e_rem_pio2f.c revision 151221
1/* e_rem_pio2f.c -- float version of e_rem_pio2.c
2 * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
3 */
4
5/*
6 * ====================================================
7 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
8 *
9 * Developed at SunPro, a Sun Microsystems, Inc. business.
10 * Permission to use, copy, modify, and distribute this
11 * software is freely granted, provided that this notice
12 * is preserved.
13 * ====================================================
14 */
15
16#ifndef lint
17static char rcsid[] = "$FreeBSD: head/lib/msun/src/e_rem_pio2f.c 151221 2005-10-10 20:02:02Z bde $";
18#endif
19
20/* __ieee754_rem_pio2f(x,y)
21 *
22 * return the remainder of x rem pi/2 in y[0]+y[1]
23 * use __kernel_rem_pio2f()
24 */
25
26#include "math.h"
27#include "math_private.h"
28
29/*
30 * Table of constants for 2/pi, 396 Hex digits (476 decimal) of 2/pi
31 */
32static const int32_t two_over_pi[] = {
330xA2, 0xF9, 0x83, 0x6E, 0x4E, 0x44, 0x15, 0x29, 0xFC,
340x27, 0x57, 0xD1, 0xF5, 0x34, 0xDD, 0xC0, 0xDB, 0x62,
350x95, 0x99, 0x3C, 0x43, 0x90, 0x41, 0xFE, 0x51, 0x63,
360xAB, 0xDE, 0xBB, 0xC5, 0x61, 0xB7, 0x24, 0x6E, 0x3A,
370x42, 0x4D, 0xD2, 0xE0, 0x06, 0x49, 0x2E, 0xEA, 0x09,
380xD1, 0x92, 0x1C, 0xFE, 0x1D, 0xEB, 0x1C, 0xB1, 0x29,
390xA7, 0x3E, 0xE8, 0x82, 0x35, 0xF5, 0x2E, 0xBB, 0x44,
400x84, 0xE9, 0x9C, 0x70, 0x26, 0xB4, 0x5F, 0x7E, 0x41,
410x39, 0x91, 0xD6, 0x39, 0x83, 0x53, 0x39, 0xF4, 0x9C,
420x84, 0x5F, 0x8B, 0xBD, 0xF9, 0x28, 0x3B, 0x1F, 0xF8,
430x97, 0xFF, 0xDE, 0x05, 0x98, 0x0F, 0xEF, 0x2F, 0x11,
440x8B, 0x5A, 0x0A, 0x6D, 0x1F, 0x6D, 0x36, 0x7E, 0xCF,
450x27, 0xCB, 0x09, 0xB7, 0x4F, 0x46, 0x3F, 0x66, 0x9E,
460x5F, 0xEA, 0x2D, 0x75, 0x27, 0xBA, 0xC7, 0xEB, 0xE5,
470xF1, 0x7B, 0x3D, 0x07, 0x39, 0xF7, 0x8A, 0x52, 0x92,
480xEA, 0x6B, 0xFB, 0x5F, 0xB1, 0x1F, 0x8D, 0x5D, 0x08,
490x56, 0x03, 0x30, 0x46, 0xFC, 0x7B, 0x6B, 0xAB, 0xF0,
500xCF, 0xBC, 0x20, 0x9A, 0xF4, 0x36, 0x1D, 0xA9, 0xE3,
510x91, 0x61, 0x5E, 0xE6, 0x1B, 0x08, 0x65, 0x99, 0x85,
520x5F, 0x14, 0xA0, 0x68, 0x40, 0x8D, 0xFF, 0xD8, 0x80,
530x4D, 0x73, 0x27, 0x31, 0x06, 0x06, 0x15, 0x56, 0xCA,
540x73, 0xA8, 0xC9, 0x60, 0xE2, 0x7B, 0xC0, 0x8C, 0x6B,
55};
56
57/*
58 * This array is like the one in e_rem_pio2.c, but the numbers are
59 * single precision and the last few bits (8 here) are ignored by
60 * masking them off in the float word instead of by omitting the low
61 * word.
62 *
63 * Masking off 8 bits is not enough, but we defer further masking to
64 * runtime so that the mask is easy to change.  We now mask off 21
65 * bits, which is the smallest number that makes the "quick check no
66 * cancellation" detect all cancellations for cases that it is used.
67 * It doesn't detect all non-cancellations, especiallly for small
68 * multiples of pi/2, but then the non-quick code selects the best
69 * approximation of pi/2 to use.  The result is that arg reduction is
70 * always done with between 8 or 9 and 17 bits of extra precision in
71 * the medium-multiple case.  With only 8 bits masked of we had
72 * negative extra precision in some cases starting near +-13*pi/2.
73 */
74static const int32_t npio2_hw[] = {
750x3fc90f00, 0x40490f00, 0x4096cb00, 0x40c90f00, 0x40fb5300, 0x4116cb00,
760x412fed00, 0x41490f00, 0x41623100, 0x417b5300, 0x418a3a00, 0x4196cb00,
770x41a35c00, 0x41afed00, 0x41bc7e00, 0x41c90f00, 0x41d5a000, 0x41e23100,
780x41eec200, 0x41fb5300, 0x4203f200, 0x420a3a00, 0x42108300, 0x4216cb00,
790x421d1400, 0x42235c00, 0x4229a500, 0x422fed00, 0x42363600, 0x423c7e00,
800x4242c700, 0x42490f00
81};
82
83/*
84 * invpio2:  24 bits of 2/pi
85 * pio2_1:   first  17 bit of pi/2
86 * pio2_1t:  pi/2 - pio2_1
87 * pio2_2:   second 17 bit of pi/2
88 * pio2_2t:  pi/2 - (pio2_1+pio2_2)
89 * pio2_3:   third  17 bit of pi/2
90 * pio2_3t:  pi/2 - (pio2_1+pio2_2+pio2_3)
91 */
92
93static const float
94zero =  0.0000000000e+00, /* 0x00000000 */
95half =  5.0000000000e-01, /* 0x3f000000 */
96two8 =  2.5600000000e+02, /* 0x43800000 */
97invpio2 =  6.3661980629e-01, /* 0x3f22f984 */
98pio2_1  =  1.5707855225e+00, /* 0x3fc90f80 */
99pio2_1t =  1.0804334124e-05, /* 0x37354443 */
100pio2_2  =  1.0804273188e-05, /* 0x37354400 */
101pio2_2t =  6.0770999344e-11, /* 0x2e85a308 */
102pio2_3  =  6.0770943833e-11, /* 0x2e85a300 */
103pio2_3t =  6.1232342629e-17; /* 0x248d3132 */
104
105	int32_t __ieee754_rem_pio2f(float x, float *y)
106{
107	float z,w,t,r,fn;
108	float tx[3];
109	int32_t e0,i,j,nx,n,ix,hx;
110
111	GET_FLOAT_WORD(hx,x);
112	ix = hx&0x7fffffff;
113	if(ix<=0x3f490fd8)   /* |x| ~<= pi/4 , no need for reduction */
114	    {y[0] = x; y[1] = 0; return 0;}
115	if(ix<0x4016cbe4) {  /* |x| < 3pi/4, special case with n=+-1 */
116	    if(hx>0) {
117		z = x - pio2_1;
118		if((ix&0xfffe0000)!=0x3fc80000) { /* 17+24 bit pi OK */
119		    y[0] = z - pio2_1t;
120		    y[1] = (z-y[0])-pio2_1t;
121		} else {		/* near pi/2, use 17+17+24 bit pi */
122		    z -= pio2_2;
123		    y[0] = z - pio2_2t;
124		    y[1] = (z-y[0])-pio2_2t;
125		}
126		return 1;
127	    } else {	/* negative x */
128		z = x + pio2_1;
129		if((ix&0xfffe0000)!=0x3fc80000) { /* 17+24 bit pi OK */
130		    y[0] = z + pio2_1t;
131		    y[1] = (z-y[0])+pio2_1t;
132		} else {		/* near pi/2, use 17+17+24 bit pi */
133		    z += pio2_2;
134		    y[0] = z + pio2_2t;
135		    y[1] = (z-y[0])+pio2_2t;
136		}
137		return -1;
138	    }
139	}
140	if(ix<=0x43490f80) { /* |x| ~<= 2^7*(pi/2), medium size */
141	    t  = fabsf(x);
142	    n  = (int32_t) (t*invpio2+half);
143	    fn = (float)n;
144	    r  = t-fn*pio2_1;
145	    w  = fn*pio2_1t;	/* 1st round good to 40 bit */
146	    if(n<32&&(ix&0xffe00000)!=(npio2_hw[n-1]&0xffe00000)) {
147		y[0] = r-w;	/* quick check no cancellation */
148	    } else {
149	        u_int32_t high;
150	        j  = ix>>23;
151	        y[0] = r-w;
152		GET_FLOAT_WORD(high,y[0]);
153	        i = j-((high>>23)&0xff);
154	        if(i>8) {  /* 2nd iteration needed, good to 57 */
155		    t  = r;
156		    w  = fn*pio2_2;
157		    r  = t-w;
158		    w  = fn*pio2_2t-((t-r)-w);
159		    y[0] = r-w;
160		    GET_FLOAT_WORD(high,y[0]);
161		    i = j-((high>>23)&0xff);
162		    if(i>25)  {	/* 3rd iteration need, 74 bits acc */
163		    	t  = r;	/* will cover all possible cases */
164		    	w  = fn*pio2_3;
165		    	r  = t-w;
166		    	w  = fn*pio2_3t-((t-r)-w);
167		    	y[0] = r-w;
168		    }
169		}
170	    }
171	    y[1] = (r-y[0])-w;
172	    if(hx<0) 	{y[0] = -y[0]; y[1] = -y[1]; return -n;}
173	    else	 return n;
174	}
175    /*
176     * all other (large) arguments
177     */
178	if(ix>=0x7f800000) {		/* x is inf or NaN */
179	    y[0]=y[1]=x-x; return 0;
180	}
181    /* set z = scalbn(|x|,ilogb(x)-7) */
182	e0 	= (ix>>23)-134;		/* e0 = ilogb(z)-7; */
183	SET_FLOAT_WORD(z, ix - ((int32_t)(e0<<23)));
184	for(i=0;i<2;i++) {
185		tx[i] = (float)((int32_t)(z));
186		z     = (z-tx[i])*two8;
187	}
188	tx[2] = z;
189	nx = 3;
190	while(tx[nx-1]==zero) nx--;	/* skip zero term */
191	n  =  __kernel_rem_pio2f(tx,y,e0,nx,2,two_over_pi);
192	if(hx<0) {y[0] = -y[0]; y[1] = -y[1]; return -n;}
193	return n;
194}
195