1141296Sdas
2141296Sdas/* @(#)e_log.c 1.3 95/01/18 */
32116Sjkh/*
42116Sjkh * ====================================================
52116Sjkh * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
62116Sjkh *
7141296Sdas * Developed at SunSoft, a Sun Microsystems, Inc. business.
82116Sjkh * Permission to use, copy, modify, and distribute this
9141296Sdas * software is freely granted, provided that this notice
102116Sjkh * is preserved.
112116Sjkh * ====================================================
122116Sjkh */
132116Sjkh
14176451Sdas#include <sys/cdefs.h>
15176451Sdas__FBSDID("$FreeBSD$");
162116Sjkh
172116Sjkh/* __ieee754_log(x)
182116Sjkh * Return the logrithm of x
192116Sjkh *
20141296Sdas * Method :
21141296Sdas *   1. Argument Reduction: find k and f such that
22141296Sdas *			x = 2^k * (1+f),
232116Sjkh *	   where  sqrt(2)/2 < 1+f < sqrt(2) .
242116Sjkh *
252116Sjkh *   2. Approximation of log(1+f).
262116Sjkh *	Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
272116Sjkh *		 = 2s + 2/3 s**3 + 2/5 s**5 + .....,
282116Sjkh *	     	 = 2s + s*R
29141296Sdas *      We use a special Reme algorithm on [0,0.1716] to generate
30141296Sdas * 	a polynomial of degree 14 to approximate R The maximum error
312116Sjkh *	of this polynomial approximation is bounded by 2**-58.45. In
322116Sjkh *	other words,
332116Sjkh *		        2      4      6      8      10      12      14
342116Sjkh *	    R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s  +Lg6*s  +Lg7*s
352116Sjkh *  	(the values of Lg1 to Lg7 are listed in the program)
362116Sjkh *	and
372116Sjkh *	    |      2          14          |     -58.45
38141296Sdas *	    | Lg1*s +...+Lg7*s    -  R(z) | <= 2
392116Sjkh *	    |                             |
402116Sjkh *	Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
412116Sjkh *	In order to guarantee error in log below 1ulp, we compute log
422116Sjkh *	by
432116Sjkh *		log(1+f) = f - s*(f - R)	(if f is not too large)
442116Sjkh *		log(1+f) = f - (hfsq - s*(hfsq+R)).	(better accuracy)
45141296Sdas *
46141296Sdas *	3. Finally,  log(x) = k*ln2 + log(1+f).
472116Sjkh *			    = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
48141296Sdas *	   Here ln2 is split into two floating point number:
492116Sjkh *			ln2_hi + ln2_lo,
502116Sjkh *	   where n*ln2_hi is always exact for |n| < 2000.
512116Sjkh *
522116Sjkh * Special cases:
53141296Sdas *	log(x) is NaN with signal if x < 0 (including -INF) ;
542116Sjkh *	log(+INF) is +INF; log(0) is -INF with signal;
552116Sjkh *	log(NaN) is that NaN with no signal.
562116Sjkh *
572116Sjkh * Accuracy:
582116Sjkh *	according to an error analysis, the error is always less than
592116Sjkh *	1 ulp (unit in the last place).
602116Sjkh *
612116Sjkh * Constants:
62141296Sdas * The hexadecimal values are the intended ones for the following
63141296Sdas * constants. The decimal values may be used, provided that the
64141296Sdas * compiler will convert from decimal to binary accurately enough
652116Sjkh * to produce the hexadecimal values shown.
662116Sjkh */
672116Sjkh
68251292Sdas#include <float.h>
69251292Sdas
702116Sjkh#include "math.h"
712116Sjkh#include "math_private.h"
722116Sjkh
732116Sjkhstatic const double
742116Sjkhln2_hi  =  6.93147180369123816490e-01,	/* 3fe62e42 fee00000 */
752116Sjkhln2_lo  =  1.90821492927058770002e-10,	/* 3dea39ef 35793c76 */
762116Sjkhtwo54   =  1.80143985094819840000e+16,  /* 43500000 00000000 */
772116SjkhLg1 = 6.666666666666735130e-01,  /* 3FE55555 55555593 */
782116SjkhLg2 = 3.999999999940941908e-01,  /* 3FD99999 9997FA04 */
792116SjkhLg3 = 2.857142874366239149e-01,  /* 3FD24924 94229359 */
802116SjkhLg4 = 2.222219843214978396e-01,  /* 3FCC71C5 1D8E78AF */
812116SjkhLg5 = 1.818357216161805012e-01,  /* 3FC74664 96CB03DE */
822116SjkhLg6 = 1.531383769920937332e-01,  /* 3FC39A09 D078C69F */
832116SjkhLg7 = 1.479819860511658591e-01;  /* 3FC2F112 DF3E5244 */
842116Sjkh
852116Sjkhstatic const double zero   =  0.0;
86251024Sdasstatic volatile double vzero = 0.0;
872116Sjkh
8897413Salfreddouble
89117912Speter__ieee754_log(double x)
902116Sjkh{
912116Sjkh	double hfsq,f,s,z,R,w,t1,t2,dk;
922116Sjkh	int32_t k,hx,i,j;
932116Sjkh	u_int32_t lx;
942116Sjkh
952116Sjkh	EXTRACT_WORDS(hx,lx,x);
962116Sjkh
972116Sjkh	k=0;
982116Sjkh	if (hx < 0x00100000) {			/* x < 2**-1022  */
99141296Sdas	    if (((hx&0x7fffffff)|lx)==0)
100251024Sdas		return -two54/vzero;		/* log(+-0)=-inf */
1012116Sjkh	    if (hx<0) return (x-x)/zero;	/* log(-#) = NaN */
1022116Sjkh	    k -= 54; x *= two54; /* subnormal number, scale up x */
1032116Sjkh	    GET_HIGH_WORD(hx,x);
104141296Sdas	}
1052116Sjkh	if (hx >= 0x7ff00000) return x+x;
1062116Sjkh	k += (hx>>20)-1023;
1072116Sjkh	hx &= 0x000fffff;
1082116Sjkh	i = (hx+0x95f64)&0x100000;
1092116Sjkh	SET_HIGH_WORD(x,hx|(i^0x3ff00000));	/* normalize x or x/2 */
1102116Sjkh	k += (i>>20);
1112116Sjkh	f = x-1.0;
112170707Sbde	if((0x000fffff&(2+hx))<3) {	/* -2**-20 <= f < 2**-20 */
113177711Sdas	    if(f==zero) {
114177711Sdas		if(k==0) {
115177711Sdas		    return zero;
116177711Sdas		} else {
117177711Sdas		    dk=(double)k;
118177711Sdas		    return dk*ln2_hi+dk*ln2_lo;
119177711Sdas		}
120177711Sdas	    }
1212116Sjkh	    R = f*f*(0.5-0.33333333333333333*f);
1222116Sjkh	    if(k==0) return f-R; else {dk=(double)k;
1232116Sjkh	    	     return dk*ln2_hi-((R-dk*ln2_lo)-f);}
1242116Sjkh	}
125141296Sdas 	s = f/(2.0+f);
1262116Sjkh	dk = (double)k;
1272116Sjkh	z = s*s;
1282116Sjkh	i = hx-0x6147a;
1292116Sjkh	w = z*z;
1302116Sjkh	j = 0x6b851-hx;
131141296Sdas	t1= w*(Lg2+w*(Lg4+w*Lg6));
132141296Sdas	t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
1332116Sjkh	i |= j;
1342116Sjkh	R = t2+t1;
1352116Sjkh	if(i>0) {
1362116Sjkh	    hfsq=0.5*f*f;
1372116Sjkh	    if(k==0) return f-(hfsq-s*(hfsq+R)); else
1382116Sjkh		     return dk*ln2_hi-((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f);
1392116Sjkh	} else {
1402116Sjkh	    if(k==0) return f-s*(f-R); else
1412116Sjkh		     return dk*ln2_hi-((s*(f-R)-dk*ln2_lo)-f);
1422116Sjkh	}
1432116Sjkh}
144251292Sdas
145251292Sdas#if (LDBL_MANT_DIG == 53)
146251292Sdas__weak_reference(log, logl);
147251292Sdas#endif
148