catrig.c revision 330897
1/*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2012 Stephen Montgomery-Smith <stephen@FreeBSD.ORG>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29#include <sys/cdefs.h>
30__FBSDID("$FreeBSD: stable/11/lib/msun/src/catrig.c 330897 2018-03-14 03:19:51Z eadler $");
31
32#include <complex.h>
33#include <float.h>
34
35#include "math.h"
36#include "math_private.h"
37
38#undef isinf
39#define isinf(x)	(fabs(x) == INFINITY)
40#undef isnan
41#define isnan(x)	((x) != (x))
42#define	raise_inexact()	do { volatile float junk __unused = 1 + tiny; } while(0)
43#undef signbit
44#define signbit(x)	(__builtin_signbit(x))
45
46/* We need that DBL_EPSILON^2/128 is larger than FOUR_SQRT_MIN. */
47static const double
48A_crossover =		10, /* Hull et al suggest 1.5, but 10 works better */
49B_crossover =		0.6417,			/* suggested by Hull et al */
50FOUR_SQRT_MIN =		0x1p-509,		/* >= 4 * sqrt(DBL_MIN) */
51QUARTER_SQRT_MAX =	0x1p509,		/* <= sqrt(DBL_MAX) / 4 */
52m_e =			2.7182818284590452e0,	/*  0x15bf0a8b145769.0p-51 */
53m_ln2 =			6.9314718055994531e-1,	/*  0x162e42fefa39ef.0p-53 */
54pio2_hi =		1.5707963267948966e0,	/*  0x1921fb54442d18.0p-52 */
55RECIP_EPSILON =		1 / DBL_EPSILON,
56SQRT_3_EPSILON =	2.5809568279517849e-8,	/*  0x1bb67ae8584caa.0p-78 */
57SQRT_6_EPSILON =	3.6500241499888571e-8,	/*  0x13988e1409212e.0p-77 */
58SQRT_MIN =		0x1p-511;		/* >= sqrt(DBL_MIN) */
59
60static const volatile double
61pio2_lo =		6.1232339957367659e-17;	/*  0x11a62633145c07.0p-106 */
62static const volatile float
63tiny =			0x1p-100;
64
65static double complex clog_for_large_values(double complex z);
66
67/*
68 * Testing indicates that all these functions are accurate up to 4 ULP.
69 * The functions casin(h) and cacos(h) are about 2.5 times slower than asinh.
70 * The functions catan(h) are a little under 2 times slower than atanh.
71 *
72 * The code for casinh, casin, cacos, and cacosh comes first.  The code is
73 * rather complicated, and the four functions are highly interdependent.
74 *
75 * The code for catanh and catan comes at the end.  It is much simpler than
76 * the other functions, and the code for these can be disconnected from the
77 * rest of the code.
78 */
79
80/*
81 *			================================
82 *			| casinh, casin, cacos, cacosh |
83 *			================================
84 */
85
86/*
87 * The algorithm is very close to that in "Implementing the complex arcsine
88 * and arccosine functions using exception handling" by T. E. Hull, Thomas F.
89 * Fairgrieve, and Ping Tak Peter Tang, published in ACM Transactions on
90 * Mathematical Software, Volume 23 Issue 3, 1997, Pages 299-335,
91 * http://dl.acm.org/citation.cfm?id=275324.
92 *
93 * Throughout we use the convention z = x + I*y.
94 *
95 * casinh(z) = sign(x)*log(A+sqrt(A*A-1)) + I*asin(B)
96 * where
97 * A = (|z+I| + |z-I|) / 2
98 * B = (|z+I| - |z-I|) / 2 = y/A
99 *
100 * These formulas become numerically unstable:
101 *   (a) for Re(casinh(z)) when z is close to the line segment [-I, I] (that
102 *       is, Re(casinh(z)) is close to 0);
103 *   (b) for Im(casinh(z)) when z is close to either of the intervals
104 *       [I, I*infinity) or (-I*infinity, -I] (that is, |Im(casinh(z))| is
105 *       close to PI/2).
106 *
107 * These numerical problems are overcome by defining
108 * f(a, b) = (hypot(a, b) - b) / 2 = a*a / (hypot(a, b) + b) / 2
109 * Then if A < A_crossover, we use
110 *   log(A + sqrt(A*A-1)) = log1p((A-1) + sqrt((A-1)*(A+1)))
111 *   A-1 = f(x, 1+y) + f(x, 1-y)
112 * and if B > B_crossover, we use
113 *   asin(B) = atan2(y, sqrt(A*A - y*y)) = atan2(y, sqrt((A+y)*(A-y)))
114 *   A-y = f(x, y+1) + f(x, y-1)
115 * where without loss of generality we have assumed that x and y are
116 * non-negative.
117 *
118 * Much of the difficulty comes because the intermediate computations may
119 * produce overflows or underflows.  This is dealt with in the paper by Hull
120 * et al by using exception handling.  We do this by detecting when
121 * computations risk underflow or overflow.  The hardest part is handling the
122 * underflows when computing f(a, b).
123 *
124 * Note that the function f(a, b) does not appear explicitly in the paper by
125 * Hull et al, but the idea may be found on pages 308 and 309.  Introducing the
126 * function f(a, b) allows us to concentrate many of the clever tricks in this
127 * paper into one function.
128 */
129
130/*
131 * Function f(a, b, hypot_a_b) = (hypot(a, b) - b) / 2.
132 * Pass hypot(a, b) as the third argument.
133 */
134static inline double
135f(double a, double b, double hypot_a_b)
136{
137	if (b < 0)
138		return ((hypot_a_b - b) / 2);
139	if (b == 0)
140		return (a / 2);
141	return (a * a / (hypot_a_b + b) / 2);
142}
143
144/*
145 * All the hard work is contained in this function.
146 * x and y are assumed positive or zero, and less than RECIP_EPSILON.
147 * Upon return:
148 * rx = Re(casinh(z)) = -Im(cacos(y + I*x)).
149 * B_is_usable is set to 1 if the value of B is usable.
150 * If B_is_usable is set to 0, sqrt_A2my2 = sqrt(A*A - y*y), and new_y = y.
151 * If returning sqrt_A2my2 has potential to result in an underflow, it is
152 * rescaled, and new_y is similarly rescaled.
153 */
154static inline void
155do_hard_work(double x, double y, double *rx, int *B_is_usable, double *B,
156    double *sqrt_A2my2, double *new_y)
157{
158	double R, S, A; /* A, B, R, and S are as in Hull et al. */
159	double Am1, Amy; /* A-1, A-y. */
160
161	R = hypot(x, y + 1);		/* |z+I| */
162	S = hypot(x, y - 1);		/* |z-I| */
163
164	/* A = (|z+I| + |z-I|) / 2 */
165	A = (R + S) / 2;
166	/*
167	 * Mathematically A >= 1.  There is a small chance that this will not
168	 * be so because of rounding errors.  So we will make certain it is
169	 * so.
170	 */
171	if (A < 1)
172		A = 1;
173
174	if (A < A_crossover) {
175		/*
176		 * Am1 = fp + fm, where fp = f(x, 1+y), and fm = f(x, 1-y).
177		 * rx = log1p(Am1 + sqrt(Am1*(A+1)))
178		 */
179		if (y == 1 && x < DBL_EPSILON * DBL_EPSILON / 128) {
180			/*
181			 * fp is of order x^2, and fm = x/2.
182			 * A = 1 (inexactly).
183			 */
184			*rx = sqrt(x);
185		} else if (x >= DBL_EPSILON * fabs(y - 1)) {
186			/*
187			 * Underflow will not occur because
188			 * x >= DBL_EPSILON^2/128 >= FOUR_SQRT_MIN
189			 */
190			Am1 = f(x, 1 + y, R) + f(x, 1 - y, S);
191			*rx = log1p(Am1 + sqrt(Am1 * (A + 1)));
192		} else if (y < 1) {
193			/*
194			 * fp = x*x/(1+y)/4, fm = x*x/(1-y)/4, and
195			 * A = 1 (inexactly).
196			 */
197			*rx = x / sqrt((1 - y) * (1 + y));
198		} else {		/* if (y > 1) */
199			/*
200			 * A-1 = y-1 (inexactly).
201			 */
202			*rx = log1p((y - 1) + sqrt((y - 1) * (y + 1)));
203		}
204	} else {
205		*rx = log(A + sqrt(A * A - 1));
206	}
207
208	*new_y = y;
209
210	if (y < FOUR_SQRT_MIN) {
211		/*
212		 * Avoid a possible underflow caused by y/A.  For casinh this
213		 * would be legitimate, but will be picked up by invoking atan2
214		 * later on.  For cacos this would not be legitimate.
215		 */
216		*B_is_usable = 0;
217		*sqrt_A2my2 = A * (2 / DBL_EPSILON);
218		*new_y = y * (2 / DBL_EPSILON);
219		return;
220	}
221
222	/* B = (|z+I| - |z-I|) / 2 = y/A */
223	*B = y / A;
224	*B_is_usable = 1;
225
226	if (*B > B_crossover) {
227		*B_is_usable = 0;
228		/*
229		 * Amy = fp + fm, where fp = f(x, y+1), and fm = f(x, y-1).
230		 * sqrt_A2my2 = sqrt(Amy*(A+y))
231		 */
232		if (y == 1 && x < DBL_EPSILON / 128) {
233			/*
234			 * fp is of order x^2, and fm = x/2.
235			 * A = 1 (inexactly).
236			 */
237			*sqrt_A2my2 = sqrt(x) * sqrt((A + y) / 2);
238		} else if (x >= DBL_EPSILON * fabs(y - 1)) {
239			/*
240			 * Underflow will not occur because
241			 * x >= DBL_EPSILON/128 >= FOUR_SQRT_MIN
242			 * and
243			 * x >= DBL_EPSILON^2 >= FOUR_SQRT_MIN
244			 */
245			Amy = f(x, y + 1, R) + f(x, y - 1, S);
246			*sqrt_A2my2 = sqrt(Amy * (A + y));
247		} else if (y > 1) {
248			/*
249			 * fp = x*x/(y+1)/4, fm = x*x/(y-1)/4, and
250			 * A = y (inexactly).
251			 *
252			 * y < RECIP_EPSILON.  So the following
253			 * scaling should avoid any underflow problems.
254			 */
255			*sqrt_A2my2 = x * (4 / DBL_EPSILON / DBL_EPSILON) * y /
256			    sqrt((y + 1) * (y - 1));
257			*new_y = y * (4 / DBL_EPSILON / DBL_EPSILON);
258		} else {		/* if (y < 1) */
259			/*
260			 * fm = 1-y >= DBL_EPSILON, fp is of order x^2, and
261			 * A = 1 (inexactly).
262			 */
263			*sqrt_A2my2 = sqrt((1 - y) * (1 + y));
264		}
265	}
266}
267
268/*
269 * casinh(z) = z + O(z^3)   as z -> 0
270 *
271 * casinh(z) = sign(x)*clog(sign(x)*z) + O(1/z^2)   as z -> infinity
272 * The above formula works for the imaginary part as well, because
273 * Im(casinh(z)) = sign(x)*atan2(sign(x)*y, fabs(x)) + O(y/z^3)
274 *    as z -> infinity, uniformly in y
275 */
276double complex
277casinh(double complex z)
278{
279	double x, y, ax, ay, rx, ry, B, sqrt_A2my2, new_y;
280	int B_is_usable;
281	double complex w;
282
283	x = creal(z);
284	y = cimag(z);
285	ax = fabs(x);
286	ay = fabs(y);
287
288	if (isnan(x) || isnan(y)) {
289		/* casinh(+-Inf + I*NaN) = +-Inf + I*NaN */
290		if (isinf(x))
291			return (CMPLX(x, y + y));
292		/* casinh(NaN + I*+-Inf) = opt(+-)Inf + I*NaN */
293		if (isinf(y))
294			return (CMPLX(y, x + x));
295		/* casinh(NaN + I*0) = NaN + I*0 */
296		if (y == 0)
297			return (CMPLX(x + x, y));
298		/*
299		 * All other cases involving NaN return NaN + I*NaN.
300		 * C99 leaves it optional whether to raise invalid if one of
301		 * the arguments is not NaN, so we opt not to raise it.
302		 */
303		return (CMPLX(x + 0.0L + (y + 0), x + 0.0L + (y + 0)));
304	}
305
306	if (ax > RECIP_EPSILON || ay > RECIP_EPSILON) {
307		/* clog...() will raise inexact unless x or y is infinite. */
308		if (signbit(x) == 0)
309			w = clog_for_large_values(z) + m_ln2;
310		else
311			w = clog_for_large_values(-z) + m_ln2;
312		return (CMPLX(copysign(creal(w), x), copysign(cimag(w), y)));
313	}
314
315	/* Avoid spuriously raising inexact for z = 0. */
316	if (x == 0 && y == 0)
317		return (z);
318
319	/* All remaining cases are inexact. */
320	raise_inexact();
321
322	if (ax < SQRT_6_EPSILON / 4 && ay < SQRT_6_EPSILON / 4)
323		return (z);
324
325	do_hard_work(ax, ay, &rx, &B_is_usable, &B, &sqrt_A2my2, &new_y);
326	if (B_is_usable)
327		ry = asin(B);
328	else
329		ry = atan2(new_y, sqrt_A2my2);
330	return (CMPLX(copysign(rx, x), copysign(ry, y)));
331}
332
333/*
334 * casin(z) = reverse(casinh(reverse(z)))
335 * where reverse(x + I*y) = y + I*x = I*conj(z).
336 */
337double complex
338casin(double complex z)
339{
340	double complex w = casinh(CMPLX(cimag(z), creal(z)));
341
342	return (CMPLX(cimag(w), creal(w)));
343}
344
345/*
346 * cacos(z) = PI/2 - casin(z)
347 * but do the computation carefully so cacos(z) is accurate when z is
348 * close to 1.
349 *
350 * cacos(z) = PI/2 - z + O(z^3)   as z -> 0
351 *
352 * cacos(z) = -sign(y)*I*clog(z) + O(1/z^2)   as z -> infinity
353 * The above formula works for the real part as well, because
354 * Re(cacos(z)) = atan2(fabs(y), x) + O(y/z^3)
355 *    as z -> infinity, uniformly in y
356 */
357double complex
358cacos(double complex z)
359{
360	double x, y, ax, ay, rx, ry, B, sqrt_A2mx2, new_x;
361	int sx, sy;
362	int B_is_usable;
363	double complex w;
364
365	x = creal(z);
366	y = cimag(z);
367	sx = signbit(x);
368	sy = signbit(y);
369	ax = fabs(x);
370	ay = fabs(y);
371
372	if (isnan(x) || isnan(y)) {
373		/* cacos(+-Inf + I*NaN) = NaN + I*opt(-)Inf */
374		if (isinf(x))
375			return (CMPLX(y + y, -INFINITY));
376		/* cacos(NaN + I*+-Inf) = NaN + I*-+Inf */
377		if (isinf(y))
378			return (CMPLX(x + x, -y));
379		/* cacos(0 + I*NaN) = PI/2 + I*NaN with inexact */
380		if (x == 0)
381			return (CMPLX(pio2_hi + pio2_lo, y + y));
382		/*
383		 * All other cases involving NaN return NaN + I*NaN.
384		 * C99 leaves it optional whether to raise invalid if one of
385		 * the arguments is not NaN, so we opt not to raise it.
386		 */
387		return (CMPLX(x + 0.0L + (y + 0), x + 0.0L + (y + 0)));
388	}
389
390	if (ax > RECIP_EPSILON || ay > RECIP_EPSILON) {
391		/* clog...() will raise inexact unless x or y is infinite. */
392		w = clog_for_large_values(z);
393		rx = fabs(cimag(w));
394		ry = creal(w) + m_ln2;
395		if (sy == 0)
396			ry = -ry;
397		return (CMPLX(rx, ry));
398	}
399
400	/* Avoid spuriously raising inexact for z = 1. */
401	if (x == 1 && y == 0)
402		return (CMPLX(0, -y));
403
404	/* All remaining cases are inexact. */
405	raise_inexact();
406
407	if (ax < SQRT_6_EPSILON / 4 && ay < SQRT_6_EPSILON / 4)
408		return (CMPLX(pio2_hi - (x - pio2_lo), -y));
409
410	do_hard_work(ay, ax, &ry, &B_is_usable, &B, &sqrt_A2mx2, &new_x);
411	if (B_is_usable) {
412		if (sx == 0)
413			rx = acos(B);
414		else
415			rx = acos(-B);
416	} else {
417		if (sx == 0)
418			rx = atan2(sqrt_A2mx2, new_x);
419		else
420			rx = atan2(sqrt_A2mx2, -new_x);
421	}
422	if (sy == 0)
423		ry = -ry;
424	return (CMPLX(rx, ry));
425}
426
427/*
428 * cacosh(z) = I*cacos(z) or -I*cacos(z)
429 * where the sign is chosen so Re(cacosh(z)) >= 0.
430 */
431double complex
432cacosh(double complex z)
433{
434	double complex w;
435	double rx, ry;
436
437	w = cacos(z);
438	rx = creal(w);
439	ry = cimag(w);
440	/* cacosh(NaN + I*NaN) = NaN + I*NaN */
441	if (isnan(rx) && isnan(ry))
442		return (CMPLX(ry, rx));
443	/* cacosh(NaN + I*+-Inf) = +Inf + I*NaN */
444	/* cacosh(+-Inf + I*NaN) = +Inf + I*NaN */
445	if (isnan(rx))
446		return (CMPLX(fabs(ry), rx));
447	/* cacosh(0 + I*NaN) = NaN + I*NaN */
448	if (isnan(ry))
449		return (CMPLX(ry, ry));
450	return (CMPLX(fabs(ry), copysign(rx, cimag(z))));
451}
452
453/*
454 * Optimized version of clog() for |z| finite and larger than ~RECIP_EPSILON.
455 */
456static double complex
457clog_for_large_values(double complex z)
458{
459	double x, y;
460	double ax, ay, t;
461
462	x = creal(z);
463	y = cimag(z);
464	ax = fabs(x);
465	ay = fabs(y);
466	if (ax < ay) {
467		t = ax;
468		ax = ay;
469		ay = t;
470	}
471
472	/*
473	 * Avoid overflow in hypot() when x and y are both very large.
474	 * Divide x and y by E, and then add 1 to the logarithm.  This
475	 * depends on E being larger than sqrt(2), since the return value of
476	 * hypot cannot overflow if neither argument is greater in magnitude
477	 * than 1/sqrt(2) of the maximum value of the return type.  Likewise
478	 * this determines the necessary threshold for using this method
479	 * (however, actually use 1/2 instead as it is simpler).
480	 *
481	 * Dividing by E causes an insignificant loss of accuracy; however
482	 * this method is still poor since it is uneccessarily slow.
483	 */
484	if (ax > DBL_MAX / 2)
485		return (CMPLX(log(hypot(x / m_e, y / m_e)) + 1, atan2(y, x)));
486
487	/*
488	 * Avoid overflow when x or y is large.  Avoid underflow when x or
489	 * y is small.
490	 */
491	if (ax > QUARTER_SQRT_MAX || ay < SQRT_MIN)
492		return (CMPLX(log(hypot(x, y)), atan2(y, x)));
493
494	return (CMPLX(log(ax * ax + ay * ay) / 2, atan2(y, x)));
495}
496
497/*
498 *				=================
499 *				| catanh, catan |
500 *				=================
501 */
502
503/*
504 * sum_squares(x,y) = x*x + y*y (or just x*x if y*y would underflow).
505 * Assumes x*x and y*y will not overflow.
506 * Assumes x and y are finite.
507 * Assumes y is non-negative.
508 * Assumes fabs(x) >= DBL_EPSILON.
509 */
510static inline double
511sum_squares(double x, double y)
512{
513
514	/* Avoid underflow when y is small. */
515	if (y < SQRT_MIN)
516		return (x * x);
517
518	return (x * x + y * y);
519}
520
521/*
522 * real_part_reciprocal(x, y) = Re(1/(x+I*y)) = x/(x*x + y*y).
523 * Assumes x and y are not NaN, and one of x and y is larger than
524 * RECIP_EPSILON.  We avoid unwarranted underflow.  It is important to not use
525 * the code creal(1/z), because the imaginary part may produce an unwanted
526 * underflow.
527 * This is only called in a context where inexact is always raised before
528 * the call, so no effort is made to avoid or force inexact.
529 */
530static inline double
531real_part_reciprocal(double x, double y)
532{
533	double scale;
534	uint32_t hx, hy;
535	int32_t ix, iy;
536
537	/*
538	 * This code is inspired by the C99 document n1124.pdf, Section G.5.1,
539	 * example 2.
540	 */
541	GET_HIGH_WORD(hx, x);
542	ix = hx & 0x7ff00000;
543	GET_HIGH_WORD(hy, y);
544	iy = hy & 0x7ff00000;
545#define	BIAS	(DBL_MAX_EXP - 1)
546/* XXX more guard digits are useful iff there is extra precision. */
547#define	CUTOFF	(DBL_MANT_DIG / 2 + 1)	/* just half or 1 guard digit */
548	if (ix - iy >= CUTOFF << 20 || isinf(x))
549		return (1 / x);		/* +-Inf -> +-0 is special */
550	if (iy - ix >= CUTOFF << 20)
551		return (x / y / y);	/* should avoid double div, but hard */
552	if (ix <= (BIAS + DBL_MAX_EXP / 2 - CUTOFF) << 20)
553		return (x / (x * x + y * y));
554	scale = 1;
555	SET_HIGH_WORD(scale, 0x7ff00000 - ix);	/* 2**(1-ilogb(x)) */
556	x *= scale;
557	y *= scale;
558	return (x / (x * x + y * y) * scale);
559}
560
561/*
562 * catanh(z) = log((1+z)/(1-z)) / 2
563 *           = log1p(4*x / |z-1|^2) / 4
564 *             + I * atan2(2*y, (1-x)*(1+x)-y*y) / 2
565 *
566 * catanh(z) = z + O(z^3)   as z -> 0
567 *
568 * catanh(z) = 1/z + sign(y)*I*PI/2 + O(1/z^3)   as z -> infinity
569 * The above formula works for the real part as well, because
570 * Re(catanh(z)) = x/|z|^2 + O(x/z^4)
571 *    as z -> infinity, uniformly in x
572 */
573double complex
574catanh(double complex z)
575{
576	double x, y, ax, ay, rx, ry;
577
578	x = creal(z);
579	y = cimag(z);
580	ax = fabs(x);
581	ay = fabs(y);
582
583	/* This helps handle many cases. */
584	if (y == 0 && ax <= 1)
585		return (CMPLX(atanh(x), y));
586
587	/* To ensure the same accuracy as atan(), and to filter out z = 0. */
588	if (x == 0)
589		return (CMPLX(x, atan(y)));
590
591	if (isnan(x) || isnan(y)) {
592		/* catanh(+-Inf + I*NaN) = +-0 + I*NaN */
593		if (isinf(x))
594			return (CMPLX(copysign(0, x), y + y));
595		/* catanh(NaN + I*+-Inf) = sign(NaN)0 + I*+-PI/2 */
596		if (isinf(y))
597			return (CMPLX(copysign(0, x),
598			    copysign(pio2_hi + pio2_lo, y)));
599		/*
600		 * All other cases involving NaN return NaN + I*NaN.
601		 * C99 leaves it optional whether to raise invalid if one of
602		 * the arguments is not NaN, so we opt not to raise it.
603		 */
604		return (CMPLX(x + 0.0L + (y + 0), x + 0.0L + (y + 0)));
605	}
606
607	if (ax > RECIP_EPSILON || ay > RECIP_EPSILON)
608		return (CMPLX(real_part_reciprocal(x, y),
609		    copysign(pio2_hi + pio2_lo, y)));
610
611	if (ax < SQRT_3_EPSILON / 2 && ay < SQRT_3_EPSILON / 2) {
612		/*
613		 * z = 0 was filtered out above.  All other cases must raise
614		 * inexact, but this is the only case that needs to do it
615		 * explicitly.
616		 */
617		raise_inexact();
618		return (z);
619	}
620
621	if (ax == 1 && ay < DBL_EPSILON)
622		rx = (m_ln2 - log(ay)) / 2;
623	else
624		rx = log1p(4 * ax / sum_squares(ax - 1, ay)) / 4;
625
626	if (ax == 1)
627		ry = atan2(2, -ay) / 2;
628	else if (ay < DBL_EPSILON)
629		ry = atan2(2 * ay, (1 - ax) * (1 + ax)) / 2;
630	else
631		ry = atan2(2 * ay, (1 - ax) * (1 + ax) - ay * ay) / 2;
632
633	return (CMPLX(copysign(rx, x), copysign(ry, y)));
634}
635
636/*
637 * catan(z) = reverse(catanh(reverse(z)))
638 * where reverse(x + I*y) = y + I*x = I*conj(z).
639 */
640double complex
641catan(double complex z)
642{
643	double complex w = catanh(CMPLX(cimag(z), creal(z)));
644
645	return (CMPLX(cimag(w), creal(w)));
646}
647
648#if LDBL_MANT_DIG == 53
649__weak_reference(cacosh, cacoshl);
650__weak_reference(cacos, cacosl);
651__weak_reference(casinh, casinhl);
652__weak_reference(casin, casinl);
653__weak_reference(catanh, catanhl);
654__weak_reference(catan, catanl);
655#endif
656