k_rem_pio2.c revision 141296
1
2/* @(#)k_rem_pio2.c 1.3 95/01/18 */
3/*
4 * ====================================================
5 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
6 *
7 * Developed at SunSoft, a Sun Microsystems, Inc. business.
8 * Permission to use, copy, modify, and distribute this
9 * software is freely granted, provided that this notice
10 * is preserved.
11 * ====================================================
12 */
13
14#ifndef lint
15static char rcsid[] = "$FreeBSD: head/lib/msun/src/k_rem_pio2.c 141296 2005-02-04 18:26:06Z das $";
16#endif
17
18/*
19 * __kernel_rem_pio2(x,y,e0,nx,prec,ipio2)
20 * double x[],y[]; int e0,nx,prec; int ipio2[];
21 *
22 * __kernel_rem_pio2 return the last three digits of N with
23 *		y = x - N*pi/2
24 * so that |y| < pi/2.
25 *
26 * The method is to compute the integer (mod 8) and fraction parts of
27 * (2/pi)*x without doing the full multiplication. In general we
28 * skip the part of the product that are known to be a huge integer (
29 * more accurately, = 0 mod 8 ). Thus the number of operations are
30 * independent of the exponent of the input.
31 *
32 * (2/pi) is represented by an array of 24-bit integers in ipio2[].
33 *
34 * Input parameters:
35 * 	x[]	The input value (must be positive) is broken into nx
36 *		pieces of 24-bit integers in double precision format.
37 *		x[i] will be the i-th 24 bit of x. The scaled exponent
38 *		of x[0] is given in input parameter e0 (i.e., x[0]*2^e0
39 *		match x's up to 24 bits.
40 *
41 *		Example of breaking a double positive z into x[0]+x[1]+x[2]:
42 *			e0 = ilogb(z)-23
43 *			z  = scalbn(z,-e0)
44 *		for i = 0,1,2
45 *			x[i] = floor(z)
46 *			z    = (z-x[i])*2**24
47 *
48 *
49 *	y[]	ouput result in an array of double precision numbers.
50 *		The dimension of y[] is:
51 *			24-bit  precision	1
52 *			53-bit  precision	2
53 *			64-bit  precision	2
54 *			113-bit precision	3
55 *		The actual value is the sum of them. Thus for 113-bit
56 *		precison, one may have to do something like:
57 *
58 *		long double t,w,r_head, r_tail;
59 *		t = (long double)y[2] + (long double)y[1];
60 *		w = (long double)y[0];
61 *		r_head = t+w;
62 *		r_tail = w - (r_head - t);
63 *
64 *	e0	The exponent of x[0]
65 *
66 *	nx	dimension of x[]
67 *
68 *  	prec	an integer indicating the precision:
69 *			0	24  bits (single)
70 *			1	53  bits (double)
71 *			2	64  bits (extended)
72 *			3	113 bits (quad)
73 *
74 *	ipio2[]
75 *		integer array, contains the (24*i)-th to (24*i+23)-th
76 *		bit of 2/pi after binary point. The corresponding
77 *		floating value is
78 *
79 *			ipio2[i] * 2^(-24(i+1)).
80 *
81 * External function:
82 *	double scalbn(), floor();
83 *
84 *
85 * Here is the description of some local variables:
86 *
87 * 	jk	jk+1 is the initial number of terms of ipio2[] needed
88 *		in the computation. The recommended value is 2,3,4,
89 *		6 for single, double, extended,and quad.
90 *
91 * 	jz	local integer variable indicating the number of
92 *		terms of ipio2[] used.
93 *
94 *	jx	nx - 1
95 *
96 *	jv	index for pointing to the suitable ipio2[] for the
97 *		computation. In general, we want
98 *			( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8
99 *		is an integer. Thus
100 *			e0-3-24*jv >= 0 or (e0-3)/24 >= jv
101 *		Hence jv = max(0,(e0-3)/24).
102 *
103 *	jp	jp+1 is the number of terms in PIo2[] needed, jp = jk.
104 *
105 * 	q[]	double array with integral value, representing the
106 *		24-bits chunk of the product of x and 2/pi.
107 *
108 *	q0	the corresponding exponent of q[0]. Note that the
109 *		exponent for q[i] would be q0-24*i.
110 *
111 *	PIo2[]	double precision array, obtained by cutting pi/2
112 *		into 24 bits chunks.
113 *
114 *	f[]	ipio2[] in floating point
115 *
116 *	iq[]	integer array by breaking up q[] in 24-bits chunk.
117 *
118 *	fq[]	final product of x*(2/pi) in fq[0],..,fq[jk]
119 *
120 *	ih	integer. If >0 it indicates q[] is >= 0.5, hence
121 *		it also indicates the *sign* of the result.
122 *
123 */
124
125
126/*
127 * Constants:
128 * The hexadecimal values are the intended ones for the following
129 * constants. The decimal values may be used, provided that the
130 * compiler will convert from decimal to binary accurately enough
131 * to produce the hexadecimal values shown.
132 */
133
134#include "math.h"
135#include "math_private.h"
136
137static const int init_jk[] = {2,3,4,6}; /* initial value for jk */
138
139static const double PIo2[] = {
140  1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */
141  7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */
142  5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */
143  3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */
144  1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */
145  1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */
146  2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */
147  2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */
148};
149
150static const double
151zero   = 0.0,
152one    = 1.0,
153two24   =  1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */
154twon24  =  5.96046447753906250000e-08; /* 0x3E700000, 0x00000000 */
155
156	int __kernel_rem_pio2(double *x, double *y, int e0, int nx, int prec, const int32_t *ipio2)
157{
158	int32_t jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih;
159	double z,fw,f[20],fq[20],q[20];
160
161    /* initialize jk*/
162	jk = init_jk[prec];
163	jp = jk;
164
165    /* determine jx,jv,q0, note that 3>q0 */
166	jx =  nx-1;
167	jv = (e0-3)/24; if(jv<0) jv=0;
168	q0 =  e0-24*(jv+1);
169
170    /* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */
171	j = jv-jx; m = jx+jk;
172	for(i=0;i<=m;i++,j++) f[i] = (j<0)? zero : (double) ipio2[j];
173
174    /* compute q[0],q[1],...q[jk] */
175	for (i=0;i<=jk;i++) {
176	    for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; q[i] = fw;
177	}
178
179	jz = jk;
180recompute:
181    /* distill q[] into iq[] reversingly */
182	for(i=0,j=jz,z=q[jz];j>0;i++,j--) {
183	    fw    =  (double)((int32_t)(twon24* z));
184	    iq[i] =  (int32_t)(z-two24*fw);
185	    z     =  q[j-1]+fw;
186	}
187
188    /* compute n */
189	z  = scalbn(z,q0);		/* actual value of z */
190	z -= 8.0*floor(z*0.125);		/* trim off integer >= 8 */
191	n  = (int32_t) z;
192	z -= (double)n;
193	ih = 0;
194	if(q0>0) {	/* need iq[jz-1] to determine n */
195	    i  = (iq[jz-1]>>(24-q0)); n += i;
196	    iq[jz-1] -= i<<(24-q0);
197	    ih = iq[jz-1]>>(23-q0);
198	}
199	else if(q0==0) ih = iq[jz-1]>>23;
200	else if(z>=0.5) ih=2;
201
202	if(ih>0) {	/* q > 0.5 */
203	    n += 1; carry = 0;
204	    for(i=0;i<jz ;i++) {	/* compute 1-q */
205		j = iq[i];
206		if(carry==0) {
207		    if(j!=0) {
208			carry = 1; iq[i] = 0x1000000- j;
209		    }
210		} else  iq[i] = 0xffffff - j;
211	    }
212	    if(q0>0) {		/* rare case: chance is 1 in 12 */
213	        switch(q0) {
214	        case 1:
215	    	   iq[jz-1] &= 0x7fffff; break;
216	    	case 2:
217	    	   iq[jz-1] &= 0x3fffff; break;
218	        }
219	    }
220	    if(ih==2) {
221		z = one - z;
222		if(carry!=0) z -= scalbn(one,q0);
223	    }
224	}
225
226    /* check if recomputation is needed */
227	if(z==zero) {
228	    j = 0;
229	    for (i=jz-1;i>=jk;i--) j |= iq[i];
230	    if(j==0) { /* need recomputation */
231		for(k=1;iq[jk-k]==0;k++);   /* k = no. of terms needed */
232
233		for(i=jz+1;i<=jz+k;i++) {   /* add q[jz+1] to q[jz+k] */
234		    f[jx+i] = (double) ipio2[jv+i];
235		    for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j];
236		    q[i] = fw;
237		}
238		jz += k;
239		goto recompute;
240	    }
241	}
242
243    /* chop off zero terms */
244	if(z==0.0) {
245	    jz -= 1; q0 -= 24;
246	    while(iq[jz]==0) { jz--; q0-=24;}
247	} else { /* break z into 24-bit if necessary */
248	    z = scalbn(z,-q0);
249	    if(z>=two24) {
250		fw = (double)((int32_t)(twon24*z));
251		iq[jz] = (int32_t)(z-two24*fw);
252		jz += 1; q0 += 24;
253		iq[jz] = (int32_t) fw;
254	    } else iq[jz] = (int32_t) z ;
255	}
256
257    /* convert integer "bit" chunk to floating-point value */
258	fw = scalbn(one,q0);
259	for(i=jz;i>=0;i--) {
260	    q[i] = fw*(double)iq[i]; fw*=twon24;
261	}
262
263    /* compute PIo2[0,...,jp]*q[jz,...,0] */
264	for(i=jz;i>=0;i--) {
265	    for(fw=0.0,k=0;k<=jp&&k<=jz-i;k++) fw += PIo2[k]*q[i+k];
266	    fq[jz-i] = fw;
267	}
268
269    /* compress fq[] into y[] */
270	switch(prec) {
271	    case 0:
272		fw = 0.0;
273		for (i=jz;i>=0;i--) fw += fq[i];
274		y[0] = (ih==0)? fw: -fw;
275		break;
276	    case 1:
277	    case 2:
278		fw = 0.0;
279		for (i=jz;i>=0;i--) fw += fq[i];
280		y[0] = (ih==0)? fw: -fw;
281		fw = fq[0]-fw;
282		for (i=1;i<=jz;i++) fw += fq[i];
283		y[1] = (ih==0)? fw: -fw;
284		break;
285	    case 3:	/* painful */
286		for (i=jz;i>0;i--) {
287		    fw      = fq[i-1]+fq[i];
288		    fq[i]  += fq[i-1]-fw;
289		    fq[i-1] = fw;
290		}
291		for (i=jz;i>1;i--) {
292		    fw      = fq[i-1]+fq[i];
293		    fq[i]  += fq[i-1]-fw;
294		    fq[i-1] = fw;
295		}
296		for (fw=0.0,i=jz;i>=2;i--) fw += fq[i];
297		if(ih==0) {
298		    y[0] =  fq[0]; y[1] =  fq[1]; y[2] =  fw;
299		} else {
300		    y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw;
301		}
302	}
303	return n&7;
304}
305