12116Sjkh/* @(#)s_expm1.c 5.1 93/09/24 */
22116Sjkh/*
32116Sjkh * ====================================================
42116Sjkh * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
52116Sjkh *
62116Sjkh * Developed at SunPro, a Sun Microsystems, Inc. business.
72116Sjkh * Permission to use, copy, modify, and distribute this
88870Srgrimes * software is freely granted, provided that this notice
92116Sjkh * is preserved.
102116Sjkh * ====================================================
112116Sjkh */
122116Sjkh
13176082Sbde#include <sys/cdefs.h>
14176082Sbde__FBSDID("$FreeBSD: stable/11/lib/msun/src/s_expm1.c 352835 2019-09-28 08:57:29Z dim $");
152116Sjkh
162116Sjkh/* expm1(x)
172116Sjkh * Returns exp(x)-1, the exponential of x minus 1.
182116Sjkh *
192116Sjkh * Method
202116Sjkh *   1. Argument reduction:
212116Sjkh *	Given x, find r and integer k such that
222116Sjkh *
238870Srgrimes *               x = k*ln2 + r,  |r| <= 0.5*ln2 ~ 0.34658
242116Sjkh *
258870Srgrimes *      Here a correction term c will be computed to compensate
262116Sjkh *	the error in r when rounded to a floating-point number.
272116Sjkh *
282116Sjkh *   2. Approximating expm1(r) by a special rational function on
292116Sjkh *	the interval [0,0.34658]:
302116Sjkh *	Since
312116Sjkh *	    r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ...
322116Sjkh *	we define R1(r*r) by
332116Sjkh *	    r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r)
342116Sjkh *	That is,
352116Sjkh *	    R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r)
362116Sjkh *		     = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r))
372116Sjkh *		     = 1 - r^2/60 + r^4/2520 - r^6/100800 + ...
388870Srgrimes *      We use a special Reme algorithm on [0,0.347] to generate
398870Srgrimes * 	a polynomial of degree 5 in r*r to approximate R1. The
408870Srgrimes *	maximum error of this polynomial approximation is bounded
412116Sjkh *	by 2**-61. In other words,
422116Sjkh *	    R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5
432116Sjkh *	where 	Q1  =  -1.6666666666666567384E-2,
442116Sjkh * 		Q2  =   3.9682539681370365873E-4,
452116Sjkh * 		Q3  =  -9.9206344733435987357E-6,
462116Sjkh * 		Q4  =   2.5051361420808517002E-7,
472116Sjkh * 		Q5  =  -6.2843505682382617102E-9;
48176128Sbde *		z   =  r*r,
492116Sjkh *	with error bounded by
502116Sjkh *	    |                  5           |     -61
518870Srgrimes *	    | 1.0+Q1*z+...+Q5*z   -  R1(z) | <= 2
522116Sjkh *	    |                              |
538870Srgrimes *
548870Srgrimes *	expm1(r) = exp(r)-1 is then computed by the following
558870Srgrimes * 	specific way which minimize the accumulation rounding error:
562116Sjkh *			       2     3
572116Sjkh *			      r     r    [ 3 - (R1 + R1*r/2)  ]
582116Sjkh *	      expm1(r) = r + --- + --- * [--------------------]
592116Sjkh *		              2     2    [ 6 - r*(3 - R1*r/2) ]
608870Srgrimes *
612116Sjkh *	To compensate the error in the argument reduction, we use
628870Srgrimes *		expm1(r+c) = expm1(r) + c + expm1(r)*c
638870Srgrimes *			   ~ expm1(r) + c + r*c
642116Sjkh *	Thus c+r*c will be added in as the correction terms for
658870Srgrimes *	expm1(r+c). Now rearrange the term to avoid optimization
662116Sjkh * 	screw up:
672116Sjkh *		        (      2                                    2 )
682116Sjkh *		        ({  ( r    [ R1 -  (3 - R1*r/2) ]  )  }    r  )
692116Sjkh *	 expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- )
702116Sjkh *	                ({  ( 2    [ 6 - r*(3 - R1*r/2) ]  )  }    2  )
712116Sjkh *                      (                                             )
728870Srgrimes *
732116Sjkh *		   = r - E
742116Sjkh *   3. Scale back to obtain expm1(x):
752116Sjkh *	From step 1, we have
762116Sjkh *	   expm1(x) = either 2^k*[expm1(r)+1] - 1
772116Sjkh *		    = or     2^k*[expm1(r) + (1-2^-k)]
782116Sjkh *   4. Implementation notes:
792116Sjkh *	(A). To save one multiplication, we scale the coefficient Qi
802116Sjkh *	     to Qi*2^i, and replace z by (x^2)/2.
812116Sjkh *	(B). To achieve maximum accuracy, we compute expm1(x) by
822116Sjkh *	  (i)   if x < -56*ln2, return -1.0, (raise inexact if x!=inf)
832116Sjkh *	  (ii)  if k=0, return r-E
842116Sjkh *	  (iii) if k=-1, return 0.5*(r-E)-0.5
852116Sjkh *        (iv)	if k=1 if r < -0.25, return 2*((r+0.5)- E)
862116Sjkh *	       	       else	     return  1.0+2.0*(r-E);
872116Sjkh *	  (v)   if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1)
882116Sjkh *	  (vi)  if k <= 20, return 2^k((1-2^-k)-(E-r)), else
898870Srgrimes *	  (vii) return 2^k(1-((E+2^-k)-r))
902116Sjkh *
912116Sjkh * Special cases:
922116Sjkh *	expm1(INF) is INF, expm1(NaN) is NaN;
932116Sjkh *	expm1(-INF) is -1, and
942116Sjkh *	for finite argument, only expm1(0)=0 is exact.
952116Sjkh *
962116Sjkh * Accuracy:
972116Sjkh *	according to an error analysis, the error is always less than
982116Sjkh *	1 ulp (unit in the last place).
992116Sjkh *
1002116Sjkh * Misc. info.
1018870Srgrimes *	For IEEE double
1022116Sjkh *	    if x >  7.09782712893383973096e+02 then expm1(x) overflow
1032116Sjkh *
1042116Sjkh * Constants:
1058870Srgrimes * The hexadecimal values are the intended ones for the following
1068870Srgrimes * constants. The decimal values may be used, provided that the
1072116Sjkh * compiler will convert from decimal to binary accurately enough
1082116Sjkh * to produce the hexadecimal values shown.
1092116Sjkh */
1102116Sjkh
111226596Sdas#include <float.h>
112226596Sdas
1132116Sjkh#include "math.h"
1142116Sjkh#include "math_private.h"
1152116Sjkh
1162116Sjkhstatic const double
1172116Sjkhone		= 1.0,
1182116Sjkhtiny		= 1.0e-300,
1192116Sjkho_threshold	= 7.09782712893383973096e+02,/* 0x40862E42, 0xFEFA39EF */
1202116Sjkhln2_hi		= 6.93147180369123816490e-01,/* 0x3fe62e42, 0xfee00000 */
1212116Sjkhln2_lo		= 1.90821492927058770002e-10,/* 0x3dea39ef, 0x35793c76 */
1222116Sjkhinvln2		= 1.44269504088896338700e+00,/* 0x3ff71547, 0x652b82fe */
123176128Sbde/* Scaled Q's: Qn_here = 2**n * Qn_above, for R(2*z) where z = hxs = x*x/2: */
1242116SjkhQ1  =  -3.33333333333331316428e-02, /* BFA11111 111110F4 */
1252116SjkhQ2  =   1.58730158725481460165e-03, /* 3F5A01A0 19FE5585 */
1262116SjkhQ3  =  -7.93650757867487942473e-05, /* BF14CE19 9EAADBB7 */
1272116SjkhQ4  =   4.00821782732936239552e-06, /* 3ED0CFCA 86E65239 */
1282116SjkhQ5  =  -2.01099218183624371326e-07; /* BE8AFDB7 6E09C32D */
1292116Sjkh
130251024Sdasstatic volatile double huge = 1.0e+300;
131251024Sdas
13297413Salfreddouble
13397413Salfredexpm1(double x)
1342116Sjkh{
135176082Sbde	double y,hi,lo,c,t,e,hxs,hfx,r1,twopk;
1362116Sjkh	int32_t k,xsb;
1372116Sjkh	u_int32_t hx;
1382116Sjkh
1392116Sjkh	GET_HIGH_WORD(hx,x);
1402116Sjkh	xsb = hx&0x80000000;		/* sign bit of x */
1412116Sjkh	hx &= 0x7fffffff;		/* high word of |x| */
1422116Sjkh
1432116Sjkh    /* filter out huge and non-finite argument */
1442116Sjkh	if(hx >= 0x4043687A) {			/* if |x|>=56*ln2 */
1452116Sjkh	    if(hx >= 0x40862E42) {		/* if |x|>=709.78... */
1462116Sjkh                if(hx>=0x7ff00000) {
1472116Sjkh		    u_int32_t low;
1482116Sjkh		    GET_LOW_WORD(low,x);
1498870Srgrimes		    if(((hx&0xfffff)|low)!=0)
1502116Sjkh		         return x+x; 	 /* NaN */
1512116Sjkh		    else return (xsb==0)? x:-1.0;/* exp(+-inf)={inf,-1} */
1522116Sjkh	        }
1532116Sjkh	        if(x > o_threshold) return huge*huge; /* overflow */
1542116Sjkh	    }
1552116Sjkh	    if(xsb!=0) { /* x < -56*ln2, return -1.0 with inexact */
1562116Sjkh		if(x+tiny<0.0)		/* raise inexact */
1572116Sjkh		return tiny-one;	/* return -1 */
1582116Sjkh	    }
1592116Sjkh	}
1602116Sjkh
1612116Sjkh    /* argument reduction */
1628870Srgrimes	if(hx > 0x3fd62e42) {		/* if  |x| > 0.5 ln2 */
1632116Sjkh	    if(hx < 0x3FF0A2B2) {	/* and |x| < 1.5 ln2 */
1642116Sjkh		if(xsb==0)
1652116Sjkh		    {hi = x - ln2_hi; lo =  ln2_lo;  k =  1;}
1662116Sjkh		else
1672116Sjkh		    {hi = x + ln2_hi; lo = -ln2_lo;  k = -1;}
1682116Sjkh	    } else {
1692116Sjkh		k  = invln2*x+((xsb==0)?0.5:-0.5);
1702116Sjkh		t  = k;
1712116Sjkh		hi = x - t*ln2_hi;	/* t*ln2_hi is exact here */
1722116Sjkh		lo = t*ln2_lo;
1732116Sjkh	    }
174226596Sdas	    STRICT_ASSIGN(double, x, hi - lo);
1752116Sjkh	    c  = (hi-x)-lo;
1768870Srgrimes	}
1772116Sjkh	else if(hx < 0x3c900000) {  	/* when |x|<2**-54, return x */
1782116Sjkh	    t = huge+x;	/* return x with inexact flags when x!=0 */
1798870Srgrimes	    return x - (t-(huge+x));
1802116Sjkh	}
1812116Sjkh	else k = 0;
1822116Sjkh
1832116Sjkh    /* x is now in primary range */
1842116Sjkh	hfx = 0.5*x;
1852116Sjkh	hxs = x*hfx;
1862116Sjkh	r1 = one+hxs*(Q1+hxs*(Q2+hxs*(Q3+hxs*(Q4+hxs*Q5))));
1872116Sjkh	t  = 3.0-r1*hfx;
1882116Sjkh	e  = hxs*((r1-t)/(6.0 - x*t));
1892116Sjkh	if(k==0) return x - (x*e-hxs);		/* c is 0 */
1902116Sjkh	else {
191352835Sdim	    INSERT_WORDS(twopk,((u_int32_t)(0x3ff+k))<<20,0);	/* 2^k */
1922116Sjkh	    e  = (x*(e-c)-c);
1932116Sjkh	    e -= hxs;
1942116Sjkh	    if(k== -1) return 0.5*(x-e)-0.5;
195177711Sdas	    if(k==1) {
1962116Sjkh	       	if(x < -0.25) return -2.0*(e-(x+0.5));
1972116Sjkh	       	else 	      return  one+2.0*(x-e);
198177711Sdas	    }
1992116Sjkh	    if (k <= -2 || k>56) {   /* suffice to return exp(x)-1 */
2002116Sjkh	        y = one-(e-x);
201176082Sbde		if (k == 1024) y = y*2.0*0x1p1023;
202176082Sbde		else y = y*twopk;
2032116Sjkh	        return y-one;
2042116Sjkh	    }
2052116Sjkh	    t = one;
2062116Sjkh	    if(k<20) {
2072116Sjkh	        SET_HIGH_WORD(t,0x3ff00000 - (0x200000>>k));  /* t=1-2^-k */
2082116Sjkh	       	y = t-(e-x);
209176082Sbde		y = y*twopk;
2102116Sjkh	   } else {
2112116Sjkh		SET_HIGH_WORD(t,((0x3ff-k)<<20));	/* 2^-k */
2122116Sjkh	       	y = x-(e+t);
2132116Sjkh	       	y += one;
214176082Sbde		y = y*twopk;
2152116Sjkh	    }
2162116Sjkh	}
2172116Sjkh	return y;
2182116Sjkh}
219251343Skargl
220251343Skargl#if (LDBL_MANT_DIG == 53)
221251343Skargl__weak_reference(expm1, expm1l);
222251343Skargl#endif
223