rtld.c revision 346156
1/*-
2 * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
3 * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
4 * Copyright 2009-2013 Konstantin Belousov <kib@FreeBSD.ORG>.
5 * Copyright 2012 John Marino <draco@marino.st>.
6 * Copyright 2014-2017 The FreeBSD Foundation
7 * All rights reserved.
8 *
9 * Portions of this software were developed by Konstantin Belousov
10 * under sponsorship from the FreeBSD Foundation.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 *    notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 *    notice, this list of conditions and the following disclaimer in the
19 *    documentation and/or other materials provided with the distribution.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
22 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
23 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
24 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
26 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
27 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
28 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
29 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
30 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33/*
34 * Dynamic linker for ELF.
35 *
36 * John Polstra <jdp@polstra.com>.
37 */
38
39#include <sys/cdefs.h>
40__FBSDID("$FreeBSD: stable/11/libexec/rtld-elf/rtld.c 346156 2019-04-12 15:15:27Z kib $");
41
42#include <sys/param.h>
43#include <sys/mount.h>
44#include <sys/mman.h>
45#include <sys/stat.h>
46#include <sys/sysctl.h>
47#include <sys/uio.h>
48#include <sys/utsname.h>
49#include <sys/ktrace.h>
50
51#include <dlfcn.h>
52#include <err.h>
53#include <errno.h>
54#include <fcntl.h>
55#include <stdarg.h>
56#include <stdio.h>
57#include <stdlib.h>
58#include <string.h>
59#include <unistd.h>
60
61#include "debug.h"
62#include "rtld.h"
63#include "libmap.h"
64#include "paths.h"
65#include "rtld_tls.h"
66#include "rtld_printf.h"
67#include "rtld_utrace.h"
68#include "notes.h"
69
70/* Types. */
71typedef void (*func_ptr_type)();
72typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
73
74/*
75 * Function declarations.
76 */
77static const char *basename(const char *);
78static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
79    const Elf_Dyn **, const Elf_Dyn **);
80static void digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *,
81    const Elf_Dyn *);
82static void digest_dynamic(Obj_Entry *, int);
83static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
84static void distribute_static_tls(Objlist *, RtldLockState *);
85static Obj_Entry *dlcheck(void *);
86static int dlclose_locked(void *, RtldLockState *);
87static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj,
88    int lo_flags, int mode, RtldLockState *lockstate);
89static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
90static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
91static bool donelist_check(DoneList *, const Obj_Entry *);
92static void errmsg_restore(char *);
93static char *errmsg_save(void);
94static void *fill_search_info(const char *, size_t, void *);
95static char *find_library(const char *, const Obj_Entry *, int *);
96static const char *gethints(bool);
97static void hold_object(Obj_Entry *);
98static void unhold_object(Obj_Entry *);
99static void init_dag(Obj_Entry *);
100static void init_marker(Obj_Entry *);
101static void init_pagesizes(Elf_Auxinfo **aux_info);
102static void init_rtld(caddr_t, Elf_Auxinfo **);
103static void initlist_add_neededs(Needed_Entry *, Objlist *);
104static void initlist_add_objects(Obj_Entry *, Obj_Entry *, Objlist *);
105static int initlist_objects_ifunc(Objlist *, bool, int, RtldLockState *);
106static void linkmap_add(Obj_Entry *);
107static void linkmap_delete(Obj_Entry *);
108static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
109static void unload_filtees(Obj_Entry *, RtldLockState *);
110static int load_needed_objects(Obj_Entry *, int);
111static int load_preload_objects(void);
112static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int);
113static void map_stacks_exec(RtldLockState *);
114static int obj_disable_relro(Obj_Entry *);
115static int obj_enforce_relro(Obj_Entry *);
116static Obj_Entry *obj_from_addr(const void *);
117static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
118static void objlist_call_init(Objlist *, RtldLockState *);
119static void objlist_clear(Objlist *);
120static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
121static void objlist_init(Objlist *);
122static void objlist_push_head(Objlist *, Obj_Entry *);
123static void objlist_push_tail(Objlist *, Obj_Entry *);
124static void objlist_put_after(Objlist *, Obj_Entry *, Obj_Entry *);
125static void objlist_remove(Objlist *, Obj_Entry *);
126static int open_binary_fd(const char *argv0, bool search_in_path);
127static int parse_args(char* argv[], int argc, bool *use_pathp, int *fdp);
128static int parse_integer(const char *);
129static void *path_enumerate(const char *, path_enum_proc, const char *, void *);
130static void print_usage(const char *argv0);
131static void release_object(Obj_Entry *);
132static int relocate_object_dag(Obj_Entry *root, bool bind_now,
133    Obj_Entry *rtldobj, int flags, RtldLockState *lockstate);
134static int relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
135    int flags, RtldLockState *lockstate);
136static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int,
137    RtldLockState *);
138static int resolve_object_ifunc(Obj_Entry *, bool, int, RtldLockState *);
139static int rtld_dirname(const char *, char *);
140static int rtld_dirname_abs(const char *, char *);
141static void *rtld_dlopen(const char *name, int fd, int mode);
142static void rtld_exit(void);
143static char *search_library_path(const char *, const char *, const char *,
144    int *);
145static char *search_library_pathfds(const char *, const char *, int *);
146static const void **get_program_var_addr(const char *, RtldLockState *);
147static void set_program_var(const char *, const void *);
148static int symlook_default(SymLook *, const Obj_Entry *refobj);
149static int symlook_global(SymLook *, DoneList *);
150static void symlook_init_from_req(SymLook *, const SymLook *);
151static int symlook_list(SymLook *, const Objlist *, DoneList *);
152static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
153static int symlook_obj1_sysv(SymLook *, const Obj_Entry *);
154static int symlook_obj1_gnu(SymLook *, const Obj_Entry *);
155static void trace_loaded_objects(Obj_Entry *);
156static void unlink_object(Obj_Entry *);
157static void unload_object(Obj_Entry *, RtldLockState *lockstate);
158static void unref_dag(Obj_Entry *);
159static void ref_dag(Obj_Entry *);
160static char *origin_subst_one(Obj_Entry *, char *, const char *,
161    const char *, bool);
162static char *origin_subst(Obj_Entry *, char *);
163static bool obj_resolve_origin(Obj_Entry *obj);
164static void preinit_main(void);
165static int  rtld_verify_versions(const Objlist *);
166static int  rtld_verify_object_versions(Obj_Entry *);
167static void object_add_name(Obj_Entry *, const char *);
168static int  object_match_name(const Obj_Entry *, const char *);
169static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
170static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
171    struct dl_phdr_info *phdr_info);
172static uint32_t gnu_hash(const char *);
173static bool matched_symbol(SymLook *, const Obj_Entry *, Sym_Match_Result *,
174    const unsigned long);
175
176void r_debug_state(struct r_debug *, struct link_map *) __noinline __exported;
177void _r_debug_postinit(struct link_map *) __noinline __exported;
178
179int __sys_openat(int, const char *, int, ...);
180
181/*
182 * Data declarations.
183 */
184static char *error_message;	/* Message for dlerror(), or NULL */
185struct r_debug r_debug __exported;	/* for GDB; */
186static bool libmap_disable;	/* Disable libmap */
187static bool ld_loadfltr;	/* Immediate filters processing */
188static char *libmap_override;	/* Maps to use in addition to libmap.conf */
189static bool trust;		/* False for setuid and setgid programs */
190static bool dangerous_ld_env;	/* True if environment variables have been
191				   used to affect the libraries loaded */
192bool ld_bind_not;		/* Disable PLT update */
193static char *ld_bind_now;	/* Environment variable for immediate binding */
194static char *ld_debug;		/* Environment variable for debugging */
195static char *ld_library_path;	/* Environment variable for search path */
196static char *ld_library_dirs;	/* Environment variable for library descriptors */
197static char *ld_preload;	/* Environment variable for libraries to
198				   load first */
199static char *ld_elf_hints_path;	/* Environment variable for alternative hints path */
200static char *ld_tracing;	/* Called from ldd to print libs */
201static char *ld_utrace;		/* Use utrace() to log events. */
202static struct obj_entry_q obj_list;	/* Queue of all loaded objects */
203static Obj_Entry *obj_main;	/* The main program shared object */
204static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
205static unsigned int obj_count;	/* Number of objects in obj_list */
206static unsigned int obj_loads;	/* Number of loads of objects (gen count) */
207
208static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
209  STAILQ_HEAD_INITIALIZER(list_global);
210static Objlist list_main =	/* Objects loaded at program startup */
211  STAILQ_HEAD_INITIALIZER(list_main);
212static Objlist list_fini =	/* Objects needing fini() calls */
213  STAILQ_HEAD_INITIALIZER(list_fini);
214
215Elf_Sym sym_zero;		/* For resolving undefined weak refs. */
216
217#define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
218
219extern Elf_Dyn _DYNAMIC;
220#pragma weak _DYNAMIC
221
222int dlclose(void *) __exported;
223char *dlerror(void) __exported;
224void *dlopen(const char *, int) __exported;
225void *fdlopen(int, int) __exported;
226void *dlsym(void *, const char *) __exported;
227dlfunc_t dlfunc(void *, const char *) __exported;
228void *dlvsym(void *, const char *, const char *) __exported;
229int dladdr(const void *, Dl_info *) __exported;
230void dllockinit(void *, void *(*)(void *), void (*)(void *), void (*)(void *),
231    void (*)(void *), void (*)(void *), void (*)(void *)) __exported;
232int dlinfo(void *, int , void *) __exported;
233int dl_iterate_phdr(__dl_iterate_hdr_callback, void *) __exported;
234int _rtld_addr_phdr(const void *, struct dl_phdr_info *) __exported;
235int _rtld_get_stack_prot(void) __exported;
236int _rtld_is_dlopened(void *) __exported;
237void _rtld_error(const char *, ...) __exported;
238
239int npagesizes, osreldate;
240size_t *pagesizes;
241
242long __stack_chk_guard[8] = {0, 0, 0, 0, 0, 0, 0, 0};
243
244static int stack_prot = PROT_READ | PROT_WRITE | RTLD_DEFAULT_STACK_EXEC;
245static int max_stack_flags;
246
247/*
248 * Global declarations normally provided by crt1.  The dynamic linker is
249 * not built with crt1, so we have to provide them ourselves.
250 */
251char *__progname;
252char **environ;
253
254/*
255 * Used to pass argc, argv to init functions.
256 */
257int main_argc;
258char **main_argv;
259
260/*
261 * Globals to control TLS allocation.
262 */
263size_t tls_last_offset;		/* Static TLS offset of last module */
264size_t tls_last_size;		/* Static TLS size of last module */
265size_t tls_static_space;	/* Static TLS space allocated */
266size_t tls_static_max_align;
267int tls_dtv_generation = 1;	/* Used to detect when dtv size changes  */
268int tls_max_index = 1;		/* Largest module index allocated */
269
270bool ld_library_path_rpath = false;
271
272/*
273 * Globals for path names, and such
274 */
275char *ld_elf_hints_default = _PATH_ELF_HINTS;
276char *ld_path_libmap_conf = _PATH_LIBMAP_CONF;
277char *ld_path_rtld = _PATH_RTLD;
278char *ld_standard_library_path = STANDARD_LIBRARY_PATH;
279char *ld_env_prefix = LD_;
280
281/*
282 * Fill in a DoneList with an allocation large enough to hold all of
283 * the currently-loaded objects.  Keep this as a macro since it calls
284 * alloca and we want that to occur within the scope of the caller.
285 */
286#define donelist_init(dlp)					\
287    ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
288    assert((dlp)->objs != NULL),				\
289    (dlp)->num_alloc = obj_count,				\
290    (dlp)->num_used = 0)
291
292#define	LD_UTRACE(e, h, mb, ms, r, n) do {			\
293	if (ld_utrace != NULL)					\
294		ld_utrace_log(e, h, mb, ms, r, n);		\
295} while (0)
296
297static void
298ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
299    int refcnt, const char *name)
300{
301	struct utrace_rtld ut;
302	static const char rtld_utrace_sig[RTLD_UTRACE_SIG_SZ] = RTLD_UTRACE_SIG;
303
304	memcpy(ut.sig, rtld_utrace_sig, sizeof(ut.sig));
305	ut.event = event;
306	ut.handle = handle;
307	ut.mapbase = mapbase;
308	ut.mapsize = mapsize;
309	ut.refcnt = refcnt;
310	bzero(ut.name, sizeof(ut.name));
311	if (name)
312		strlcpy(ut.name, name, sizeof(ut.name));
313	utrace(&ut, sizeof(ut));
314}
315
316#ifdef RTLD_VARIANT_ENV_NAMES
317/*
318 * construct the env variable based on the type of binary that's
319 * running.
320 */
321static inline const char *
322_LD(const char *var)
323{
324	static char buffer[128];
325
326	strlcpy(buffer, ld_env_prefix, sizeof(buffer));
327	strlcat(buffer, var, sizeof(buffer));
328	return (buffer);
329}
330#else
331#define _LD(x)	LD_ x
332#endif
333
334/*
335 * Main entry point for dynamic linking.  The first argument is the
336 * stack pointer.  The stack is expected to be laid out as described
337 * in the SVR4 ABI specification, Intel 386 Processor Supplement.
338 * Specifically, the stack pointer points to a word containing
339 * ARGC.  Following that in the stack is a null-terminated sequence
340 * of pointers to argument strings.  Then comes a null-terminated
341 * sequence of pointers to environment strings.  Finally, there is a
342 * sequence of "auxiliary vector" entries.
343 *
344 * The second argument points to a place to store the dynamic linker's
345 * exit procedure pointer and the third to a place to store the main
346 * program's object.
347 *
348 * The return value is the main program's entry point.
349 */
350func_ptr_type
351_rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
352{
353    Elf_Auxinfo *aux, *auxp, *auxpf, *aux_info[AT_COUNT];
354    Objlist_Entry *entry;
355    Obj_Entry *last_interposer, *obj, *preload_tail;
356    const Elf_Phdr *phdr;
357    Objlist initlist;
358    RtldLockState lockstate;
359    struct stat st;
360    Elf_Addr *argcp;
361    char **argv, *argv0, **env, **envp, *kexecpath, *library_path_rpath;
362    caddr_t imgentry;
363    char buf[MAXPATHLEN];
364    int argc, fd, i, mib[2], phnum, rtld_argc;
365    size_t len;
366    bool dir_enable, explicit_fd, search_in_path;
367
368    /*
369     * On entry, the dynamic linker itself has not been relocated yet.
370     * Be very careful not to reference any global data until after
371     * init_rtld has returned.  It is OK to reference file-scope statics
372     * and string constants, and to call static and global functions.
373     */
374
375    /* Find the auxiliary vector on the stack. */
376    argcp = sp;
377    argc = *sp++;
378    argv = (char **) sp;
379    sp += argc + 1;	/* Skip over arguments and NULL terminator */
380    env = (char **) sp;
381    while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
382	;
383    aux = (Elf_Auxinfo *) sp;
384
385    /* Digest the auxiliary vector. */
386    for (i = 0;  i < AT_COUNT;  i++)
387	aux_info[i] = NULL;
388    for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
389	if (auxp->a_type < AT_COUNT)
390	    aux_info[auxp->a_type] = auxp;
391    }
392
393    /* Initialize and relocate ourselves. */
394    assert(aux_info[AT_BASE] != NULL);
395    init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info);
396
397    __progname = obj_rtld.path;
398    argv0 = argv[0] != NULL ? argv[0] : "(null)";
399    environ = env;
400    main_argc = argc;
401    main_argv = argv;
402
403    if (aux_info[AT_CANARY] != NULL &&
404	aux_info[AT_CANARY]->a_un.a_ptr != NULL) {
405	    i = aux_info[AT_CANARYLEN]->a_un.a_val;
406	    if (i > sizeof(__stack_chk_guard))
407		    i = sizeof(__stack_chk_guard);
408	    memcpy(__stack_chk_guard, aux_info[AT_CANARY]->a_un.a_ptr, i);
409    } else {
410	mib[0] = CTL_KERN;
411	mib[1] = KERN_ARND;
412
413	len = sizeof(__stack_chk_guard);
414	if (sysctl(mib, 2, __stack_chk_guard, &len, NULL, 0) == -1 ||
415	    len != sizeof(__stack_chk_guard)) {
416		/* If sysctl was unsuccessful, use the "terminator canary". */
417		((unsigned char *)(void *)__stack_chk_guard)[0] = 0;
418		((unsigned char *)(void *)__stack_chk_guard)[1] = 0;
419		((unsigned char *)(void *)__stack_chk_guard)[2] = '\n';
420		((unsigned char *)(void *)__stack_chk_guard)[3] = 255;
421	}
422    }
423
424    trust = !issetugid();
425
426    md_abi_variant_hook(aux_info);
427
428    fd = -1;
429    if (aux_info[AT_EXECFD] != NULL) {
430	fd = aux_info[AT_EXECFD]->a_un.a_val;
431    } else {
432	assert(aux_info[AT_PHDR] != NULL);
433	phdr = (const Elf_Phdr *)aux_info[AT_PHDR]->a_un.a_ptr;
434	if (phdr == obj_rtld.phdr) {
435	    if (!trust) {
436		rtld_printf("Tainted process refusing to run binary %s\n",
437		  argv0);
438		rtld_die();
439	    }
440	    dbg("opening main program in direct exec mode");
441	    if (argc >= 2) {
442		rtld_argc = parse_args(argv, argc, &search_in_path, &fd);
443		argv0 = argv[rtld_argc];
444		explicit_fd = (fd != -1);
445		if (!explicit_fd)
446		    fd = open_binary_fd(argv0, search_in_path);
447		if (fstat(fd, &st) == -1) {
448		    _rtld_error("failed to fstat FD %d (%s): %s", fd,
449		      explicit_fd ? "user-provided descriptor" : argv0,
450		      rtld_strerror(errno));
451		    rtld_die();
452		}
453
454		/*
455		 * Rough emulation of the permission checks done by
456		 * execve(2), only Unix DACs are checked, ACLs are
457		 * ignored.  Preserve the semantic of disabling owner
458		 * to execute if owner x bit is cleared, even if
459		 * others x bit is enabled.
460		 * mmap(2) does not allow to mmap with PROT_EXEC if
461		 * binary' file comes from noexec mount.  We cannot
462		 * set VV_TEXT on the binary.
463		 */
464		dir_enable = false;
465		if (st.st_uid == geteuid()) {
466		    if ((st.st_mode & S_IXUSR) != 0)
467			dir_enable = true;
468		} else if (st.st_gid == getegid()) {
469		    if ((st.st_mode & S_IXGRP) != 0)
470			dir_enable = true;
471		} else if ((st.st_mode & S_IXOTH) != 0) {
472		    dir_enable = true;
473		}
474		if (!dir_enable) {
475		    rtld_printf("No execute permission for binary %s\n",
476		      argv0);
477		    rtld_die();
478		}
479
480		/*
481		 * For direct exec mode, argv[0] is the interpreter
482		 * name, we must remove it and shift arguments left
483		 * before invoking binary main.  Since stack layout
484		 * places environment pointers and aux vectors right
485		 * after the terminating NULL, we must shift
486		 * environment and aux as well.
487		 */
488		main_argc = argc - rtld_argc;
489		for (i = 0; i <= main_argc; i++)
490		    argv[i] = argv[i + rtld_argc];
491		*argcp -= rtld_argc;
492		environ = env = envp = argv + main_argc + 1;
493		do {
494		    *envp = *(envp + rtld_argc);
495		    envp++;
496		} while (*envp != NULL);
497		aux = auxp = (Elf_Auxinfo *)envp;
498		auxpf = (Elf_Auxinfo *)(envp + rtld_argc);
499		for (;; auxp++, auxpf++) {
500		    *auxp = *auxpf;
501		    if (auxp->a_type == AT_NULL)
502			    break;
503		}
504	    } else {
505		rtld_printf("no binary\n");
506		rtld_die();
507	    }
508	}
509    }
510
511    ld_bind_now = getenv(_LD("BIND_NOW"));
512
513    /*
514     * If the process is tainted, then we un-set the dangerous environment
515     * variables.  The process will be marked as tainted until setuid(2)
516     * is called.  If any child process calls setuid(2) we do not want any
517     * future processes to honor the potentially un-safe variables.
518     */
519    if (!trust) {
520	if (unsetenv(_LD("PRELOAD")) || unsetenv(_LD("LIBMAP")) ||
521	    unsetenv(_LD("LIBRARY_PATH")) || unsetenv(_LD("LIBRARY_PATH_FDS")) ||
522	    unsetenv(_LD("LIBMAP_DISABLE")) || unsetenv(_LD("BIND_NOT")) ||
523	    unsetenv(_LD("DEBUG")) || unsetenv(_LD("ELF_HINTS_PATH")) ||
524	    unsetenv(_LD("LOADFLTR")) || unsetenv(_LD("LIBRARY_PATH_RPATH"))) {
525		_rtld_error("environment corrupt; aborting");
526		rtld_die();
527	}
528    }
529    ld_debug = getenv(_LD("DEBUG"));
530    if (ld_bind_now == NULL)
531	    ld_bind_not = getenv(_LD("BIND_NOT")) != NULL;
532    libmap_disable = getenv(_LD("LIBMAP_DISABLE")) != NULL;
533    libmap_override = getenv(_LD("LIBMAP"));
534    ld_library_path = getenv(_LD("LIBRARY_PATH"));
535    ld_library_dirs = getenv(_LD("LIBRARY_PATH_FDS"));
536    ld_preload = getenv(_LD("PRELOAD"));
537    ld_elf_hints_path = getenv(_LD("ELF_HINTS_PATH"));
538    ld_loadfltr = getenv(_LD("LOADFLTR")) != NULL;
539    library_path_rpath = getenv(_LD("LIBRARY_PATH_RPATH"));
540    if (library_path_rpath != NULL) {
541	    if (library_path_rpath[0] == 'y' ||
542		library_path_rpath[0] == 'Y' ||
543		library_path_rpath[0] == '1')
544		    ld_library_path_rpath = true;
545	    else
546		    ld_library_path_rpath = false;
547    }
548    dangerous_ld_env = libmap_disable || (libmap_override != NULL) ||
549	(ld_library_path != NULL) || (ld_preload != NULL) ||
550	(ld_elf_hints_path != NULL) || ld_loadfltr;
551    ld_tracing = getenv(_LD("TRACE_LOADED_OBJECTS"));
552    ld_utrace = getenv(_LD("UTRACE"));
553
554    if ((ld_elf_hints_path == NULL) || strlen(ld_elf_hints_path) == 0)
555	ld_elf_hints_path = ld_elf_hints_default;
556
557    if (ld_debug != NULL && *ld_debug != '\0')
558	debug = 1;
559    dbg("%s is initialized, base address = %p", __progname,
560	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
561    dbg("RTLD dynamic = %p", obj_rtld.dynamic);
562    dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
563
564    dbg("initializing thread locks");
565    lockdflt_init();
566
567    /*
568     * Load the main program, or process its program header if it is
569     * already loaded.
570     */
571    if (fd != -1) {	/* Load the main program. */
572	dbg("loading main program");
573	obj_main = map_object(fd, argv0, NULL);
574	close(fd);
575	if (obj_main == NULL)
576	    rtld_die();
577	max_stack_flags = obj_main->stack_flags;
578    } else {				/* Main program already loaded. */
579	dbg("processing main program's program header");
580	assert(aux_info[AT_PHDR] != NULL);
581	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
582	assert(aux_info[AT_PHNUM] != NULL);
583	phnum = aux_info[AT_PHNUM]->a_un.a_val;
584	assert(aux_info[AT_PHENT] != NULL);
585	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
586	assert(aux_info[AT_ENTRY] != NULL);
587	imgentry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
588	if ((obj_main = digest_phdr(phdr, phnum, imgentry, argv0)) == NULL)
589	    rtld_die();
590    }
591
592    if (aux_info[AT_EXECPATH] != NULL && fd == -1) {
593	    kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
594	    dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
595	    if (kexecpath[0] == '/')
596		    obj_main->path = kexecpath;
597	    else if (getcwd(buf, sizeof(buf)) == NULL ||
598		     strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
599		     strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
600		    obj_main->path = xstrdup(argv0);
601	    else
602		    obj_main->path = xstrdup(buf);
603    } else {
604	    dbg("No AT_EXECPATH or direct exec");
605	    obj_main->path = xstrdup(argv0);
606    }
607    dbg("obj_main path %s", obj_main->path);
608    obj_main->mainprog = true;
609
610    if (aux_info[AT_STACKPROT] != NULL &&
611      aux_info[AT_STACKPROT]->a_un.a_val != 0)
612	    stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
613
614#ifndef COMPAT_32BIT
615    /*
616     * Get the actual dynamic linker pathname from the executable if
617     * possible.  (It should always be possible.)  That ensures that
618     * gdb will find the right dynamic linker even if a non-standard
619     * one is being used.
620     */
621    if (obj_main->interp != NULL &&
622      strcmp(obj_main->interp, obj_rtld.path) != 0) {
623	free(obj_rtld.path);
624	obj_rtld.path = xstrdup(obj_main->interp);
625        __progname = obj_rtld.path;
626    }
627#endif
628
629    digest_dynamic(obj_main, 0);
630    dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d",
631	obj_main->path, obj_main->valid_hash_sysv, obj_main->valid_hash_gnu,
632	obj_main->dynsymcount);
633
634    linkmap_add(obj_main);
635    linkmap_add(&obj_rtld);
636
637    /* Link the main program into the list of objects. */
638    TAILQ_INSERT_HEAD(&obj_list, obj_main, next);
639    obj_count++;
640    obj_loads++;
641
642    /* Initialize a fake symbol for resolving undefined weak references. */
643    sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
644    sym_zero.st_shndx = SHN_UNDEF;
645    sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
646
647    if (!libmap_disable)
648        libmap_disable = (bool)lm_init(libmap_override);
649
650    dbg("loading LD_PRELOAD libraries");
651    if (load_preload_objects() == -1)
652	rtld_die();
653    preload_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
654
655    dbg("loading needed objects");
656    if (load_needed_objects(obj_main, 0) == -1)
657	rtld_die();
658
659    /* Make a list of all objects loaded at startup. */
660    last_interposer = obj_main;
661    TAILQ_FOREACH(obj, &obj_list, next) {
662	if (obj->marker)
663	    continue;
664	if (obj->z_interpose && obj != obj_main) {
665	    objlist_put_after(&list_main, last_interposer, obj);
666	    last_interposer = obj;
667	} else {
668	    objlist_push_tail(&list_main, obj);
669	}
670    	obj->refcount++;
671    }
672
673    dbg("checking for required versions");
674    if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
675	rtld_die();
676
677    if (ld_tracing) {		/* We're done */
678	trace_loaded_objects(obj_main);
679	exit(0);
680    }
681
682    if (getenv(_LD("DUMP_REL_PRE")) != NULL) {
683       dump_relocations(obj_main);
684       exit (0);
685    }
686
687    /*
688     * Processing tls relocations requires having the tls offsets
689     * initialized.  Prepare offsets before starting initial
690     * relocation processing.
691     */
692    dbg("initializing initial thread local storage offsets");
693    STAILQ_FOREACH(entry, &list_main, link) {
694	/*
695	 * Allocate all the initial objects out of the static TLS
696	 * block even if they didn't ask for it.
697	 */
698	allocate_tls_offset(entry->obj);
699    }
700
701    if (relocate_objects(obj_main,
702      ld_bind_now != NULL && *ld_bind_now != '\0',
703      &obj_rtld, SYMLOOK_EARLY, NULL) == -1)
704	rtld_die();
705
706    dbg("doing copy relocations");
707    if (do_copy_relocations(obj_main) == -1)
708	rtld_die();
709
710    if (getenv(_LD("DUMP_REL_POST")) != NULL) {
711       dump_relocations(obj_main);
712       exit (0);
713    }
714
715    ifunc_init(aux);
716
717    /*
718     * Setup TLS for main thread.  This must be done after the
719     * relocations are processed, since tls initialization section
720     * might be the subject for relocations.
721     */
722    dbg("initializing initial thread local storage");
723    allocate_initial_tls(globallist_curr(TAILQ_FIRST(&obj_list)));
724
725    dbg("initializing key program variables");
726    set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
727    set_program_var("environ", env);
728    set_program_var("__elf_aux_vector", aux);
729
730    /* Make a list of init functions to call. */
731    objlist_init(&initlist);
732    initlist_add_objects(globallist_curr(TAILQ_FIRST(&obj_list)),
733      preload_tail, &initlist);
734
735    r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
736
737    map_stacks_exec(NULL);
738
739    if (!obj_main->crt_no_init) {
740	/*
741	 * Make sure we don't call the main program's init and fini
742	 * functions for binaries linked with old crt1 which calls
743	 * _init itself.
744	 */
745	obj_main->init = obj_main->fini = (Elf_Addr)NULL;
746	obj_main->preinit_array = obj_main->init_array =
747	    obj_main->fini_array = (Elf_Addr)NULL;
748    }
749
750    /*
751     * Execute MD initializers required before we call the objects'
752     * init functions.
753     */
754    pre_init();
755
756    wlock_acquire(rtld_bind_lock, &lockstate);
757
758    dbg("resolving ifuncs");
759    if (initlist_objects_ifunc(&initlist, ld_bind_now != NULL &&
760      *ld_bind_now != '\0', SYMLOOK_EARLY, &lockstate) == -1)
761	rtld_die();
762
763    if (obj_main->crt_no_init)
764	preinit_main();
765    objlist_call_init(&initlist, &lockstate);
766    _r_debug_postinit(&obj_main->linkmap);
767    objlist_clear(&initlist);
768    dbg("loading filtees");
769    TAILQ_FOREACH(obj, &obj_list, next) {
770	if (obj->marker)
771	    continue;
772	if (ld_loadfltr || obj->z_loadfltr)
773	    load_filtees(obj, 0, &lockstate);
774    }
775
776    dbg("enforcing main obj relro");
777    if (obj_enforce_relro(obj_main) == -1)
778	rtld_die();
779
780    lock_release(rtld_bind_lock, &lockstate);
781
782    dbg("transferring control to program entry point = %p", obj_main->entry);
783
784    /* Return the exit procedure and the program entry point. */
785    *exit_proc = rtld_exit;
786    *objp = obj_main;
787    return (func_ptr_type) obj_main->entry;
788}
789
790void *
791rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def)
792{
793	void *ptr;
794	Elf_Addr target;
795
796	ptr = (void *)make_function_pointer(def, obj);
797	target = call_ifunc_resolver(ptr);
798	return ((void *)target);
799}
800
801/*
802 * NB: MIPS uses a private version of this function (_mips_rtld_bind).
803 * Changes to this function should be applied there as well.
804 */
805Elf_Addr
806_rtld_bind(Obj_Entry *obj, Elf_Size reloff)
807{
808    const Elf_Rel *rel;
809    const Elf_Sym *def;
810    const Obj_Entry *defobj;
811    Elf_Addr *where;
812    Elf_Addr target;
813    RtldLockState lockstate;
814
815    rlock_acquire(rtld_bind_lock, &lockstate);
816    if (sigsetjmp(lockstate.env, 0) != 0)
817	    lock_upgrade(rtld_bind_lock, &lockstate);
818    if (obj->pltrel)
819	rel = (const Elf_Rel *) ((caddr_t) obj->pltrel + reloff);
820    else
821	rel = (const Elf_Rel *) ((caddr_t) obj->pltrela + reloff);
822
823    where = (Elf_Addr *) (obj->relocbase + rel->r_offset);
824    def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, SYMLOOK_IN_PLT,
825	NULL, &lockstate);
826    if (def == NULL)
827	rtld_die();
828    if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
829	target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
830    else
831	target = (Elf_Addr)(defobj->relocbase + def->st_value);
832
833    dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
834      defobj->strtab + def->st_name, basename(obj->path),
835      (void *)target, basename(defobj->path));
836
837    /*
838     * Write the new contents for the jmpslot. Note that depending on
839     * architecture, the value which we need to return back to the
840     * lazy binding trampoline may or may not be the target
841     * address. The value returned from reloc_jmpslot() is the value
842     * that the trampoline needs.
843     */
844    target = reloc_jmpslot(where, target, defobj, obj, rel);
845    lock_release(rtld_bind_lock, &lockstate);
846    return target;
847}
848
849/*
850 * Error reporting function.  Use it like printf.  If formats the message
851 * into a buffer, and sets things up so that the next call to dlerror()
852 * will return the message.
853 */
854void
855_rtld_error(const char *fmt, ...)
856{
857    static char buf[512];
858    va_list ap;
859
860    va_start(ap, fmt);
861    rtld_vsnprintf(buf, sizeof buf, fmt, ap);
862    error_message = buf;
863    va_end(ap);
864}
865
866/*
867 * Return a dynamically-allocated copy of the current error message, if any.
868 */
869static char *
870errmsg_save(void)
871{
872    return error_message == NULL ? NULL : xstrdup(error_message);
873}
874
875/*
876 * Restore the current error message from a copy which was previously saved
877 * by errmsg_save().  The copy is freed.
878 */
879static void
880errmsg_restore(char *saved_msg)
881{
882    if (saved_msg == NULL)
883	error_message = NULL;
884    else {
885	_rtld_error("%s", saved_msg);
886	free(saved_msg);
887    }
888}
889
890static const char *
891basename(const char *name)
892{
893    const char *p = strrchr(name, '/');
894    return p != NULL ? p + 1 : name;
895}
896
897static struct utsname uts;
898
899static char *
900origin_subst_one(Obj_Entry *obj, char *real, const char *kw,
901    const char *subst, bool may_free)
902{
903	char *p, *p1, *res, *resp;
904	int subst_len, kw_len, subst_count, old_len, new_len;
905
906	kw_len = strlen(kw);
907
908	/*
909	 * First, count the number of the keyword occurrences, to
910	 * preallocate the final string.
911	 */
912	for (p = real, subst_count = 0;; p = p1 + kw_len, subst_count++) {
913		p1 = strstr(p, kw);
914		if (p1 == NULL)
915			break;
916	}
917
918	/*
919	 * If the keyword is not found, just return.
920	 *
921	 * Return non-substituted string if resolution failed.  We
922	 * cannot do anything more reasonable, the failure mode of the
923	 * caller is unresolved library anyway.
924	 */
925	if (subst_count == 0 || (obj != NULL && !obj_resolve_origin(obj)))
926		return (may_free ? real : xstrdup(real));
927	if (obj != NULL)
928		subst = obj->origin_path;
929
930	/*
931	 * There is indeed something to substitute.  Calculate the
932	 * length of the resulting string, and allocate it.
933	 */
934	subst_len = strlen(subst);
935	old_len = strlen(real);
936	new_len = old_len + (subst_len - kw_len) * subst_count;
937	res = xmalloc(new_len + 1);
938
939	/*
940	 * Now, execute the substitution loop.
941	 */
942	for (p = real, resp = res, *resp = '\0';;) {
943		p1 = strstr(p, kw);
944		if (p1 != NULL) {
945			/* Copy the prefix before keyword. */
946			memcpy(resp, p, p1 - p);
947			resp += p1 - p;
948			/* Keyword replacement. */
949			memcpy(resp, subst, subst_len);
950			resp += subst_len;
951			*resp = '\0';
952			p = p1 + kw_len;
953		} else
954			break;
955	}
956
957	/* Copy to the end of string and finish. */
958	strcat(resp, p);
959	if (may_free)
960		free(real);
961	return (res);
962}
963
964static char *
965origin_subst(Obj_Entry *obj, char *real)
966{
967	char *res1, *res2, *res3, *res4;
968
969	if (obj == NULL || !trust)
970		return (xstrdup(real));
971	if (uts.sysname[0] == '\0') {
972		if (uname(&uts) != 0) {
973			_rtld_error("utsname failed: %d", errno);
974			return (NULL);
975		}
976	}
977	res1 = origin_subst_one(obj, real, "$ORIGIN", NULL, false);
978	res2 = origin_subst_one(NULL, res1, "$OSNAME", uts.sysname, true);
979	res3 = origin_subst_one(NULL, res2, "$OSREL", uts.release, true);
980	res4 = origin_subst_one(NULL, res3, "$PLATFORM", uts.machine, true);
981	return (res4);
982}
983
984void
985rtld_die(void)
986{
987    const char *msg = dlerror();
988
989    if (msg == NULL)
990	msg = "Fatal error";
991    rtld_fdputstr(STDERR_FILENO, msg);
992    rtld_fdputchar(STDERR_FILENO, '\n');
993    _exit(1);
994}
995
996/*
997 * Process a shared object's DYNAMIC section, and save the important
998 * information in its Obj_Entry structure.
999 */
1000static void
1001digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
1002    const Elf_Dyn **dyn_soname, const Elf_Dyn **dyn_runpath)
1003{
1004    const Elf_Dyn *dynp;
1005    Needed_Entry **needed_tail = &obj->needed;
1006    Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
1007    Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
1008    const Elf_Hashelt *hashtab;
1009    const Elf32_Word *hashval;
1010    Elf32_Word bkt, nmaskwords;
1011    int bloom_size32;
1012    int plttype = DT_REL;
1013
1014    *dyn_rpath = NULL;
1015    *dyn_soname = NULL;
1016    *dyn_runpath = NULL;
1017
1018    obj->bind_now = false;
1019    for (dynp = obj->dynamic;  dynp->d_tag != DT_NULL;  dynp++) {
1020	switch (dynp->d_tag) {
1021
1022	case DT_REL:
1023	    obj->rel = (const Elf_Rel *) (obj->relocbase + dynp->d_un.d_ptr);
1024	    break;
1025
1026	case DT_RELSZ:
1027	    obj->relsize = dynp->d_un.d_val;
1028	    break;
1029
1030	case DT_RELENT:
1031	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
1032	    break;
1033
1034	case DT_JMPREL:
1035	    obj->pltrel = (const Elf_Rel *)
1036	      (obj->relocbase + dynp->d_un.d_ptr);
1037	    break;
1038
1039	case DT_PLTRELSZ:
1040	    obj->pltrelsize = dynp->d_un.d_val;
1041	    break;
1042
1043	case DT_RELA:
1044	    obj->rela = (const Elf_Rela *) (obj->relocbase + dynp->d_un.d_ptr);
1045	    break;
1046
1047	case DT_RELASZ:
1048	    obj->relasize = dynp->d_un.d_val;
1049	    break;
1050
1051	case DT_RELAENT:
1052	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
1053	    break;
1054
1055	case DT_PLTREL:
1056	    plttype = dynp->d_un.d_val;
1057	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
1058	    break;
1059
1060	case DT_SYMTAB:
1061	    obj->symtab = (const Elf_Sym *)
1062	      (obj->relocbase + dynp->d_un.d_ptr);
1063	    break;
1064
1065	case DT_SYMENT:
1066	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
1067	    break;
1068
1069	case DT_STRTAB:
1070	    obj->strtab = (const char *) (obj->relocbase + dynp->d_un.d_ptr);
1071	    break;
1072
1073	case DT_STRSZ:
1074	    obj->strsize = dynp->d_un.d_val;
1075	    break;
1076
1077	case DT_VERNEED:
1078	    obj->verneed = (const Elf_Verneed *) (obj->relocbase +
1079		dynp->d_un.d_val);
1080	    break;
1081
1082	case DT_VERNEEDNUM:
1083	    obj->verneednum = dynp->d_un.d_val;
1084	    break;
1085
1086	case DT_VERDEF:
1087	    obj->verdef = (const Elf_Verdef *) (obj->relocbase +
1088		dynp->d_un.d_val);
1089	    break;
1090
1091	case DT_VERDEFNUM:
1092	    obj->verdefnum = dynp->d_un.d_val;
1093	    break;
1094
1095	case DT_VERSYM:
1096	    obj->versyms = (const Elf_Versym *)(obj->relocbase +
1097		dynp->d_un.d_val);
1098	    break;
1099
1100	case DT_HASH:
1101	    {
1102		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1103		    dynp->d_un.d_ptr);
1104		obj->nbuckets = hashtab[0];
1105		obj->nchains = hashtab[1];
1106		obj->buckets = hashtab + 2;
1107		obj->chains = obj->buckets + obj->nbuckets;
1108		obj->valid_hash_sysv = obj->nbuckets > 0 && obj->nchains > 0 &&
1109		  obj->buckets != NULL;
1110	    }
1111	    break;
1112
1113	case DT_GNU_HASH:
1114	    {
1115		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1116		    dynp->d_un.d_ptr);
1117		obj->nbuckets_gnu = hashtab[0];
1118		obj->symndx_gnu = hashtab[1];
1119		nmaskwords = hashtab[2];
1120		bloom_size32 = (__ELF_WORD_SIZE / 32) * nmaskwords;
1121		obj->maskwords_bm_gnu = nmaskwords - 1;
1122		obj->shift2_gnu = hashtab[3];
1123		obj->bloom_gnu = (Elf_Addr *) (hashtab + 4);
1124		obj->buckets_gnu = hashtab + 4 + bloom_size32;
1125		obj->chain_zero_gnu = obj->buckets_gnu + obj->nbuckets_gnu -
1126		  obj->symndx_gnu;
1127		/* Number of bitmask words is required to be power of 2 */
1128		obj->valid_hash_gnu = powerof2(nmaskwords) &&
1129		    obj->nbuckets_gnu > 0 && obj->buckets_gnu != NULL;
1130	    }
1131	    break;
1132
1133	case DT_NEEDED:
1134	    if (!obj->rtld) {
1135		Needed_Entry *nep = NEW(Needed_Entry);
1136		nep->name = dynp->d_un.d_val;
1137		nep->obj = NULL;
1138		nep->next = NULL;
1139
1140		*needed_tail = nep;
1141		needed_tail = &nep->next;
1142	    }
1143	    break;
1144
1145	case DT_FILTER:
1146	    if (!obj->rtld) {
1147		Needed_Entry *nep = NEW(Needed_Entry);
1148		nep->name = dynp->d_un.d_val;
1149		nep->obj = NULL;
1150		nep->next = NULL;
1151
1152		*needed_filtees_tail = nep;
1153		needed_filtees_tail = &nep->next;
1154	    }
1155	    break;
1156
1157	case DT_AUXILIARY:
1158	    if (!obj->rtld) {
1159		Needed_Entry *nep = NEW(Needed_Entry);
1160		nep->name = dynp->d_un.d_val;
1161		nep->obj = NULL;
1162		nep->next = NULL;
1163
1164		*needed_aux_filtees_tail = nep;
1165		needed_aux_filtees_tail = &nep->next;
1166	    }
1167	    break;
1168
1169	case DT_PLTGOT:
1170	    obj->pltgot = (Elf_Addr *) (obj->relocbase + dynp->d_un.d_ptr);
1171	    break;
1172
1173	case DT_TEXTREL:
1174	    obj->textrel = true;
1175	    break;
1176
1177	case DT_SYMBOLIC:
1178	    obj->symbolic = true;
1179	    break;
1180
1181	case DT_RPATH:
1182	    /*
1183	     * We have to wait until later to process this, because we
1184	     * might not have gotten the address of the string table yet.
1185	     */
1186	    *dyn_rpath = dynp;
1187	    break;
1188
1189	case DT_SONAME:
1190	    *dyn_soname = dynp;
1191	    break;
1192
1193	case DT_RUNPATH:
1194	    *dyn_runpath = dynp;
1195	    break;
1196
1197	case DT_INIT:
1198	    obj->init = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1199	    break;
1200
1201	case DT_PREINIT_ARRAY:
1202	    obj->preinit_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1203	    break;
1204
1205	case DT_PREINIT_ARRAYSZ:
1206	    obj->preinit_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1207	    break;
1208
1209	case DT_INIT_ARRAY:
1210	    obj->init_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1211	    break;
1212
1213	case DT_INIT_ARRAYSZ:
1214	    obj->init_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1215	    break;
1216
1217	case DT_FINI:
1218	    obj->fini = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1219	    break;
1220
1221	case DT_FINI_ARRAY:
1222	    obj->fini_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1223	    break;
1224
1225	case DT_FINI_ARRAYSZ:
1226	    obj->fini_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1227	    break;
1228
1229	/*
1230	 * Don't process DT_DEBUG on MIPS as the dynamic section
1231	 * is mapped read-only. DT_MIPS_RLD_MAP is used instead.
1232	 */
1233
1234#ifndef __mips__
1235	case DT_DEBUG:
1236	    if (!early)
1237		dbg("Filling in DT_DEBUG entry");
1238	    ((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug;
1239	    break;
1240#endif
1241
1242	case DT_FLAGS:
1243		if (dynp->d_un.d_val & DF_ORIGIN)
1244		    obj->z_origin = true;
1245		if (dynp->d_un.d_val & DF_SYMBOLIC)
1246		    obj->symbolic = true;
1247		if (dynp->d_un.d_val & DF_TEXTREL)
1248		    obj->textrel = true;
1249		if (dynp->d_un.d_val & DF_BIND_NOW)
1250		    obj->bind_now = true;
1251		if (dynp->d_un.d_val & DF_STATIC_TLS)
1252		    obj->static_tls = true;
1253	    break;
1254#ifdef __mips__
1255	case DT_MIPS_LOCAL_GOTNO:
1256		obj->local_gotno = dynp->d_un.d_val;
1257		break;
1258
1259	case DT_MIPS_SYMTABNO:
1260		obj->symtabno = dynp->d_un.d_val;
1261		break;
1262
1263	case DT_MIPS_GOTSYM:
1264		obj->gotsym = dynp->d_un.d_val;
1265		break;
1266
1267	case DT_MIPS_RLD_MAP:
1268		*((Elf_Addr *)(dynp->d_un.d_ptr)) = (Elf_Addr) &r_debug;
1269		break;
1270#endif
1271
1272#ifdef __powerpc64__
1273	case DT_PPC64_GLINK:
1274		obj->glink = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1275		break;
1276#endif
1277
1278	case DT_FLAGS_1:
1279		if (dynp->d_un.d_val & DF_1_NOOPEN)
1280		    obj->z_noopen = true;
1281		if (dynp->d_un.d_val & DF_1_ORIGIN)
1282		    obj->z_origin = true;
1283		if (dynp->d_un.d_val & DF_1_GLOBAL)
1284		    obj->z_global = true;
1285		if (dynp->d_un.d_val & DF_1_BIND_NOW)
1286		    obj->bind_now = true;
1287		if (dynp->d_un.d_val & DF_1_NODELETE)
1288		    obj->z_nodelete = true;
1289		if (dynp->d_un.d_val & DF_1_LOADFLTR)
1290		    obj->z_loadfltr = true;
1291		if (dynp->d_un.d_val & DF_1_INTERPOSE)
1292		    obj->z_interpose = true;
1293		if (dynp->d_un.d_val & DF_1_NODEFLIB)
1294		    obj->z_nodeflib = true;
1295	    break;
1296
1297	default:
1298	    if (!early) {
1299		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
1300		    (long)dynp->d_tag);
1301	    }
1302	    break;
1303	}
1304    }
1305
1306    obj->traced = false;
1307
1308    if (plttype == DT_RELA) {
1309	obj->pltrela = (const Elf_Rela *) obj->pltrel;
1310	obj->pltrel = NULL;
1311	obj->pltrelasize = obj->pltrelsize;
1312	obj->pltrelsize = 0;
1313    }
1314
1315    /* Determine size of dynsym table (equal to nchains of sysv hash) */
1316    if (obj->valid_hash_sysv)
1317	obj->dynsymcount = obj->nchains;
1318    else if (obj->valid_hash_gnu) {
1319	obj->dynsymcount = 0;
1320	for (bkt = 0; bkt < obj->nbuckets_gnu; bkt++) {
1321	    if (obj->buckets_gnu[bkt] == 0)
1322		continue;
1323	    hashval = &obj->chain_zero_gnu[obj->buckets_gnu[bkt]];
1324	    do
1325		obj->dynsymcount++;
1326	    while ((*hashval++ & 1u) == 0);
1327	}
1328	obj->dynsymcount += obj->symndx_gnu;
1329    }
1330}
1331
1332static bool
1333obj_resolve_origin(Obj_Entry *obj)
1334{
1335
1336	if (obj->origin_path != NULL)
1337		return (true);
1338	obj->origin_path = xmalloc(PATH_MAX);
1339	return (rtld_dirname_abs(obj->path, obj->origin_path) != -1);
1340}
1341
1342static void
1343digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
1344    const Elf_Dyn *dyn_soname, const Elf_Dyn *dyn_runpath)
1345{
1346
1347	if (obj->z_origin && !obj_resolve_origin(obj))
1348		rtld_die();
1349
1350	if (dyn_runpath != NULL) {
1351		obj->runpath = (char *)obj->strtab + dyn_runpath->d_un.d_val;
1352		obj->runpath = origin_subst(obj, obj->runpath);
1353	} else if (dyn_rpath != NULL) {
1354		obj->rpath = (char *)obj->strtab + dyn_rpath->d_un.d_val;
1355		obj->rpath = origin_subst(obj, obj->rpath);
1356	}
1357	if (dyn_soname != NULL)
1358		object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1359}
1360
1361static void
1362digest_dynamic(Obj_Entry *obj, int early)
1363{
1364	const Elf_Dyn *dyn_rpath;
1365	const Elf_Dyn *dyn_soname;
1366	const Elf_Dyn *dyn_runpath;
1367
1368	digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname, &dyn_runpath);
1369	digest_dynamic2(obj, dyn_rpath, dyn_soname, dyn_runpath);
1370}
1371
1372/*
1373 * Process a shared object's program header.  This is used only for the
1374 * main program, when the kernel has already loaded the main program
1375 * into memory before calling the dynamic linker.  It creates and
1376 * returns an Obj_Entry structure.
1377 */
1378static Obj_Entry *
1379digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1380{
1381    Obj_Entry *obj;
1382    const Elf_Phdr *phlimit = phdr + phnum;
1383    const Elf_Phdr *ph;
1384    Elf_Addr note_start, note_end;
1385    int nsegs = 0;
1386
1387    obj = obj_new();
1388    for (ph = phdr;  ph < phlimit;  ph++) {
1389	if (ph->p_type != PT_PHDR)
1390	    continue;
1391
1392	obj->phdr = phdr;
1393	obj->phsize = ph->p_memsz;
1394	obj->relocbase = (caddr_t)phdr - ph->p_vaddr;
1395	break;
1396    }
1397
1398    obj->stack_flags = PF_X | PF_R | PF_W;
1399
1400    for (ph = phdr;  ph < phlimit;  ph++) {
1401	switch (ph->p_type) {
1402
1403	case PT_INTERP:
1404	    obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
1405	    break;
1406
1407	case PT_LOAD:
1408	    if (nsegs == 0) {	/* First load segment */
1409		obj->vaddrbase = trunc_page(ph->p_vaddr);
1410		obj->mapbase = obj->vaddrbase + obj->relocbase;
1411		obj->textsize = round_page(ph->p_vaddr + ph->p_memsz) -
1412		  obj->vaddrbase;
1413	    } else {		/* Last load segment */
1414		obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
1415		  obj->vaddrbase;
1416	    }
1417	    nsegs++;
1418	    break;
1419
1420	case PT_DYNAMIC:
1421	    obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
1422	    break;
1423
1424	case PT_TLS:
1425	    obj->tlsindex = 1;
1426	    obj->tlssize = ph->p_memsz;
1427	    obj->tlsalign = ph->p_align;
1428	    obj->tlsinitsize = ph->p_filesz;
1429	    obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
1430	    break;
1431
1432	case PT_GNU_STACK:
1433	    obj->stack_flags = ph->p_flags;
1434	    break;
1435
1436	case PT_GNU_RELRO:
1437	    obj->relro_page = obj->relocbase + trunc_page(ph->p_vaddr);
1438	    obj->relro_size = round_page(ph->p_memsz);
1439	    break;
1440
1441	case PT_NOTE:
1442	    note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
1443	    note_end = note_start + ph->p_filesz;
1444	    digest_notes(obj, note_start, note_end);
1445	    break;
1446	}
1447    }
1448    if (nsegs < 1) {
1449	_rtld_error("%s: too few PT_LOAD segments", path);
1450	return NULL;
1451    }
1452
1453    obj->entry = entry;
1454    return obj;
1455}
1456
1457void
1458digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end)
1459{
1460	const Elf_Note *note;
1461	const char *note_name;
1462	uintptr_t p;
1463
1464	for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end;
1465	    note = (const Elf_Note *)((const char *)(note + 1) +
1466	      roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1467	      roundup2(note->n_descsz, sizeof(Elf32_Addr)))) {
1468		if (note->n_namesz != sizeof(NOTE_FREEBSD_VENDOR) ||
1469		    note->n_descsz != sizeof(int32_t))
1470			continue;
1471		if (note->n_type != NT_FREEBSD_ABI_TAG &&
1472		    note->n_type != NT_FREEBSD_NOINIT_TAG)
1473			continue;
1474		note_name = (const char *)(note + 1);
1475		if (strncmp(NOTE_FREEBSD_VENDOR, note_name,
1476		    sizeof(NOTE_FREEBSD_VENDOR)) != 0)
1477			continue;
1478		switch (note->n_type) {
1479		case NT_FREEBSD_ABI_TAG:
1480			/* FreeBSD osrel note */
1481			p = (uintptr_t)(note + 1);
1482			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1483			obj->osrel = *(const int32_t *)(p);
1484			dbg("note osrel %d", obj->osrel);
1485			break;
1486		case NT_FREEBSD_NOINIT_TAG:
1487			/* FreeBSD 'crt does not call init' note */
1488			obj->crt_no_init = true;
1489			dbg("note crt_no_init");
1490			break;
1491		}
1492	}
1493}
1494
1495static Obj_Entry *
1496dlcheck(void *handle)
1497{
1498    Obj_Entry *obj;
1499
1500    TAILQ_FOREACH(obj, &obj_list, next) {
1501	if (obj == (Obj_Entry *) handle)
1502	    break;
1503    }
1504
1505    if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1506	_rtld_error("Invalid shared object handle %p", handle);
1507	return NULL;
1508    }
1509    return obj;
1510}
1511
1512/*
1513 * If the given object is already in the donelist, return true.  Otherwise
1514 * add the object to the list and return false.
1515 */
1516static bool
1517donelist_check(DoneList *dlp, const Obj_Entry *obj)
1518{
1519    unsigned int i;
1520
1521    for (i = 0;  i < dlp->num_used;  i++)
1522	if (dlp->objs[i] == obj)
1523	    return true;
1524    /*
1525     * Our donelist allocation should always be sufficient.  But if
1526     * our threads locking isn't working properly, more shared objects
1527     * could have been loaded since we allocated the list.  That should
1528     * never happen, but we'll handle it properly just in case it does.
1529     */
1530    if (dlp->num_used < dlp->num_alloc)
1531	dlp->objs[dlp->num_used++] = obj;
1532    return false;
1533}
1534
1535/*
1536 * Hash function for symbol table lookup.  Don't even think about changing
1537 * this.  It is specified by the System V ABI.
1538 */
1539unsigned long
1540elf_hash(const char *name)
1541{
1542    const unsigned char *p = (const unsigned char *) name;
1543    unsigned long h = 0;
1544    unsigned long g;
1545
1546    while (*p != '\0') {
1547	h = (h << 4) + *p++;
1548	if ((g = h & 0xf0000000) != 0)
1549	    h ^= g >> 24;
1550	h &= ~g;
1551    }
1552    return h;
1553}
1554
1555/*
1556 * The GNU hash function is the Daniel J. Bernstein hash clipped to 32 bits
1557 * unsigned in case it's implemented with a wider type.
1558 */
1559static uint32_t
1560gnu_hash(const char *s)
1561{
1562	uint32_t h;
1563	unsigned char c;
1564
1565	h = 5381;
1566	for (c = *s; c != '\0'; c = *++s)
1567		h = h * 33 + c;
1568	return (h & 0xffffffff);
1569}
1570
1571
1572/*
1573 * Find the library with the given name, and return its full pathname.
1574 * The returned string is dynamically allocated.  Generates an error
1575 * message and returns NULL if the library cannot be found.
1576 *
1577 * If the second argument is non-NULL, then it refers to an already-
1578 * loaded shared object, whose library search path will be searched.
1579 *
1580 * If a library is successfully located via LD_LIBRARY_PATH_FDS, its
1581 * descriptor (which is close-on-exec) will be passed out via the third
1582 * argument.
1583 *
1584 * The search order is:
1585 *   DT_RPATH in the referencing file _unless_ DT_RUNPATH is present (1)
1586 *   DT_RPATH of the main object if DSO without defined DT_RUNPATH (1)
1587 *   LD_LIBRARY_PATH
1588 *   DT_RUNPATH in the referencing file
1589 *   ldconfig hints (if -z nodefaultlib, filter out default library directories
1590 *	 from list)
1591 *   /lib:/usr/lib _unless_ the referencing file is linked with -z nodefaultlib
1592 *
1593 * (1) Handled in digest_dynamic2 - rpath left NULL if runpath defined.
1594 */
1595static char *
1596find_library(const char *xname, const Obj_Entry *refobj, int *fdp)
1597{
1598	char *name, *pathname, *refobj_path;
1599	bool nodeflib, objgiven;
1600
1601	objgiven = refobj != NULL;
1602
1603	if (libmap_disable || !objgiven ||
1604	    (name = lm_find(refobj->path, xname)) == NULL)
1605		name = (char *)xname;
1606
1607	if (strchr(name, '/') != NULL) {	/* Hard coded pathname */
1608		if (name[0] != '/' && !trust) {
1609			_rtld_error("Absolute pathname required "
1610			    "for shared object \"%s\"", name);
1611			return (NULL);
1612		}
1613		return (origin_subst(__DECONST(Obj_Entry *, refobj),
1614		    __DECONST(char *, name)));
1615	}
1616
1617	dbg(" Searching for \"%s\"", name);
1618	refobj_path = objgiven ? refobj->path : NULL;
1619
1620	/*
1621	 * If refobj->rpath != NULL, then refobj->runpath is NULL.  Fall
1622	 * back to pre-conforming behaviour if user requested so with
1623	 * LD_LIBRARY_PATH_RPATH environment variable and ignore -z
1624	 * nodeflib.
1625	 */
1626	if (objgiven && refobj->rpath != NULL && ld_library_path_rpath) {
1627		pathname = search_library_path(name, ld_library_path,
1628		    refobj_path, fdp);
1629		if (pathname != NULL)
1630			return (pathname);
1631		if (refobj != NULL) {
1632			pathname = search_library_path(name, refobj->rpath,
1633			    refobj_path, fdp);
1634			if (pathname != NULL)
1635				return (pathname);
1636		}
1637		pathname = search_library_pathfds(name, ld_library_dirs, fdp);
1638		if (pathname != NULL)
1639			return (pathname);
1640		pathname = search_library_path(name, gethints(false),
1641		    refobj_path, fdp);
1642		if (pathname != NULL)
1643			return (pathname);
1644		pathname = search_library_path(name, ld_standard_library_path,
1645		    refobj_path, fdp);
1646		if (pathname != NULL)
1647			return (pathname);
1648	} else {
1649		nodeflib = objgiven ? refobj->z_nodeflib : false;
1650		if (objgiven) {
1651			pathname = search_library_path(name, refobj->rpath,
1652			    refobj->path, fdp);
1653			if (pathname != NULL)
1654				return (pathname);
1655		}
1656		if (objgiven && refobj->runpath == NULL && refobj != obj_main) {
1657			pathname = search_library_path(name, obj_main->rpath,
1658			    refobj_path, fdp);
1659			if (pathname != NULL)
1660				return (pathname);
1661		}
1662		pathname = search_library_path(name, ld_library_path,
1663		    refobj_path, fdp);
1664		if (pathname != NULL)
1665			return (pathname);
1666		if (objgiven) {
1667			pathname = search_library_path(name, refobj->runpath,
1668			    refobj_path, fdp);
1669			if (pathname != NULL)
1670				return (pathname);
1671		}
1672		pathname = search_library_pathfds(name, ld_library_dirs, fdp);
1673		if (pathname != NULL)
1674			return (pathname);
1675		pathname = search_library_path(name, gethints(nodeflib),
1676		    refobj_path, fdp);
1677		if (pathname != NULL)
1678			return (pathname);
1679		if (objgiven && !nodeflib) {
1680			pathname = search_library_path(name,
1681			    ld_standard_library_path, refobj_path, fdp);
1682			if (pathname != NULL)
1683				return (pathname);
1684		}
1685	}
1686
1687	if (objgiven && refobj->path != NULL) {
1688		_rtld_error("Shared object \"%s\" not found, "
1689		    "required by \"%s\"", name, basename(refobj->path));
1690	} else {
1691		_rtld_error("Shared object \"%s\" not found", name);
1692	}
1693	return (NULL);
1694}
1695
1696/*
1697 * Given a symbol number in a referencing object, find the corresponding
1698 * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1699 * no definition was found.  Returns a pointer to the Obj_Entry of the
1700 * defining object via the reference parameter DEFOBJ_OUT.
1701 */
1702const Elf_Sym *
1703find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1704    const Obj_Entry **defobj_out, int flags, SymCache *cache,
1705    RtldLockState *lockstate)
1706{
1707    const Elf_Sym *ref;
1708    const Elf_Sym *def;
1709    const Obj_Entry *defobj;
1710    const Ver_Entry *ve;
1711    SymLook req;
1712    const char *name;
1713    int res;
1714
1715    /*
1716     * If we have already found this symbol, get the information from
1717     * the cache.
1718     */
1719    if (symnum >= refobj->dynsymcount)
1720	return NULL;	/* Bad object */
1721    if (cache != NULL && cache[symnum].sym != NULL) {
1722	*defobj_out = cache[symnum].obj;
1723	return cache[symnum].sym;
1724    }
1725
1726    ref = refobj->symtab + symnum;
1727    name = refobj->strtab + ref->st_name;
1728    def = NULL;
1729    defobj = NULL;
1730    ve = NULL;
1731
1732    /*
1733     * We don't have to do a full scale lookup if the symbol is local.
1734     * We know it will bind to the instance in this load module; to
1735     * which we already have a pointer (ie ref). By not doing a lookup,
1736     * we not only improve performance, but it also avoids unresolvable
1737     * symbols when local symbols are not in the hash table. This has
1738     * been seen with the ia64 toolchain.
1739     */
1740    if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
1741	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
1742	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
1743		symnum);
1744	}
1745	symlook_init(&req, name);
1746	req.flags = flags;
1747	ve = req.ventry = fetch_ventry(refobj, symnum);
1748	req.lockstate = lockstate;
1749	res = symlook_default(&req, refobj);
1750	if (res == 0) {
1751	    def = req.sym_out;
1752	    defobj = req.defobj_out;
1753	}
1754    } else {
1755	def = ref;
1756	defobj = refobj;
1757    }
1758
1759    /*
1760     * If we found no definition and the reference is weak, treat the
1761     * symbol as having the value zero.
1762     */
1763    if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
1764	def = &sym_zero;
1765	defobj = obj_main;
1766    }
1767
1768    if (def != NULL) {
1769	*defobj_out = defobj;
1770	/* Record the information in the cache to avoid subsequent lookups. */
1771	if (cache != NULL) {
1772	    cache[symnum].sym = def;
1773	    cache[symnum].obj = defobj;
1774	}
1775    } else {
1776	if (refobj != &obj_rtld)
1777	    _rtld_error("%s: Undefined symbol \"%s%s%s\"", refobj->path, name,
1778	      ve != NULL ? "@" : "", ve != NULL ? ve->name : "");
1779    }
1780    return def;
1781}
1782
1783/*
1784 * Return the search path from the ldconfig hints file, reading it if
1785 * necessary.  If nostdlib is true, then the default search paths are
1786 * not added to result.
1787 *
1788 * Returns NULL if there are problems with the hints file,
1789 * or if the search path there is empty.
1790 */
1791static const char *
1792gethints(bool nostdlib)
1793{
1794	static char *hints, *filtered_path;
1795	static struct elfhints_hdr hdr;
1796	struct fill_search_info_args sargs, hargs;
1797	struct dl_serinfo smeta, hmeta, *SLPinfo, *hintinfo;
1798	struct dl_serpath *SLPpath, *hintpath;
1799	char *p;
1800	struct stat hint_stat;
1801	unsigned int SLPndx, hintndx, fndx, fcount;
1802	int fd;
1803	size_t flen;
1804	uint32_t dl;
1805	bool skip;
1806
1807	/* First call, read the hints file */
1808	if (hints == NULL) {
1809		/* Keep from trying again in case the hints file is bad. */
1810		hints = "";
1811
1812		if ((fd = open(ld_elf_hints_path, O_RDONLY | O_CLOEXEC)) == -1)
1813			return (NULL);
1814
1815		/*
1816		 * Check of hdr.dirlistlen value against type limit
1817		 * intends to pacify static analyzers.  Further
1818		 * paranoia leads to checks that dirlist is fully
1819		 * contained in the file range.
1820		 */
1821		if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
1822		    hdr.magic != ELFHINTS_MAGIC ||
1823		    hdr.version != 1 || hdr.dirlistlen > UINT_MAX / 2 ||
1824		    fstat(fd, &hint_stat) == -1) {
1825cleanup1:
1826			close(fd);
1827			hdr.dirlistlen = 0;
1828			return (NULL);
1829		}
1830		dl = hdr.strtab;
1831		if (dl + hdr.dirlist < dl)
1832			goto cleanup1;
1833		dl += hdr.dirlist;
1834		if (dl + hdr.dirlistlen < dl)
1835			goto cleanup1;
1836		dl += hdr.dirlistlen;
1837		if (dl > hint_stat.st_size)
1838			goto cleanup1;
1839		p = xmalloc(hdr.dirlistlen + 1);
1840		if (pread(fd, p, hdr.dirlistlen + 1,
1841		    hdr.strtab + hdr.dirlist) != (ssize_t)hdr.dirlistlen + 1 ||
1842		    p[hdr.dirlistlen] != '\0') {
1843			free(p);
1844			goto cleanup1;
1845		}
1846		hints = p;
1847		close(fd);
1848	}
1849
1850	/*
1851	 * If caller agreed to receive list which includes the default
1852	 * paths, we are done. Otherwise, if we still did not
1853	 * calculated filtered result, do it now.
1854	 */
1855	if (!nostdlib)
1856		return (hints[0] != '\0' ? hints : NULL);
1857	if (filtered_path != NULL)
1858		goto filt_ret;
1859
1860	/*
1861	 * Obtain the list of all configured search paths, and the
1862	 * list of the default paths.
1863	 *
1864	 * First estimate the size of the results.
1865	 */
1866	smeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1867	smeta.dls_cnt = 0;
1868	hmeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1869	hmeta.dls_cnt = 0;
1870
1871	sargs.request = RTLD_DI_SERINFOSIZE;
1872	sargs.serinfo = &smeta;
1873	hargs.request = RTLD_DI_SERINFOSIZE;
1874	hargs.serinfo = &hmeta;
1875
1876	path_enumerate(ld_standard_library_path, fill_search_info, NULL,
1877	    &sargs);
1878	path_enumerate(hints, fill_search_info, NULL, &hargs);
1879
1880	SLPinfo = xmalloc(smeta.dls_size);
1881	hintinfo = xmalloc(hmeta.dls_size);
1882
1883	/*
1884	 * Next fetch both sets of paths.
1885	 */
1886	sargs.request = RTLD_DI_SERINFO;
1887	sargs.serinfo = SLPinfo;
1888	sargs.serpath = &SLPinfo->dls_serpath[0];
1889	sargs.strspace = (char *)&SLPinfo->dls_serpath[smeta.dls_cnt];
1890
1891	hargs.request = RTLD_DI_SERINFO;
1892	hargs.serinfo = hintinfo;
1893	hargs.serpath = &hintinfo->dls_serpath[0];
1894	hargs.strspace = (char *)&hintinfo->dls_serpath[hmeta.dls_cnt];
1895
1896	path_enumerate(ld_standard_library_path, fill_search_info, NULL,
1897	    &sargs);
1898	path_enumerate(hints, fill_search_info, NULL, &hargs);
1899
1900	/*
1901	 * Now calculate the difference between two sets, by excluding
1902	 * standard paths from the full set.
1903	 */
1904	fndx = 0;
1905	fcount = 0;
1906	filtered_path = xmalloc(hdr.dirlistlen + 1);
1907	hintpath = &hintinfo->dls_serpath[0];
1908	for (hintndx = 0; hintndx < hmeta.dls_cnt; hintndx++, hintpath++) {
1909		skip = false;
1910		SLPpath = &SLPinfo->dls_serpath[0];
1911		/*
1912		 * Check each standard path against current.
1913		 */
1914		for (SLPndx = 0; SLPndx < smeta.dls_cnt; SLPndx++, SLPpath++) {
1915			/* matched, skip the path */
1916			if (!strcmp(hintpath->dls_name, SLPpath->dls_name)) {
1917				skip = true;
1918				break;
1919			}
1920		}
1921		if (skip)
1922			continue;
1923		/*
1924		 * Not matched against any standard path, add the path
1925		 * to result. Separate consequtive paths with ':'.
1926		 */
1927		if (fcount > 0) {
1928			filtered_path[fndx] = ':';
1929			fndx++;
1930		}
1931		fcount++;
1932		flen = strlen(hintpath->dls_name);
1933		strncpy((filtered_path + fndx),	hintpath->dls_name, flen);
1934		fndx += flen;
1935	}
1936	filtered_path[fndx] = '\0';
1937
1938	free(SLPinfo);
1939	free(hintinfo);
1940
1941filt_ret:
1942	return (filtered_path[0] != '\0' ? filtered_path : NULL);
1943}
1944
1945static void
1946init_dag(Obj_Entry *root)
1947{
1948    const Needed_Entry *needed;
1949    const Objlist_Entry *elm;
1950    DoneList donelist;
1951
1952    if (root->dag_inited)
1953	return;
1954    donelist_init(&donelist);
1955
1956    /* Root object belongs to own DAG. */
1957    objlist_push_tail(&root->dldags, root);
1958    objlist_push_tail(&root->dagmembers, root);
1959    donelist_check(&donelist, root);
1960
1961    /*
1962     * Add dependencies of root object to DAG in breadth order
1963     * by exploiting the fact that each new object get added
1964     * to the tail of the dagmembers list.
1965     */
1966    STAILQ_FOREACH(elm, &root->dagmembers, link) {
1967	for (needed = elm->obj->needed; needed != NULL; needed = needed->next) {
1968	    if (needed->obj == NULL || donelist_check(&donelist, needed->obj))
1969		continue;
1970	    objlist_push_tail(&needed->obj->dldags, root);
1971	    objlist_push_tail(&root->dagmembers, needed->obj);
1972	}
1973    }
1974    root->dag_inited = true;
1975}
1976
1977static void
1978init_marker(Obj_Entry *marker)
1979{
1980
1981	bzero(marker, sizeof(*marker));
1982	marker->marker = true;
1983}
1984
1985Obj_Entry *
1986globallist_curr(const Obj_Entry *obj)
1987{
1988
1989	for (;;) {
1990		if (obj == NULL)
1991			return (NULL);
1992		if (!obj->marker)
1993			return (__DECONST(Obj_Entry *, obj));
1994		obj = TAILQ_PREV(obj, obj_entry_q, next);
1995	}
1996}
1997
1998Obj_Entry *
1999globallist_next(const Obj_Entry *obj)
2000{
2001
2002	for (;;) {
2003		obj = TAILQ_NEXT(obj, next);
2004		if (obj == NULL)
2005			return (NULL);
2006		if (!obj->marker)
2007			return (__DECONST(Obj_Entry *, obj));
2008	}
2009}
2010
2011/* Prevent the object from being unmapped while the bind lock is dropped. */
2012static void
2013hold_object(Obj_Entry *obj)
2014{
2015
2016	obj->holdcount++;
2017}
2018
2019static void
2020unhold_object(Obj_Entry *obj)
2021{
2022
2023	assert(obj->holdcount > 0);
2024	if (--obj->holdcount == 0 && obj->unholdfree)
2025		release_object(obj);
2026}
2027
2028static void
2029process_z(Obj_Entry *root)
2030{
2031	const Objlist_Entry *elm;
2032	Obj_Entry *obj;
2033
2034	/*
2035	 * Walk over object DAG and process every dependent object
2036	 * that is marked as DF_1_NODELETE or DF_1_GLOBAL. They need
2037	 * to grow their own DAG.
2038	 *
2039	 * For DF_1_GLOBAL, DAG is required for symbol lookups in
2040	 * symlook_global() to work.
2041	 *
2042	 * For DF_1_NODELETE, the DAG should have its reference upped.
2043	 */
2044	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2045		obj = elm->obj;
2046		if (obj == NULL)
2047			continue;
2048		if (obj->z_nodelete && !obj->ref_nodel) {
2049			dbg("obj %s -z nodelete", obj->path);
2050			init_dag(obj);
2051			ref_dag(obj);
2052			obj->ref_nodel = true;
2053		}
2054		if (obj->z_global && objlist_find(&list_global, obj) == NULL) {
2055			dbg("obj %s -z global", obj->path);
2056			objlist_push_tail(&list_global, obj);
2057			init_dag(obj);
2058		}
2059	}
2060}
2061/*
2062 * Initialize the dynamic linker.  The argument is the address at which
2063 * the dynamic linker has been mapped into memory.  The primary task of
2064 * this function is to relocate the dynamic linker.
2065 */
2066static void
2067init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
2068{
2069    Obj_Entry objtmp;	/* Temporary rtld object */
2070    const Elf_Ehdr *ehdr;
2071    const Elf_Dyn *dyn_rpath;
2072    const Elf_Dyn *dyn_soname;
2073    const Elf_Dyn *dyn_runpath;
2074
2075#ifdef RTLD_INIT_PAGESIZES_EARLY
2076    /* The page size is required by the dynamic memory allocator. */
2077    init_pagesizes(aux_info);
2078#endif
2079
2080    /*
2081     * Conjure up an Obj_Entry structure for the dynamic linker.
2082     *
2083     * The "path" member can't be initialized yet because string constants
2084     * cannot yet be accessed. Below we will set it correctly.
2085     */
2086    memset(&objtmp, 0, sizeof(objtmp));
2087    objtmp.path = NULL;
2088    objtmp.rtld = true;
2089    objtmp.mapbase = mapbase;
2090#ifdef PIC
2091    objtmp.relocbase = mapbase;
2092#endif
2093
2094    objtmp.dynamic = rtld_dynamic(&objtmp);
2095    digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname, &dyn_runpath);
2096    assert(objtmp.needed == NULL);
2097#if !defined(__mips__)
2098    /* MIPS has a bogus DT_TEXTREL. */
2099    assert(!objtmp.textrel);
2100#endif
2101    /*
2102     * Temporarily put the dynamic linker entry into the object list, so
2103     * that symbols can be found.
2104     */
2105    relocate_objects(&objtmp, true, &objtmp, 0, NULL);
2106
2107    ehdr = (Elf_Ehdr *)mapbase;
2108    objtmp.phdr = (Elf_Phdr *)((char *)mapbase + ehdr->e_phoff);
2109    objtmp.phsize = ehdr->e_phnum * sizeof(objtmp.phdr[0]);
2110
2111    /* Initialize the object list. */
2112    TAILQ_INIT(&obj_list);
2113
2114    /* Now that non-local variables can be accesses, copy out obj_rtld. */
2115    memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
2116
2117#ifndef RTLD_INIT_PAGESIZES_EARLY
2118    /* The page size is required by the dynamic memory allocator. */
2119    init_pagesizes(aux_info);
2120#endif
2121
2122    if (aux_info[AT_OSRELDATE] != NULL)
2123	    osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
2124
2125    digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname, dyn_runpath);
2126
2127    /* Replace the path with a dynamically allocated copy. */
2128    obj_rtld.path = xstrdup(ld_path_rtld);
2129
2130    r_debug.r_brk = r_debug_state;
2131    r_debug.r_state = RT_CONSISTENT;
2132}
2133
2134/*
2135 * Retrieve the array of supported page sizes.  The kernel provides the page
2136 * sizes in increasing order.
2137 */
2138static void
2139init_pagesizes(Elf_Auxinfo **aux_info)
2140{
2141	static size_t psa[MAXPAGESIZES];
2142	int mib[2];
2143	size_t len, size;
2144
2145	if (aux_info[AT_PAGESIZES] != NULL && aux_info[AT_PAGESIZESLEN] !=
2146	    NULL) {
2147		size = aux_info[AT_PAGESIZESLEN]->a_un.a_val;
2148		pagesizes = aux_info[AT_PAGESIZES]->a_un.a_ptr;
2149	} else {
2150		len = 2;
2151		if (sysctlnametomib("hw.pagesizes", mib, &len) == 0)
2152			size = sizeof(psa);
2153		else {
2154			/* As a fallback, retrieve the base page size. */
2155			size = sizeof(psa[0]);
2156			if (aux_info[AT_PAGESZ] != NULL) {
2157				psa[0] = aux_info[AT_PAGESZ]->a_un.a_val;
2158				goto psa_filled;
2159			} else {
2160				mib[0] = CTL_HW;
2161				mib[1] = HW_PAGESIZE;
2162				len = 2;
2163			}
2164		}
2165		if (sysctl(mib, len, psa, &size, NULL, 0) == -1) {
2166			_rtld_error("sysctl for hw.pagesize(s) failed");
2167			rtld_die();
2168		}
2169psa_filled:
2170		pagesizes = psa;
2171	}
2172	npagesizes = size / sizeof(pagesizes[0]);
2173	/* Discard any invalid entries at the end of the array. */
2174	while (npagesizes > 0 && pagesizes[npagesizes - 1] == 0)
2175		npagesizes--;
2176}
2177
2178/*
2179 * Add the init functions from a needed object list (and its recursive
2180 * needed objects) to "list".  This is not used directly; it is a helper
2181 * function for initlist_add_objects().  The write lock must be held
2182 * when this function is called.
2183 */
2184static void
2185initlist_add_neededs(Needed_Entry *needed, Objlist *list)
2186{
2187    /* Recursively process the successor needed objects. */
2188    if (needed->next != NULL)
2189	initlist_add_neededs(needed->next, list);
2190
2191    /* Process the current needed object. */
2192    if (needed->obj != NULL)
2193	initlist_add_objects(needed->obj, needed->obj, list);
2194}
2195
2196/*
2197 * Scan all of the DAGs rooted in the range of objects from "obj" to
2198 * "tail" and add their init functions to "list".  This recurses over
2199 * the DAGs and ensure the proper init ordering such that each object's
2200 * needed libraries are initialized before the object itself.  At the
2201 * same time, this function adds the objects to the global finalization
2202 * list "list_fini" in the opposite order.  The write lock must be
2203 * held when this function is called.
2204 */
2205static void
2206initlist_add_objects(Obj_Entry *obj, Obj_Entry *tail, Objlist *list)
2207{
2208    Obj_Entry *nobj;
2209
2210    if (obj->init_scanned || obj->init_done)
2211	return;
2212    obj->init_scanned = true;
2213
2214    /* Recursively process the successor objects. */
2215    nobj = globallist_next(obj);
2216    if (nobj != NULL && obj != tail)
2217	initlist_add_objects(nobj, tail, list);
2218
2219    /* Recursively process the needed objects. */
2220    if (obj->needed != NULL)
2221	initlist_add_neededs(obj->needed, list);
2222    if (obj->needed_filtees != NULL)
2223	initlist_add_neededs(obj->needed_filtees, list);
2224    if (obj->needed_aux_filtees != NULL)
2225	initlist_add_neededs(obj->needed_aux_filtees, list);
2226
2227    /* Add the object to the init list. */
2228    objlist_push_tail(list, obj);
2229
2230    /* Add the object to the global fini list in the reverse order. */
2231    if ((obj->fini != (Elf_Addr)NULL || obj->fini_array != (Elf_Addr)NULL)
2232      && !obj->on_fini_list) {
2233	objlist_push_head(&list_fini, obj);
2234	obj->on_fini_list = true;
2235    }
2236}
2237
2238#ifndef FPTR_TARGET
2239#define FPTR_TARGET(f)	((Elf_Addr) (f))
2240#endif
2241
2242static void
2243free_needed_filtees(Needed_Entry *n, RtldLockState *lockstate)
2244{
2245    Needed_Entry *needed, *needed1;
2246
2247    for (needed = n; needed != NULL; needed = needed->next) {
2248	if (needed->obj != NULL) {
2249	    dlclose_locked(needed->obj, lockstate);
2250	    needed->obj = NULL;
2251	}
2252    }
2253    for (needed = n; needed != NULL; needed = needed1) {
2254	needed1 = needed->next;
2255	free(needed);
2256    }
2257}
2258
2259static void
2260unload_filtees(Obj_Entry *obj, RtldLockState *lockstate)
2261{
2262
2263	free_needed_filtees(obj->needed_filtees, lockstate);
2264	obj->needed_filtees = NULL;
2265	free_needed_filtees(obj->needed_aux_filtees, lockstate);
2266	obj->needed_aux_filtees = NULL;
2267	obj->filtees_loaded = false;
2268}
2269
2270static void
2271load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags,
2272    RtldLockState *lockstate)
2273{
2274
2275    for (; needed != NULL; needed = needed->next) {
2276	needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj,
2277	  flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) |
2278	  RTLD_LOCAL, lockstate);
2279    }
2280}
2281
2282static void
2283load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
2284{
2285
2286    lock_restart_for_upgrade(lockstate);
2287    if (!obj->filtees_loaded) {
2288	load_filtee1(obj, obj->needed_filtees, flags, lockstate);
2289	load_filtee1(obj, obj->needed_aux_filtees, flags, lockstate);
2290	obj->filtees_loaded = true;
2291    }
2292}
2293
2294static int
2295process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
2296{
2297    Obj_Entry *obj1;
2298
2299    for (; needed != NULL; needed = needed->next) {
2300	obj1 = needed->obj = load_object(obj->strtab + needed->name, -1, obj,
2301	  flags & ~RTLD_LO_NOLOAD);
2302	if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0)
2303	    return (-1);
2304    }
2305    return (0);
2306}
2307
2308/*
2309 * Given a shared object, traverse its list of needed objects, and load
2310 * each of them.  Returns 0 on success.  Generates an error message and
2311 * returns -1 on failure.
2312 */
2313static int
2314load_needed_objects(Obj_Entry *first, int flags)
2315{
2316    Obj_Entry *obj;
2317
2318    for (obj = first; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
2319	if (obj->marker)
2320	    continue;
2321	if (process_needed(obj, obj->needed, flags) == -1)
2322	    return (-1);
2323    }
2324    return (0);
2325}
2326
2327static int
2328load_preload_objects(void)
2329{
2330    char *p = ld_preload;
2331    Obj_Entry *obj;
2332    static const char delim[] = " \t:;";
2333
2334    if (p == NULL)
2335	return 0;
2336
2337    p += strspn(p, delim);
2338    while (*p != '\0') {
2339	size_t len = strcspn(p, delim);
2340	char savech;
2341
2342	savech = p[len];
2343	p[len] = '\0';
2344	obj = load_object(p, -1, NULL, 0);
2345	if (obj == NULL)
2346	    return -1;	/* XXX - cleanup */
2347	obj->z_interpose = true;
2348	p[len] = savech;
2349	p += len;
2350	p += strspn(p, delim);
2351    }
2352    LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
2353    return 0;
2354}
2355
2356static const char *
2357printable_path(const char *path)
2358{
2359
2360	return (path == NULL ? "<unknown>" : path);
2361}
2362
2363/*
2364 * Load a shared object into memory, if it is not already loaded.  The
2365 * object may be specified by name or by user-supplied file descriptor
2366 * fd_u. In the later case, the fd_u descriptor is not closed, but its
2367 * duplicate is.
2368 *
2369 * Returns a pointer to the Obj_Entry for the object.  Returns NULL
2370 * on failure.
2371 */
2372static Obj_Entry *
2373load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags)
2374{
2375    Obj_Entry *obj;
2376    int fd;
2377    struct stat sb;
2378    char *path;
2379
2380    fd = -1;
2381    if (name != NULL) {
2382	TAILQ_FOREACH(obj, &obj_list, next) {
2383	    if (obj->marker || obj->doomed)
2384		continue;
2385	    if (object_match_name(obj, name))
2386		return (obj);
2387	}
2388
2389	path = find_library(name, refobj, &fd);
2390	if (path == NULL)
2391	    return (NULL);
2392    } else
2393	path = NULL;
2394
2395    if (fd >= 0) {
2396	/*
2397	 * search_library_pathfds() opens a fresh file descriptor for the
2398	 * library, so there is no need to dup().
2399	 */
2400    } else if (fd_u == -1) {
2401	/*
2402	 * If we didn't find a match by pathname, or the name is not
2403	 * supplied, open the file and check again by device and inode.
2404	 * This avoids false mismatches caused by multiple links or ".."
2405	 * in pathnames.
2406	 *
2407	 * To avoid a race, we open the file and use fstat() rather than
2408	 * using stat().
2409	 */
2410	if ((fd = open(path, O_RDONLY | O_CLOEXEC | O_VERIFY)) == -1) {
2411	    _rtld_error("Cannot open \"%s\"", path);
2412	    free(path);
2413	    return (NULL);
2414	}
2415    } else {
2416	fd = fcntl(fd_u, F_DUPFD_CLOEXEC, 0);
2417	if (fd == -1) {
2418	    _rtld_error("Cannot dup fd");
2419	    free(path);
2420	    return (NULL);
2421	}
2422    }
2423    if (fstat(fd, &sb) == -1) {
2424	_rtld_error("Cannot fstat \"%s\"", printable_path(path));
2425	close(fd);
2426	free(path);
2427	return NULL;
2428    }
2429    TAILQ_FOREACH(obj, &obj_list, next) {
2430	if (obj->marker || obj->doomed)
2431	    continue;
2432	if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
2433	    break;
2434    }
2435    if (obj != NULL && name != NULL) {
2436	object_add_name(obj, name);
2437	free(path);
2438	close(fd);
2439	return obj;
2440    }
2441    if (flags & RTLD_LO_NOLOAD) {
2442	free(path);
2443	close(fd);
2444	return (NULL);
2445    }
2446
2447    /* First use of this object, so we must map it in */
2448    obj = do_load_object(fd, name, path, &sb, flags);
2449    if (obj == NULL)
2450	free(path);
2451    close(fd);
2452
2453    return obj;
2454}
2455
2456static Obj_Entry *
2457do_load_object(int fd, const char *name, char *path, struct stat *sbp,
2458  int flags)
2459{
2460    Obj_Entry *obj;
2461    struct statfs fs;
2462
2463    /*
2464     * but first, make sure that environment variables haven't been
2465     * used to circumvent the noexec flag on a filesystem.
2466     */
2467    if (dangerous_ld_env) {
2468	if (fstatfs(fd, &fs) != 0) {
2469	    _rtld_error("Cannot fstatfs \"%s\"", printable_path(path));
2470	    return NULL;
2471	}
2472	if (fs.f_flags & MNT_NOEXEC) {
2473	    _rtld_error("Cannot execute objects on %s\n", fs.f_mntonname);
2474	    return NULL;
2475	}
2476    }
2477    dbg("loading \"%s\"", printable_path(path));
2478    obj = map_object(fd, printable_path(path), sbp);
2479    if (obj == NULL)
2480        return NULL;
2481
2482    /*
2483     * If DT_SONAME is present in the object, digest_dynamic2 already
2484     * added it to the object names.
2485     */
2486    if (name != NULL)
2487	object_add_name(obj, name);
2488    obj->path = path;
2489    digest_dynamic(obj, 0);
2490    dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", obj->path,
2491	obj->valid_hash_sysv, obj->valid_hash_gnu, obj->dynsymcount);
2492    if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
2493      RTLD_LO_DLOPEN) {
2494	dbg("refusing to load non-loadable \"%s\"", obj->path);
2495	_rtld_error("Cannot dlopen non-loadable %s", obj->path);
2496	munmap(obj->mapbase, obj->mapsize);
2497	obj_free(obj);
2498	return (NULL);
2499    }
2500
2501    obj->dlopened = (flags & RTLD_LO_DLOPEN) != 0;
2502    TAILQ_INSERT_TAIL(&obj_list, obj, next);
2503    obj_count++;
2504    obj_loads++;
2505    linkmap_add(obj);	/* for GDB & dlinfo() */
2506    max_stack_flags |= obj->stack_flags;
2507
2508    dbg("  %p .. %p: %s", obj->mapbase,
2509         obj->mapbase + obj->mapsize - 1, obj->path);
2510    if (obj->textrel)
2511	dbg("  WARNING: %s has impure text", obj->path);
2512    LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
2513	obj->path);
2514
2515    return obj;
2516}
2517
2518static Obj_Entry *
2519obj_from_addr(const void *addr)
2520{
2521    Obj_Entry *obj;
2522
2523    TAILQ_FOREACH(obj, &obj_list, next) {
2524	if (obj->marker)
2525	    continue;
2526	if (addr < (void *) obj->mapbase)
2527	    continue;
2528	if (addr < (void *) (obj->mapbase + obj->mapsize))
2529	    return obj;
2530    }
2531    return NULL;
2532}
2533
2534static void
2535preinit_main(void)
2536{
2537    Elf_Addr *preinit_addr;
2538    int index;
2539
2540    preinit_addr = (Elf_Addr *)obj_main->preinit_array;
2541    if (preinit_addr == NULL)
2542	return;
2543
2544    for (index = 0; index < obj_main->preinit_array_num; index++) {
2545	if (preinit_addr[index] != 0 && preinit_addr[index] != 1) {
2546	    dbg("calling preinit function for %s at %p", obj_main->path,
2547	      (void *)preinit_addr[index]);
2548	    LD_UTRACE(UTRACE_INIT_CALL, obj_main, (void *)preinit_addr[index],
2549	      0, 0, obj_main->path);
2550	    call_init_pointer(obj_main, preinit_addr[index]);
2551	}
2552    }
2553}
2554
2555/*
2556 * Call the finalization functions for each of the objects in "list"
2557 * belonging to the DAG of "root" and referenced once. If NULL "root"
2558 * is specified, every finalization function will be called regardless
2559 * of the reference count and the list elements won't be freed. All of
2560 * the objects are expected to have non-NULL fini functions.
2561 */
2562static void
2563objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
2564{
2565    Objlist_Entry *elm;
2566    char *saved_msg;
2567    Elf_Addr *fini_addr;
2568    int index;
2569
2570    assert(root == NULL || root->refcount == 1);
2571
2572    if (root != NULL)
2573	root->doomed = true;
2574
2575    /*
2576     * Preserve the current error message since a fini function might
2577     * call into the dynamic linker and overwrite it.
2578     */
2579    saved_msg = errmsg_save();
2580    do {
2581	STAILQ_FOREACH(elm, list, link) {
2582	    if (root != NULL && (elm->obj->refcount != 1 ||
2583	      objlist_find(&root->dagmembers, elm->obj) == NULL))
2584		continue;
2585	    /* Remove object from fini list to prevent recursive invocation. */
2586	    STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2587	    /* Ensure that new references cannot be acquired. */
2588	    elm->obj->doomed = true;
2589
2590	    hold_object(elm->obj);
2591	    lock_release(rtld_bind_lock, lockstate);
2592	    /*
2593	     * It is legal to have both DT_FINI and DT_FINI_ARRAY defined.
2594	     * When this happens, DT_FINI_ARRAY is processed first.
2595	     */
2596	    fini_addr = (Elf_Addr *)elm->obj->fini_array;
2597	    if (fini_addr != NULL && elm->obj->fini_array_num > 0) {
2598		for (index = elm->obj->fini_array_num - 1; index >= 0;
2599		  index--) {
2600		    if (fini_addr[index] != 0 && fini_addr[index] != 1) {
2601			dbg("calling fini function for %s at %p",
2602			    elm->obj->path, (void *)fini_addr[index]);
2603			LD_UTRACE(UTRACE_FINI_CALL, elm->obj,
2604			    (void *)fini_addr[index], 0, 0, elm->obj->path);
2605			call_initfini_pointer(elm->obj, fini_addr[index]);
2606		    }
2607		}
2608	    }
2609	    if (elm->obj->fini != (Elf_Addr)NULL) {
2610		dbg("calling fini function for %s at %p", elm->obj->path,
2611		    (void *)elm->obj->fini);
2612		LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini,
2613		    0, 0, elm->obj->path);
2614		call_initfini_pointer(elm->obj, elm->obj->fini);
2615	    }
2616	    wlock_acquire(rtld_bind_lock, lockstate);
2617	    unhold_object(elm->obj);
2618	    /* No need to free anything if process is going down. */
2619	    if (root != NULL)
2620	    	free(elm);
2621	    /*
2622	     * We must restart the list traversal after every fini call
2623	     * because a dlclose() call from the fini function or from
2624	     * another thread might have modified the reference counts.
2625	     */
2626	    break;
2627	}
2628    } while (elm != NULL);
2629    errmsg_restore(saved_msg);
2630}
2631
2632/*
2633 * Call the initialization functions for each of the objects in
2634 * "list".  All of the objects are expected to have non-NULL init
2635 * functions.
2636 */
2637static void
2638objlist_call_init(Objlist *list, RtldLockState *lockstate)
2639{
2640    Objlist_Entry *elm;
2641    Obj_Entry *obj;
2642    char *saved_msg;
2643    Elf_Addr *init_addr;
2644    int index;
2645
2646    /*
2647     * Clean init_scanned flag so that objects can be rechecked and
2648     * possibly initialized earlier if any of vectors called below
2649     * cause the change by using dlopen.
2650     */
2651    TAILQ_FOREACH(obj, &obj_list, next) {
2652	if (obj->marker)
2653	    continue;
2654	obj->init_scanned = false;
2655    }
2656
2657    /*
2658     * Preserve the current error message since an init function might
2659     * call into the dynamic linker and overwrite it.
2660     */
2661    saved_msg = errmsg_save();
2662    STAILQ_FOREACH(elm, list, link) {
2663	if (elm->obj->init_done) /* Initialized early. */
2664	    continue;
2665	/*
2666	 * Race: other thread might try to use this object before current
2667	 * one completes the initialization. Not much can be done here
2668	 * without better locking.
2669	 */
2670	elm->obj->init_done = true;
2671	hold_object(elm->obj);
2672	lock_release(rtld_bind_lock, lockstate);
2673
2674        /*
2675         * It is legal to have both DT_INIT and DT_INIT_ARRAY defined.
2676         * When this happens, DT_INIT is processed first.
2677         */
2678	if (elm->obj->init != (Elf_Addr)NULL) {
2679	    dbg("calling init function for %s at %p", elm->obj->path,
2680	        (void *)elm->obj->init);
2681	    LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init,
2682	        0, 0, elm->obj->path);
2683	    call_initfini_pointer(elm->obj, elm->obj->init);
2684	}
2685	init_addr = (Elf_Addr *)elm->obj->init_array;
2686	if (init_addr != NULL) {
2687	    for (index = 0; index < elm->obj->init_array_num; index++) {
2688		if (init_addr[index] != 0 && init_addr[index] != 1) {
2689		    dbg("calling init function for %s at %p", elm->obj->path,
2690			(void *)init_addr[index]);
2691		    LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
2692			(void *)init_addr[index], 0, 0, elm->obj->path);
2693		    call_init_pointer(elm->obj, init_addr[index]);
2694		}
2695	    }
2696	}
2697	wlock_acquire(rtld_bind_lock, lockstate);
2698	unhold_object(elm->obj);
2699    }
2700    errmsg_restore(saved_msg);
2701}
2702
2703static void
2704objlist_clear(Objlist *list)
2705{
2706    Objlist_Entry *elm;
2707
2708    while (!STAILQ_EMPTY(list)) {
2709	elm = STAILQ_FIRST(list);
2710	STAILQ_REMOVE_HEAD(list, link);
2711	free(elm);
2712    }
2713}
2714
2715static Objlist_Entry *
2716objlist_find(Objlist *list, const Obj_Entry *obj)
2717{
2718    Objlist_Entry *elm;
2719
2720    STAILQ_FOREACH(elm, list, link)
2721	if (elm->obj == obj)
2722	    return elm;
2723    return NULL;
2724}
2725
2726static void
2727objlist_init(Objlist *list)
2728{
2729    STAILQ_INIT(list);
2730}
2731
2732static void
2733objlist_push_head(Objlist *list, Obj_Entry *obj)
2734{
2735    Objlist_Entry *elm;
2736
2737    elm = NEW(Objlist_Entry);
2738    elm->obj = obj;
2739    STAILQ_INSERT_HEAD(list, elm, link);
2740}
2741
2742static void
2743objlist_push_tail(Objlist *list, Obj_Entry *obj)
2744{
2745    Objlist_Entry *elm;
2746
2747    elm = NEW(Objlist_Entry);
2748    elm->obj = obj;
2749    STAILQ_INSERT_TAIL(list, elm, link);
2750}
2751
2752static void
2753objlist_put_after(Objlist *list, Obj_Entry *listobj, Obj_Entry *obj)
2754{
2755	Objlist_Entry *elm, *listelm;
2756
2757	STAILQ_FOREACH(listelm, list, link) {
2758		if (listelm->obj == listobj)
2759			break;
2760	}
2761	elm = NEW(Objlist_Entry);
2762	elm->obj = obj;
2763	if (listelm != NULL)
2764		STAILQ_INSERT_AFTER(list, listelm, elm, link);
2765	else
2766		STAILQ_INSERT_TAIL(list, elm, link);
2767}
2768
2769static void
2770objlist_remove(Objlist *list, Obj_Entry *obj)
2771{
2772    Objlist_Entry *elm;
2773
2774    if ((elm = objlist_find(list, obj)) != NULL) {
2775	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2776	free(elm);
2777    }
2778}
2779
2780/*
2781 * Relocate dag rooted in the specified object.
2782 * Returns 0 on success, or -1 on failure.
2783 */
2784
2785static int
2786relocate_object_dag(Obj_Entry *root, bool bind_now, Obj_Entry *rtldobj,
2787    int flags, RtldLockState *lockstate)
2788{
2789	Objlist_Entry *elm;
2790	int error;
2791
2792	error = 0;
2793	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2794		error = relocate_object(elm->obj, bind_now, rtldobj, flags,
2795		    lockstate);
2796		if (error == -1)
2797			break;
2798	}
2799	return (error);
2800}
2801
2802/*
2803 * Prepare for, or clean after, relocating an object marked with
2804 * DT_TEXTREL or DF_TEXTREL.  Before relocating, all read-only
2805 * segments are remapped read-write.  After relocations are done, the
2806 * segment's permissions are returned back to the modes specified in
2807 * the phdrs.  If any relocation happened, or always for wired
2808 * program, COW is triggered.
2809 */
2810static int
2811reloc_textrel_prot(Obj_Entry *obj, bool before)
2812{
2813	const Elf_Phdr *ph;
2814	void *base;
2815	size_t l, sz;
2816	int prot;
2817
2818	for (l = obj->phsize / sizeof(*ph), ph = obj->phdr; l > 0;
2819	    l--, ph++) {
2820		if (ph->p_type != PT_LOAD || (ph->p_flags & PF_W) != 0)
2821			continue;
2822		base = obj->relocbase + trunc_page(ph->p_vaddr);
2823		sz = round_page(ph->p_vaddr + ph->p_filesz) -
2824		    trunc_page(ph->p_vaddr);
2825		prot = convert_prot(ph->p_flags) | (before ? PROT_WRITE : 0);
2826		if (mprotect(base, sz, prot) == -1) {
2827			_rtld_error("%s: Cannot write-%sable text segment: %s",
2828			    obj->path, before ? "en" : "dis",
2829			    rtld_strerror(errno));
2830			return (-1);
2831		}
2832	}
2833	return (0);
2834}
2835
2836/*
2837 * Relocate single object.
2838 * Returns 0 on success, or -1 on failure.
2839 */
2840static int
2841relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
2842    int flags, RtldLockState *lockstate)
2843{
2844
2845	if (obj->relocated)
2846		return (0);
2847	obj->relocated = true;
2848	if (obj != rtldobj)
2849		dbg("relocating \"%s\"", obj->path);
2850
2851	if (obj->symtab == NULL || obj->strtab == NULL ||
2852	    !(obj->valid_hash_sysv || obj->valid_hash_gnu)) {
2853		_rtld_error("%s: Shared object has no run-time symbol table",
2854			    obj->path);
2855		return (-1);
2856	}
2857
2858	/* There are relocations to the write-protected text segment. */
2859	if (obj->textrel && reloc_textrel_prot(obj, true) != 0)
2860		return (-1);
2861
2862	/* Process the non-PLT non-IFUNC relocations. */
2863	if (reloc_non_plt(obj, rtldobj, flags, lockstate))
2864		return (-1);
2865
2866	/* Re-protected the text segment. */
2867	if (obj->textrel && reloc_textrel_prot(obj, false) != 0)
2868		return (-1);
2869
2870	/* Set the special PLT or GOT entries. */
2871	init_pltgot(obj);
2872
2873	/* Process the PLT relocations. */
2874	if (reloc_plt(obj) == -1)
2875		return (-1);
2876	/* Relocate the jump slots if we are doing immediate binding. */
2877	if ((obj->bind_now || bind_now) && reloc_jmpslots(obj, flags,
2878	    lockstate) == -1)
2879		return (-1);
2880
2881	if (!obj->mainprog && obj_enforce_relro(obj) == -1)
2882		return (-1);
2883
2884	/*
2885	 * Set up the magic number and version in the Obj_Entry.  These
2886	 * were checked in the crt1.o from the original ElfKit, so we
2887	 * set them for backward compatibility.
2888	 */
2889	obj->magic = RTLD_MAGIC;
2890	obj->version = RTLD_VERSION;
2891
2892	return (0);
2893}
2894
2895/*
2896 * Relocate newly-loaded shared objects.  The argument is a pointer to
2897 * the Obj_Entry for the first such object.  All objects from the first
2898 * to the end of the list of objects are relocated.  Returns 0 on success,
2899 * or -1 on failure.
2900 */
2901static int
2902relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj,
2903    int flags, RtldLockState *lockstate)
2904{
2905	Obj_Entry *obj;
2906	int error;
2907
2908	for (error = 0, obj = first;  obj != NULL;
2909	    obj = TAILQ_NEXT(obj, next)) {
2910		if (obj->marker)
2911			continue;
2912		error = relocate_object(obj, bind_now, rtldobj, flags,
2913		    lockstate);
2914		if (error == -1)
2915			break;
2916	}
2917	return (error);
2918}
2919
2920/*
2921 * The handling of R_MACHINE_IRELATIVE relocations and jumpslots
2922 * referencing STT_GNU_IFUNC symbols is postponed till the other
2923 * relocations are done.  The indirect functions specified as
2924 * ifunc are allowed to call other symbols, so we need to have
2925 * objects relocated before asking for resolution from indirects.
2926 *
2927 * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion,
2928 * instead of the usual lazy handling of PLT slots.  It is
2929 * consistent with how GNU does it.
2930 */
2931static int
2932resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags,
2933    RtldLockState *lockstate)
2934{
2935
2936	if (obj->ifuncs_resolved)
2937		return (0);
2938	obj->ifuncs_resolved = true;
2939	if (!obj->irelative && !((obj->bind_now || bind_now) && obj->gnu_ifunc))
2940		return (0);
2941	if (obj_disable_relro(obj) == -1 ||
2942	    (obj->irelative && reloc_iresolve(obj, lockstate) == -1) ||
2943	    ((obj->bind_now || bind_now) && obj->gnu_ifunc &&
2944	    reloc_gnu_ifunc(obj, flags, lockstate) == -1) ||
2945	    obj_enforce_relro(obj) == -1)
2946		return (-1);
2947	return (0);
2948}
2949
2950static int
2951initlist_objects_ifunc(Objlist *list, bool bind_now, int flags,
2952    RtldLockState *lockstate)
2953{
2954	Objlist_Entry *elm;
2955	Obj_Entry *obj;
2956
2957	STAILQ_FOREACH(elm, list, link) {
2958		obj = elm->obj;
2959		if (obj->marker)
2960			continue;
2961		if (resolve_object_ifunc(obj, bind_now, flags,
2962		    lockstate) == -1)
2963			return (-1);
2964	}
2965	return (0);
2966}
2967
2968/*
2969 * Cleanup procedure.  It will be called (by the atexit mechanism) just
2970 * before the process exits.
2971 */
2972static void
2973rtld_exit(void)
2974{
2975    RtldLockState lockstate;
2976
2977    wlock_acquire(rtld_bind_lock, &lockstate);
2978    dbg("rtld_exit()");
2979    objlist_call_fini(&list_fini, NULL, &lockstate);
2980    /* No need to remove the items from the list, since we are exiting. */
2981    if (!libmap_disable)
2982        lm_fini();
2983    lock_release(rtld_bind_lock, &lockstate);
2984}
2985
2986/*
2987 * Iterate over a search path, translate each element, and invoke the
2988 * callback on the result.
2989 */
2990static void *
2991path_enumerate(const char *path, path_enum_proc callback,
2992    const char *refobj_path, void *arg)
2993{
2994    const char *trans;
2995    if (path == NULL)
2996	return (NULL);
2997
2998    path += strspn(path, ":;");
2999    while (*path != '\0') {
3000	size_t len;
3001	char  *res;
3002
3003	len = strcspn(path, ":;");
3004	trans = lm_findn(refobj_path, path, len);
3005	if (trans)
3006	    res = callback(trans, strlen(trans), arg);
3007	else
3008	    res = callback(path, len, arg);
3009
3010	if (res != NULL)
3011	    return (res);
3012
3013	path += len;
3014	path += strspn(path, ":;");
3015    }
3016
3017    return (NULL);
3018}
3019
3020struct try_library_args {
3021    const char	*name;
3022    size_t	 namelen;
3023    char	*buffer;
3024    size_t	 buflen;
3025    int		 fd;
3026};
3027
3028static void *
3029try_library_path(const char *dir, size_t dirlen, void *param)
3030{
3031    struct try_library_args *arg;
3032    int fd;
3033
3034    arg = param;
3035    if (*dir == '/' || trust) {
3036	char *pathname;
3037
3038	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
3039		return (NULL);
3040
3041	pathname = arg->buffer;
3042	strncpy(pathname, dir, dirlen);
3043	pathname[dirlen] = '/';
3044	strcpy(pathname + dirlen + 1, arg->name);
3045
3046	dbg("  Trying \"%s\"", pathname);
3047	fd = open(pathname, O_RDONLY | O_CLOEXEC | O_VERIFY);
3048	if (fd >= 0) {
3049	    dbg("  Opened \"%s\", fd %d", pathname, fd);
3050	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
3051	    strcpy(pathname, arg->buffer);
3052	    arg->fd = fd;
3053	    return (pathname);
3054	} else {
3055	    dbg("  Failed to open \"%s\": %s",
3056		pathname, rtld_strerror(errno));
3057	}
3058    }
3059    return (NULL);
3060}
3061
3062static char *
3063search_library_path(const char *name, const char *path,
3064    const char *refobj_path, int *fdp)
3065{
3066    char *p;
3067    struct try_library_args arg;
3068
3069    if (path == NULL)
3070	return NULL;
3071
3072    arg.name = name;
3073    arg.namelen = strlen(name);
3074    arg.buffer = xmalloc(PATH_MAX);
3075    arg.buflen = PATH_MAX;
3076    arg.fd = -1;
3077
3078    p = path_enumerate(path, try_library_path, refobj_path, &arg);
3079    *fdp = arg.fd;
3080
3081    free(arg.buffer);
3082
3083    return (p);
3084}
3085
3086
3087/*
3088 * Finds the library with the given name using the directory descriptors
3089 * listed in the LD_LIBRARY_PATH_FDS environment variable.
3090 *
3091 * Returns a freshly-opened close-on-exec file descriptor for the library,
3092 * or -1 if the library cannot be found.
3093 */
3094static char *
3095search_library_pathfds(const char *name, const char *path, int *fdp)
3096{
3097	char *envcopy, *fdstr, *found, *last_token;
3098	size_t len;
3099	int dirfd, fd;
3100
3101	dbg("%s('%s', '%s', fdp)", __func__, name, path);
3102
3103	/* Don't load from user-specified libdirs into setuid binaries. */
3104	if (!trust)
3105		return (NULL);
3106
3107	/* We can't do anything if LD_LIBRARY_PATH_FDS isn't set. */
3108	if (path == NULL)
3109		return (NULL);
3110
3111	/* LD_LIBRARY_PATH_FDS only works with relative paths. */
3112	if (name[0] == '/') {
3113		dbg("Absolute path (%s) passed to %s", name, __func__);
3114		return (NULL);
3115	}
3116
3117	/*
3118	 * Use strtok_r() to walk the FD:FD:FD list.  This requires a local
3119	 * copy of the path, as strtok_r rewrites separator tokens
3120	 * with '\0'.
3121	 */
3122	found = NULL;
3123	envcopy = xstrdup(path);
3124	for (fdstr = strtok_r(envcopy, ":", &last_token); fdstr != NULL;
3125	    fdstr = strtok_r(NULL, ":", &last_token)) {
3126		dirfd = parse_integer(fdstr);
3127		if (dirfd < 0) {
3128			_rtld_error("failed to parse directory FD: '%s'",
3129				fdstr);
3130			break;
3131		}
3132		fd = __sys_openat(dirfd, name, O_RDONLY | O_CLOEXEC | O_VERIFY);
3133		if (fd >= 0) {
3134			*fdp = fd;
3135			len = strlen(fdstr) + strlen(name) + 3;
3136			found = xmalloc(len);
3137			if (rtld_snprintf(found, len, "#%d/%s", dirfd, name) < 0) {
3138				_rtld_error("error generating '%d/%s'",
3139				    dirfd, name);
3140				rtld_die();
3141			}
3142			dbg("open('%s') => %d", found, fd);
3143			break;
3144		}
3145	}
3146	free(envcopy);
3147
3148	return (found);
3149}
3150
3151
3152int
3153dlclose(void *handle)
3154{
3155	RtldLockState lockstate;
3156	int error;
3157
3158	wlock_acquire(rtld_bind_lock, &lockstate);
3159	error = dlclose_locked(handle, &lockstate);
3160	lock_release(rtld_bind_lock, &lockstate);
3161	return (error);
3162}
3163
3164static int
3165dlclose_locked(void *handle, RtldLockState *lockstate)
3166{
3167    Obj_Entry *root;
3168
3169    root = dlcheck(handle);
3170    if (root == NULL)
3171	return -1;
3172    LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
3173	root->path);
3174
3175    /* Unreference the object and its dependencies. */
3176    root->dl_refcount--;
3177
3178    if (root->refcount == 1) {
3179	/*
3180	 * The object will be no longer referenced, so we must unload it.
3181	 * First, call the fini functions.
3182	 */
3183	objlist_call_fini(&list_fini, root, lockstate);
3184
3185	unref_dag(root);
3186
3187	/* Finish cleaning up the newly-unreferenced objects. */
3188	GDB_STATE(RT_DELETE,&root->linkmap);
3189	unload_object(root, lockstate);
3190	GDB_STATE(RT_CONSISTENT,NULL);
3191    } else
3192	unref_dag(root);
3193
3194    LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
3195    return 0;
3196}
3197
3198char *
3199dlerror(void)
3200{
3201    char *msg = error_message;
3202    error_message = NULL;
3203    return msg;
3204}
3205
3206/*
3207 * This function is deprecated and has no effect.
3208 */
3209void
3210dllockinit(void *context,
3211	   void *(*lock_create)(void *context),
3212           void (*rlock_acquire)(void *lock),
3213           void (*wlock_acquire)(void *lock),
3214           void (*lock_release)(void *lock),
3215           void (*lock_destroy)(void *lock),
3216	   void (*context_destroy)(void *context))
3217{
3218    static void *cur_context;
3219    static void (*cur_context_destroy)(void *);
3220
3221    /* Just destroy the context from the previous call, if necessary. */
3222    if (cur_context_destroy != NULL)
3223	cur_context_destroy(cur_context);
3224    cur_context = context;
3225    cur_context_destroy = context_destroy;
3226}
3227
3228void *
3229dlopen(const char *name, int mode)
3230{
3231
3232	return (rtld_dlopen(name, -1, mode));
3233}
3234
3235void *
3236fdlopen(int fd, int mode)
3237{
3238
3239	return (rtld_dlopen(NULL, fd, mode));
3240}
3241
3242static void *
3243rtld_dlopen(const char *name, int fd, int mode)
3244{
3245    RtldLockState lockstate;
3246    int lo_flags;
3247
3248    LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
3249    ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
3250    if (ld_tracing != NULL) {
3251	rlock_acquire(rtld_bind_lock, &lockstate);
3252	if (sigsetjmp(lockstate.env, 0) != 0)
3253	    lock_upgrade(rtld_bind_lock, &lockstate);
3254	environ = (char **)*get_program_var_addr("environ", &lockstate);
3255	lock_release(rtld_bind_lock, &lockstate);
3256    }
3257    lo_flags = RTLD_LO_DLOPEN;
3258    if (mode & RTLD_NODELETE)
3259	    lo_flags |= RTLD_LO_NODELETE;
3260    if (mode & RTLD_NOLOAD)
3261	    lo_flags |= RTLD_LO_NOLOAD;
3262    if (ld_tracing != NULL)
3263	    lo_flags |= RTLD_LO_TRACE;
3264
3265    return (dlopen_object(name, fd, obj_main, lo_flags,
3266      mode & (RTLD_MODEMASK | RTLD_GLOBAL), NULL));
3267}
3268
3269static void
3270dlopen_cleanup(Obj_Entry *obj, RtldLockState *lockstate)
3271{
3272
3273	obj->dl_refcount--;
3274	unref_dag(obj);
3275	if (obj->refcount == 0)
3276		unload_object(obj, lockstate);
3277}
3278
3279static Obj_Entry *
3280dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags,
3281    int mode, RtldLockState *lockstate)
3282{
3283    Obj_Entry *old_obj_tail;
3284    Obj_Entry *obj;
3285    Objlist initlist;
3286    RtldLockState mlockstate;
3287    int result;
3288
3289    objlist_init(&initlist);
3290
3291    if (lockstate == NULL && !(lo_flags & RTLD_LO_EARLY)) {
3292	wlock_acquire(rtld_bind_lock, &mlockstate);
3293	lockstate = &mlockstate;
3294    }
3295    GDB_STATE(RT_ADD,NULL);
3296
3297    old_obj_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
3298    obj = NULL;
3299    if (name == NULL && fd == -1) {
3300	obj = obj_main;
3301	obj->refcount++;
3302    } else {
3303	obj = load_object(name, fd, refobj, lo_flags);
3304    }
3305
3306    if (obj) {
3307	obj->dl_refcount++;
3308	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
3309	    objlist_push_tail(&list_global, obj);
3310	if (globallist_next(old_obj_tail) != NULL) {
3311	    /* We loaded something new. */
3312	    assert(globallist_next(old_obj_tail) == obj);
3313	    result = 0;
3314	    if ((lo_flags & RTLD_LO_EARLY) == 0 && obj->static_tls &&
3315	      !allocate_tls_offset(obj)) {
3316		_rtld_error("%s: No space available "
3317		  "for static Thread Local Storage", obj->path);
3318		result = -1;
3319	    }
3320	    if (result != -1)
3321		result = load_needed_objects(obj, lo_flags & (RTLD_LO_DLOPEN |
3322		    RTLD_LO_EARLY));
3323	    init_dag(obj);
3324	    ref_dag(obj);
3325	    if (result != -1)
3326		result = rtld_verify_versions(&obj->dagmembers);
3327	    if (result != -1 && ld_tracing)
3328		goto trace;
3329	    if (result == -1 || relocate_object_dag(obj,
3330	      (mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld,
3331	      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3332	      lockstate) == -1) {
3333		dlopen_cleanup(obj, lockstate);
3334		obj = NULL;
3335	    } else if (lo_flags & RTLD_LO_EARLY) {
3336		/*
3337		 * Do not call the init functions for early loaded
3338		 * filtees.  The image is still not initialized enough
3339		 * for them to work.
3340		 *
3341		 * Our object is found by the global object list and
3342		 * will be ordered among all init calls done right
3343		 * before transferring control to main.
3344		 */
3345	    } else {
3346		/* Make list of init functions to call. */
3347		initlist_add_objects(obj, obj, &initlist);
3348	    }
3349	    /*
3350	     * Process all no_delete or global objects here, given
3351	     * them own DAGs to prevent their dependencies from being
3352	     * unloaded.  This has to be done after we have loaded all
3353	     * of the dependencies, so that we do not miss any.
3354	     */
3355	    if (obj != NULL)
3356		process_z(obj);
3357	} else {
3358	    /*
3359	     * Bump the reference counts for objects on this DAG.  If
3360	     * this is the first dlopen() call for the object that was
3361	     * already loaded as a dependency, initialize the dag
3362	     * starting at it.
3363	     */
3364	    init_dag(obj);
3365	    ref_dag(obj);
3366
3367	    if ((lo_flags & RTLD_LO_TRACE) != 0)
3368		goto trace;
3369	}
3370	if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 ||
3371	  obj->z_nodelete) && !obj->ref_nodel) {
3372	    dbg("obj %s nodelete", obj->path);
3373	    ref_dag(obj);
3374	    obj->z_nodelete = obj->ref_nodel = true;
3375	}
3376    }
3377
3378    LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
3379	name);
3380    GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
3381
3382    if ((lo_flags & RTLD_LO_EARLY) == 0) {
3383	map_stacks_exec(lockstate);
3384	if (obj != NULL)
3385	    distribute_static_tls(&initlist, lockstate);
3386    }
3387
3388    if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) == RTLD_NOW,
3389      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3390      lockstate) == -1) {
3391	objlist_clear(&initlist);
3392	dlopen_cleanup(obj, lockstate);
3393	if (lockstate == &mlockstate)
3394	    lock_release(rtld_bind_lock, lockstate);
3395	return (NULL);
3396    }
3397
3398    if (!(lo_flags & RTLD_LO_EARLY)) {
3399	/* Call the init functions. */
3400	objlist_call_init(&initlist, lockstate);
3401    }
3402    objlist_clear(&initlist);
3403    if (lockstate == &mlockstate)
3404	lock_release(rtld_bind_lock, lockstate);
3405    return obj;
3406trace:
3407    trace_loaded_objects(obj);
3408    if (lockstate == &mlockstate)
3409	lock_release(rtld_bind_lock, lockstate);
3410    exit(0);
3411}
3412
3413static void *
3414do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
3415    int flags)
3416{
3417    DoneList donelist;
3418    const Obj_Entry *obj, *defobj;
3419    const Elf_Sym *def;
3420    SymLook req;
3421    RtldLockState lockstate;
3422    tls_index ti;
3423    void *sym;
3424    int res;
3425
3426    def = NULL;
3427    defobj = NULL;
3428    symlook_init(&req, name);
3429    req.ventry = ve;
3430    req.flags = flags | SYMLOOK_IN_PLT;
3431    req.lockstate = &lockstate;
3432
3433    LD_UTRACE(UTRACE_DLSYM_START, handle, NULL, 0, 0, name);
3434    rlock_acquire(rtld_bind_lock, &lockstate);
3435    if (sigsetjmp(lockstate.env, 0) != 0)
3436	    lock_upgrade(rtld_bind_lock, &lockstate);
3437    if (handle == NULL || handle == RTLD_NEXT ||
3438	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
3439
3440	if ((obj = obj_from_addr(retaddr)) == NULL) {
3441	    _rtld_error("Cannot determine caller's shared object");
3442	    lock_release(rtld_bind_lock, &lockstate);
3443	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3444	    return NULL;
3445	}
3446	if (handle == NULL) {	/* Just the caller's shared object. */
3447	    res = symlook_obj(&req, obj);
3448	    if (res == 0) {
3449		def = req.sym_out;
3450		defobj = req.defobj_out;
3451	    }
3452	} else if (handle == RTLD_NEXT || /* Objects after caller's */
3453		   handle == RTLD_SELF) { /* ... caller included */
3454	    if (handle == RTLD_NEXT)
3455		obj = globallist_next(obj);
3456	    for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
3457		if (obj->marker)
3458		    continue;
3459		res = symlook_obj(&req, obj);
3460		if (res == 0) {
3461		    if (def == NULL ||
3462		      ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK) {
3463			def = req.sym_out;
3464			defobj = req.defobj_out;
3465			if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3466			    break;
3467		    }
3468		}
3469	    }
3470	    /*
3471	     * Search the dynamic linker itself, and possibly resolve the
3472	     * symbol from there.  This is how the application links to
3473	     * dynamic linker services such as dlopen.
3474	     */
3475	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3476		res = symlook_obj(&req, &obj_rtld);
3477		if (res == 0) {
3478		    def = req.sym_out;
3479		    defobj = req.defobj_out;
3480		}
3481	    }
3482	} else {
3483	    assert(handle == RTLD_DEFAULT);
3484	    res = symlook_default(&req, obj);
3485	    if (res == 0) {
3486		defobj = req.defobj_out;
3487		def = req.sym_out;
3488	    }
3489	}
3490    } else {
3491	if ((obj = dlcheck(handle)) == NULL) {
3492	    lock_release(rtld_bind_lock, &lockstate);
3493	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3494	    return NULL;
3495	}
3496
3497	donelist_init(&donelist);
3498	if (obj->mainprog) {
3499            /* Handle obtained by dlopen(NULL, ...) implies global scope. */
3500	    res = symlook_global(&req, &donelist);
3501	    if (res == 0) {
3502		def = req.sym_out;
3503		defobj = req.defobj_out;
3504	    }
3505	    /*
3506	     * Search the dynamic linker itself, and possibly resolve the
3507	     * symbol from there.  This is how the application links to
3508	     * dynamic linker services such as dlopen.
3509	     */
3510	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3511		res = symlook_obj(&req, &obj_rtld);
3512		if (res == 0) {
3513		    def = req.sym_out;
3514		    defobj = req.defobj_out;
3515		}
3516	    }
3517	}
3518	else {
3519	    /* Search the whole DAG rooted at the given object. */
3520	    res = symlook_list(&req, &obj->dagmembers, &donelist);
3521	    if (res == 0) {
3522		def = req.sym_out;
3523		defobj = req.defobj_out;
3524	    }
3525	}
3526    }
3527
3528    if (def != NULL) {
3529	lock_release(rtld_bind_lock, &lockstate);
3530
3531	/*
3532	 * The value required by the caller is derived from the value
3533	 * of the symbol. this is simply the relocated value of the
3534	 * symbol.
3535	 */
3536	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
3537	    sym = make_function_pointer(def, defobj);
3538	else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
3539	    sym = rtld_resolve_ifunc(defobj, def);
3540	else if (ELF_ST_TYPE(def->st_info) == STT_TLS) {
3541	    ti.ti_module = defobj->tlsindex;
3542	    ti.ti_offset = def->st_value;
3543	    sym = __tls_get_addr(&ti);
3544	} else
3545	    sym = defobj->relocbase + def->st_value;
3546	LD_UTRACE(UTRACE_DLSYM_STOP, handle, sym, 0, 0, name);
3547	return (sym);
3548    }
3549
3550    _rtld_error("Undefined symbol \"%s%s%s\"", name, ve != NULL ? "@" : "",
3551      ve != NULL ? ve->name : "");
3552    lock_release(rtld_bind_lock, &lockstate);
3553    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3554    return NULL;
3555}
3556
3557void *
3558dlsym(void *handle, const char *name)
3559{
3560	return do_dlsym(handle, name, __builtin_return_address(0), NULL,
3561	    SYMLOOK_DLSYM);
3562}
3563
3564dlfunc_t
3565dlfunc(void *handle, const char *name)
3566{
3567	union {
3568		void *d;
3569		dlfunc_t f;
3570	} rv;
3571
3572	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
3573	    SYMLOOK_DLSYM);
3574	return (rv.f);
3575}
3576
3577void *
3578dlvsym(void *handle, const char *name, const char *version)
3579{
3580	Ver_Entry ventry;
3581
3582	ventry.name = version;
3583	ventry.file = NULL;
3584	ventry.hash = elf_hash(version);
3585	ventry.flags= 0;
3586	return do_dlsym(handle, name, __builtin_return_address(0), &ventry,
3587	    SYMLOOK_DLSYM);
3588}
3589
3590int
3591_rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
3592{
3593    const Obj_Entry *obj;
3594    RtldLockState lockstate;
3595
3596    rlock_acquire(rtld_bind_lock, &lockstate);
3597    obj = obj_from_addr(addr);
3598    if (obj == NULL) {
3599        _rtld_error("No shared object contains address");
3600	lock_release(rtld_bind_lock, &lockstate);
3601        return (0);
3602    }
3603    rtld_fill_dl_phdr_info(obj, phdr_info);
3604    lock_release(rtld_bind_lock, &lockstate);
3605    return (1);
3606}
3607
3608int
3609dladdr(const void *addr, Dl_info *info)
3610{
3611    const Obj_Entry *obj;
3612    const Elf_Sym *def;
3613    void *symbol_addr;
3614    unsigned long symoffset;
3615    RtldLockState lockstate;
3616
3617    rlock_acquire(rtld_bind_lock, &lockstate);
3618    obj = obj_from_addr(addr);
3619    if (obj == NULL) {
3620        _rtld_error("No shared object contains address");
3621	lock_release(rtld_bind_lock, &lockstate);
3622        return 0;
3623    }
3624    info->dli_fname = obj->path;
3625    info->dli_fbase = obj->mapbase;
3626    info->dli_saddr = (void *)0;
3627    info->dli_sname = NULL;
3628
3629    /*
3630     * Walk the symbol list looking for the symbol whose address is
3631     * closest to the address sent in.
3632     */
3633    for (symoffset = 0; symoffset < obj->dynsymcount; symoffset++) {
3634        def = obj->symtab + symoffset;
3635
3636        /*
3637         * For skip the symbol if st_shndx is either SHN_UNDEF or
3638         * SHN_COMMON.
3639         */
3640        if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
3641            continue;
3642
3643        /*
3644         * If the symbol is greater than the specified address, or if it
3645         * is further away from addr than the current nearest symbol,
3646         * then reject it.
3647         */
3648        symbol_addr = obj->relocbase + def->st_value;
3649        if (symbol_addr > addr || symbol_addr < info->dli_saddr)
3650            continue;
3651
3652        /* Update our idea of the nearest symbol. */
3653        info->dli_sname = obj->strtab + def->st_name;
3654        info->dli_saddr = symbol_addr;
3655
3656        /* Exact match? */
3657        if (info->dli_saddr == addr)
3658            break;
3659    }
3660    lock_release(rtld_bind_lock, &lockstate);
3661    return 1;
3662}
3663
3664int
3665dlinfo(void *handle, int request, void *p)
3666{
3667    const Obj_Entry *obj;
3668    RtldLockState lockstate;
3669    int error;
3670
3671    rlock_acquire(rtld_bind_lock, &lockstate);
3672
3673    if (handle == NULL || handle == RTLD_SELF) {
3674	void *retaddr;
3675
3676	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
3677	if ((obj = obj_from_addr(retaddr)) == NULL)
3678	    _rtld_error("Cannot determine caller's shared object");
3679    } else
3680	obj = dlcheck(handle);
3681
3682    if (obj == NULL) {
3683	lock_release(rtld_bind_lock, &lockstate);
3684	return (-1);
3685    }
3686
3687    error = 0;
3688    switch (request) {
3689    case RTLD_DI_LINKMAP:
3690	*((struct link_map const **)p) = &obj->linkmap;
3691	break;
3692    case RTLD_DI_ORIGIN:
3693	error = rtld_dirname(obj->path, p);
3694	break;
3695
3696    case RTLD_DI_SERINFOSIZE:
3697    case RTLD_DI_SERINFO:
3698	error = do_search_info(obj, request, (struct dl_serinfo *)p);
3699	break;
3700
3701    default:
3702	_rtld_error("Invalid request %d passed to dlinfo()", request);
3703	error = -1;
3704    }
3705
3706    lock_release(rtld_bind_lock, &lockstate);
3707
3708    return (error);
3709}
3710
3711static void
3712rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
3713{
3714
3715	phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
3716	phdr_info->dlpi_name = obj->path;
3717	phdr_info->dlpi_phdr = obj->phdr;
3718	phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
3719	phdr_info->dlpi_tls_modid = obj->tlsindex;
3720	phdr_info->dlpi_tls_data = obj->tlsinit;
3721	phdr_info->dlpi_adds = obj_loads;
3722	phdr_info->dlpi_subs = obj_loads - obj_count;
3723}
3724
3725int
3726dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
3727{
3728	struct dl_phdr_info phdr_info;
3729	Obj_Entry *obj, marker;
3730	RtldLockState bind_lockstate, phdr_lockstate;
3731	int error;
3732
3733	init_marker(&marker);
3734	error = 0;
3735
3736	wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
3737	wlock_acquire(rtld_bind_lock, &bind_lockstate);
3738	for (obj = globallist_curr(TAILQ_FIRST(&obj_list)); obj != NULL;) {
3739		TAILQ_INSERT_AFTER(&obj_list, obj, &marker, next);
3740		rtld_fill_dl_phdr_info(obj, &phdr_info);
3741		hold_object(obj);
3742		lock_release(rtld_bind_lock, &bind_lockstate);
3743
3744		error = callback(&phdr_info, sizeof phdr_info, param);
3745
3746		wlock_acquire(rtld_bind_lock, &bind_lockstate);
3747		unhold_object(obj);
3748		obj = globallist_next(&marker);
3749		TAILQ_REMOVE(&obj_list, &marker, next);
3750		if (error != 0) {
3751			lock_release(rtld_bind_lock, &bind_lockstate);
3752			lock_release(rtld_phdr_lock, &phdr_lockstate);
3753			return (error);
3754		}
3755	}
3756
3757	if (error == 0) {
3758		rtld_fill_dl_phdr_info(&obj_rtld, &phdr_info);
3759		lock_release(rtld_bind_lock, &bind_lockstate);
3760		error = callback(&phdr_info, sizeof(phdr_info), param);
3761	}
3762	lock_release(rtld_phdr_lock, &phdr_lockstate);
3763	return (error);
3764}
3765
3766static void *
3767fill_search_info(const char *dir, size_t dirlen, void *param)
3768{
3769    struct fill_search_info_args *arg;
3770
3771    arg = param;
3772
3773    if (arg->request == RTLD_DI_SERINFOSIZE) {
3774	arg->serinfo->dls_cnt ++;
3775	arg->serinfo->dls_size += sizeof(struct dl_serpath) + dirlen + 1;
3776    } else {
3777	struct dl_serpath *s_entry;
3778
3779	s_entry = arg->serpath;
3780	s_entry->dls_name  = arg->strspace;
3781	s_entry->dls_flags = arg->flags;
3782
3783	strncpy(arg->strspace, dir, dirlen);
3784	arg->strspace[dirlen] = '\0';
3785
3786	arg->strspace += dirlen + 1;
3787	arg->serpath++;
3788    }
3789
3790    return (NULL);
3791}
3792
3793static int
3794do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
3795{
3796    struct dl_serinfo _info;
3797    struct fill_search_info_args args;
3798
3799    args.request = RTLD_DI_SERINFOSIZE;
3800    args.serinfo = &_info;
3801
3802    _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
3803    _info.dls_cnt  = 0;
3804
3805    path_enumerate(obj->rpath, fill_search_info, NULL, &args);
3806    path_enumerate(ld_library_path, fill_search_info, NULL, &args);
3807    path_enumerate(obj->runpath, fill_search_info, NULL, &args);
3808    path_enumerate(gethints(obj->z_nodeflib), fill_search_info, NULL, &args);
3809    if (!obj->z_nodeflib)
3810      path_enumerate(ld_standard_library_path, fill_search_info, NULL, &args);
3811
3812
3813    if (request == RTLD_DI_SERINFOSIZE) {
3814	info->dls_size = _info.dls_size;
3815	info->dls_cnt = _info.dls_cnt;
3816	return (0);
3817    }
3818
3819    if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
3820	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
3821	return (-1);
3822    }
3823
3824    args.request  = RTLD_DI_SERINFO;
3825    args.serinfo  = info;
3826    args.serpath  = &info->dls_serpath[0];
3827    args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
3828
3829    args.flags = LA_SER_RUNPATH;
3830    if (path_enumerate(obj->rpath, fill_search_info, NULL, &args) != NULL)
3831	return (-1);
3832
3833    args.flags = LA_SER_LIBPATH;
3834    if (path_enumerate(ld_library_path, fill_search_info, NULL, &args) != NULL)
3835	return (-1);
3836
3837    args.flags = LA_SER_RUNPATH;
3838    if (path_enumerate(obj->runpath, fill_search_info, NULL, &args) != NULL)
3839	return (-1);
3840
3841    args.flags = LA_SER_CONFIG;
3842    if (path_enumerate(gethints(obj->z_nodeflib), fill_search_info, NULL, &args)
3843      != NULL)
3844	return (-1);
3845
3846    args.flags = LA_SER_DEFAULT;
3847    if (!obj->z_nodeflib && path_enumerate(ld_standard_library_path,
3848      fill_search_info, NULL, &args) != NULL)
3849	return (-1);
3850    return (0);
3851}
3852
3853static int
3854rtld_dirname(const char *path, char *bname)
3855{
3856    const char *endp;
3857
3858    /* Empty or NULL string gets treated as "." */
3859    if (path == NULL || *path == '\0') {
3860	bname[0] = '.';
3861	bname[1] = '\0';
3862	return (0);
3863    }
3864
3865    /* Strip trailing slashes */
3866    endp = path + strlen(path) - 1;
3867    while (endp > path && *endp == '/')
3868	endp--;
3869
3870    /* Find the start of the dir */
3871    while (endp > path && *endp != '/')
3872	endp--;
3873
3874    /* Either the dir is "/" or there are no slashes */
3875    if (endp == path) {
3876	bname[0] = *endp == '/' ? '/' : '.';
3877	bname[1] = '\0';
3878	return (0);
3879    } else {
3880	do {
3881	    endp--;
3882	} while (endp > path && *endp == '/');
3883    }
3884
3885    if (endp - path + 2 > PATH_MAX)
3886    {
3887	_rtld_error("Filename is too long: %s", path);
3888	return(-1);
3889    }
3890
3891    strncpy(bname, path, endp - path + 1);
3892    bname[endp - path + 1] = '\0';
3893    return (0);
3894}
3895
3896static int
3897rtld_dirname_abs(const char *path, char *base)
3898{
3899	char *last;
3900
3901	if (realpath(path, base) == NULL)
3902		return (-1);
3903	dbg("%s -> %s", path, base);
3904	last = strrchr(base, '/');
3905	if (last == NULL)
3906		return (-1);
3907	if (last != base)
3908		*last = '\0';
3909	return (0);
3910}
3911
3912static void
3913linkmap_add(Obj_Entry *obj)
3914{
3915    struct link_map *l = &obj->linkmap;
3916    struct link_map *prev;
3917
3918    obj->linkmap.l_name = obj->path;
3919    obj->linkmap.l_addr = obj->mapbase;
3920    obj->linkmap.l_ld = obj->dynamic;
3921#ifdef __mips__
3922    /* GDB needs load offset on MIPS to use the symbols */
3923    obj->linkmap.l_offs = obj->relocbase;
3924#endif
3925
3926    if (r_debug.r_map == NULL) {
3927	r_debug.r_map = l;
3928	return;
3929    }
3930
3931    /*
3932     * Scan to the end of the list, but not past the entry for the
3933     * dynamic linker, which we want to keep at the very end.
3934     */
3935    for (prev = r_debug.r_map;
3936      prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
3937      prev = prev->l_next)
3938	;
3939
3940    /* Link in the new entry. */
3941    l->l_prev = prev;
3942    l->l_next = prev->l_next;
3943    if (l->l_next != NULL)
3944	l->l_next->l_prev = l;
3945    prev->l_next = l;
3946}
3947
3948static void
3949linkmap_delete(Obj_Entry *obj)
3950{
3951    struct link_map *l = &obj->linkmap;
3952
3953    if (l->l_prev == NULL) {
3954	if ((r_debug.r_map = l->l_next) != NULL)
3955	    l->l_next->l_prev = NULL;
3956	return;
3957    }
3958
3959    if ((l->l_prev->l_next = l->l_next) != NULL)
3960	l->l_next->l_prev = l->l_prev;
3961}
3962
3963/*
3964 * Function for the debugger to set a breakpoint on to gain control.
3965 *
3966 * The two parameters allow the debugger to easily find and determine
3967 * what the runtime loader is doing and to whom it is doing it.
3968 *
3969 * When the loadhook trap is hit (r_debug_state, set at program
3970 * initialization), the arguments can be found on the stack:
3971 *
3972 *  +8   struct link_map *m
3973 *  +4   struct r_debug  *rd
3974 *  +0   RetAddr
3975 */
3976void
3977r_debug_state(struct r_debug* rd, struct link_map *m)
3978{
3979    /*
3980     * The following is a hack to force the compiler to emit calls to
3981     * this function, even when optimizing.  If the function is empty,
3982     * the compiler is not obliged to emit any code for calls to it,
3983     * even when marked __noinline.  However, gdb depends on those
3984     * calls being made.
3985     */
3986    __compiler_membar();
3987}
3988
3989/*
3990 * A function called after init routines have completed. This can be used to
3991 * break before a program's entry routine is called, and can be used when
3992 * main is not available in the symbol table.
3993 */
3994void
3995_r_debug_postinit(struct link_map *m)
3996{
3997
3998	/* See r_debug_state(). */
3999	__compiler_membar();
4000}
4001
4002static void
4003release_object(Obj_Entry *obj)
4004{
4005
4006	if (obj->holdcount > 0) {
4007		obj->unholdfree = true;
4008		return;
4009	}
4010	munmap(obj->mapbase, obj->mapsize);
4011	linkmap_delete(obj);
4012	obj_free(obj);
4013}
4014
4015/*
4016 * Get address of the pointer variable in the main program.
4017 * Prefer non-weak symbol over the weak one.
4018 */
4019static const void **
4020get_program_var_addr(const char *name, RtldLockState *lockstate)
4021{
4022    SymLook req;
4023    DoneList donelist;
4024
4025    symlook_init(&req, name);
4026    req.lockstate = lockstate;
4027    donelist_init(&donelist);
4028    if (symlook_global(&req, &donelist) != 0)
4029	return (NULL);
4030    if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
4031	return ((const void **)make_function_pointer(req.sym_out,
4032	  req.defobj_out));
4033    else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC)
4034	return ((const void **)rtld_resolve_ifunc(req.defobj_out, req.sym_out));
4035    else
4036	return ((const void **)(req.defobj_out->relocbase +
4037	  req.sym_out->st_value));
4038}
4039
4040/*
4041 * Set a pointer variable in the main program to the given value.  This
4042 * is used to set key variables such as "environ" before any of the
4043 * init functions are called.
4044 */
4045static void
4046set_program_var(const char *name, const void *value)
4047{
4048    const void **addr;
4049
4050    if ((addr = get_program_var_addr(name, NULL)) != NULL) {
4051	dbg("\"%s\": *%p <-- %p", name, addr, value);
4052	*addr = value;
4053    }
4054}
4055
4056/*
4057 * Search the global objects, including dependencies and main object,
4058 * for the given symbol.
4059 */
4060static int
4061symlook_global(SymLook *req, DoneList *donelist)
4062{
4063    SymLook req1;
4064    const Objlist_Entry *elm;
4065    int res;
4066
4067    symlook_init_from_req(&req1, req);
4068
4069    /* Search all objects loaded at program start up. */
4070    if (req->defobj_out == NULL ||
4071      ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
4072	res = symlook_list(&req1, &list_main, donelist);
4073	if (res == 0 && (req->defobj_out == NULL ||
4074	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4075	    req->sym_out = req1.sym_out;
4076	    req->defobj_out = req1.defobj_out;
4077	    assert(req->defobj_out != NULL);
4078	}
4079    }
4080
4081    /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
4082    STAILQ_FOREACH(elm, &list_global, link) {
4083	if (req->defobj_out != NULL &&
4084	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
4085	    break;
4086	res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
4087	if (res == 0 && (req->defobj_out == NULL ||
4088	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4089	    req->sym_out = req1.sym_out;
4090	    req->defobj_out = req1.defobj_out;
4091	    assert(req->defobj_out != NULL);
4092	}
4093    }
4094
4095    return (req->sym_out != NULL ? 0 : ESRCH);
4096}
4097
4098/*
4099 * Given a symbol name in a referencing object, find the corresponding
4100 * definition of the symbol.  Returns a pointer to the symbol, or NULL if
4101 * no definition was found.  Returns a pointer to the Obj_Entry of the
4102 * defining object via the reference parameter DEFOBJ_OUT.
4103 */
4104static int
4105symlook_default(SymLook *req, const Obj_Entry *refobj)
4106{
4107    DoneList donelist;
4108    const Objlist_Entry *elm;
4109    SymLook req1;
4110    int res;
4111
4112    donelist_init(&donelist);
4113    symlook_init_from_req(&req1, req);
4114
4115    /*
4116     * Look first in the referencing object if linked symbolically,
4117     * and similarly handle protected symbols.
4118     */
4119    res = symlook_obj(&req1, refobj);
4120    if (res == 0 && (refobj->symbolic ||
4121      ELF_ST_VISIBILITY(req1.sym_out->st_other) == STV_PROTECTED)) {
4122	req->sym_out = req1.sym_out;
4123	req->defobj_out = req1.defobj_out;
4124	assert(req->defobj_out != NULL);
4125    }
4126    if (refobj->symbolic || req->defobj_out != NULL)
4127	donelist_check(&donelist, refobj);
4128
4129    symlook_global(req, &donelist);
4130
4131    /* Search all dlopened DAGs containing the referencing object. */
4132    STAILQ_FOREACH(elm, &refobj->dldags, link) {
4133	if (req->sym_out != NULL &&
4134	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
4135	    break;
4136	res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
4137	if (res == 0 && (req->sym_out == NULL ||
4138	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4139	    req->sym_out = req1.sym_out;
4140	    req->defobj_out = req1.defobj_out;
4141	    assert(req->defobj_out != NULL);
4142	}
4143    }
4144
4145    /*
4146     * Search the dynamic linker itself, and possibly resolve the
4147     * symbol from there.  This is how the application links to
4148     * dynamic linker services such as dlopen.
4149     */
4150    if (req->sym_out == NULL ||
4151      ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
4152	res = symlook_obj(&req1, &obj_rtld);
4153	if (res == 0) {
4154	    req->sym_out = req1.sym_out;
4155	    req->defobj_out = req1.defobj_out;
4156	    assert(req->defobj_out != NULL);
4157	}
4158    }
4159
4160    return (req->sym_out != NULL ? 0 : ESRCH);
4161}
4162
4163static int
4164symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
4165{
4166    const Elf_Sym *def;
4167    const Obj_Entry *defobj;
4168    const Objlist_Entry *elm;
4169    SymLook req1;
4170    int res;
4171
4172    def = NULL;
4173    defobj = NULL;
4174    STAILQ_FOREACH(elm, objlist, link) {
4175	if (donelist_check(dlp, elm->obj))
4176	    continue;
4177	symlook_init_from_req(&req1, req);
4178	if ((res = symlook_obj(&req1, elm->obj)) == 0) {
4179	    if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
4180		def = req1.sym_out;
4181		defobj = req1.defobj_out;
4182		if (ELF_ST_BIND(def->st_info) != STB_WEAK)
4183		    break;
4184	    }
4185	}
4186    }
4187    if (def != NULL) {
4188	req->sym_out = def;
4189	req->defobj_out = defobj;
4190	return (0);
4191    }
4192    return (ESRCH);
4193}
4194
4195/*
4196 * Search the chain of DAGS cointed to by the given Needed_Entry
4197 * for a symbol of the given name.  Each DAG is scanned completely
4198 * before advancing to the next one.  Returns a pointer to the symbol,
4199 * or NULL if no definition was found.
4200 */
4201static int
4202symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
4203{
4204    const Elf_Sym *def;
4205    const Needed_Entry *n;
4206    const Obj_Entry *defobj;
4207    SymLook req1;
4208    int res;
4209
4210    def = NULL;
4211    defobj = NULL;
4212    symlook_init_from_req(&req1, req);
4213    for (n = needed; n != NULL; n = n->next) {
4214	if (n->obj == NULL ||
4215	    (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0)
4216	    continue;
4217	if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
4218	    def = req1.sym_out;
4219	    defobj = req1.defobj_out;
4220	    if (ELF_ST_BIND(def->st_info) != STB_WEAK)
4221		break;
4222	}
4223    }
4224    if (def != NULL) {
4225	req->sym_out = def;
4226	req->defobj_out = defobj;
4227	return (0);
4228    }
4229    return (ESRCH);
4230}
4231
4232/*
4233 * Search the symbol table of a single shared object for a symbol of
4234 * the given name and version, if requested.  Returns a pointer to the
4235 * symbol, or NULL if no definition was found.  If the object is
4236 * filter, return filtered symbol from filtee.
4237 *
4238 * The symbol's hash value is passed in for efficiency reasons; that
4239 * eliminates many recomputations of the hash value.
4240 */
4241int
4242symlook_obj(SymLook *req, const Obj_Entry *obj)
4243{
4244    DoneList donelist;
4245    SymLook req1;
4246    int flags, res, mres;
4247
4248    /*
4249     * If there is at least one valid hash at this point, we prefer to
4250     * use the faster GNU version if available.
4251     */
4252    if (obj->valid_hash_gnu)
4253	mres = symlook_obj1_gnu(req, obj);
4254    else if (obj->valid_hash_sysv)
4255	mres = symlook_obj1_sysv(req, obj);
4256    else
4257	return (EINVAL);
4258
4259    if (mres == 0) {
4260	if (obj->needed_filtees != NULL) {
4261	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
4262	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4263	    donelist_init(&donelist);
4264	    symlook_init_from_req(&req1, req);
4265	    res = symlook_needed(&req1, obj->needed_filtees, &donelist);
4266	    if (res == 0) {
4267		req->sym_out = req1.sym_out;
4268		req->defobj_out = req1.defobj_out;
4269	    }
4270	    return (res);
4271	}
4272	if (obj->needed_aux_filtees != NULL) {
4273	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
4274	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4275	    donelist_init(&donelist);
4276	    symlook_init_from_req(&req1, req);
4277	    res = symlook_needed(&req1, obj->needed_aux_filtees, &donelist);
4278	    if (res == 0) {
4279		req->sym_out = req1.sym_out;
4280		req->defobj_out = req1.defobj_out;
4281		return (res);
4282	    }
4283	}
4284    }
4285    return (mres);
4286}
4287
4288/* Symbol match routine common to both hash functions */
4289static bool
4290matched_symbol(SymLook *req, const Obj_Entry *obj, Sym_Match_Result *result,
4291    const unsigned long symnum)
4292{
4293	Elf_Versym verndx;
4294	const Elf_Sym *symp;
4295	const char *strp;
4296
4297	symp = obj->symtab + symnum;
4298	strp = obj->strtab + symp->st_name;
4299
4300	switch (ELF_ST_TYPE(symp->st_info)) {
4301	case STT_FUNC:
4302	case STT_NOTYPE:
4303	case STT_OBJECT:
4304	case STT_COMMON:
4305	case STT_GNU_IFUNC:
4306		if (symp->st_value == 0)
4307			return (false);
4308		/* fallthrough */
4309	case STT_TLS:
4310		if (symp->st_shndx != SHN_UNDEF)
4311			break;
4312#ifndef __mips__
4313		else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
4314		    (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
4315			break;
4316		/* fallthrough */
4317#endif
4318	default:
4319		return (false);
4320	}
4321	if (req->name[0] != strp[0] || strcmp(req->name, strp) != 0)
4322		return (false);
4323
4324	if (req->ventry == NULL) {
4325		if (obj->versyms != NULL) {
4326			verndx = VER_NDX(obj->versyms[symnum]);
4327			if (verndx > obj->vernum) {
4328				_rtld_error(
4329				    "%s: symbol %s references wrong version %d",
4330				    obj->path, obj->strtab + symnum, verndx);
4331				return (false);
4332			}
4333			/*
4334			 * If we are not called from dlsym (i.e. this
4335			 * is a normal relocation from unversioned
4336			 * binary), accept the symbol immediately if
4337			 * it happens to have first version after this
4338			 * shared object became versioned.  Otherwise,
4339			 * if symbol is versioned and not hidden,
4340			 * remember it. If it is the only symbol with
4341			 * this name exported by the shared object, it
4342			 * will be returned as a match by the calling
4343			 * function. If symbol is global (verndx < 2)
4344			 * accept it unconditionally.
4345			 */
4346			if ((req->flags & SYMLOOK_DLSYM) == 0 &&
4347			    verndx == VER_NDX_GIVEN) {
4348				result->sym_out = symp;
4349				return (true);
4350			}
4351			else if (verndx >= VER_NDX_GIVEN) {
4352				if ((obj->versyms[symnum] & VER_NDX_HIDDEN)
4353				    == 0) {
4354					if (result->vsymp == NULL)
4355						result->vsymp = symp;
4356					result->vcount++;
4357				}
4358				return (false);
4359			}
4360		}
4361		result->sym_out = symp;
4362		return (true);
4363	}
4364	if (obj->versyms == NULL) {
4365		if (object_match_name(obj, req->ventry->name)) {
4366			_rtld_error("%s: object %s should provide version %s "
4367			    "for symbol %s", obj_rtld.path, obj->path,
4368			    req->ventry->name, obj->strtab + symnum);
4369			return (false);
4370		}
4371	} else {
4372		verndx = VER_NDX(obj->versyms[symnum]);
4373		if (verndx > obj->vernum) {
4374			_rtld_error("%s: symbol %s references wrong version %d",
4375			    obj->path, obj->strtab + symnum, verndx);
4376			return (false);
4377		}
4378		if (obj->vertab[verndx].hash != req->ventry->hash ||
4379		    strcmp(obj->vertab[verndx].name, req->ventry->name)) {
4380			/*
4381			 * Version does not match. Look if this is a
4382			 * global symbol and if it is not hidden. If
4383			 * global symbol (verndx < 2) is available,
4384			 * use it. Do not return symbol if we are
4385			 * called by dlvsym, because dlvsym looks for
4386			 * a specific version and default one is not
4387			 * what dlvsym wants.
4388			 */
4389			if ((req->flags & SYMLOOK_DLSYM) ||
4390			    (verndx >= VER_NDX_GIVEN) ||
4391			    (obj->versyms[symnum] & VER_NDX_HIDDEN))
4392				return (false);
4393		}
4394	}
4395	result->sym_out = symp;
4396	return (true);
4397}
4398
4399/*
4400 * Search for symbol using SysV hash function.
4401 * obj->buckets is known not to be NULL at this point; the test for this was
4402 * performed with the obj->valid_hash_sysv assignment.
4403 */
4404static int
4405symlook_obj1_sysv(SymLook *req, const Obj_Entry *obj)
4406{
4407	unsigned long symnum;
4408	Sym_Match_Result matchres;
4409
4410	matchres.sym_out = NULL;
4411	matchres.vsymp = NULL;
4412	matchres.vcount = 0;
4413
4414	for (symnum = obj->buckets[req->hash % obj->nbuckets];
4415	    symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
4416		if (symnum >= obj->nchains)
4417			return (ESRCH);	/* Bad object */
4418
4419		if (matched_symbol(req, obj, &matchres, symnum)) {
4420			req->sym_out = matchres.sym_out;
4421			req->defobj_out = obj;
4422			return (0);
4423		}
4424	}
4425	if (matchres.vcount == 1) {
4426		req->sym_out = matchres.vsymp;
4427		req->defobj_out = obj;
4428		return (0);
4429	}
4430	return (ESRCH);
4431}
4432
4433/* Search for symbol using GNU hash function */
4434static int
4435symlook_obj1_gnu(SymLook *req, const Obj_Entry *obj)
4436{
4437	Elf_Addr bloom_word;
4438	const Elf32_Word *hashval;
4439	Elf32_Word bucket;
4440	Sym_Match_Result matchres;
4441	unsigned int h1, h2;
4442	unsigned long symnum;
4443
4444	matchres.sym_out = NULL;
4445	matchres.vsymp = NULL;
4446	matchres.vcount = 0;
4447
4448	/* Pick right bitmask word from Bloom filter array */
4449	bloom_word = obj->bloom_gnu[(req->hash_gnu / __ELF_WORD_SIZE) &
4450	    obj->maskwords_bm_gnu];
4451
4452	/* Calculate modulus word size of gnu hash and its derivative */
4453	h1 = req->hash_gnu & (__ELF_WORD_SIZE - 1);
4454	h2 = ((req->hash_gnu >> obj->shift2_gnu) & (__ELF_WORD_SIZE - 1));
4455
4456	/* Filter out the "definitely not in set" queries */
4457	if (((bloom_word >> h1) & (bloom_word >> h2) & 1) == 0)
4458		return (ESRCH);
4459
4460	/* Locate hash chain and corresponding value element*/
4461	bucket = obj->buckets_gnu[req->hash_gnu % obj->nbuckets_gnu];
4462	if (bucket == 0)
4463		return (ESRCH);
4464	hashval = &obj->chain_zero_gnu[bucket];
4465	do {
4466		if (((*hashval ^ req->hash_gnu) >> 1) == 0) {
4467			symnum = hashval - obj->chain_zero_gnu;
4468			if (matched_symbol(req, obj, &matchres, symnum)) {
4469				req->sym_out = matchres.sym_out;
4470				req->defobj_out = obj;
4471				return (0);
4472			}
4473		}
4474	} while ((*hashval++ & 1) == 0);
4475	if (matchres.vcount == 1) {
4476		req->sym_out = matchres.vsymp;
4477		req->defobj_out = obj;
4478		return (0);
4479	}
4480	return (ESRCH);
4481}
4482
4483static void
4484trace_loaded_objects(Obj_Entry *obj)
4485{
4486    char	*fmt1, *fmt2, *fmt, *main_local, *list_containers;
4487    int		c;
4488
4489    if ((main_local = getenv(_LD("TRACE_LOADED_OBJECTS_PROGNAME"))) == NULL)
4490	main_local = "";
4491
4492    if ((fmt1 = getenv(_LD("TRACE_LOADED_OBJECTS_FMT1"))) == NULL)
4493	fmt1 = "\t%o => %p (%x)\n";
4494
4495    if ((fmt2 = getenv(_LD("TRACE_LOADED_OBJECTS_FMT2"))) == NULL)
4496	fmt2 = "\t%o (%x)\n";
4497
4498    list_containers = getenv(_LD("TRACE_LOADED_OBJECTS_ALL"));
4499
4500    for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
4501	Needed_Entry		*needed;
4502	char			*name, *path;
4503	bool			is_lib;
4504
4505	if (obj->marker)
4506	    continue;
4507	if (list_containers && obj->needed != NULL)
4508	    rtld_printf("%s:\n", obj->path);
4509	for (needed = obj->needed; needed; needed = needed->next) {
4510	    if (needed->obj != NULL) {
4511		if (needed->obj->traced && !list_containers)
4512		    continue;
4513		needed->obj->traced = true;
4514		path = needed->obj->path;
4515	    } else
4516		path = "not found";
4517
4518	    name = (char *)obj->strtab + needed->name;
4519	    is_lib = strncmp(name, "lib", 3) == 0;	/* XXX - bogus */
4520
4521	    fmt = is_lib ? fmt1 : fmt2;
4522	    while ((c = *fmt++) != '\0') {
4523		switch (c) {
4524		default:
4525		    rtld_putchar(c);
4526		    continue;
4527		case '\\':
4528		    switch (c = *fmt) {
4529		    case '\0':
4530			continue;
4531		    case 'n':
4532			rtld_putchar('\n');
4533			break;
4534		    case 't':
4535			rtld_putchar('\t');
4536			break;
4537		    }
4538		    break;
4539		case '%':
4540		    switch (c = *fmt) {
4541		    case '\0':
4542			continue;
4543		    case '%':
4544		    default:
4545			rtld_putchar(c);
4546			break;
4547		    case 'A':
4548			rtld_putstr(main_local);
4549			break;
4550		    case 'a':
4551			rtld_putstr(obj_main->path);
4552			break;
4553		    case 'o':
4554			rtld_putstr(name);
4555			break;
4556#if 0
4557		    case 'm':
4558			rtld_printf("%d", sodp->sod_major);
4559			break;
4560		    case 'n':
4561			rtld_printf("%d", sodp->sod_minor);
4562			break;
4563#endif
4564		    case 'p':
4565			rtld_putstr(path);
4566			break;
4567		    case 'x':
4568			rtld_printf("%p", needed->obj ? needed->obj->mapbase :
4569			  0);
4570			break;
4571		    }
4572		    break;
4573		}
4574		++fmt;
4575	    }
4576	}
4577    }
4578}
4579
4580/*
4581 * Unload a dlopened object and its dependencies from memory and from
4582 * our data structures.  It is assumed that the DAG rooted in the
4583 * object has already been unreferenced, and that the object has a
4584 * reference count of 0.
4585 */
4586static void
4587unload_object(Obj_Entry *root, RtldLockState *lockstate)
4588{
4589	Obj_Entry marker, *obj, *next;
4590
4591	assert(root->refcount == 0);
4592
4593	/*
4594	 * Pass over the DAG removing unreferenced objects from
4595	 * appropriate lists.
4596	 */
4597	unlink_object(root);
4598
4599	/* Unmap all objects that are no longer referenced. */
4600	for (obj = TAILQ_FIRST(&obj_list); obj != NULL; obj = next) {
4601		next = TAILQ_NEXT(obj, next);
4602		if (obj->marker || obj->refcount != 0)
4603			continue;
4604		LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase,
4605		    obj->mapsize, 0, obj->path);
4606		dbg("unloading \"%s\"", obj->path);
4607		/*
4608		 * Unlink the object now to prevent new references from
4609		 * being acquired while the bind lock is dropped in
4610		 * recursive dlclose() invocations.
4611		 */
4612		TAILQ_REMOVE(&obj_list, obj, next);
4613		obj_count--;
4614
4615		if (obj->filtees_loaded) {
4616			if (next != NULL) {
4617				init_marker(&marker);
4618				TAILQ_INSERT_BEFORE(next, &marker, next);
4619				unload_filtees(obj, lockstate);
4620				next = TAILQ_NEXT(&marker, next);
4621				TAILQ_REMOVE(&obj_list, &marker, next);
4622			} else
4623				unload_filtees(obj, lockstate);
4624		}
4625		release_object(obj);
4626	}
4627}
4628
4629static void
4630unlink_object(Obj_Entry *root)
4631{
4632    Objlist_Entry *elm;
4633
4634    if (root->refcount == 0) {
4635	/* Remove the object from the RTLD_GLOBAL list. */
4636	objlist_remove(&list_global, root);
4637
4638    	/* Remove the object from all objects' DAG lists. */
4639    	STAILQ_FOREACH(elm, &root->dagmembers, link) {
4640	    objlist_remove(&elm->obj->dldags, root);
4641	    if (elm->obj != root)
4642		unlink_object(elm->obj);
4643	}
4644    }
4645}
4646
4647static void
4648ref_dag(Obj_Entry *root)
4649{
4650    Objlist_Entry *elm;
4651
4652    assert(root->dag_inited);
4653    STAILQ_FOREACH(elm, &root->dagmembers, link)
4654	elm->obj->refcount++;
4655}
4656
4657static void
4658unref_dag(Obj_Entry *root)
4659{
4660    Objlist_Entry *elm;
4661
4662    assert(root->dag_inited);
4663    STAILQ_FOREACH(elm, &root->dagmembers, link)
4664	elm->obj->refcount--;
4665}
4666
4667/*
4668 * Common code for MD __tls_get_addr().
4669 */
4670static void *tls_get_addr_slow(Elf_Addr **, int, size_t) __noinline;
4671static void *
4672tls_get_addr_slow(Elf_Addr **dtvp, int index, size_t offset)
4673{
4674    Elf_Addr *newdtv, *dtv;
4675    RtldLockState lockstate;
4676    int to_copy;
4677
4678    dtv = *dtvp;
4679    /* Check dtv generation in case new modules have arrived */
4680    if (dtv[0] != tls_dtv_generation) {
4681	wlock_acquire(rtld_bind_lock, &lockstate);
4682	newdtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4683	to_copy = dtv[1];
4684	if (to_copy > tls_max_index)
4685	    to_copy = tls_max_index;
4686	memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
4687	newdtv[0] = tls_dtv_generation;
4688	newdtv[1] = tls_max_index;
4689	free(dtv);
4690	lock_release(rtld_bind_lock, &lockstate);
4691	dtv = *dtvp = newdtv;
4692    }
4693
4694    /* Dynamically allocate module TLS if necessary */
4695    if (dtv[index + 1] == 0) {
4696	/* Signal safe, wlock will block out signals. */
4697	wlock_acquire(rtld_bind_lock, &lockstate);
4698	if (!dtv[index + 1])
4699	    dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
4700	lock_release(rtld_bind_lock, &lockstate);
4701    }
4702    return ((void *)(dtv[index + 1] + offset));
4703}
4704
4705void *
4706tls_get_addr_common(Elf_Addr **dtvp, int index, size_t offset)
4707{
4708	Elf_Addr *dtv;
4709
4710	dtv = *dtvp;
4711	/* Check dtv generation in case new modules have arrived */
4712	if (__predict_true(dtv[0] == tls_dtv_generation &&
4713	    dtv[index + 1] != 0))
4714		return ((void *)(dtv[index + 1] + offset));
4715	return (tls_get_addr_slow(dtvp, index, offset));
4716}
4717
4718#if defined(__aarch64__) || defined(__arm__) || defined(__mips__) || \
4719    defined(__powerpc__) || defined(__riscv__)
4720
4721/*
4722 * Allocate Static TLS using the Variant I method.
4723 */
4724void *
4725allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
4726{
4727    Obj_Entry *obj;
4728    char *tcb;
4729    Elf_Addr **tls;
4730    Elf_Addr *dtv;
4731    Elf_Addr addr;
4732    int i;
4733
4734    if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
4735	return (oldtcb);
4736
4737    assert(tcbsize >= TLS_TCB_SIZE);
4738    tcb = xcalloc(1, tls_static_space - TLS_TCB_SIZE + tcbsize);
4739    tls = (Elf_Addr **)(tcb + tcbsize - TLS_TCB_SIZE);
4740
4741    if (oldtcb != NULL) {
4742	memcpy(tls, oldtcb, tls_static_space);
4743	free(oldtcb);
4744
4745	/* Adjust the DTV. */
4746	dtv = tls[0];
4747	for (i = 0; i < dtv[1]; i++) {
4748	    if (dtv[i+2] >= (Elf_Addr)oldtcb &&
4749		dtv[i+2] < (Elf_Addr)oldtcb + tls_static_space) {
4750		dtv[i+2] = dtv[i+2] - (Elf_Addr)oldtcb + (Elf_Addr)tls;
4751	    }
4752	}
4753    } else {
4754	dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4755	tls[0] = dtv;
4756	dtv[0] = tls_dtv_generation;
4757	dtv[1] = tls_max_index;
4758
4759	for (obj = globallist_curr(objs); obj != NULL;
4760	  obj = globallist_next(obj)) {
4761	    if (obj->tlsoffset > 0) {
4762		addr = (Elf_Addr)tls + obj->tlsoffset;
4763		if (obj->tlsinitsize > 0)
4764		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4765		if (obj->tlssize > obj->tlsinitsize)
4766		    memset((void*) (addr + obj->tlsinitsize), 0,
4767			   obj->tlssize - obj->tlsinitsize);
4768		dtv[obj->tlsindex + 1] = addr;
4769	    }
4770	}
4771    }
4772
4773    return (tcb);
4774}
4775
4776void
4777free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
4778{
4779    Elf_Addr *dtv;
4780    Elf_Addr tlsstart, tlsend;
4781    int dtvsize, i;
4782
4783    assert(tcbsize >= TLS_TCB_SIZE);
4784
4785    tlsstart = (Elf_Addr)tcb + tcbsize - TLS_TCB_SIZE;
4786    tlsend = tlsstart + tls_static_space;
4787
4788    dtv = *(Elf_Addr **)tlsstart;
4789    dtvsize = dtv[1];
4790    for (i = 0; i < dtvsize; i++) {
4791	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] >= tlsend)) {
4792	    free((void*)dtv[i+2]);
4793	}
4794    }
4795    free(dtv);
4796    free(tcb);
4797}
4798
4799#endif
4800
4801#if defined(__i386__) || defined(__amd64__) || defined(__sparc64__)
4802
4803/*
4804 * Allocate Static TLS using the Variant II method.
4805 */
4806void *
4807allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
4808{
4809    Obj_Entry *obj;
4810    size_t size, ralign;
4811    char *tls;
4812    Elf_Addr *dtv, *olddtv;
4813    Elf_Addr segbase, oldsegbase, addr;
4814    int i;
4815
4816    ralign = tcbalign;
4817    if (tls_static_max_align > ralign)
4818	    ralign = tls_static_max_align;
4819    size = round(tls_static_space, ralign) + round(tcbsize, ralign);
4820
4821    assert(tcbsize >= 2*sizeof(Elf_Addr));
4822    tls = malloc_aligned(size, ralign);
4823    dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4824
4825    segbase = (Elf_Addr)(tls + round(tls_static_space, ralign));
4826    ((Elf_Addr*)segbase)[0] = segbase;
4827    ((Elf_Addr*)segbase)[1] = (Elf_Addr) dtv;
4828
4829    dtv[0] = tls_dtv_generation;
4830    dtv[1] = tls_max_index;
4831
4832    if (oldtls) {
4833	/*
4834	 * Copy the static TLS block over whole.
4835	 */
4836	oldsegbase = (Elf_Addr) oldtls;
4837	memcpy((void *)(segbase - tls_static_space),
4838	       (const void *)(oldsegbase - tls_static_space),
4839	       tls_static_space);
4840
4841	/*
4842	 * If any dynamic TLS blocks have been created tls_get_addr(),
4843	 * move them over.
4844	 */
4845	olddtv = ((Elf_Addr**)oldsegbase)[1];
4846	for (i = 0; i < olddtv[1]; i++) {
4847	    if (olddtv[i+2] < oldsegbase - size || olddtv[i+2] > oldsegbase) {
4848		dtv[i+2] = olddtv[i+2];
4849		olddtv[i+2] = 0;
4850	    }
4851	}
4852
4853	/*
4854	 * We assume that this block was the one we created with
4855	 * allocate_initial_tls().
4856	 */
4857	free_tls(oldtls, 2*sizeof(Elf_Addr), sizeof(Elf_Addr));
4858    } else {
4859	for (obj = objs; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
4860		if (obj->marker || obj->tlsoffset == 0)
4861			continue;
4862		addr = segbase - obj->tlsoffset;
4863		memset((void*) (addr + obj->tlsinitsize),
4864		       0, obj->tlssize - obj->tlsinitsize);
4865		if (obj->tlsinit) {
4866		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4867		    obj->static_tls_copied = true;
4868		}
4869		dtv[obj->tlsindex + 1] = addr;
4870	}
4871    }
4872
4873    return (void*) segbase;
4874}
4875
4876void
4877free_tls(void *tls, size_t tcbsize, size_t tcbalign)
4878{
4879    Elf_Addr* dtv;
4880    size_t size, ralign;
4881    int dtvsize, i;
4882    Elf_Addr tlsstart, tlsend;
4883
4884    /*
4885     * Figure out the size of the initial TLS block so that we can
4886     * find stuff which ___tls_get_addr() allocated dynamically.
4887     */
4888    ralign = tcbalign;
4889    if (tls_static_max_align > ralign)
4890	    ralign = tls_static_max_align;
4891    size = round(tls_static_space, ralign);
4892
4893    dtv = ((Elf_Addr**)tls)[1];
4894    dtvsize = dtv[1];
4895    tlsend = (Elf_Addr) tls;
4896    tlsstart = tlsend - size;
4897    for (i = 0; i < dtvsize; i++) {
4898	if (dtv[i + 2] != 0 && (dtv[i + 2] < tlsstart || dtv[i + 2] > tlsend)) {
4899		free_aligned((void *)dtv[i + 2]);
4900	}
4901    }
4902
4903    free_aligned((void *)tlsstart);
4904    free((void*) dtv);
4905}
4906
4907#endif
4908
4909/*
4910 * Allocate TLS block for module with given index.
4911 */
4912void *
4913allocate_module_tls(int index)
4914{
4915    Obj_Entry* obj;
4916    char* p;
4917
4918    TAILQ_FOREACH(obj, &obj_list, next) {
4919	if (obj->marker)
4920	    continue;
4921	if (obj->tlsindex == index)
4922	    break;
4923    }
4924    if (!obj) {
4925	_rtld_error("Can't find module with TLS index %d", index);
4926	rtld_die();
4927    }
4928
4929    p = malloc_aligned(obj->tlssize, obj->tlsalign);
4930    memcpy(p, obj->tlsinit, obj->tlsinitsize);
4931    memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
4932
4933    return p;
4934}
4935
4936bool
4937allocate_tls_offset(Obj_Entry *obj)
4938{
4939    size_t off;
4940
4941    if (obj->tls_done)
4942	return true;
4943
4944    if (obj->tlssize == 0) {
4945	obj->tls_done = true;
4946	return true;
4947    }
4948
4949    if (tls_last_offset == 0)
4950	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign);
4951    else
4952	off = calculate_tls_offset(tls_last_offset, tls_last_size,
4953				   obj->tlssize, obj->tlsalign);
4954
4955    /*
4956     * If we have already fixed the size of the static TLS block, we
4957     * must stay within that size. When allocating the static TLS, we
4958     * leave a small amount of space spare to be used for dynamically
4959     * loading modules which use static TLS.
4960     */
4961    if (tls_static_space != 0) {
4962	if (calculate_tls_end(off, obj->tlssize) > tls_static_space)
4963	    return false;
4964    } else if (obj->tlsalign > tls_static_max_align) {
4965	    tls_static_max_align = obj->tlsalign;
4966    }
4967
4968    tls_last_offset = obj->tlsoffset = off;
4969    tls_last_size = obj->tlssize;
4970    obj->tls_done = true;
4971
4972    return true;
4973}
4974
4975void
4976free_tls_offset(Obj_Entry *obj)
4977{
4978
4979    /*
4980     * If we were the last thing to allocate out of the static TLS
4981     * block, we give our space back to the 'allocator'. This is a
4982     * simplistic workaround to allow libGL.so.1 to be loaded and
4983     * unloaded multiple times.
4984     */
4985    if (calculate_tls_end(obj->tlsoffset, obj->tlssize)
4986	== calculate_tls_end(tls_last_offset, tls_last_size)) {
4987	tls_last_offset -= obj->tlssize;
4988	tls_last_size = 0;
4989    }
4990}
4991
4992void *
4993_rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign)
4994{
4995    void *ret;
4996    RtldLockState lockstate;
4997
4998    wlock_acquire(rtld_bind_lock, &lockstate);
4999    ret = allocate_tls(globallist_curr(TAILQ_FIRST(&obj_list)), oldtls,
5000      tcbsize, tcbalign);
5001    lock_release(rtld_bind_lock, &lockstate);
5002    return (ret);
5003}
5004
5005void
5006_rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
5007{
5008    RtldLockState lockstate;
5009
5010    wlock_acquire(rtld_bind_lock, &lockstate);
5011    free_tls(tcb, tcbsize, tcbalign);
5012    lock_release(rtld_bind_lock, &lockstate);
5013}
5014
5015static void
5016object_add_name(Obj_Entry *obj, const char *name)
5017{
5018    Name_Entry *entry;
5019    size_t len;
5020
5021    len = strlen(name);
5022    entry = malloc(sizeof(Name_Entry) + len);
5023
5024    if (entry != NULL) {
5025	strcpy(entry->name, name);
5026	STAILQ_INSERT_TAIL(&obj->names, entry, link);
5027    }
5028}
5029
5030static int
5031object_match_name(const Obj_Entry *obj, const char *name)
5032{
5033    Name_Entry *entry;
5034
5035    STAILQ_FOREACH(entry, &obj->names, link) {
5036	if (strcmp(name, entry->name) == 0)
5037	    return (1);
5038    }
5039    return (0);
5040}
5041
5042static Obj_Entry *
5043locate_dependency(const Obj_Entry *obj, const char *name)
5044{
5045    const Objlist_Entry *entry;
5046    const Needed_Entry *needed;
5047
5048    STAILQ_FOREACH(entry, &list_main, link) {
5049	if (object_match_name(entry->obj, name))
5050	    return entry->obj;
5051    }
5052
5053    for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
5054	if (strcmp(obj->strtab + needed->name, name) == 0 ||
5055	  (needed->obj != NULL && object_match_name(needed->obj, name))) {
5056	    /*
5057	     * If there is DT_NEEDED for the name we are looking for,
5058	     * we are all set.  Note that object might not be found if
5059	     * dependency was not loaded yet, so the function can
5060	     * return NULL here.  This is expected and handled
5061	     * properly by the caller.
5062	     */
5063	    return (needed->obj);
5064	}
5065    }
5066    _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
5067	obj->path, name);
5068    rtld_die();
5069}
5070
5071static int
5072check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
5073    const Elf_Vernaux *vna)
5074{
5075    const Elf_Verdef *vd;
5076    const char *vername;
5077
5078    vername = refobj->strtab + vna->vna_name;
5079    vd = depobj->verdef;
5080    if (vd == NULL) {
5081	_rtld_error("%s: version %s required by %s not defined",
5082	    depobj->path, vername, refobj->path);
5083	return (-1);
5084    }
5085    for (;;) {
5086	if (vd->vd_version != VER_DEF_CURRENT) {
5087	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
5088		depobj->path, vd->vd_version);
5089	    return (-1);
5090	}
5091	if (vna->vna_hash == vd->vd_hash) {
5092	    const Elf_Verdaux *aux = (const Elf_Verdaux *)
5093		((char *)vd + vd->vd_aux);
5094	    if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
5095		return (0);
5096	}
5097	if (vd->vd_next == 0)
5098	    break;
5099	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
5100    }
5101    if (vna->vna_flags & VER_FLG_WEAK)
5102	return (0);
5103    _rtld_error("%s: version %s required by %s not found",
5104	depobj->path, vername, refobj->path);
5105    return (-1);
5106}
5107
5108static int
5109rtld_verify_object_versions(Obj_Entry *obj)
5110{
5111    const Elf_Verneed *vn;
5112    const Elf_Verdef  *vd;
5113    const Elf_Verdaux *vda;
5114    const Elf_Vernaux *vna;
5115    const Obj_Entry *depobj;
5116    int maxvernum, vernum;
5117
5118    if (obj->ver_checked)
5119	return (0);
5120    obj->ver_checked = true;
5121
5122    maxvernum = 0;
5123    /*
5124     * Walk over defined and required version records and figure out
5125     * max index used by any of them. Do very basic sanity checking
5126     * while there.
5127     */
5128    vn = obj->verneed;
5129    while (vn != NULL) {
5130	if (vn->vn_version != VER_NEED_CURRENT) {
5131	    _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
5132		obj->path, vn->vn_version);
5133	    return (-1);
5134	}
5135	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
5136	for (;;) {
5137	    vernum = VER_NEED_IDX(vna->vna_other);
5138	    if (vernum > maxvernum)
5139		maxvernum = vernum;
5140	    if (vna->vna_next == 0)
5141		 break;
5142	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
5143	}
5144	if (vn->vn_next == 0)
5145	    break;
5146	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
5147    }
5148
5149    vd = obj->verdef;
5150    while (vd != NULL) {
5151	if (vd->vd_version != VER_DEF_CURRENT) {
5152	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
5153		obj->path, vd->vd_version);
5154	    return (-1);
5155	}
5156	vernum = VER_DEF_IDX(vd->vd_ndx);
5157	if (vernum > maxvernum)
5158		maxvernum = vernum;
5159	if (vd->vd_next == 0)
5160	    break;
5161	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
5162    }
5163
5164    if (maxvernum == 0)
5165	return (0);
5166
5167    /*
5168     * Store version information in array indexable by version index.
5169     * Verify that object version requirements are satisfied along the
5170     * way.
5171     */
5172    obj->vernum = maxvernum + 1;
5173    obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry));
5174
5175    vd = obj->verdef;
5176    while (vd != NULL) {
5177	if ((vd->vd_flags & VER_FLG_BASE) == 0) {
5178	    vernum = VER_DEF_IDX(vd->vd_ndx);
5179	    assert(vernum <= maxvernum);
5180	    vda = (const Elf_Verdaux *)((char *)vd + vd->vd_aux);
5181	    obj->vertab[vernum].hash = vd->vd_hash;
5182	    obj->vertab[vernum].name = obj->strtab + vda->vda_name;
5183	    obj->vertab[vernum].file = NULL;
5184	    obj->vertab[vernum].flags = 0;
5185	}
5186	if (vd->vd_next == 0)
5187	    break;
5188	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
5189    }
5190
5191    vn = obj->verneed;
5192    while (vn != NULL) {
5193	depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
5194	if (depobj == NULL)
5195	    return (-1);
5196	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
5197	for (;;) {
5198	    if (check_object_provided_version(obj, depobj, vna))
5199		return (-1);
5200	    vernum = VER_NEED_IDX(vna->vna_other);
5201	    assert(vernum <= maxvernum);
5202	    obj->vertab[vernum].hash = vna->vna_hash;
5203	    obj->vertab[vernum].name = obj->strtab + vna->vna_name;
5204	    obj->vertab[vernum].file = obj->strtab + vn->vn_file;
5205	    obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
5206		VER_INFO_HIDDEN : 0;
5207	    if (vna->vna_next == 0)
5208		 break;
5209	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
5210	}
5211	if (vn->vn_next == 0)
5212	    break;
5213	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
5214    }
5215    return 0;
5216}
5217
5218static int
5219rtld_verify_versions(const Objlist *objlist)
5220{
5221    Objlist_Entry *entry;
5222    int rc;
5223
5224    rc = 0;
5225    STAILQ_FOREACH(entry, objlist, link) {
5226	/*
5227	 * Skip dummy objects or objects that have their version requirements
5228	 * already checked.
5229	 */
5230	if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
5231	    continue;
5232	if (rtld_verify_object_versions(entry->obj) == -1) {
5233	    rc = -1;
5234	    if (ld_tracing == NULL)
5235		break;
5236	}
5237    }
5238    if (rc == 0 || ld_tracing != NULL)
5239    	rc = rtld_verify_object_versions(&obj_rtld);
5240    return rc;
5241}
5242
5243const Ver_Entry *
5244fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
5245{
5246    Elf_Versym vernum;
5247
5248    if (obj->vertab) {
5249	vernum = VER_NDX(obj->versyms[symnum]);
5250	if (vernum >= obj->vernum) {
5251	    _rtld_error("%s: symbol %s has wrong verneed value %d",
5252		obj->path, obj->strtab + symnum, vernum);
5253	} else if (obj->vertab[vernum].hash != 0) {
5254	    return &obj->vertab[vernum];
5255	}
5256    }
5257    return NULL;
5258}
5259
5260int
5261_rtld_get_stack_prot(void)
5262{
5263
5264	return (stack_prot);
5265}
5266
5267int
5268_rtld_is_dlopened(void *arg)
5269{
5270	Obj_Entry *obj;
5271	RtldLockState lockstate;
5272	int res;
5273
5274	rlock_acquire(rtld_bind_lock, &lockstate);
5275	obj = dlcheck(arg);
5276	if (obj == NULL)
5277		obj = obj_from_addr(arg);
5278	if (obj == NULL) {
5279		_rtld_error("No shared object contains address");
5280		lock_release(rtld_bind_lock, &lockstate);
5281		return (-1);
5282	}
5283	res = obj->dlopened ? 1 : 0;
5284	lock_release(rtld_bind_lock, &lockstate);
5285	return (res);
5286}
5287
5288static int
5289obj_remap_relro(Obj_Entry *obj, int prot)
5290{
5291
5292	if (obj->relro_size > 0 && mprotect(obj->relro_page, obj->relro_size,
5293	    prot) == -1) {
5294		_rtld_error("%s: Cannot set relro protection to %#x: %s",
5295		    obj->path, prot, rtld_strerror(errno));
5296		return (-1);
5297	}
5298	return (0);
5299}
5300
5301static int
5302obj_disable_relro(Obj_Entry *obj)
5303{
5304
5305	return (obj_remap_relro(obj, PROT_READ | PROT_WRITE));
5306}
5307
5308static int
5309obj_enforce_relro(Obj_Entry *obj)
5310{
5311
5312	return (obj_remap_relro(obj, PROT_READ));
5313}
5314
5315static void
5316map_stacks_exec(RtldLockState *lockstate)
5317{
5318	void (*thr_map_stacks_exec)(void);
5319
5320	if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
5321		return;
5322	thr_map_stacks_exec = (void (*)(void))(uintptr_t)
5323	    get_program_var_addr("__pthread_map_stacks_exec", lockstate);
5324	if (thr_map_stacks_exec != NULL) {
5325		stack_prot |= PROT_EXEC;
5326		thr_map_stacks_exec();
5327	}
5328}
5329
5330static void
5331distribute_static_tls(Objlist *list, RtldLockState *lockstate)
5332{
5333	Objlist_Entry *elm;
5334	Obj_Entry *obj;
5335	void (*distrib)(size_t, void *, size_t, size_t);
5336
5337	distrib = (void (*)(size_t, void *, size_t, size_t))(uintptr_t)
5338	    get_program_var_addr("__pthread_distribute_static_tls", lockstate);
5339	if (distrib == NULL)
5340		return;
5341	STAILQ_FOREACH(elm, list, link) {
5342		obj = elm->obj;
5343		if (obj->marker || !obj->tls_done || obj->static_tls_copied)
5344			continue;
5345		distrib(obj->tlsoffset, obj->tlsinit, obj->tlsinitsize,
5346		    obj->tlssize);
5347		obj->static_tls_copied = true;
5348	}
5349}
5350
5351void
5352symlook_init(SymLook *dst, const char *name)
5353{
5354
5355	bzero(dst, sizeof(*dst));
5356	dst->name = name;
5357	dst->hash = elf_hash(name);
5358	dst->hash_gnu = gnu_hash(name);
5359}
5360
5361static void
5362symlook_init_from_req(SymLook *dst, const SymLook *src)
5363{
5364
5365	dst->name = src->name;
5366	dst->hash = src->hash;
5367	dst->hash_gnu = src->hash_gnu;
5368	dst->ventry = src->ventry;
5369	dst->flags = src->flags;
5370	dst->defobj_out = NULL;
5371	dst->sym_out = NULL;
5372	dst->lockstate = src->lockstate;
5373}
5374
5375static int
5376open_binary_fd(const char *argv0, bool search_in_path)
5377{
5378	char *pathenv, *pe, binpath[PATH_MAX];
5379	int fd;
5380
5381	if (search_in_path && strchr(argv0, '/') == NULL) {
5382		pathenv = getenv("PATH");
5383		if (pathenv == NULL) {
5384			rtld_printf("-p and no PATH environment variable\n");
5385			rtld_die();
5386		}
5387		pathenv = strdup(pathenv);
5388		if (pathenv == NULL) {
5389			rtld_printf("Cannot allocate memory\n");
5390			rtld_die();
5391		}
5392		fd = -1;
5393		errno = ENOENT;
5394		while ((pe = strsep(&pathenv, ":")) != NULL) {
5395			if (strlcpy(binpath, pe, sizeof(binpath)) >=
5396			    sizeof(binpath))
5397				continue;
5398			if (binpath[0] != '\0' &&
5399			    strlcat(binpath, "/", sizeof(binpath)) >=
5400			    sizeof(binpath))
5401				continue;
5402			if (strlcat(binpath, argv0, sizeof(binpath)) >=
5403			    sizeof(binpath))
5404				continue;
5405			fd = open(binpath, O_RDONLY | O_CLOEXEC | O_VERIFY);
5406			if (fd != -1 || errno != ENOENT)
5407				break;
5408		}
5409		free(pathenv);
5410	} else {
5411		fd = open(argv0, O_RDONLY | O_CLOEXEC | O_VERIFY);
5412	}
5413
5414	if (fd == -1) {
5415		rtld_printf("Opening %s: %s\n", argv0,
5416		    rtld_strerror(errno));
5417		rtld_die();
5418	}
5419	return (fd);
5420}
5421
5422/*
5423 * Parse a set of command-line arguments.
5424 */
5425static int
5426parse_args(char* argv[], int argc, bool *use_pathp, int *fdp)
5427{
5428	const char *arg;
5429	int fd, i, j, arglen;
5430	char opt;
5431
5432	dbg("Parsing command-line arguments");
5433	*use_pathp = false;
5434	*fdp = -1;
5435
5436	for (i = 1; i < argc; i++ ) {
5437		arg = argv[i];
5438		dbg("argv[%d]: '%s'", i, arg);
5439
5440		/*
5441		 * rtld arguments end with an explicit "--" or with the first
5442		 * non-prefixed argument.
5443		 */
5444		if (strcmp(arg, "--") == 0) {
5445			i++;
5446			break;
5447		}
5448		if (arg[0] != '-')
5449			break;
5450
5451		/*
5452		 * All other arguments are single-character options that can
5453		 * be combined, so we need to search through `arg` for them.
5454		 */
5455		arglen = strlen(arg);
5456		for (j = 1; j < arglen; j++) {
5457			opt = arg[j];
5458			if (opt == 'h') {
5459				print_usage(argv[0]);
5460				rtld_die();
5461			} else if (opt == 'f') {
5462			/*
5463			 * -f XX can be used to specify a descriptor for the
5464			 * binary named at the command line (i.e., the later
5465			 * argument will specify the process name but the
5466			 * descriptor is what will actually be executed)
5467			 */
5468			if (j != arglen - 1) {
5469				/* -f must be the last option in, e.g., -abcf */
5470				_rtld_error("invalid options: %s", arg);
5471				rtld_die();
5472			}
5473			i++;
5474			fd = parse_integer(argv[i]);
5475			if (fd == -1) {
5476				_rtld_error("invalid file descriptor: '%s'",
5477				    argv[i]);
5478				rtld_die();
5479			}
5480			*fdp = fd;
5481			break;
5482			} else if (opt == 'p') {
5483				*use_pathp = true;
5484			} else {
5485				rtld_printf("invalid argument: '%s'\n", arg);
5486				print_usage(argv[0]);
5487				rtld_die();
5488			}
5489		}
5490	}
5491
5492	return (i);
5493}
5494
5495/*
5496 * Parse a file descriptor number without pulling in more of libc (e.g. atoi).
5497 */
5498static int
5499parse_integer(const char *str)
5500{
5501	static const int RADIX = 10;  /* XXXJA: possibly support hex? */
5502	const char *orig;
5503	int n;
5504	char c;
5505
5506	orig = str;
5507	n = 0;
5508	for (c = *str; c != '\0'; c = *++str) {
5509		if (c < '0' || c > '9')
5510			return (-1);
5511
5512		n *= RADIX;
5513		n += c - '0';
5514	}
5515
5516	/* Make sure we actually parsed something. */
5517	if (str == orig)
5518		return (-1);
5519	return (n);
5520}
5521
5522static void
5523print_usage(const char *argv0)
5524{
5525
5526	rtld_printf("Usage: %s [-h] [-f <FD>] [--] <binary> [<args>]\n"
5527		"\n"
5528		"Options:\n"
5529		"  -h        Display this help message\n"
5530		"  -p        Search in PATH for named binary\n"
5531		"  -f <FD>   Execute <FD> instead of searching for <binary>\n"
5532		"  --        End of RTLD options\n"
5533		"  <binary>  Name of process to execute\n"
5534		"  <args>    Arguments to the executed process\n", argv0);
5535}
5536
5537/*
5538 * Overrides for libc_pic-provided functions.
5539 */
5540
5541int
5542__getosreldate(void)
5543{
5544	size_t len;
5545	int oid[2];
5546	int error, osrel;
5547
5548	if (osreldate != 0)
5549		return (osreldate);
5550
5551	oid[0] = CTL_KERN;
5552	oid[1] = KERN_OSRELDATE;
5553	osrel = 0;
5554	len = sizeof(osrel);
5555	error = sysctl(oid, 2, &osrel, &len, NULL, 0);
5556	if (error == 0 && osrel > 0 && len == sizeof(osrel))
5557		osreldate = osrel;
5558	return (osreldate);
5559}
5560
5561void
5562exit(int status)
5563{
5564
5565	_exit(status);
5566}
5567
5568void (*__cleanup)(void);
5569int __isthreaded = 0;
5570int _thread_autoinit_dummy_decl = 1;
5571
5572/*
5573 * No unresolved symbols for rtld.
5574 */
5575void
5576__pthread_cxa_finalize(struct dl_phdr_info *a)
5577{
5578}
5579
5580void
5581__stack_chk_fail(void)
5582{
5583
5584	_rtld_error("stack overflow detected; terminated");
5585	rtld_die();
5586}
5587__weak_reference(__stack_chk_fail, __stack_chk_fail_local);
5588
5589void
5590__chk_fail(void)
5591{
5592
5593	_rtld_error("buffer overflow detected; terminated");
5594	rtld_die();
5595}
5596
5597const char *
5598rtld_strerror(int errnum)
5599{
5600
5601	if (errnum < 0 || errnum >= sys_nerr)
5602		return ("Unknown error");
5603	return (sys_errlist[errnum]);
5604}
5605
5606/*
5607 * No ifunc relocations.
5608 */
5609void *
5610memset(void *dest, int c, size_t len)
5611{
5612	size_t i;
5613
5614	for (i = 0; i < len; i++)
5615		((char *)dest)[i] = c;
5616	return (dest);
5617}
5618
5619void
5620bzero(void *dest, size_t len)
5621{
5622	size_t i;
5623
5624	for (i = 0; i < len; i++)
5625		((char *)dest)[i] = 0;
5626}
5627