kvm.c revision 315785
1/*-
2 * Copyright (c) 1989, 1992, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software developed by the Computer Systems
6 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
7 * BG 91-66 and contributed to Berkeley.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 */
33
34#include <sys/cdefs.h>
35__FBSDID("$FreeBSD: stable/11/lib/libkvm/kvm.c 315785 2017-03-23 04:50:44Z ngie $");
36
37#if defined(LIBC_SCCS) && !defined(lint)
38#if 0
39static char sccsid[] = "@(#)kvm.c	8.2 (Berkeley) 2/13/94";
40#endif
41#endif /* LIBC_SCCS and not lint */
42
43#include <sys/param.h>
44#include <sys/fnv_hash.h>
45
46#define	_WANT_VNET
47
48#include <sys/user.h>
49#include <sys/linker.h>
50#include <sys/pcpu.h>
51#include <sys/stat.h>
52
53#include <net/vnet.h>
54
55#include <fcntl.h>
56#include <kvm.h>
57#include <limits.h>
58#include <paths.h>
59#include <stdint.h>
60#include <stdio.h>
61#include <stdlib.h>
62#include <string.h>
63#include <unistd.h>
64
65#include "kvm_private.h"
66
67SET_DECLARE(kvm_arch, struct kvm_arch);
68
69/* from src/lib/libc/gen/nlist.c */
70int __fdnlist(int, struct nlist *);
71
72static int
73kvm_fdnlist(kvm_t *kd, struct kvm_nlist *list)
74{
75	kvaddr_t addr;
76	int error, nfail;
77
78	if (kd->resolve_symbol == NULL) {
79		struct nlist *nl;
80		int count, i;
81
82		for (count = 0; list[count].n_name != NULL &&
83		     list[count].n_name[0] != '\0'; count++)
84			;
85		nl = calloc(count + 1, sizeof(*nl));
86		for (i = 0; i < count; i++)
87			nl[i].n_name = list[i].n_name;
88		nfail = __fdnlist(kd->nlfd, nl);
89		for (i = 0; i < count; i++) {
90			list[i].n_type = nl[i].n_type;
91			list[i].n_value = nl[i].n_value;
92		}
93		free(nl);
94		return (nfail);
95	}
96
97	nfail = 0;
98	while (list->n_name != NULL && list->n_name[0] != '\0') {
99		error = kd->resolve_symbol(list->n_name, &addr);
100		if (error != 0) {
101			nfail++;
102			list->n_value = 0;
103			list->n_type = 0;
104		} else {
105			list->n_value = addr;
106			list->n_type = N_DATA | N_EXT;
107		}
108		list++;
109	}
110	return (nfail);
111}
112
113char *
114kvm_geterr(kvm_t *kd)
115{
116	return (kd->errbuf);
117}
118
119#include <stdarg.h>
120
121/*
122 * Report an error using printf style arguments.  "program" is kd->program
123 * on hard errors, and 0 on soft errors, so that under sun error emulation,
124 * only hard errors are printed out (otherwise, programs like gdb will
125 * generate tons of error messages when trying to access bogus pointers).
126 */
127void
128_kvm_err(kvm_t *kd, const char *program, const char *fmt, ...)
129{
130	va_list ap;
131
132	va_start(ap, fmt);
133	if (program != NULL) {
134		(void)fprintf(stderr, "%s: ", program);
135		(void)vfprintf(stderr, fmt, ap);
136		(void)fputc('\n', stderr);
137	} else
138		(void)vsnprintf(kd->errbuf,
139		    sizeof(kd->errbuf), fmt, ap);
140
141	va_end(ap);
142}
143
144void
145_kvm_syserr(kvm_t *kd, const char *program, const char *fmt, ...)
146{
147	va_list ap;
148	int n;
149
150	va_start(ap, fmt);
151	if (program != NULL) {
152		(void)fprintf(stderr, "%s: ", program);
153		(void)vfprintf(stderr, fmt, ap);
154		(void)fprintf(stderr, ": %s\n", strerror(errno));
155	} else {
156		char *cp = kd->errbuf;
157
158		(void)vsnprintf(cp, sizeof(kd->errbuf), fmt, ap);
159		n = strlen(cp);
160		(void)snprintf(&cp[n], sizeof(kd->errbuf) - n, ": %s",
161		    strerror(errno));
162	}
163	va_end(ap);
164}
165
166void *
167_kvm_malloc(kvm_t *kd, size_t n)
168{
169	void *p;
170
171	if ((p = calloc(n, sizeof(char))) == NULL)
172		_kvm_err(kd, kd->program, "can't allocate %zu bytes: %s",
173			 n, strerror(errno));
174	return (p);
175}
176
177static int
178_kvm_read_kernel_ehdr(kvm_t *kd)
179{
180	Elf *elf;
181
182	if (elf_version(EV_CURRENT) == EV_NONE) {
183		_kvm_err(kd, kd->program, "Unsupported libelf");
184		return (-1);
185	}
186	elf = elf_begin(kd->nlfd, ELF_C_READ, NULL);
187	if (elf == NULL) {
188		_kvm_err(kd, kd->program, "%s", elf_errmsg(0));
189		return (-1);
190	}
191	if (elf_kind(elf) != ELF_K_ELF) {
192		_kvm_err(kd, kd->program, "kernel is not an ELF file");
193		return (-1);
194	}
195	if (gelf_getehdr(elf, &kd->nlehdr) == NULL) {
196		_kvm_err(kd, kd->program, "%s", elf_errmsg(0));
197		elf_end(elf);
198		return (-1);
199	}
200	elf_end(elf);
201
202	switch (kd->nlehdr.e_ident[EI_DATA]) {
203	case ELFDATA2LSB:
204	case ELFDATA2MSB:
205		return (0);
206	default:
207		_kvm_err(kd, kd->program,
208		    "unsupported ELF data encoding for kernel");
209		return (-1);
210	}
211}
212
213int
214_kvm_probe_elf_kernel(kvm_t *kd, int class, int machine)
215{
216
217	return (kd->nlehdr.e_ident[EI_CLASS] == class &&
218	    kd->nlehdr.e_type == ET_EXEC &&
219	    kd->nlehdr.e_machine == machine);
220}
221
222int
223_kvm_is_minidump(kvm_t *kd)
224{
225	char minihdr[8];
226
227	if (kd->rawdump)
228		return (0);
229	if (pread(kd->pmfd, &minihdr, 8, 0) == 8 &&
230	    memcmp(&minihdr, "minidump", 8) == 0)
231		return (1);
232	return (0);
233}
234
235/*
236 * The powerpc backend has a hack to strip a leading kerneldump
237 * header from the core before treating it as an ELF header.
238 *
239 * We can add that here if we can get a change to libelf to support
240 * an initial offset into the file.  Alternatively we could patch
241 * savecore to extract cores from a regular file instead.
242 */
243int
244_kvm_read_core_phdrs(kvm_t *kd, size_t *phnump, GElf_Phdr **phdrp)
245{
246	GElf_Ehdr ehdr;
247	GElf_Phdr *phdr;
248	Elf *elf;
249	size_t i, phnum;
250
251	elf = elf_begin(kd->pmfd, ELF_C_READ, NULL);
252	if (elf == NULL) {
253		_kvm_err(kd, kd->program, "%s", elf_errmsg(0));
254		return (-1);
255	}
256	if (elf_kind(elf) != ELF_K_ELF) {
257		_kvm_err(kd, kd->program, "invalid core");
258		goto bad;
259	}
260	if (gelf_getclass(elf) != kd->nlehdr.e_ident[EI_CLASS]) {
261		_kvm_err(kd, kd->program, "invalid core");
262		goto bad;
263	}
264	if (gelf_getehdr(elf, &ehdr) == NULL) {
265		_kvm_err(kd, kd->program, "%s", elf_errmsg(0));
266		goto bad;
267	}
268	if (ehdr.e_type != ET_CORE) {
269		_kvm_err(kd, kd->program, "invalid core");
270		goto bad;
271	}
272	if (ehdr.e_machine != kd->nlehdr.e_machine) {
273		_kvm_err(kd, kd->program, "invalid core");
274		goto bad;
275	}
276
277	if (elf_getphdrnum(elf, &phnum) == -1) {
278		_kvm_err(kd, kd->program, "%s", elf_errmsg(0));
279		goto bad;
280	}
281
282	phdr = calloc(phnum, sizeof(*phdr));
283	if (phdr == NULL) {
284		_kvm_err(kd, kd->program, "failed to allocate phdrs");
285		goto bad;
286	}
287
288	for (i = 0; i < phnum; i++) {
289		if (gelf_getphdr(elf, i, &phdr[i]) == NULL) {
290			_kvm_err(kd, kd->program, "%s", elf_errmsg(0));
291			goto bad;
292		}
293	}
294	elf_end(elf);
295	*phnump = phnum;
296	*phdrp = phdr;
297	return (0);
298
299bad:
300	elf_end(elf);
301	return (-1);
302}
303
304static void
305_kvm_hpt_insert(struct hpt *hpt, uint64_t pa, off_t off)
306{
307	struct hpte *hpte;
308	uint32_t fnv = FNV1_32_INIT;
309
310	fnv = fnv_32_buf(&pa, sizeof(pa), fnv);
311	fnv &= (HPT_SIZE - 1);
312	hpte = malloc(sizeof(*hpte));
313	hpte->pa = pa;
314	hpte->off = off;
315	hpte->next = hpt->hpt_head[fnv];
316	hpt->hpt_head[fnv] = hpte;
317}
318
319void
320_kvm_hpt_init(kvm_t *kd, struct hpt *hpt, void *base, size_t len, off_t off,
321    int page_size, int word_size)
322{
323	uint64_t bits, idx, pa;
324	uint64_t *base64;
325	uint32_t *base32;
326
327	base64 = base;
328	base32 = base;
329	for (idx = 0; idx < len / word_size; idx++) {
330		if (word_size == sizeof(uint64_t))
331			bits = _kvm64toh(kd, base64[idx]);
332		else
333			bits = _kvm32toh(kd, base32[idx]);
334		pa = idx * word_size * NBBY * page_size;
335		for (; bits != 0; bits >>= 1, pa += page_size) {
336			if ((bits & 1) == 0)
337				continue;
338			_kvm_hpt_insert(hpt, pa, off);
339			off += page_size;
340		}
341	}
342}
343
344off_t
345_kvm_hpt_find(struct hpt *hpt, uint64_t pa)
346{
347	struct hpte *hpte;
348	uint32_t fnv = FNV1_32_INIT;
349
350	fnv = fnv_32_buf(&pa, sizeof(pa), fnv);
351	fnv &= (HPT_SIZE - 1);
352	for (hpte = hpt->hpt_head[fnv]; hpte != NULL; hpte = hpte->next) {
353		if (pa == hpte->pa)
354			return (hpte->off);
355	}
356	return (-1);
357}
358
359void
360_kvm_hpt_free(struct hpt *hpt)
361{
362	struct hpte *hpte, *next;
363	int i;
364
365	for (i = 0; i < HPT_SIZE; i++) {
366		for (hpte = hpt->hpt_head[i]; hpte != NULL; hpte = next) {
367			next = hpte->next;
368			free(hpte);
369		}
370	}
371}
372
373static kvm_t *
374_kvm_open(kvm_t *kd, const char *uf, const char *mf, int flag, char *errout)
375{
376	struct kvm_arch **parch;
377	struct stat st;
378
379	kd->vmfd = -1;
380	kd->pmfd = -1;
381	kd->nlfd = -1;
382	kd->vmst = NULL;
383	kd->procbase = NULL;
384	kd->argspc = NULL;
385	kd->argv = NULL;
386
387	if (uf == NULL)
388		uf = getbootfile();
389	else if (strlen(uf) >= MAXPATHLEN) {
390		_kvm_err(kd, kd->program, "exec file name too long");
391		goto failed;
392	}
393	if (flag & ~O_RDWR) {
394		_kvm_err(kd, kd->program, "bad flags arg");
395		goto failed;
396	}
397	if (mf == NULL)
398		mf = _PATH_MEM;
399
400	if ((kd->pmfd = open(mf, flag | O_CLOEXEC, 0)) < 0) {
401		_kvm_syserr(kd, kd->program, "%s", mf);
402		goto failed;
403	}
404	if (fstat(kd->pmfd, &st) < 0) {
405		_kvm_syserr(kd, kd->program, "%s", mf);
406		goto failed;
407	}
408	if (S_ISREG(st.st_mode) && st.st_size <= 0) {
409		errno = EINVAL;
410		_kvm_syserr(kd, kd->program, "empty file");
411		goto failed;
412	}
413	if (S_ISCHR(st.st_mode)) {
414		/*
415		 * If this is a character special device, then check that
416		 * it's /dev/mem.  If so, open kmem too.  (Maybe we should
417		 * make it work for either /dev/mem or /dev/kmem -- in either
418		 * case you're working with a live kernel.)
419		 */
420		if (strcmp(mf, _PATH_DEVNULL) == 0) {
421			kd->vmfd = open(_PATH_DEVNULL, O_RDONLY | O_CLOEXEC);
422			return (kd);
423		} else if (strcmp(mf, _PATH_MEM) == 0) {
424			if ((kd->vmfd = open(_PATH_KMEM, flag | O_CLOEXEC)) <
425			    0) {
426				_kvm_syserr(kd, kd->program, "%s", _PATH_KMEM);
427				goto failed;
428			}
429			return (kd);
430		}
431	}
432
433	/*
434	 * This is either a crash dump or a remote live system with its physical
435	 * memory fully accessible via a special device.
436	 * Open the namelist fd and determine the architecture.
437	 */
438	if ((kd->nlfd = open(uf, O_RDONLY | O_CLOEXEC, 0)) < 0) {
439		_kvm_syserr(kd, kd->program, "%s", uf);
440		goto failed;
441	}
442	if (_kvm_read_kernel_ehdr(kd) < 0)
443		goto failed;
444	if (strncmp(mf, _PATH_FWMEM, strlen(_PATH_FWMEM)) == 0 ||
445	    strncmp(mf, _PATH_DEVVMM, strlen(_PATH_DEVVMM)) == 0) {
446		kd->rawdump = 1;
447		kd->writable = 1;
448	}
449	SET_FOREACH(parch, kvm_arch) {
450		if ((*parch)->ka_probe(kd)) {
451			kd->arch = *parch;
452			break;
453		}
454	}
455	if (kd->arch == NULL) {
456		_kvm_err(kd, kd->program, "unsupported architecture");
457		goto failed;
458	}
459
460	/*
461	 * Non-native kernels require a symbol resolver.
462	 */
463	if (!kd->arch->ka_native(kd) && kd->resolve_symbol == NULL) {
464		_kvm_err(kd, kd->program,
465		    "non-native kernel requires a symbol resolver");
466		goto failed;
467	}
468
469	/*
470	 * Initialize the virtual address translation machinery.
471	 */
472	if (kd->arch->ka_initvtop(kd) < 0)
473		goto failed;
474	return (kd);
475failed:
476	/*
477	 * Copy out the error if doing sane error semantics.
478	 */
479	if (errout != NULL)
480		strlcpy(errout, kd->errbuf, _POSIX2_LINE_MAX);
481	(void)kvm_close(kd);
482	return (NULL);
483}
484
485kvm_t *
486kvm_openfiles(const char *uf, const char *mf, const char *sf __unused, int flag,
487    char *errout)
488{
489	kvm_t *kd;
490
491	if ((kd = calloc(1, sizeof(*kd))) == NULL) {
492		if (errout != NULL)
493			(void)strlcpy(errout, strerror(errno),
494			    _POSIX2_LINE_MAX);
495		return (NULL);
496	}
497	return (_kvm_open(kd, uf, mf, flag, errout));
498}
499
500kvm_t *
501kvm_open(const char *uf, const char *mf, const char *sf __unused, int flag,
502    const char *errstr)
503{
504	kvm_t *kd;
505
506	if ((kd = calloc(1, sizeof(*kd))) == NULL) {
507		if (errstr != NULL)
508			(void)fprintf(stderr, "%s: %s\n",
509				      errstr, strerror(errno));
510		return (NULL);
511	}
512	kd->program = errstr;
513	return (_kvm_open(kd, uf, mf, flag, NULL));
514}
515
516kvm_t *
517kvm_open2(const char *uf, const char *mf, int flag, char *errout,
518    int (*resolver)(const char *, kvaddr_t *))
519{
520	kvm_t *kd;
521
522	if ((kd = calloc(1, sizeof(*kd))) == NULL) {
523		if (errout != NULL)
524			(void)strlcpy(errout, strerror(errno),
525			    _POSIX2_LINE_MAX);
526		return (NULL);
527	}
528	kd->resolve_symbol = resolver;
529	return (_kvm_open(kd, uf, mf, flag, errout));
530}
531
532int
533kvm_close(kvm_t *kd)
534{
535	int error = 0;
536
537	if (kd->vmst != NULL)
538		kd->arch->ka_freevtop(kd);
539	if (kd->pmfd >= 0)
540		error |= close(kd->pmfd);
541	if (kd->vmfd >= 0)
542		error |= close(kd->vmfd);
543	if (kd->nlfd >= 0)
544		error |= close(kd->nlfd);
545	if (kd->procbase != 0)
546		free((void *)kd->procbase);
547	if (kd->argbuf != 0)
548		free((void *) kd->argbuf);
549	if (kd->argspc != 0)
550		free((void *) kd->argspc);
551	if (kd->argv != 0)
552		free((void *)kd->argv);
553	free((void *)kd);
554
555	return (0);
556}
557
558/*
559 * Walk the list of unresolved symbols, generate a new list and prefix the
560 * symbol names, try again, and merge back what we could resolve.
561 */
562static int
563kvm_fdnlist_prefix(kvm_t *kd, struct kvm_nlist *nl, int missing,
564    const char *prefix, kvaddr_t (*validate_fn)(kvm_t *, kvaddr_t))
565{
566	struct kvm_nlist *n, *np, *p;
567	char *cp, *ce;
568	const char *ccp;
569	size_t len;
570	int slen, unresolved;
571
572	/*
573	 * Calculate the space we need to malloc for nlist and names.
574	 * We are going to store the name twice for later lookups: once
575	 * with the prefix and once the unmodified name delmited by \0.
576	 */
577	len = 0;
578	unresolved = 0;
579	for (p = nl; p->n_name && p->n_name[0]; ++p) {
580		if (p->n_type != N_UNDF)
581			continue;
582		len += sizeof(struct kvm_nlist) + strlen(prefix) +
583		    2 * (strlen(p->n_name) + 1);
584		unresolved++;
585	}
586	if (unresolved == 0)
587		return (unresolved);
588	/* Add space for the terminating nlist entry. */
589	len += sizeof(struct kvm_nlist);
590	unresolved++;
591
592	/* Alloc one chunk for (nlist, [names]) and setup pointers. */
593	n = np = malloc(len);
594	bzero(n, len);
595	if (n == NULL)
596		return (missing);
597	cp = ce = (char *)np;
598	cp += unresolved * sizeof(struct kvm_nlist);
599	ce += len;
600
601	/* Generate shortened nlist with special prefix. */
602	unresolved = 0;
603	for (p = nl; p->n_name && p->n_name[0]; ++p) {
604		if (p->n_type != N_UNDF)
605			continue;
606		*np = *p;
607		/* Save the new\0orig. name so we can later match it again. */
608		slen = snprintf(cp, ce - cp, "%s%s%c%s", prefix,
609		    (prefix[0] != '\0' && p->n_name[0] == '_') ?
610			(p->n_name + 1) : p->n_name, '\0', p->n_name);
611		if (slen < 0 || slen >= ce - cp)
612			continue;
613		np->n_name = cp;
614		cp += slen + 1;
615		np++;
616		unresolved++;
617	}
618
619	/* Do lookup on the reduced list. */
620	np = n;
621	unresolved = kvm_fdnlist(kd, np);
622
623	/* Check if we could resolve further symbols and update the list. */
624	if (unresolved >= 0 && unresolved < missing) {
625		/* Find the first freshly resolved entry. */
626		for (; np->n_name && np->n_name[0]; np++)
627			if (np->n_type != N_UNDF)
628				break;
629		/*
630		 * The lists are both in the same order,
631		 * so we can walk them in parallel.
632		 */
633		for (p = nl; np->n_name && np->n_name[0] &&
634		    p->n_name && p->n_name[0]; ++p) {
635			if (p->n_type != N_UNDF)
636				continue;
637			/* Skip expanded name and compare to orig. one. */
638			ccp = np->n_name + strlen(np->n_name) + 1;
639			if (strcmp(ccp, p->n_name) != 0)
640				continue;
641			/* Update nlist with new, translated results. */
642			p->n_type = np->n_type;
643			if (validate_fn)
644				p->n_value = (*validate_fn)(kd, np->n_value);
645			else
646				p->n_value = np->n_value;
647			missing--;
648			/* Find next freshly resolved entry. */
649			for (np++; np->n_name && np->n_name[0]; np++)
650				if (np->n_type != N_UNDF)
651					break;
652		}
653	}
654	/* We could assert missing = unresolved here. */
655
656	free(n);
657	return (unresolved);
658}
659
660int
661_kvm_nlist(kvm_t *kd, struct kvm_nlist *nl, int initialize)
662{
663	struct kvm_nlist *p;
664	int nvalid;
665	struct kld_sym_lookup lookup;
666	int error;
667	const char *prefix = "";
668	char symname[1024]; /* XXX-BZ symbol name length limit? */
669	int tried_vnet, tried_dpcpu;
670
671	/*
672	 * If we can't use the kld symbol lookup, revert to the
673	 * slow library call.
674	 */
675	if (!ISALIVE(kd)) {
676		error = kvm_fdnlist(kd, nl);
677		if (error <= 0)			/* Hard error or success. */
678			return (error);
679
680		if (_kvm_vnet_initialized(kd, initialize))
681			error = kvm_fdnlist_prefix(kd, nl, error,
682			    VNET_SYMPREFIX, _kvm_vnet_validaddr);
683
684		if (error > 0 && _kvm_dpcpu_initialized(kd, initialize))
685			error = kvm_fdnlist_prefix(kd, nl, error,
686			    DPCPU_SYMPREFIX, _kvm_dpcpu_validaddr);
687
688		return (error);
689	}
690
691	/*
692	 * We can use the kld lookup syscall.  Go through each nlist entry
693	 * and look it up with a kldsym(2) syscall.
694	 */
695	nvalid = 0;
696	tried_vnet = 0;
697	tried_dpcpu = 0;
698again:
699	for (p = nl; p->n_name && p->n_name[0]; ++p) {
700		if (p->n_type != N_UNDF)
701			continue;
702
703		lookup.version = sizeof(lookup);
704		lookup.symvalue = 0;
705		lookup.symsize = 0;
706
707		error = snprintf(symname, sizeof(symname), "%s%s", prefix,
708		    (prefix[0] != '\0' && p->n_name[0] == '_') ?
709			(p->n_name + 1) : p->n_name);
710		if (error < 0 || error >= (int)sizeof(symname))
711			continue;
712		lookup.symname = symname;
713		if (lookup.symname[0] == '_')
714			lookup.symname++;
715
716		if (kldsym(0, KLDSYM_LOOKUP, &lookup) != -1) {
717			p->n_type = N_TEXT;
718			if (_kvm_vnet_initialized(kd, initialize) &&
719			    strcmp(prefix, VNET_SYMPREFIX) == 0)
720				p->n_value =
721				    _kvm_vnet_validaddr(kd, lookup.symvalue);
722			else if (_kvm_dpcpu_initialized(kd, initialize) &&
723			    strcmp(prefix, DPCPU_SYMPREFIX) == 0)
724				p->n_value =
725				    _kvm_dpcpu_validaddr(kd, lookup.symvalue);
726			else
727				p->n_value = lookup.symvalue;
728			++nvalid;
729			/* lookup.symsize */
730		}
731	}
732
733	/*
734	 * Check the number of entries that weren't found. If they exist,
735	 * try again with a prefix for virtualized or DPCPU symbol names.
736	 */
737	error = ((p - nl) - nvalid);
738	if (error && _kvm_vnet_initialized(kd, initialize) && !tried_vnet) {
739		tried_vnet = 1;
740		prefix = VNET_SYMPREFIX;
741		goto again;
742	}
743	if (error && _kvm_dpcpu_initialized(kd, initialize) && !tried_dpcpu) {
744		tried_dpcpu = 1;
745		prefix = DPCPU_SYMPREFIX;
746		goto again;
747	}
748
749	/*
750	 * Return the number of entries that weren't found. If they exist,
751	 * also fill internal error buffer.
752	 */
753	error = ((p - nl) - nvalid);
754	if (error)
755		_kvm_syserr(kd, kd->program, "kvm_nlist");
756	return (error);
757}
758
759int
760kvm_nlist2(kvm_t *kd, struct kvm_nlist *nl)
761{
762
763	/*
764	 * If called via the public interface, permit initialization of
765	 * further virtualized modules on demand.
766	 */
767	return (_kvm_nlist(kd, nl, 1));
768}
769
770int
771kvm_nlist(kvm_t *kd, struct nlist *nl)
772{
773	struct kvm_nlist *kl;
774	int count, i, nfail;
775
776	/*
777	 * Avoid reporting truncated addresses by failing for non-native
778	 * cores.
779	 */
780	if (!kvm_native(kd)) {
781		_kvm_err(kd, kd->program, "kvm_nlist of non-native vmcore");
782		return (-1);
783	}
784
785	for (count = 0; nl[count].n_name != NULL && nl[count].n_name[0] != '\0';
786	     count++)
787		;
788	if (count == 0)
789		return (0);
790	kl = calloc(count + 1, sizeof(*kl));
791	for (i = 0; i < count; i++)
792		kl[i].n_name = nl[i].n_name;
793	nfail = kvm_nlist2(kd, kl);
794	for (i = 0; i < count; i++) {
795		nl[i].n_type = kl[i].n_type;
796		nl[i].n_other = 0;
797		nl[i].n_desc = 0;
798		nl[i].n_value = kl[i].n_value;
799	}
800	return (nfail);
801}
802
803ssize_t
804kvm_read(kvm_t *kd, u_long kva, void *buf, size_t len)
805{
806
807	return (kvm_read2(kd, kva, buf, len));
808}
809
810ssize_t
811kvm_read2(kvm_t *kd, kvaddr_t kva, void *buf, size_t len)
812{
813	int cc;
814	ssize_t cr;
815	off_t pa;
816	char *cp;
817
818	if (ISALIVE(kd)) {
819		/*
820		 * We're using /dev/kmem.  Just read straight from the
821		 * device and let the active kernel do the address translation.
822		 */
823		errno = 0;
824		if (lseek(kd->vmfd, (off_t)kva, 0) == -1 && errno != 0) {
825			_kvm_err(kd, 0, "invalid address (0x%jx)",
826			    (uintmax_t)kva);
827			return (-1);
828		}
829		cr = read(kd->vmfd, buf, len);
830		if (cr < 0) {
831			_kvm_syserr(kd, 0, "kvm_read");
832			return (-1);
833		} else if (cr < (ssize_t)len)
834			_kvm_err(kd, kd->program, "short read");
835		return (cr);
836	}
837
838	cp = buf;
839	while (len > 0) {
840		cc = kd->arch->ka_kvatop(kd, kva, &pa);
841		if (cc == 0)
842			return (-1);
843		if (cc > (ssize_t)len)
844			cc = len;
845		errno = 0;
846		if (lseek(kd->pmfd, pa, 0) == -1 && errno != 0) {
847			_kvm_syserr(kd, 0, _PATH_MEM);
848			break;
849		}
850		cr = read(kd->pmfd, cp, cc);
851		if (cr < 0) {
852			_kvm_syserr(kd, kd->program, "kvm_read");
853			break;
854		}
855		/*
856		 * If ka_kvatop returns a bogus value or our core file is
857		 * truncated, we might wind up seeking beyond the end of the
858		 * core file in which case the read will return 0 (EOF).
859		 */
860		if (cr == 0)
861			break;
862		cp += cr;
863		kva += cr;
864		len -= cr;
865	}
866
867	return (cp - (char *)buf);
868}
869
870ssize_t
871kvm_write(kvm_t *kd, u_long kva, const void *buf, size_t len)
872{
873	int cc;
874	ssize_t cw;
875	off_t pa;
876	const char *cp;
877
878	if (!ISALIVE(kd) && !kd->writable) {
879		_kvm_err(kd, kd->program,
880		    "kvm_write not implemented for dead kernels");
881		return (-1);
882	}
883
884	if (ISALIVE(kd)) {
885		/*
886		 * Just like kvm_read, only we write.
887		 */
888		errno = 0;
889		if (lseek(kd->vmfd, (off_t)kva, 0) == -1 && errno != 0) {
890			_kvm_err(kd, 0, "invalid address (%lx)", kva);
891			return (-1);
892		}
893		cc = write(kd->vmfd, buf, len);
894		if (cc < 0) {
895			_kvm_syserr(kd, 0, "kvm_write");
896			return (-1);
897		} else if ((size_t)cc < len)
898			_kvm_err(kd, kd->program, "short write");
899		return (cc);
900	}
901
902	cp = buf;
903	while (len > 0) {
904		cc = kd->arch->ka_kvatop(kd, kva, &pa);
905		if (cc == 0)
906			return (-1);
907		if (cc > (ssize_t)len)
908			cc = len;
909		errno = 0;
910		if (lseek(kd->pmfd, pa, 0) == -1 && errno != 0) {
911			_kvm_syserr(kd, 0, _PATH_MEM);
912			break;
913		}
914		cw = write(kd->pmfd, cp, cc);
915		if (cw < 0) {
916			_kvm_syserr(kd, kd->program, "kvm_write");
917			break;
918		}
919		/*
920		 * If ka_kvatop returns a bogus value or our core file is
921		 * truncated, we might wind up seeking beyond the end of the
922		 * core file in which case the read will return 0 (EOF).
923		 */
924		if (cw == 0)
925			break;
926		cp += cw;
927		kva += cw;
928		len -= cw;
929	}
930
931	return (cp - (char *)buf);
932}
933
934int
935kvm_native(kvm_t *kd)
936{
937
938	if (ISALIVE(kd))
939		return (1);
940	return (kd->arch->ka_native(kd));
941}
942