:
637	case CPU_IMPL_ULTRASPARCIIIip:
638		return ("portid");
639	case CPU_IMPL_ULTRASPARCIV:
640	case CPU_IMPL_ULTRASPARCIVp:
641		return ("cpuid");
642	default:
643		return ("");
644	}
645}
646
647uint32_t
648cpu_get_mid_sun4u(void)
649{
650
651	switch (cpu_impl) {
652	case CPU_IMPL_SPARC64:
653	case CPU_IMPL_SPARC64V:
654	case CPU_IMPL_ULTRASPARCI:
655	case CPU_IMPL_ULTRASPARCII:
656	case CPU_IMPL_ULTRASPARCIIi:
657	case CPU_IMPL_ULTRASPARCIIe:
658		return (UPA_CR_GET_MID(ldxa(0, ASI_UPA_CONFIG_REG)));
659	case CPU_IMPL_ULTRASPARCIII:
660	case CPU_IMPL_ULTRASPARCIIIp:
661		return (FIREPLANE_CR_GET_AID(ldxa(AA_FIREPLANE_CONFIG,
662		    ASI_FIREPLANE_CONFIG_REG)));
663	case CPU_IMPL_ULTRASPARCIIIi:
664	case CPU_IMPL_ULTRASPARCIIIip:
665		return (JBUS_CR_GET_JID(ldxa(0, ASI_JBUS_CONFIG_REG)));
666	case CPU_IMPL_ULTRASPARCIV:
667	case CPU_IMPL_ULTRASPARCIVp:
668		return (INTR_ID_GET_ID(ldxa(AA_INTR_ID, ASI_INTR_ID)));
669	default:
670		return (0);
671	}
672}
673
674static void
675tlb_init_sun4u(void)
676{
677	phandle_t bsp;
678
679	cpu_impl = VER_IMPL(rdpr(ver));
680	switch (cpu_impl) {
681	case CPU_IMPL_SPARC64:
682	case CPU_IMPL_ULTRASPARCI:
683	case CPU_IMPL_ULTRASPARCII:
684	case CPU_IMPL_ULTRASPARCIIi:
685	case CPU_IMPL_ULTRASPARCIIe:
686		tlb_locked = TLB_DAR_T32;
687		break;
688	case CPU_IMPL_ULTRASPARCIII:
689	case CPU_IMPL_ULTRASPARCIIIp:
690	case CPU_IMPL_ULTRASPARCIIIi:
691	case CPU_IMPL_ULTRASPARCIIIip:
692	case CPU_IMPL_ULTRASPARCIV:
693	case CPU_IMPL_ULTRASPARCIVp:
694		tlb_locked = TLB_DAR_T16;
695		break;
696	case CPU_IMPL_SPARC64V:
697		tlb_locked = TLB_DAR_FTLB;
698		break;
699	}
700	bsp = find_bsp_sun4u(OF_child(root), cpu_get_mid_sun4u());
701	if (bsp == 0)
702		panic("%s: no node for bootcpu?!?!", __func__);
703
704	if (OF_getprop(bsp, "#dtlb-entries", &dtlb_slot_max,
705	    sizeof(dtlb_slot_max)) == -1 ||
706	    OF_getprop(bsp, "#itlb-entries", &itlb_slot_max,
707	    sizeof(itlb_slot_max)) == -1)
708		panic("%s: can't get TLB slot max.", __func__);
709
710	if (cpu_impl == CPU_IMPL_ULTRASPARCIIIp) {
711#ifdef LOADER_DEBUG
712		printf("pre fixup:\n");
713		pmap_print_tlb_sun4u();
714#endif
715
716		/*
717		 * Relocate the locked entry in it16 slot 0 (if existent)
718		 * as part of working around Cheetah+ erratum 34.
719		 */
720		itlb_relocate_locked0_sun4u();
721
722#ifdef LOADER_DEBUG
723		printf("post fixup:\n");
724		pmap_print_tlb_sun4u();
725#endif
726	}
727
728	dtlb_store = malloc(dtlb_slot_max * sizeof(*dtlb_store));
729	itlb_store = malloc(itlb_slot_max * sizeof(*itlb_store));
730	if (dtlb_store == NULL || itlb_store == NULL)
731		panic("%s: can't allocate TLB store", __func__);
732}
733
734#ifdef LOADER_ZFS_SUPPORT
735
736static void
737sparc64_zfs_probe(void)
738{
739	struct vtoc8 vtoc;
740	char alias[64], devname[sizeof(alias) + sizeof(":x") - 1];
741	char type[sizeof("device_type")];
742	char *bdev, *dev, *odev;
743	uint64_t guid, *guidp;
744	int fd, len, part;
745	phandle_t aliases, options;
746
747	guid = 0;
748
749	/*
750	 * Get the GUIDs of the ZFS pools on any additional disks listed in
751	 * the boot-device environment variable.
752	 */
753	if ((aliases = OF_finddevice("/aliases")) == -1)
754		goto out;
755	options = OF_finddevice("/options");
756	len = OF_getproplen(options, "boot-device");
757	if (len <= 0)
758		goto out;
759	bdev = odev = malloc(len + 1);
760	if (bdev == NULL)
761		goto out;
762	if (OF_getprop(options, "boot-device", bdev, len) <= 0)
763		goto out;
764	bdev[len] = '\0';
765	while ((dev = strsep(&bdev, " ")) != NULL) {
766		if (*dev == '\0')
767			continue;
768		strcpy(alias, dev);
769		(void)OF_getprop(aliases, dev, alias, sizeof(alias));
770		if (OF_getprop(OF_finddevice(alias), "device_type", type,
771		    sizeof(type)) == -1)
772			continue;
773		if (strcmp(type, "block") != 0)
774			continue;
775
776		/* Find freebsd-zfs slices in the VTOC. */
777		fd = open(alias, O_RDONLY);
778		if (fd == -1)
779			continue;
780		lseek(fd, 0, SEEK_SET);
781		if (read(fd, &vtoc, sizeof(vtoc)) != sizeof(vtoc)) {
782			close(fd);
783			continue;
784		}
785		close(fd);
786
787		for (part = 0; part < 8; part++) {
788			if (part == 2 || vtoc.part[part].tag !=
789			    VTOC_TAG_FREEBSD_ZFS)
790				continue;
791			(void)sprintf(devname, "%s:%c", alias, part + 'a');
792			/* Get the GUID of the ZFS pool on the boot device. */
793			if (strcmp(devname, bootpath) == 0)
794				guidp = &guid;
795			else
796				guidp = NULL;
797			if (zfs_probe_dev(devname, guidp) == ENXIO)
798				break;
799		}
800	}
801	free(odev);
802
803 out:
804	if (guid != 0) {
805		zfs_currdev.pool_guid = guid;
806		zfs_currdev.root_guid = 0;
807		zfs_currdev.dd.d_dev = &zfs_dev;
808	}
809}
810#endif /* LOADER_ZFS_SUPPORT */
811
812int
813main(int (*openfirm)(void *))
814{
815	char compatible[32];
816	struct devsw **dp;
817
818	/*
819	 * Tell the Open Firmware functions where they find the OFW gate.
820	 */
821	OF_init(openfirm);
822
823	archsw.arch_getdev = ofw_getdev;
824	archsw.arch_copyin = sparc64_copyin;
825	archsw.arch_copyout = ofw_copyout;
826	archsw.arch_readin = sparc64_readin;
827	archsw.arch_autoload = sparc64_autoload;
828#ifdef LOADER_ZFS_SUPPORT
829	archsw.arch_zfs_probe = sparc64_zfs_probe;
830#endif
831
832	if (init_heap() == (vm_offset_t)-1)
833		OF_exit();
834	setheap((void *)heapva, (void *)(heapva + HEAPSZ));
835
836	/*
837	 * Probe for a console.
838	 */
839	cons_probe();
840
841	if ((root = OF_peer(0)) == -1)
842		panic("%s: can't get root phandle", __func__);
843	OF_getprop(root, "compatible", compatible, sizeof(compatible));
844	mmu_ops = &mmu_ops_sun4u;
845
846	mmu_ops->tlb_init();
847
848	/*
849	 * Set up the current device.
850	 */
851	OF_getprop(chosen, "bootpath", bootpath, sizeof(bootpath));
852
853	/*
854	 * Initialize devices.
855	 */
856	for (dp = devsw; *dp != NULL; dp++)
857		if ((*dp)->dv_init != 0)
858			(*dp)->dv_init();
859
860#ifdef LOADER_ZFS_SUPPORT
861	if (zfs_currdev.pool_guid != 0) {
862		(void)strncpy(bootpath, zfs_fmtdev(&zfs_currdev),
863		    sizeof(bootpath) - 1);
864		bootpath[sizeof(bootpath) - 1] = '\0';
865	} else
866#endif
867
868	/*
869	 * Sun compatible bootable CD-ROMs have a disk label placed before
870	 * the ISO 9660 data, with the actual file system being in the first
871	 * partition, while the other partitions contain pseudo disk labels
872	 * with embedded boot blocks for different architectures, which may
873	 * be followed by UFS file systems.
874	 * The firmware will set the boot path to the partition it boots from
875	 * ('f' in the sun4u/sun4v case), but we want the kernel to be loaded
876	 * from the ISO 9660 file system ('a'), so the boot path needs to be
877	 * altered.
878	 */
879	if (bootpath[strlen(bootpath) - 2] == ':' &&
880	    bootpath[strlen(bootpath) - 1] == 'f')
881		bootpath[strlen(bootpath) - 1] = 'a';
882
883	env_setenv("currdev", EV_VOLATILE, bootpath,
884	    ofw_setcurrdev, env_nounset);
885	env_setenv("loaddev", EV_VOLATILE, bootpath,
886	    env_noset, env_nounset);
887
888	printf("\n%s", bootprog_info);
889	printf("bootpath=\"%s\"\n", bootpath);
890
891	/* Give control to the machine independent loader code. */
892	interact();
893	return (1);
894}
895
896COMMAND_SET(heap, "heap", "show heap usage", command_heap);
897
898static int
899command_heap(int argc, char *argv[])
900{
901
902	mallocstats();
903	printf("heap base at %p, top at %p, upper limit at %p\n", heapva,
904	    sbrk(0), heapva + HEAPSZ);
905	return(CMD_OK);
906}
907
908COMMAND_SET(reboot, "reboot", "reboot the system", command_reboot);
909
910static int
911command_reboot(int argc, char *argv[])
912{
913	int i;
914
915	for (i = 0; devsw[i] != NULL; ++i)
916		if (devsw[i]->dv_cleanup != NULL)
917			(devsw[i]->dv_cleanup)();
918
919	printf("Rebooting...\n");
920	OF_exit();
921}
922
923/* provide this for panic, as it's not in the startup code */
924void
925exit(int code)
926{
927
928	OF_exit();
929}
930
931#ifdef LOADER_DEBUG
932static const char *const page_sizes[] = {
933	"  8k", " 64k", "512k", "  4m"
934};
935
936static void
937pmap_print_tte_sun4u(tte_t tag, tte_t tte)
938{
939
940	printf("%s %s ",
941	    page_sizes[(tte >> TD_SIZE_SHIFT) & TD_SIZE_MASK],
942	    tag & TD_G ? "G" : " ");
943	printf(tte & TD_W ? "W " : "  ");
944	printf(tte & TD_P ? "\e[33mP\e[0m " : "  ");
945	printf(tte & TD_E ? "E " : "  ");
946	printf(tte & TD_CV ? "CV " : "   ");
947	printf(tte & TD_CP ? "CP " : "   ");
948	printf(tte & TD_L ? "\e[32mL\e[0m " : "  ");
949	printf(tte & TD_IE ? "IE " : "   ");
950	printf(tte & TD_NFO ? "NFO " : "    ");
951	printf("pa=0x%lx va=0x%lx ctx=%ld\n",
952	    TD_PA(tte), TLB_TAR_VA(tag), TLB_TAR_CTX(tag));
953}
954
955static void
956pmap_print_tlb_sun4u(void)
957{
958	tte_t tag, tte;
959	u_long pstate;
960	int i;
961
962	pstate = rdpr(pstate);
963	for (i = 0; i < itlb_slot_max; i++) {
964		wrpr(pstate, pstate & ~PSTATE_IE, 0);
965		tte = itlb_get_data_sun4u(tlb_locked, i);
966		wrpr(pstate, pstate, 0);
967		if (!(tte & TD_V))
968			continue;
969		tag = ldxa(TLB_DAR_SLOT(tlb_locked, i),
970		    ASI_ITLB_TAG_READ_REG);
971		printf("iTLB-%2u: ", i);
972		pmap_print_tte_sun4u(tag, tte);
973	}
974	for (i = 0; i < dtlb_slot_max; i++) {
975		wrpr(pstate, pstate & ~PSTATE_IE, 0);
976		tte = dtlb_get_data_sun4u(tlb_locked, i);
977		wrpr(pstate, pstate, 0);
978		if (!(tte & TD_V))
979			continue;
980		tag = ldxa(TLB_DAR_SLOT(tlb_locked, i),
981		    ASI_DTLB_TAG_READ_REG);
982		printf("dTLB-%2u: ", i);
983		pmap_print_tte_sun4u(tag, tte);
984	}
985}
986#endif
987