zfsboot.c revision 344295
1/*-
2 * Copyright (c) 1998 Robert Nordier
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms are freely
6 * permitted provided that the above copyright notice and this
7 * paragraph and the following disclaimer are duplicated in all
8 * such forms.
9 *
10 * This software is provided "AS IS" and without any express or
11 * implied warranties, including, without limitation, the implied
12 * warranties of merchantability and fitness for a particular
13 * purpose.
14 */
15
16#include <sys/cdefs.h>
17__FBSDID("$FreeBSD: stable/11/stand/i386/zfsboot/zfsboot.c 344295 2019-02-19 19:16:28Z kevans $");
18
19#include "stand.h"
20
21#include <sys/param.h>
22#include <sys/errno.h>
23#include <sys/diskmbr.h>
24#ifdef GPT
25#include <sys/gpt.h>
26#endif
27#include <sys/reboot.h>
28#include <sys/queue.h>
29
30#include <machine/bootinfo.h>
31#include <machine/elf.h>
32#include <machine/pc/bios.h>
33
34#include <stdarg.h>
35#include <stddef.h>
36
37#include <a.out.h>
38
39#include <btxv86.h>
40
41#include "lib.h"
42#include "rbx.h"
43#include "drv.h"
44#include "edd.h"
45#include "cons.h"
46#include "bootargs.h"
47#include "paths.h"
48
49#include "libzfs.h"
50
51#define ARGS			0x900
52#define NOPT			14
53#define NDEV			3
54
55#define BIOS_NUMDRIVES		0x475
56#define DRV_HARD		0x80
57#define DRV_MASK		0x7f
58
59#define TYPE_AD			0
60#define TYPE_DA			1
61#define TYPE_MAXHARD		TYPE_DA
62#define TYPE_FD			2
63
64#define DEV_GELIBOOT_BSIZE	4096
65
66extern uint32_t _end;
67
68#ifdef GPT
69static const uuid_t freebsd_zfs_uuid = GPT_ENT_TYPE_FREEBSD_ZFS;
70#endif
71static const char optstr[NOPT] = "DhaCcdgmnpqrsv"; /* Also 'P', 'S' */
72static const unsigned char flags[NOPT] = {
73    RBX_DUAL,
74    RBX_SERIAL,
75    RBX_ASKNAME,
76    RBX_CDROM,
77    RBX_CONFIG,
78    RBX_KDB,
79    RBX_GDB,
80    RBX_MUTE,
81    RBX_NOINTR,
82    RBX_PAUSE,
83    RBX_QUIET,
84    RBX_DFLTROOT,
85    RBX_SINGLE,
86    RBX_VERBOSE
87};
88uint32_t opts;
89
90static const unsigned char dev_maj[NDEV] = {30, 4, 2};
91
92static char cmd[512];
93static char cmddup[512];
94static char kname[1024];
95static char rootname[256];
96static int comspeed = SIOSPD;
97static struct bootinfo bootinfo;
98static uint32_t bootdev;
99static struct zfs_boot_args zfsargs;
100
101vm_offset_t	high_heap_base;
102uint32_t	bios_basemem, bios_extmem, high_heap_size;
103
104static struct bios_smap smap;
105
106/*
107 * The minimum amount of memory to reserve in bios_extmem for the heap.
108 */
109#define	HEAP_MIN		(64 * 1024 * 1024)
110
111static char *heap_next;
112static char *heap_end;
113
114/* Buffers that must not span a 64k boundary. */
115#define READ_BUF_SIZE		8192
116struct dmadat {
117	char rdbuf[READ_BUF_SIZE];	/* for reading large things */
118	char secbuf[READ_BUF_SIZE];	/* for MBR/disklabel */
119};
120static struct dmadat *dmadat;
121
122void exit(int);
123void reboot(void);
124static void load(void);
125static int parse_cmd(void);
126static void bios_getmem(void);
127int main(void);
128
129#ifdef LOADER_GELI_SUPPORT
130#include "geliboot.c"
131static char gelipw[GELI_PW_MAXLEN];
132static struct keybuf *gelibuf;
133#endif
134
135#include "zfsimpl.c"
136
137/*
138 * Read from a dnode (which must be from a ZPL filesystem).
139 */
140static int
141zfs_read(spa_t *spa, const dnode_phys_t *dnode, off_t *offp, void *start, size_t size)
142{
143	const znode_phys_t *zp = (const znode_phys_t *) dnode->dn_bonus;
144	size_t n;
145	int rc;
146
147	n = size;
148	if (*offp + n > zp->zp_size)
149		n = zp->zp_size - *offp;
150
151	rc = dnode_read(spa, dnode, *offp, start, n);
152	if (rc)
153		return (-1);
154	*offp += n;
155
156	return (n);
157}
158
159/*
160 * Current ZFS pool
161 */
162static spa_t *spa;
163static spa_t *primary_spa;
164static vdev_t *primary_vdev;
165
166/*
167 * A wrapper for dskread that doesn't have to worry about whether the
168 * buffer pointer crosses a 64k boundary.
169 */
170static int
171vdev_read(void *xvdev, void *priv, off_t off, void *buf, size_t bytes)
172{
173	char *p;
174	daddr_t lba, alignlba;
175	off_t diff;
176	unsigned int nb, alignnb;
177	struct dsk *dsk = (struct dsk *) priv;
178
179	if ((off & (DEV_BSIZE - 1)) || (bytes & (DEV_BSIZE - 1)))
180		return -1;
181
182	p = buf;
183	lba = off / DEV_BSIZE;
184	lba += dsk->start;
185	/*
186	 * Align reads to 4k else 4k sector GELIs will not decrypt.
187	 * Round LBA down to nearest multiple of DEV_GELIBOOT_BSIZE bytes.
188	 */
189	alignlba = rounddown2(off, DEV_GELIBOOT_BSIZE) / DEV_BSIZE;
190	/*
191	 * The read must be aligned to DEV_GELIBOOT_BSIZE bytes relative to the
192	 * start of the GELI partition, not the start of the actual disk.
193	 */
194	alignlba += dsk->start;
195	diff = (lba - alignlba) * DEV_BSIZE;
196
197	while (bytes > 0) {
198		nb = bytes / DEV_BSIZE;
199		/*
200		 * Ensure that the read size plus the leading offset does not
201		 * exceed the size of the read buffer.
202		 */
203		if (nb > (READ_BUF_SIZE - diff) / DEV_BSIZE)
204			nb = (READ_BUF_SIZE - diff) / DEV_BSIZE;
205		/*
206		 * Round the number of blocks to read up to the nearest multiple
207		 * of DEV_GELIBOOT_BSIZE.
208		 */
209		alignnb = roundup2(nb * DEV_BSIZE + diff, DEV_GELIBOOT_BSIZE)
210		    / DEV_BSIZE;
211
212		if (dsk->size > 0 && alignlba + alignnb > dsk->size + dsk->start) {
213			printf("Shortening read at %lld from %d to %lld\n", alignlba,
214			    alignnb, (dsk->size + dsk->start) - alignlba);
215			alignnb = (dsk->size + dsk->start) - alignlba;
216		}
217
218		if (drvread(dsk, dmadat->rdbuf, alignlba, alignnb))
219			return -1;
220#ifdef LOADER_GELI_SUPPORT
221		/* decrypt */
222		if (is_geli(dsk) == 0) {
223			if (geli_read(dsk, ((alignlba - dsk->start) *
224			    DEV_BSIZE), dmadat->rdbuf, alignnb * DEV_BSIZE))
225				return (-1);
226		}
227#endif
228		memcpy(p, dmadat->rdbuf + diff, nb * DEV_BSIZE);
229		p += nb * DEV_BSIZE;
230		lba += nb;
231		alignlba += alignnb;
232		bytes -= nb * DEV_BSIZE;
233		/* Don't need the leading offset after the first block. */
234		diff = 0;
235	}
236
237	return 0;
238}
239/* Match the signature exactly due to signature madness */
240static int
241vdev_read2(vdev_t *vdev, void *priv, off_t off, void *buf, size_t bytes)
242{
243	return vdev_read(vdev, priv, off, buf, bytes);
244}
245
246
247static int
248vdev_write(vdev_t *vdev, void *priv, off_t off, void *buf, size_t bytes)
249{
250	char *p;
251	daddr_t lba;
252	unsigned int nb;
253	struct dsk *dsk = (struct dsk *) priv;
254
255	if ((off & (DEV_BSIZE - 1)) || (bytes & (DEV_BSIZE - 1)))
256		return -1;
257
258	p = buf;
259	lba = off / DEV_BSIZE;
260	lba += dsk->start;
261	while (bytes > 0) {
262		nb = bytes / DEV_BSIZE;
263		if (nb > READ_BUF_SIZE / DEV_BSIZE)
264			nb = READ_BUF_SIZE / DEV_BSIZE;
265		memcpy(dmadat->rdbuf, p, nb * DEV_BSIZE);
266		if (drvwrite(dsk, dmadat->rdbuf, lba, nb))
267			return -1;
268		p += nb * DEV_BSIZE;
269		lba += nb;
270		bytes -= nb * DEV_BSIZE;
271	}
272
273	return 0;
274}
275
276static int
277xfsread(const dnode_phys_t *dnode, off_t *offp, void *buf, size_t nbyte)
278{
279    if ((size_t)zfs_read(spa, dnode, offp, buf, nbyte) != nbyte) {
280	printf("Invalid format\n");
281	return -1;
282    }
283    return 0;
284}
285
286/*
287 * Read Pad2 (formerly "Boot Block Header") area of the first
288 * vdev label of the given vdev.
289 */
290static int
291vdev_read_pad2(vdev_t *vdev, char *buf, size_t size)
292{
293	blkptr_t bp;
294	char *tmp = zap_scratch;
295	off_t off = offsetof(vdev_label_t, vl_pad2);
296
297	if (size > VDEV_PAD_SIZE)
298		size = VDEV_PAD_SIZE;
299
300	BP_ZERO(&bp);
301	BP_SET_LSIZE(&bp, VDEV_PAD_SIZE);
302	BP_SET_PSIZE(&bp, VDEV_PAD_SIZE);
303	BP_SET_CHECKSUM(&bp, ZIO_CHECKSUM_LABEL);
304	BP_SET_COMPRESS(&bp, ZIO_COMPRESS_OFF);
305	DVA_SET_OFFSET(BP_IDENTITY(&bp), off);
306	if (vdev_read_phys(vdev, &bp, tmp, off, 0))
307		return (EIO);
308	memcpy(buf, tmp, size);
309	return (0);
310}
311
312static int
313vdev_clear_pad2(vdev_t *vdev)
314{
315	char *zeroes = zap_scratch;
316	uint64_t *end;
317	off_t off = offsetof(vdev_label_t, vl_pad2);
318
319	memset(zeroes, 0, VDEV_PAD_SIZE);
320	end = (uint64_t *)(zeroes + VDEV_PAD_SIZE);
321	/* ZIO_CHECKSUM_LABEL magic and pre-calcualted checksum for all zeros */
322	end[-5] = 0x0210da7ab10c7a11;
323	end[-4] = 0x97f48f807f6e2a3f;
324	end[-3] = 0xaf909f1658aacefc;
325	end[-2] = 0xcbd1ea57ff6db48b;
326	end[-1] = 0x6ec692db0d465fab;
327	if (vdev_write(vdev, vdev->v_read_priv, off, zeroes, VDEV_PAD_SIZE))
328		return (EIO);
329	return (0);
330}
331
332static void
333bios_getmem(void)
334{
335    uint64_t size;
336
337    /* Parse system memory map */
338    v86.ebx = 0;
339    do {
340	v86.ctl = V86_FLAGS;
341	v86.addr = 0x15;		/* int 0x15 function 0xe820*/
342	v86.eax = 0xe820;
343	v86.ecx = sizeof(struct bios_smap);
344	v86.edx = SMAP_SIG;
345	v86.es = VTOPSEG(&smap);
346	v86.edi = VTOPOFF(&smap);
347	v86int();
348	if (V86_CY(v86.efl) || (v86.eax != SMAP_SIG))
349	    break;
350	/* look for a low-memory segment that's large enough */
351	if ((smap.type == SMAP_TYPE_MEMORY) && (smap.base == 0) &&
352	    (smap.length >= (512 * 1024)))
353	    bios_basemem = smap.length;
354	/* look for the first segment in 'extended' memory */
355	if ((smap.type == SMAP_TYPE_MEMORY) && (smap.base == 0x100000)) {
356	    bios_extmem = smap.length;
357	}
358
359	/*
360	 * Look for the largest segment in 'extended' memory beyond
361	 * 1MB but below 4GB.
362	 */
363	if ((smap.type == SMAP_TYPE_MEMORY) && (smap.base > 0x100000) &&
364	    (smap.base < 0x100000000ull)) {
365	    size = smap.length;
366
367	    /*
368	     * If this segment crosses the 4GB boundary, truncate it.
369	     */
370	    if (smap.base + size > 0x100000000ull)
371		size = 0x100000000ull - smap.base;
372
373	    if (size > high_heap_size) {
374		high_heap_size = size;
375		high_heap_base = smap.base;
376	    }
377	}
378    } while (v86.ebx != 0);
379
380    /* Fall back to the old compatibility function for base memory */
381    if (bios_basemem == 0) {
382	v86.ctl = 0;
383	v86.addr = 0x12;		/* int 0x12 */
384	v86int();
385
386	bios_basemem = (v86.eax & 0xffff) * 1024;
387    }
388
389    /* Fall back through several compatibility functions for extended memory */
390    if (bios_extmem == 0) {
391	v86.ctl = V86_FLAGS;
392	v86.addr = 0x15;		/* int 0x15 function 0xe801*/
393	v86.eax = 0xe801;
394	v86int();
395	if (!V86_CY(v86.efl)) {
396	    bios_extmem = ((v86.ecx & 0xffff) + ((v86.edx & 0xffff) * 64)) * 1024;
397	}
398    }
399    if (bios_extmem == 0) {
400	v86.ctl = 0;
401	v86.addr = 0x15;		/* int 0x15 function 0x88*/
402	v86.eax = 0x8800;
403	v86int();
404	bios_extmem = (v86.eax & 0xffff) * 1024;
405    }
406
407    /*
408     * If we have extended memory and did not find a suitable heap
409     * region in the SMAP, use the last 3MB of 'extended' memory as a
410     * high heap candidate.
411     */
412    if (bios_extmem >= HEAP_MIN && high_heap_size < HEAP_MIN) {
413	high_heap_size = HEAP_MIN;
414	high_heap_base = bios_extmem + 0x100000 - HEAP_MIN;
415    }
416}
417
418/*
419 * Try to detect a device supported by the legacy int13 BIOS
420 */
421static int
422int13probe(int drive)
423{
424    v86.ctl = V86_FLAGS;
425    v86.addr = 0x13;
426    v86.eax = 0x800;
427    v86.edx = drive;
428    v86int();
429
430    if (!V86_CY(v86.efl) &&				/* carry clear */
431	((v86.edx & 0xff) != (drive & DRV_MASK))) {	/* unit # OK */
432	if ((v86.ecx & 0x3f) == 0) {			/* absurd sector size */
433		return(0);				/* skip device */
434	}
435	return (1);
436    }
437    return(0);
438}
439
440/*
441 * We call this when we find a ZFS vdev - ZFS consumes the dsk
442 * structure so we must make a new one.
443 */
444static struct dsk *
445copy_dsk(struct dsk *dsk)
446{
447    struct dsk *newdsk;
448
449    newdsk = malloc(sizeof(struct dsk));
450    *newdsk = *dsk;
451    return (newdsk);
452}
453
454/*
455 * Get disk size from eax=0x800 and 0x4800. We need to probe both
456 * because 0x4800 may not be available and we would like to get more
457 * or less correct disk size - if it is possible at all.
458 * Note we do not really want to touch drv.c because that code is shared
459 * with boot2 and we can not afford to grow that code.
460 */
461static uint64_t
462drvsize_ext(struct dsk *dskp)
463{
464	uint64_t size, tmp;
465	int cyl, hds, sec;
466
467	v86.ctl = V86_FLAGS;
468	v86.addr = 0x13;
469	v86.eax = 0x800;
470	v86.edx = dskp->drive;
471	v86int();
472
473	/* Don't error out if we get bad sector number, try EDD as well */
474	if (V86_CY(v86.efl) ||	/* carry set */
475	    (v86.edx & 0xff) <= (unsigned)(dskp->drive & 0x7f)) /* unit # bad */
476		return (0);
477	cyl = ((v86.ecx & 0xc0) << 2) + ((v86.ecx & 0xff00) >> 8) + 1;
478	/* Convert max head # -> # of heads */
479	hds = ((v86.edx & 0xff00) >> 8) + 1;
480	sec = v86.ecx & 0x3f;
481
482	size = (uint64_t)cyl * hds * sec;
483
484	/* Determine if we can use EDD with this device. */
485	v86.ctl = V86_FLAGS;
486	v86.addr = 0x13;
487	v86.eax = 0x4100;
488	v86.edx = dskp->drive;
489	v86.ebx = 0x55aa;
490	v86int();
491	if (V86_CY(v86.efl) ||  /* carry set */
492	    (v86.ebx & 0xffff) != 0xaa55 || /* signature */
493	    (v86.ecx & EDD_INTERFACE_FIXED_DISK) == 0)
494		return (size);
495
496	tmp = drvsize(dskp);
497	if (tmp > size)
498		size = tmp;
499
500	return (size);
501}
502
503/*
504 * The "layered" ioctl to read disk/partition size. Unfortunately
505 * the zfsboot case is hardest, because we do not have full software
506 * stack available, so we need to do some manual work here.
507 */
508uint64_t
509ldi_get_size(void *priv)
510{
511	struct dsk *dskp = priv;
512	uint64_t size = dskp->size;
513
514	if (dskp->start == 0)
515		size = drvsize_ext(dskp);
516
517	return (size * DEV_BSIZE);
518}
519
520static void
521probe_drive(struct dsk *dsk)
522{
523#ifdef GPT
524    struct gpt_hdr hdr;
525    struct gpt_ent *ent;
526    unsigned part, entries_per_sec;
527    daddr_t slba;
528#endif
529#if defined(GPT) || defined(LOADER_GELI_SUPPORT)
530    daddr_t elba;
531#endif
532
533    struct dos_partition *dp;
534    char *sec;
535    unsigned i;
536
537    /*
538     * If we find a vdev on the whole disk, stop here.
539     */
540    if (vdev_probe(vdev_read2, dsk, NULL) == 0)
541	return;
542
543#ifdef LOADER_GELI_SUPPORT
544    /*
545     * Taste the disk, if it is GELI encrypted, decrypt it and check to see if
546     * it is a usable vdev then. Otherwise dig
547     * out the partition table and probe each slice/partition
548     * in turn for a vdev or GELI encrypted vdev.
549     */
550    elba = drvsize_ext(dsk);
551    if (elba > 0) {
552	elba--;
553    }
554    if (geli_taste(vdev_read, dsk, elba) == 0) {
555	if (geli_havekey(dsk) == 0 || geli_passphrase(gelipw, dsk->unit,
556	  ':', 0, dsk) == 0) {
557	    if (vdev_probe(vdev_read2, dsk, NULL) == 0) {
558		return;
559	    }
560	}
561    }
562#endif /* LOADER_GELI_SUPPORT */
563
564    sec = dmadat->secbuf;
565    dsk->start = 0;
566
567#ifdef GPT
568    /*
569     * First check for GPT.
570     */
571    if (drvread(dsk, sec, 1, 1)) {
572	return;
573    }
574    memcpy(&hdr, sec, sizeof(hdr));
575    if (memcmp(hdr.hdr_sig, GPT_HDR_SIG, sizeof(hdr.hdr_sig)) != 0 ||
576	hdr.hdr_lba_self != 1 || hdr.hdr_revision < 0x00010000 ||
577	hdr.hdr_entsz < sizeof(*ent) || DEV_BSIZE % hdr.hdr_entsz != 0) {
578	goto trymbr;
579    }
580
581    /*
582     * Probe all GPT partitions for the presence of ZFS pools. We
583     * return the spa_t for the first we find (if requested). This
584     * will have the effect of booting from the first pool on the
585     * disk.
586     *
587     * If no vdev is found, GELI decrypting the device and try again
588     */
589    entries_per_sec = DEV_BSIZE / hdr.hdr_entsz;
590    slba = hdr.hdr_lba_table;
591    elba = slba + hdr.hdr_entries / entries_per_sec;
592    while (slba < elba) {
593	dsk->start = 0;
594	if (drvread(dsk, sec, slba, 1))
595	    return;
596	for (part = 0; part < entries_per_sec; part++) {
597	    ent = (struct gpt_ent *)(sec + part * hdr.hdr_entsz);
598	    if (memcmp(&ent->ent_type, &freebsd_zfs_uuid,
599		     sizeof(uuid_t)) == 0) {
600		dsk->start = ent->ent_lba_start;
601		dsk->size = ent->ent_lba_end - ent->ent_lba_start + 1;
602		dsk->slice = part + 1;
603		dsk->part = 255;
604		if (vdev_probe(vdev_read2, dsk, NULL) == 0) {
605		    /*
606		     * This slice had a vdev. We need a new dsk
607		     * structure now since the vdev now owns this one.
608		     */
609		    dsk = copy_dsk(dsk);
610		}
611#ifdef LOADER_GELI_SUPPORT
612		else if (geli_taste(vdev_read, dsk, ent->ent_lba_end -
613			 ent->ent_lba_start) == 0) {
614		    if (geli_havekey(dsk) == 0 || geli_passphrase(gelipw,
615		      dsk->unit, 'p', dsk->slice, dsk) == 0) {
616			/*
617			 * This slice has GELI, check it for ZFS.
618			 */
619			if (vdev_probe(vdev_read2, dsk, NULL) == 0) {
620			    /*
621			     * This slice had a vdev. We need a new dsk
622			     * structure now since the vdev now owns this one.
623			     */
624			    dsk = copy_dsk(dsk);
625			}
626			break;
627		    }
628		}
629#endif /* LOADER_GELI_SUPPORT */
630	    }
631	}
632	slba++;
633    }
634    return;
635trymbr:
636#endif /* GPT */
637
638    if (drvread(dsk, sec, DOSBBSECTOR, 1))
639	return;
640    dp = (void *)(sec + DOSPARTOFF);
641
642    for (i = 0; i < NDOSPART; i++) {
643	if (!dp[i].dp_typ)
644	    continue;
645	dsk->start = dp[i].dp_start;
646	dsk->size = dp[i].dp_size;
647	dsk->slice = i + 1;
648	if (vdev_probe(vdev_read2, dsk, NULL) == 0) {
649	    dsk = copy_dsk(dsk);
650	}
651#ifdef LOADER_GELI_SUPPORT
652	else if (geli_taste(vdev_read, dsk, dp[i].dp_size -
653		 dp[i].dp_start) == 0) {
654	    if (geli_havekey(dsk) == 0 || geli_passphrase(gelipw, dsk->unit,
655	      's', i, dsk) == 0) {
656		/*
657		 * This slice has GELI, check it for ZFS.
658		 */
659		if (vdev_probe(vdev_read2, dsk, NULL) == 0) {
660		    /*
661		     * This slice had a vdev. We need a new dsk
662		     * structure now since the vdev now owns this one.
663		     */
664		    dsk = copy_dsk(dsk);
665		}
666		break;
667	    }
668	}
669#endif /* LOADER_GELI_SUPPORT */
670    }
671}
672
673int
674main(void)
675{
676    dnode_phys_t dn;
677    off_t off;
678    struct dsk *dsk;
679    int autoboot, i;
680    int nextboot;
681    int rc;
682
683    dmadat = (void *)(roundup2(__base + (int32_t)&_end, 0x10000) - __base);
684
685    bios_getmem();
686
687    if (high_heap_size > 0) {
688	heap_end = PTOV(high_heap_base + high_heap_size);
689	heap_next = PTOV(high_heap_base);
690    } else {
691	heap_next = (char *)dmadat + sizeof(*dmadat);
692	heap_end = (char *)PTOV(bios_basemem);
693    }
694    setheap(heap_next, heap_end);
695
696    dsk = malloc(sizeof(struct dsk));
697    dsk->drive = *(uint8_t *)PTOV(ARGS);
698    dsk->type = dsk->drive & DRV_HARD ? TYPE_AD : TYPE_FD;
699    dsk->unit = dsk->drive & DRV_MASK;
700    dsk->slice = *(uint8_t *)PTOV(ARGS + 1) + 1;
701    dsk->part = 0;
702    dsk->start = 0;
703    dsk->size = drvsize_ext(dsk);
704
705    bootinfo.bi_version = BOOTINFO_VERSION;
706    bootinfo.bi_size = sizeof(bootinfo);
707    bootinfo.bi_basemem = bios_basemem / 1024;
708    bootinfo.bi_extmem = bios_extmem / 1024;
709    bootinfo.bi_memsizes_valid++;
710    bootinfo.bi_bios_dev = dsk->drive;
711
712    bootdev = MAKEBOOTDEV(dev_maj[dsk->type],
713			  dsk->slice, dsk->unit, dsk->part);
714
715    /* Process configuration file */
716
717    autoboot = 1;
718
719#ifdef LOADER_GELI_SUPPORT
720    geli_init();
721#endif
722    zfs_init();
723
724    /*
725     * Probe the boot drive first - we will try to boot from whatever
726     * pool we find on that drive.
727     */
728    probe_drive(dsk);
729
730    /*
731     * Probe the rest of the drives that the bios knows about. This
732     * will find any other available pools and it may fill in missing
733     * vdevs for the boot pool.
734     */
735#ifndef VIRTUALBOX
736    for (i = 0; i < *(unsigned char *)PTOV(BIOS_NUMDRIVES); i++)
737#else
738    for (i = 0; i < MAXBDDEV; i++)
739#endif
740    {
741	if ((i | DRV_HARD) == *(uint8_t *)PTOV(ARGS))
742	    continue;
743
744	if (!int13probe(i | DRV_HARD))
745	    break;
746
747	dsk = malloc(sizeof(struct dsk));
748	dsk->drive = i | DRV_HARD;
749	dsk->type = dsk->drive & TYPE_AD;
750	dsk->unit = i;
751	dsk->slice = 0;
752	dsk->part = 0;
753	dsk->start = 0;
754	dsk->size = drvsize_ext(dsk);
755	probe_drive(dsk);
756    }
757
758    /*
759     * The first discovered pool, if any, is the pool.
760     */
761    spa = spa_get_primary();
762    if (!spa) {
763	printf("%s: No ZFS pools located, can't boot\n", BOOTPROG);
764	for (;;)
765	    ;
766    }
767
768    primary_spa = spa;
769    primary_vdev = spa_get_primary_vdev(spa);
770
771    nextboot = 0;
772    rc  = vdev_read_pad2(primary_vdev, cmd, sizeof(cmd));
773    if (vdev_clear_pad2(primary_vdev))
774	printf("failed to clear pad2 area of primary vdev\n");
775    if (rc == 0) {
776	if (*cmd) {
777	    /*
778	     * We could find an old-style ZFS Boot Block header here.
779	     * Simply ignore it.
780	     */
781	    if (*(uint64_t *)cmd != 0x2f5b007b10c) {
782		/*
783		 * Note that parse() is destructive to cmd[] and we also want
784		 * to honor RBX_QUIET option that could be present in cmd[].
785		 */
786		nextboot = 1;
787		memcpy(cmddup, cmd, sizeof(cmd));
788		if (parse_cmd()) {
789		    printf("failed to parse pad2 area of primary vdev\n");
790		    reboot();
791		}
792		if (!OPT_CHECK(RBX_QUIET))
793		    printf("zfs nextboot: %s\n", cmddup);
794	    }
795	    /* Do not process this command twice */
796	    *cmd = 0;
797	}
798    } else
799	printf("failed to read pad2 area of primary vdev\n");
800
801    /* Mount ZFS only if it's not already mounted via nextboot parsing. */
802    if (zfsmount.spa == NULL &&
803	(zfs_spa_init(spa) != 0 || zfs_mount(spa, 0, &zfsmount) != 0)) {
804	printf("%s: failed to mount default pool %s\n",
805	    BOOTPROG, spa->spa_name);
806	autoboot = 0;
807    } else if (zfs_lookup(&zfsmount, PATH_CONFIG, &dn) == 0 ||
808        zfs_lookup(&zfsmount, PATH_DOTCONFIG, &dn) == 0) {
809	off = 0;
810	zfs_read(spa, &dn, &off, cmd, sizeof(cmd));
811    }
812
813    if (*cmd) {
814	/*
815	 * Note that parse_cmd() is destructive to cmd[] and we also want
816	 * to honor RBX_QUIET option that could be present in cmd[].
817	 */
818	memcpy(cmddup, cmd, sizeof(cmd));
819	if (parse_cmd())
820	    autoboot = 0;
821	if (!OPT_CHECK(RBX_QUIET))
822	    printf("%s: %s\n", PATH_CONFIG, cmddup);
823	/* Do not process this command twice */
824	*cmd = 0;
825    }
826
827    /* Do not risk waiting at the prompt forever. */
828    if (nextboot && !autoboot)
829	reboot();
830
831    /*
832     * Try to exec /boot/loader. If interrupted by a keypress,
833     * or in case of failure, try to load a kernel directly instead.
834     */
835
836    if (autoboot && !*kname) {
837	memcpy(kname, PATH_LOADER_ZFS, sizeof(PATH_LOADER_ZFS));
838	if (!keyhit(3)) {
839	    load();
840	    memcpy(kname, PATH_KERNEL, sizeof(PATH_KERNEL));
841	}
842    }
843
844    /* Present the user with the boot2 prompt. */
845
846    for (;;) {
847	if (!autoboot || !OPT_CHECK(RBX_QUIET)) {
848	    printf("\nFreeBSD/x86 boot\n");
849	    if (zfs_rlookup(spa, zfsmount.rootobj, rootname) != 0)
850		printf("Default: %s/<0x%llx>:%s\n"
851		       "boot: ",
852		       spa->spa_name, zfsmount.rootobj, kname);
853	    else if (rootname[0] != '\0')
854		printf("Default: %s/%s:%s\n"
855		       "boot: ",
856		       spa->spa_name, rootname, kname);
857	    else
858		printf("Default: %s:%s\n"
859		       "boot: ",
860		       spa->spa_name, kname);
861	}
862	if (ioctrl & IO_SERIAL)
863	    sio_flush();
864	if (!autoboot || keyhit(5))
865	    getstr(cmd, sizeof(cmd));
866	else if (!autoboot || !OPT_CHECK(RBX_QUIET))
867	    putchar('\n');
868	autoboot = 0;
869	if (parse_cmd())
870	    putchar('\a');
871	else
872	    load();
873    }
874}
875
876/* XXX - Needed for btxld to link the boot2 binary; do not remove. */
877void
878exit(int x)
879{
880    __exit(x);
881}
882
883void
884reboot(void)
885{
886    __exit(0);
887}
888
889static void
890load(void)
891{
892    union {
893	struct exec ex;
894	Elf32_Ehdr eh;
895    } hdr;
896    static Elf32_Phdr ep[2];
897    static Elf32_Shdr es[2];
898    caddr_t p;
899    dnode_phys_t dn;
900    off_t off;
901    uint32_t addr, x;
902    int fmt, i, j;
903
904    if (zfs_lookup(&zfsmount, kname, &dn)) {
905	printf("\nCan't find %s\n", kname);
906	return;
907    }
908    off = 0;
909    if (xfsread(&dn, &off, &hdr, sizeof(hdr)))
910	return;
911    if (N_GETMAGIC(hdr.ex) == ZMAGIC)
912	fmt = 0;
913    else if (IS_ELF(hdr.eh))
914	fmt = 1;
915    else {
916	printf("Invalid %s\n", "format");
917	return;
918    }
919    if (fmt == 0) {
920	addr = hdr.ex.a_entry & 0xffffff;
921	p = PTOV(addr);
922	off = PAGE_SIZE;
923	if (xfsread(&dn, &off, p, hdr.ex.a_text))
924	    return;
925	p += roundup2(hdr.ex.a_text, PAGE_SIZE);
926	if (xfsread(&dn, &off, p, hdr.ex.a_data))
927	    return;
928	p += hdr.ex.a_data + roundup2(hdr.ex.a_bss, PAGE_SIZE);
929	bootinfo.bi_symtab = VTOP(p);
930	memcpy(p, &hdr.ex.a_syms, sizeof(hdr.ex.a_syms));
931	p += sizeof(hdr.ex.a_syms);
932	if (hdr.ex.a_syms) {
933	    if (xfsread(&dn, &off, p, hdr.ex.a_syms))
934		return;
935	    p += hdr.ex.a_syms;
936	    if (xfsread(&dn, &off, p, sizeof(int)))
937		return;
938	    x = *(uint32_t *)p;
939	    p += sizeof(int);
940	    x -= sizeof(int);
941	    if (xfsread(&dn, &off, p, x))
942		return;
943	    p += x;
944	}
945    } else {
946	off = hdr.eh.e_phoff;
947	for (j = i = 0; i < hdr.eh.e_phnum && j < 2; i++) {
948	    if (xfsread(&dn, &off, ep + j, sizeof(ep[0])))
949		return;
950	    if (ep[j].p_type == PT_LOAD)
951		j++;
952	}
953	for (i = 0; i < 2; i++) {
954	    p = PTOV(ep[i].p_paddr & 0xffffff);
955	    off = ep[i].p_offset;
956	    if (xfsread(&dn, &off, p, ep[i].p_filesz))
957		return;
958	}
959	p += roundup2(ep[1].p_memsz, PAGE_SIZE);
960	bootinfo.bi_symtab = VTOP(p);
961	if (hdr.eh.e_shnum == hdr.eh.e_shstrndx + 3) {
962	    off = hdr.eh.e_shoff + sizeof(es[0]) *
963		(hdr.eh.e_shstrndx + 1);
964	    if (xfsread(&dn, &off, &es, sizeof(es)))
965		return;
966	    for (i = 0; i < 2; i++) {
967		memcpy(p, &es[i].sh_size, sizeof(es[i].sh_size));
968		p += sizeof(es[i].sh_size);
969		off = es[i].sh_offset;
970		if (xfsread(&dn, &off, p, es[i].sh_size))
971		    return;
972		p += es[i].sh_size;
973	    }
974	}
975	addr = hdr.eh.e_entry & 0xffffff;
976    }
977    bootinfo.bi_esymtab = VTOP(p);
978    bootinfo.bi_kernelname = VTOP(kname);
979    zfsargs.size = sizeof(zfsargs);
980    zfsargs.pool = zfsmount.spa->spa_guid;
981    zfsargs.root = zfsmount.rootobj;
982    zfsargs.primary_pool = primary_spa->spa_guid;
983#ifdef LOADER_GELI_SUPPORT
984    explicit_bzero(gelipw, sizeof(gelipw));
985    gelibuf = malloc(sizeof(struct keybuf) + (GELI_MAX_KEYS * sizeof(struct keybuf_ent)));
986    geli_fill_keybuf(gelibuf);
987    zfsargs.notapw = '\0';
988    zfsargs.keybuf_sentinel = KEYBUF_SENTINEL;
989    zfsargs.keybuf = gelibuf;
990#else
991    zfsargs.gelipw[0] = '\0';
992#endif
993    if (primary_vdev != NULL)
994	zfsargs.primary_vdev = primary_vdev->v_guid;
995    else
996	printf("failed to detect primary vdev\n");
997    __exec((caddr_t)addr, RB_BOOTINFO | (opts & RBX_MASK),
998	   bootdev,
999	   KARGS_FLAGS_ZFS | KARGS_FLAGS_EXTARG,
1000	   (uint32_t) spa->spa_guid,
1001	   (uint32_t) (spa->spa_guid >> 32),
1002	   VTOP(&bootinfo),
1003	   zfsargs);
1004}
1005
1006static int
1007zfs_mount_ds(char *dsname)
1008{
1009    uint64_t newroot;
1010    spa_t *newspa;
1011    char *q;
1012
1013    q = strchr(dsname, '/');
1014    if (q)
1015	*q++ = '\0';
1016    newspa = spa_find_by_name(dsname);
1017    if (newspa == NULL) {
1018	printf("\nCan't find ZFS pool %s\n", dsname);
1019	return -1;
1020    }
1021
1022    if (zfs_spa_init(newspa))
1023	return -1;
1024
1025    newroot = 0;
1026    if (q) {
1027	if (zfs_lookup_dataset(newspa, q, &newroot)) {
1028	    printf("\nCan't find dataset %s in ZFS pool %s\n",
1029		    q, newspa->spa_name);
1030	    return -1;
1031	}
1032    }
1033    if (zfs_mount(newspa, newroot, &zfsmount)) {
1034	printf("\nCan't mount ZFS dataset\n");
1035	return -1;
1036    }
1037    spa = newspa;
1038    return (0);
1039}
1040
1041static int
1042parse_cmd(void)
1043{
1044    char *arg = cmd;
1045    char *ep, *p, *q;
1046    const char *cp;
1047    int c, i, j;
1048
1049    while ((c = *arg++)) {
1050	if (c == ' ' || c == '\t' || c == '\n')
1051	    continue;
1052	for (p = arg; *p && *p != '\n' && *p != ' ' && *p != '\t'; p++);
1053	ep = p;
1054	if (*p)
1055	    *p++ = 0;
1056	if (c == '-') {
1057	    while ((c = *arg++)) {
1058		if (c == 'P') {
1059		    if (*(uint8_t *)PTOV(0x496) & 0x10) {
1060			cp = "yes";
1061		    } else {
1062			opts |= OPT_SET(RBX_DUAL) | OPT_SET(RBX_SERIAL);
1063			cp = "no";
1064		    }
1065		    printf("Keyboard: %s\n", cp);
1066		    continue;
1067		} else if (c == 'S') {
1068		    j = 0;
1069		    while ((unsigned int)(i = *arg++ - '0') <= 9)
1070			j = j * 10 + i;
1071		    if (j > 0 && i == -'0') {
1072			comspeed = j;
1073			break;
1074		    }
1075		    /* Fall through to error below ('S' not in optstr[]). */
1076		}
1077		for (i = 0; c != optstr[i]; i++)
1078		    if (i == NOPT - 1)
1079			return -1;
1080		opts ^= OPT_SET(flags[i]);
1081	    }
1082	    ioctrl = OPT_CHECK(RBX_DUAL) ? (IO_SERIAL|IO_KEYBOARD) :
1083		     OPT_CHECK(RBX_SERIAL) ? IO_SERIAL : IO_KEYBOARD;
1084	    if (ioctrl & IO_SERIAL) {
1085	        if (sio_init(115200 / comspeed) != 0)
1086		    ioctrl &= ~IO_SERIAL;
1087	    }
1088	} if (c == '?') {
1089	    dnode_phys_t dn;
1090
1091	    if (zfs_lookup(&zfsmount, arg, &dn) == 0) {
1092		zap_list(spa, &dn);
1093	    }
1094	    return -1;
1095	} else {
1096	    arg--;
1097
1098	    /*
1099	     * Report pool status if the comment is 'status'. Lets
1100	     * hope no-one wants to load /status as a kernel.
1101	     */
1102	    if (!strcmp(arg, "status")) {
1103		spa_all_status();
1104		return -1;
1105	    }
1106
1107	    /*
1108	     * If there is "zfs:" prefix simply ignore it.
1109	     */
1110	    if (strncmp(arg, "zfs:", 4) == 0)
1111		arg += 4;
1112
1113	    /*
1114	     * If there is a colon, switch pools.
1115	     */
1116	    q = strchr(arg, ':');
1117	    if (q) {
1118		*q++ = '\0';
1119		if (zfs_mount_ds(arg) != 0)
1120		    return -1;
1121		arg = q;
1122	    }
1123	    if ((i = ep - arg)) {
1124		if ((size_t)i >= sizeof(kname))
1125		    return -1;
1126		memcpy(kname, arg, i + 1);
1127	    }
1128	}
1129	arg = p;
1130    }
1131    return 0;
1132}
1133