_hdtoa.c revision 124767
150397Sobrien/*-
250397Sobrien * Copyright (c) 2004 David Schultz <das@FreeBSD.ORG>
350397Sobrien * All rights reserved.
450397Sobrien *
550397Sobrien * Redistribution and use in source and binary forms, with or without
650397Sobrien * modification, are permitted provided that the following conditions
750397Sobrien * are met:
850397Sobrien * 1. Redistributions of source code must retain the above copyright
950397Sobrien *    notice, this list of conditions and the following disclaimer.
1050397Sobrien * 2. Redistributions in binary form must reproduce the above copyright
1150397Sobrien *    notice, this list of conditions and the following disclaimer in the
1250397Sobrien *    documentation and/or other materials provided with the distribution.
1350397Sobrien *
1450397Sobrien * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
1550397Sobrien * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
1650397Sobrien * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
1750397Sobrien * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
1850397Sobrien * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
1950397Sobrien * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
2050397Sobrien * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
2150397Sobrien * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
2250397Sobrien * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
2350397Sobrien * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
2450397Sobrien * SUCH DAMAGE.
2550397Sobrien */
2650397Sobrien
2750397Sobrien#include <sys/cdefs.h>
2850397Sobrien__FBSDID("$FreeBSD: head/lib/libc/gdtoa/_hdtoa.c 124767 2004-01-21 04:51:50Z grehan $");
2950397Sobrien
3050397Sobrien#include <float.h>
3150397Sobrien#include <inttypes.h>
3250397Sobrien#include <limits.h>
3350397Sobrien#include <math.h>
34#include <stdlib.h>
35#include "fpmath.h"
36#include "gdtoaimp.h"
37
38/* Strings values used by dtoa() */
39#define	INFSTR	"Infinity"
40#define	NANSTR	"NaN"
41
42#define	DBL_BIAS	(DBL_MAX_EXP - 1)
43#define	LDBL_BIAS	(LDBL_MAX_EXP - 1)
44
45#ifdef	LDBL_IMPLICIT_NBIT
46#define	LDBL_NBIT_ADJ	0
47#else
48#define	LDBL_NBIT_ADJ	1
49#endif
50
51/*
52 * Efficiently compute the log2 of an integer.  Uses a combination of
53 * arcane tricks found in fortune and arcane tricks not (yet) in
54 * fortune.  This routine behaves similarly to fls(9).
55 */
56static int
57log2_32(uint32_t n)
58{
59
60        n |= (n >> 1);
61        n |= (n >> 2);
62        n |= (n >> 4);
63        n |= (n >> 8);
64        n |= (n >> 16);
65
66	n = (n & 0x55555555) + ((n & 0xaaaaaaaa) >> 1);
67	n = (n & 0x33333333) + ((n & 0xcccccccc) >> 2);
68	n = (n & 0x0f0f0f0f) + ((n & 0xf0f0f0f0) >> 4);
69	n = (n & 0x00ff00ff) + ((n & 0xff00ff00) >> 8);
70	n = (n & 0x0000ffff) + ((n & 0xffff0000) >> 16);
71	return (n - 1);
72}
73
74#if (LDBL_MANH_SIZE > 32 || LDBL_MANL_SIZE > 32)
75
76static int
77log2_64(uint64_t n)
78{
79
80	if (n >> 32 != 0)
81		return (log2_32((uint32_t)(n >> 32)) + 32);
82	else
83		return (log2_32((uint32_t)n));
84}
85
86#endif	/* (LDBL_MANH_SIZE > 32 || LDBL_MANL_SIZE > 32) */
87
88/*
89 * Round up the given digit string.  If the digit string is fff...f,
90 * this procedure sets it to 100...0 and returns 1 to indicate that
91 * the exponent needs to be bumped.  Otherwise, 0 is returned.
92 */
93static int
94roundup(char *s0, int ndigits)
95{
96	char *s;
97
98	for (s = s0 + ndigits - 1; *s == 0xf; s--) {
99		if (s == s0) {
100			*s = 1;
101			return (1);
102		}
103		++*s;
104	}
105	++*s;
106	return (0);
107}
108
109/*
110 * Round the given digit string to ndigits digits according to the
111 * current rounding mode.  Note that this could produce a string whose
112 * value is not representable in the corresponding floating-point
113 * type.  The exponent pointed to by decpt is adjusted if necessary.
114 */
115static void
116dorounding(char *s0, int ndigits, int sign, int *decpt)
117{
118	int adjust = 0;	/* do we need to adjust the exponent? */
119
120	switch (FLT_ROUNDS) {
121	case 0:		/* toward zero */
122	default:	/* implementation-defined */
123		break;
124	case 1:		/* to nearest, halfway rounds to even */
125		if ((s0[ndigits] > 8) ||
126		    (s0[ndigits] == 8 && s0[ndigits - 1] & 1))
127			adjust = roundup(s0, ndigits);
128		break;
129	case 2:		/* toward +inf */
130		if (sign == 0)
131			adjust = roundup(s0, ndigits);
132		break;
133	case 3:		/* toward -inf */
134		if (sign != 0)
135			adjust = roundup(s0, ndigits);
136		break;
137	}
138
139	if (adjust)
140		*decpt += 4;
141}
142
143/*
144 * This procedure converts a double-precision number in IEEE format
145 * into a string of hexadecimal digits and an exponent of 2.  Its
146 * behavior is bug-for-bug compatible with dtoa() in mode 2, with the
147 * following exceptions:
148 *
149 * - An ndigits < 0 causes it to use as many digits as necessary to
150 *   represent the number exactly.
151 * - The additional xdigs argument should point to either the string
152 *   "0123456789ABCDEF" or the string "0123456789abcdef", depending on
153 *   which case is desired.
154 * - This routine does not repeat dtoa's mistake of setting decpt
155 *   to 9999 in the case of an infinity or NaN.  INT_MAX is used
156 *   for this purpose instead.
157 *
158 * Note that the C99 standard does not specify what the leading digit
159 * should be for non-zero numbers.  For instance, 0x1.3p3 is the same
160 * as 0x2.6p2 is the same as 0x4.cp3.  This implementation chooses the
161 * first digit so that subsequent digits are aligned on nibble
162 * boundaries (before rounding).
163 *
164 * Inputs:	d, xdigs, ndigits
165 * Outputs:	decpt, sign, rve
166 */
167char *
168__hdtoa(double d, const char *xdigs, int ndigits, int *decpt, int *sign,
169    char **rve)
170{
171	union IEEEd2bits u;
172	char *s, *s0;
173	int bufsize;
174	int impnbit;	/* implicit normalization bit */
175	int pos;
176	int shift;	/* for subnormals, # of shifts required to normalize */
177	int sigfigs;	/* number of significant hex figures in result */
178
179	u.d = d;
180	*sign = u.bits.sign;
181
182	switch (fpclassify(d)) {
183	case FP_NORMAL:
184		sigfigs = (DBL_MANT_DIG + 3) / 4;
185		impnbit = 1 << ((DBL_MANT_DIG - 1) % 4);
186		*decpt = u.bits.exp - DBL_BIAS + 1 -
187		    ((DBL_MANT_DIG - 1) % 4);
188		break;
189	case FP_ZERO:
190		*decpt = 1;
191		return (nrv_alloc("0", rve, 1));
192	case FP_SUBNORMAL:
193		/*
194		 * The position of the highest-order bit tells us by
195		 * how much to adjust the exponent (decpt).  The
196		 * adjustment is raised to the next nibble boundary
197		 * since we will later choose the leftmost hexadecimal
198		 * digit so that all subsequent digits align on nibble
199		 * boundaries.
200		 */
201		if (u.bits.manh != 0) {
202			pos = log2_32(u.bits.manh);
203			shift = DBL_MANH_SIZE - pos;
204		} else {
205			pos = log2_32(u.bits.manl);
206			shift = DBL_MANH_SIZE + DBL_MANL_SIZE - pos;
207		}
208		sigfigs = (3 + DBL_MANT_DIG - shift) / 4;
209		impnbit = 0;
210		*decpt = DBL_MIN_EXP - ((shift + 3) & ~(4 - 1));
211		break;
212	case FP_INFINITE:
213		*decpt = INT_MAX;
214		return (nrv_alloc(INFSTR, rve, sizeof(INFSTR) - 1));
215	case FP_NAN:
216		*decpt = INT_MAX;
217		return (nrv_alloc(NANSTR, rve, sizeof(NANSTR) - 1));
218	default:
219		abort();
220	}
221
222	/* FP_NORMAL or FP_SUBNORMAL */
223
224	if (ndigits == 0)		/* dtoa() compatibility */
225		ndigits = 1;
226
227	/*
228	 * For simplicity, we generate all the digits even if the
229	 * caller has requested fewer.
230	 */
231	bufsize = (sigfigs > ndigits) ? sigfigs : ndigits;
232	s0 = rv_alloc(bufsize);
233
234	/*
235	 * We work from right to left, first adding any requested zero
236	 * padding, then the least significant portion of the
237	 * mantissa, followed by the most significant.  The buffer is
238	 * filled with the byte values 0x0 through 0xf, which are
239	 * converted to xdigs[0x0] through xdigs[0xf] after the
240	 * rounding phase.
241	 */
242	for (s = s0 + bufsize - 1; s > s0 + sigfigs - 1; s--)
243		*s = 0;
244	for (; s > s0 + sigfigs - (DBL_MANL_SIZE / 4) - 1 && s > s0; s--) {
245		*s = u.bits.manl & 0xf;
246		u.bits.manl >>= 4;
247	}
248	for (; s > s0; s--) {
249		*s = u.bits.manh & 0xf;
250		u.bits.manh >>= 4;
251	}
252
253	/*
254	 * At this point, we have snarfed all the bits in the
255	 * mantissa, with the possible exception of the highest-order
256	 * (partial) nibble, which is dealt with by the next
257	 * statement.  That nibble is usually in manh, but it could be
258	 * in manl instead for small subnormals.  We also tack on the
259	 * implicit normalization bit if appropriate.
260	 */
261	*s = u.bits.manh | u.bits.manl | impnbit;
262
263	/* If ndigits < 0, we are expected to auto-size the precision. */
264	if (ndigits < 0) {
265		for (ndigits = sigfigs; s0[ndigits - 1] == 0; ndigits--)
266			;
267	}
268
269	if (sigfigs > ndigits && s0[ndigits] != 0)
270		dorounding(s0, ndigits, u.bits.sign, decpt);
271
272	s = s0 + ndigits;
273	if (rve != NULL)
274		*rve = s;
275	*s-- = '\0';
276	for (; s >= s0; s--)
277		*s = xdigs[(unsigned int)*s];
278
279	return (s0);
280}
281
282#if (LDBL_MANT_DIG > DBL_MANT_DIG)
283
284/*
285 * This is the long double version of __hdtoa().
286 *
287 * On architectures that have an explicit integer bit, unnormals and
288 * pseudo-denormals cause problems in the conversion routine, so they
289 * are ``fixed'' by effectively toggling the integer bit.  Although
290 * this is not correct behavior, the hardware will not produce these
291 * formats externally.
292 */
293char *
294__hldtoa(long double e, const char *xdigs, int ndigits, int *decpt, int *sign,
295    char **rve)
296{
297	union IEEEl2bits u;
298	char *s, *s0;
299	int bufsize;
300	int impnbit;	/* implicit normalization bit */
301	int pos;
302	int shift;	/* for subnormals, # of shifts required to normalize */
303	int sigfigs;	/* number of significant hex figures in result */
304
305	u.e = e;
306	*sign = u.bits.sign;
307
308	switch (fpclassify(e)) {
309	case FP_NORMAL:
310		sigfigs = (LDBL_MANT_DIG + 3) / 4;
311		impnbit = 1 << ((LDBL_MANT_DIG - 1) % 4);
312		*decpt = u.bits.exp - LDBL_BIAS + 1 -
313		    ((LDBL_MANT_DIG - 1) % 4);
314		break;
315	case FP_ZERO:
316		*decpt = 1;
317		return (nrv_alloc("0", rve, 1));
318	case FP_SUBNORMAL:
319		/*
320		 * The position of the highest-order bit tells us by
321		 * how much to adjust the exponent (decpt).  The
322		 * adjustment is raised to the next nibble boundary
323		 * since we will later choose the leftmost hexadecimal
324		 * digit so that all subsequent digits align on nibble
325		 * boundaries.
326		 */
327#ifdef	LDBL_IMPLICIT_NBIT
328		/* Don't trust the normalization bit to be off. */
329		u.bits.manh &= ~(~0ULL << (LDBL_MANH_SIZE - 1));
330#endif
331		if (u.bits.manh != 0) {
332#if LDBL_MANH_SIZE > 32
333			pos = log2_64(u.bits.manh);
334#else
335			pos = log2_32(u.bits.manh);
336#endif
337			shift = LDBL_MANH_SIZE - LDBL_NBIT_ADJ - pos;
338		} else {
339#if LDBL_MANL_SIZE > 32
340			pos = log2_64(u.bits.manl);
341#else
342			pos = log2_32(u.bits.manl);
343#endif
344			shift = LDBL_MANH_SIZE + LDBL_MANL_SIZE -
345			    LDBL_NBIT_ADJ - pos;
346		}
347		sigfigs = (3 + LDBL_MANT_DIG - LDBL_NBIT_ADJ - shift) / 4;
348		*decpt = LDBL_MIN_EXP + LDBL_NBIT_ADJ -
349		    ((shift + 3) & ~(4 - 1));
350		impnbit = 0;
351		break;
352	case FP_INFINITE:
353		*decpt = INT_MAX;
354		return (nrv_alloc(INFSTR, rve, sizeof(INFSTR) - 1));
355	case FP_NAN:
356		*decpt = INT_MAX;
357		return (nrv_alloc(NANSTR, rve, sizeof(NANSTR) - 1));
358	default:
359		abort();
360	}
361
362	/* FP_NORMAL or FP_SUBNORMAL */
363
364	if (ndigits == 0)		/* dtoa() compatibility */
365		ndigits = 1;
366
367	/*
368	 * For simplicity, we generate all the digits even if the
369	 * caller has requested fewer.
370	 */
371	bufsize = (sigfigs > ndigits) ? sigfigs : ndigits;
372	s0 = rv_alloc(bufsize);
373
374	/*
375	 * We work from right to left, first adding any requested zero
376	 * padding, then the least significant portion of the
377	 * mantissa, followed by the most significant.  The buffer is
378	 * filled with the byte values 0x0 through 0xf, which are
379	 * converted to xdigs[0x0] through xdigs[0xf] after the
380	 * rounding phase.
381	 */
382	for (s = s0 + bufsize - 1; s > s0 + sigfigs - 1; s--)
383		*s = 0;
384	for (; s > s0 + sigfigs - (LDBL_MANL_SIZE / 4) - 1 && s > s0; s--) {
385		*s = u.bits.manl & 0xf;
386		u.bits.manl >>= 4;
387	}
388	for (; s > s0; s--) {
389		*s = u.bits.manh & 0xf;
390		u.bits.manh >>= 4;
391	}
392
393	/*
394	 * At this point, we have snarfed all the bits in the
395	 * mantissa, with the possible exception of the highest-order
396	 * (partial) nibble, which is dealt with by the next
397	 * statement.  That nibble is usually in manh, but it could be
398	 * in manl instead for small subnormals.  We also tack on the
399	 * implicit normalization bit if appropriate.
400	 */
401	*s = u.bits.manh | u.bits.manl | impnbit;
402
403	/* If ndigits < 0, we are expected to auto-size the precision. */
404	if (ndigits < 0) {
405		for (ndigits = sigfigs; s0[ndigits - 1] == 0; ndigits--)
406			;
407	}
408
409	if (sigfigs > ndigits && s0[ndigits] != 0)
410		dorounding(s0, ndigits, u.bits.sign, decpt);
411
412	s = s0 + ndigits;
413	if (rve != NULL)
414		*rve = s;
415	*s-- = '\0';
416	for (; s >= s0; s--)
417		*s = xdigs[(unsigned int)*s];
418
419	return (s0);
420}
421
422#else	/* (LDBL_MANT_DIG == DBL_MANT_DIG) */
423
424char *
425__hldtoa(long double e, const char *xdigs, int ndigits, int *decpt, int *sign,
426    char **rve)
427{
428
429	return (__hdtoa((double)e, xdigs, ndigits, decpt, sign, rve));
430}
431
432#endif	/* (LDBL_MANT_DIG == DBL_MANT_DIG) */
433