EVP_EncryptInit.pod revision 325337
1=pod
2
3=head1 NAME
4
5EVP_CIPHER_CTX_init, EVP_EncryptInit_ex, EVP_EncryptUpdate,
6EVP_EncryptFinal_ex, EVP_DecryptInit_ex, EVP_DecryptUpdate,
7EVP_DecryptFinal_ex, EVP_CipherInit_ex, EVP_CipherUpdate,
8EVP_CipherFinal_ex, EVP_CIPHER_CTX_set_key_length,
9EVP_CIPHER_CTX_ctrl, EVP_CIPHER_CTX_cleanup, EVP_EncryptInit,
10EVP_EncryptFinal, EVP_DecryptInit, EVP_DecryptFinal,
11EVP_CipherInit, EVP_CipherFinal, EVP_get_cipherbyname,
12EVP_get_cipherbynid, EVP_get_cipherbyobj, EVP_CIPHER_nid,
13EVP_CIPHER_block_size, EVP_CIPHER_key_length, EVP_CIPHER_iv_length,
14EVP_CIPHER_flags, EVP_CIPHER_mode, EVP_CIPHER_type, EVP_CIPHER_CTX_cipher,
15EVP_CIPHER_CTX_nid, EVP_CIPHER_CTX_block_size, EVP_CIPHER_CTX_key_length,
16EVP_CIPHER_CTX_iv_length, EVP_CIPHER_CTX_get_app_data,
17EVP_CIPHER_CTX_set_app_data, EVP_CIPHER_CTX_type, EVP_CIPHER_CTX_flags,
18EVP_CIPHER_CTX_mode, EVP_CIPHER_param_to_asn1, EVP_CIPHER_asn1_to_param,
19EVP_CIPHER_CTX_set_padding,  EVP_enc_null, EVP_des_cbc, EVP_des_ecb,
20EVP_des_cfb, EVP_des_ofb, EVP_des_ede_cbc, EVP_des_ede, EVP_des_ede_ofb,
21EVP_des_ede_cfb, EVP_des_ede3_cbc, EVP_des_ede3, EVP_des_ede3_ofb,
22EVP_des_ede3_cfb, EVP_desx_cbc, EVP_rc4, EVP_rc4_40, EVP_rc4_hmac_md5,
23EVP_idea_cbc, EVP_idea_ecb, EVP_idea_cfb, EVP_idea_ofb, EVP_rc2_cbc,
24EVP_rc2_ecb, EVP_rc2_cfb, EVP_rc2_ofb, EVP_rc2_40_cbc, EVP_rc2_64_cbc,
25EVP_bf_cbc, EVP_bf_ecb, EVP_bf_cfb, EVP_bf_ofb, EVP_cast5_cbc,
26EVP_cast5_ecb, EVP_cast5_cfb, EVP_cast5_ofb, EVP_rc5_32_12_16_cbc,
27EVP_rc5_32_12_16_ecb, EVP_rc5_32_12_16_cfb, EVP_rc5_32_12_16_ofb, 
28EVP_aes_128_gcm, EVP_aes_192_gcm, EVP_aes_256_gcm, EVP_aes_128_ccm,
29EVP_aes_192_ccm, EVP_aes_256_ccm,
30EVP_aes_128_cbc_hmac_sha1, EVP_aes_256_cbc_hmac_sha1,
31EVP_aes_128_cbc_hmac_sha256, EVP_aes_256_cbc_hmac_sha256
32- EVP cipher routines
33
34=head1 SYNOPSIS
35
36 #include <openssl/evp.h>
37
38 void EVP_CIPHER_CTX_init(EVP_CIPHER_CTX *a);
39
40 int EVP_EncryptInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type,
41	 ENGINE *impl, unsigned char *key, unsigned char *iv);
42 int EVP_EncryptUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out,
43         int *outl, unsigned char *in, int inl);
44 int EVP_EncryptFinal_ex(EVP_CIPHER_CTX *ctx, unsigned char *out,
45         int *outl);
46
47 int EVP_DecryptInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type,
48	 ENGINE *impl, unsigned char *key, unsigned char *iv);
49 int EVP_DecryptUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out,
50         int *outl, unsigned char *in, int inl);
51 int EVP_DecryptFinal_ex(EVP_CIPHER_CTX *ctx, unsigned char *outm,
52         int *outl);
53
54 int EVP_CipherInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type,
55         ENGINE *impl, unsigned char *key, unsigned char *iv, int enc);
56 int EVP_CipherUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out,
57         int *outl, unsigned char *in, int inl);
58 int EVP_CipherFinal_ex(EVP_CIPHER_CTX *ctx, unsigned char *outm,
59         int *outl);
60
61 int EVP_EncryptInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type,
62         unsigned char *key, unsigned char *iv);
63 int EVP_EncryptFinal(EVP_CIPHER_CTX *ctx, unsigned char *out,
64         int *outl);
65
66 int EVP_DecryptInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type,
67         unsigned char *key, unsigned char *iv);
68 int EVP_DecryptFinal(EVP_CIPHER_CTX *ctx, unsigned char *outm,
69         int *outl);
70
71 int EVP_CipherInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type,
72         unsigned char *key, unsigned char *iv, int enc);
73 int EVP_CipherFinal(EVP_CIPHER_CTX *ctx, unsigned char *outm,
74         int *outl);
75
76 int EVP_CIPHER_CTX_set_padding(EVP_CIPHER_CTX *x, int padding);
77 int EVP_CIPHER_CTX_set_key_length(EVP_CIPHER_CTX *x, int keylen);
78 int EVP_CIPHER_CTX_ctrl(EVP_CIPHER_CTX *ctx, int type, int arg, void *ptr);
79 int EVP_CIPHER_CTX_cleanup(EVP_CIPHER_CTX *a);
80
81 const EVP_CIPHER *EVP_get_cipherbyname(const char *name);
82 #define EVP_get_cipherbynid(a) EVP_get_cipherbyname(OBJ_nid2sn(a))
83 #define EVP_get_cipherbyobj(a) EVP_get_cipherbynid(OBJ_obj2nid(a))
84
85 #define EVP_CIPHER_nid(e)		((e)->nid)
86 #define EVP_CIPHER_block_size(e)	((e)->block_size)
87 #define EVP_CIPHER_key_length(e)	((e)->key_len)
88 #define EVP_CIPHER_iv_length(e)		((e)->iv_len)
89 #define EVP_CIPHER_flags(e)		((e)->flags)
90 #define EVP_CIPHER_mode(e)		((e)->flags) & EVP_CIPH_MODE)
91 int EVP_CIPHER_type(const EVP_CIPHER *ctx);
92
93 #define EVP_CIPHER_CTX_cipher(e)	((e)->cipher)
94 #define EVP_CIPHER_CTX_nid(e)		((e)->cipher->nid)
95 #define EVP_CIPHER_CTX_block_size(e)	((e)->cipher->block_size)
96 #define EVP_CIPHER_CTX_key_length(e)	((e)->key_len)
97 #define EVP_CIPHER_CTX_iv_length(e)	((e)->cipher->iv_len)
98 #define EVP_CIPHER_CTX_get_app_data(e)	((e)->app_data)
99 #define EVP_CIPHER_CTX_set_app_data(e,d) ((e)->app_data=(char *)(d))
100 #define EVP_CIPHER_CTX_type(c)         EVP_CIPHER_type(EVP_CIPHER_CTX_cipher(c))
101 #define EVP_CIPHER_CTX_flags(e)		((e)->cipher->flags)
102 #define EVP_CIPHER_CTX_mode(e)		((e)->cipher->flags & EVP_CIPH_MODE)
103
104 int EVP_CIPHER_param_to_asn1(EVP_CIPHER_CTX *c, ASN1_TYPE *type);
105 int EVP_CIPHER_asn1_to_param(EVP_CIPHER_CTX *c, ASN1_TYPE *type);
106
107=head1 DESCRIPTION
108
109The EVP cipher routines are a high level interface to certain
110symmetric ciphers.
111
112EVP_CIPHER_CTX_init() initializes cipher contex B<ctx>.
113
114EVP_EncryptInit_ex() sets up cipher context B<ctx> for encryption
115with cipher B<type> from ENGINE B<impl>. B<ctx> must be initialized
116before calling this function. B<type> is normally supplied
117by a function such as EVP_aes_256_cbc(). If B<impl> is NULL then the
118default implementation is used. B<key> is the symmetric key to use
119and B<iv> is the IV to use (if necessary), the actual number of bytes
120used for the key and IV depends on the cipher. It is possible to set
121all parameters to NULL except B<type> in an initial call and supply
122the remaining parameters in subsequent calls, all of which have B<type>
123set to NULL. This is done when the default cipher parameters are not
124appropriate.
125
126EVP_EncryptUpdate() encrypts B<inl> bytes from the buffer B<in> and
127writes the encrypted version to B<out>. This function can be called
128multiple times to encrypt successive blocks of data. The amount
129of data written depends on the block alignment of the encrypted data:
130as a result the amount of data written may be anything from zero bytes
131to (inl + cipher_block_size - 1) so B<out> should contain sufficient
132room. The actual number of bytes written is placed in B<outl>.
133
134If padding is enabled (the default) then EVP_EncryptFinal_ex() encrypts
135the "final" data, that is any data that remains in a partial block.
136It uses L<standard block padding|/NOTES> (aka PKCS padding). The encrypted
137final data is written to B<out> which should have sufficient space for
138one cipher block. The number of bytes written is placed in B<outl>. After
139this function is called the encryption operation is finished and no further
140calls to EVP_EncryptUpdate() should be made.
141
142If padding is disabled then EVP_EncryptFinal_ex() will not encrypt any more
143data and it will return an error if any data remains in a partial block:
144that is if the total data length is not a multiple of the block size. 
145
146EVP_DecryptInit_ex(), EVP_DecryptUpdate() and EVP_DecryptFinal_ex() are the
147corresponding decryption operations. EVP_DecryptFinal() will return an
148error code if padding is enabled and the final block is not correctly
149formatted. The parameters and restrictions are identical to the encryption
150operations except that if padding is enabled the decrypted data buffer B<out>
151passed to EVP_DecryptUpdate() should have sufficient room for
152(B<inl> + cipher_block_size) bytes unless the cipher block size is 1 in
153which case B<inl> bytes is sufficient.
154
155EVP_CipherInit_ex(), EVP_CipherUpdate() and EVP_CipherFinal_ex() are
156functions that can be used for decryption or encryption. The operation
157performed depends on the value of the B<enc> parameter. It should be set
158to 1 for encryption, 0 for decryption and -1 to leave the value unchanged
159(the actual value of 'enc' being supplied in a previous call).
160
161EVP_CIPHER_CTX_cleanup() clears all information from a cipher context
162and free up any allocated memory associate with it. It should be called
163after all operations using a cipher are complete so sensitive information
164does not remain in memory.
165
166EVP_EncryptInit(), EVP_DecryptInit() and EVP_CipherInit() behave in a
167similar way to EVP_EncryptInit_ex(), EVP_DecryptInit_ex and
168EVP_CipherInit_ex() except the B<ctx> parameter does not need to be
169initialized and they always use the default cipher implementation.
170
171EVP_EncryptFinal(), EVP_DecryptFinal() and EVP_CipherFinal() are
172identical to EVP_EncryptFinal_ex(), EVP_DecryptFinal_ex() and
173EVP_CipherFinal_ex(). In previous releases they also cleaned up
174the B<ctx>, but this is no longer done and EVP_CIPHER_CTX_clean()
175must be called to free any context resources.
176
177EVP_get_cipherbyname(), EVP_get_cipherbynid() and EVP_get_cipherbyobj()
178return an EVP_CIPHER structure when passed a cipher name, a NID or an
179ASN1_OBJECT structure.
180
181EVP_CIPHER_nid() and EVP_CIPHER_CTX_nid() return the NID of a cipher when
182passed an B<EVP_CIPHER> or B<EVP_CIPHER_CTX> structure.  The actual NID
183value is an internal value which may not have a corresponding OBJECT
184IDENTIFIER.
185
186EVP_CIPHER_CTX_set_padding() enables or disables padding. By default
187encryption operations are padded using standard block padding and the
188padding is checked and removed when decrypting. If the B<pad> parameter
189is zero then no padding is performed, the total amount of data encrypted
190or decrypted must then be a multiple of the block size or an error will
191occur.
192
193EVP_CIPHER_key_length() and EVP_CIPHER_CTX_key_length() return the key
194length of a cipher when passed an B<EVP_CIPHER> or B<EVP_CIPHER_CTX>
195structure. The constant B<EVP_MAX_KEY_LENGTH> is the maximum key length
196for all ciphers. Note: although EVP_CIPHER_key_length() is fixed for a
197given cipher, the value of EVP_CIPHER_CTX_key_length() may be different
198for variable key length ciphers.
199
200EVP_CIPHER_CTX_set_key_length() sets the key length of the cipher ctx.
201If the cipher is a fixed length cipher then attempting to set the key
202length to any value other than the fixed value is an error.
203
204EVP_CIPHER_iv_length() and EVP_CIPHER_CTX_iv_length() return the IV
205length of a cipher when passed an B<EVP_CIPHER> or B<EVP_CIPHER_CTX>.
206It will return zero if the cipher does not use an IV.  The constant
207B<EVP_MAX_IV_LENGTH> is the maximum IV length for all ciphers.
208
209EVP_CIPHER_block_size() and EVP_CIPHER_CTX_block_size() return the block
210size of a cipher when passed an B<EVP_CIPHER> or B<EVP_CIPHER_CTX>
211structure. The constant B<EVP_MAX_IV_LENGTH> is also the maximum block
212length for all ciphers.
213
214EVP_CIPHER_type() and EVP_CIPHER_CTX_type() return the type of the passed
215cipher or context. This "type" is the actual NID of the cipher OBJECT
216IDENTIFIER as such it ignores the cipher parameters and 40 bit RC2 and
217128 bit RC2 have the same NID. If the cipher does not have an object
218identifier or does not have ASN1 support this function will return
219B<NID_undef>.
220
221EVP_CIPHER_CTX_cipher() returns the B<EVP_CIPHER> structure when passed
222an B<EVP_CIPHER_CTX> structure.
223
224EVP_CIPHER_mode() and EVP_CIPHER_CTX_mode() return the block cipher mode:
225EVP_CIPH_ECB_MODE, EVP_CIPH_CBC_MODE, EVP_CIPH_CFB_MODE or
226EVP_CIPH_OFB_MODE. If the cipher is a stream cipher then
227EVP_CIPH_STREAM_CIPHER is returned.
228
229EVP_CIPHER_param_to_asn1() sets the AlgorithmIdentifier "parameter" based
230on the passed cipher. This will typically include any parameters and an
231IV. The cipher IV (if any) must be set when this call is made. This call
232should be made before the cipher is actually "used" (before any
233EVP_EncryptUpdate(), EVP_DecryptUpdate() calls for example). This function
234may fail if the cipher does not have any ASN1 support.
235
236EVP_CIPHER_asn1_to_param() sets the cipher parameters based on an ASN1
237AlgorithmIdentifier "parameter". The precise effect depends on the cipher
238In the case of RC2, for example, it will set the IV and effective key length.
239This function should be called after the base cipher type is set but before
240the key is set. For example EVP_CipherInit() will be called with the IV and
241key set to NULL, EVP_CIPHER_asn1_to_param() will be called and finally
242EVP_CipherInit() again with all parameters except the key set to NULL. It is
243possible for this function to fail if the cipher does not have any ASN1 support
244or the parameters cannot be set (for example the RC2 effective key length
245is not supported.
246
247EVP_CIPHER_CTX_ctrl() allows various cipher specific parameters to be determined
248and set.
249
250=head1 RETURN VALUES
251
252EVP_EncryptInit_ex(), EVP_EncryptUpdate() and EVP_EncryptFinal_ex()
253return 1 for success and 0 for failure.
254
255EVP_DecryptInit_ex() and EVP_DecryptUpdate() return 1 for success and 0 for failure.
256EVP_DecryptFinal_ex() returns 0 if the decrypt failed or 1 for success.
257
258EVP_CipherInit_ex() and EVP_CipherUpdate() return 1 for success and 0 for failure.
259EVP_CipherFinal_ex() returns 0 for a decryption failure or 1 for success.
260
261EVP_CIPHER_CTX_cleanup() returns 1 for success and 0 for failure.
262
263EVP_get_cipherbyname(), EVP_get_cipherbynid() and EVP_get_cipherbyobj()
264return an B<EVP_CIPHER> structure or NULL on error.
265
266EVP_CIPHER_nid() and EVP_CIPHER_CTX_nid() return a NID.
267
268EVP_CIPHER_block_size() and EVP_CIPHER_CTX_block_size() return the block
269size.
270
271EVP_CIPHER_key_length() and EVP_CIPHER_CTX_key_length() return the key
272length.
273
274EVP_CIPHER_CTX_set_padding() always returns 1.
275
276EVP_CIPHER_iv_length() and EVP_CIPHER_CTX_iv_length() return the IV
277length or zero if the cipher does not use an IV.
278
279EVP_CIPHER_type() and EVP_CIPHER_CTX_type() return the NID of the cipher's
280OBJECT IDENTIFIER or NID_undef if it has no defined OBJECT IDENTIFIER.
281
282EVP_CIPHER_CTX_cipher() returns an B<EVP_CIPHER> structure.
283
284EVP_CIPHER_param_to_asn1() and EVP_CIPHER_asn1_to_param() return 1 for 
285success or zero for failure.
286
287=head1 CIPHER LISTING
288
289All algorithms have a fixed key length unless otherwise stated.
290
291=over 4
292
293=item EVP_enc_null()
294
295Null cipher: does nothing.
296
297=item EVP_des_cbc(void), EVP_des_ecb(void), EVP_des_cfb(void), EVP_des_ofb(void)
298
299DES in CBC, ECB, CFB and OFB modes respectively. 
300
301=item EVP_des_ede_cbc(void), EVP_des_ede(), EVP_des_ede_ofb(void),  EVP_des_ede_cfb(void)
302
303Two key triple DES in CBC, ECB, CFB and OFB modes respectively.
304
305=item EVP_des_ede3_cbc(void), EVP_des_ede3(), EVP_des_ede3_ofb(void),  EVP_des_ede3_cfb(void)
306
307Three key triple DES in CBC, ECB, CFB and OFB modes respectively.
308
309=item EVP_desx_cbc(void)
310
311DESX algorithm in CBC mode.
312
313=item EVP_rc4(void)
314
315RC4 stream cipher. This is a variable key length cipher with default key length 128 bits.
316
317=item EVP_rc4_40(void)
318
319RC4 stream cipher with 40 bit key length. This is obsolete and new code should use EVP_rc4()
320and the EVP_CIPHER_CTX_set_key_length() function.
321
322=item EVP_idea_cbc() EVP_idea_ecb(void), EVP_idea_cfb(void), EVP_idea_ofb(void)
323
324IDEA encryption algorithm in CBC, ECB, CFB and OFB modes respectively.
325
326=item EVP_rc2_cbc(void), EVP_rc2_ecb(void), EVP_rc2_cfb(void), EVP_rc2_ofb(void)
327
328RC2 encryption algorithm in CBC, ECB, CFB and OFB modes respectively. This is a variable key
329length cipher with an additional parameter called "effective key bits" or "effective key length".
330By default both are set to 128 bits.
331
332=item EVP_rc2_40_cbc(void), EVP_rc2_64_cbc(void)
333
334RC2 algorithm in CBC mode with a default key length and effective key length of 40 and 64 bits.
335These are obsolete and new code should use EVP_rc2_cbc(), EVP_CIPHER_CTX_set_key_length() and
336EVP_CIPHER_CTX_ctrl() to set the key length and effective key length.
337
338=item EVP_bf_cbc(void), EVP_bf_ecb(void), EVP_bf_cfb(void), EVP_bf_ofb(void);
339
340Blowfish encryption algorithm in CBC, ECB, CFB and OFB modes respectively. This is a variable key
341length cipher.
342
343=item EVP_cast5_cbc(void), EVP_cast5_ecb(void), EVP_cast5_cfb(void), EVP_cast5_ofb(void)
344
345CAST encryption algorithm in CBC, ECB, CFB and OFB modes respectively. This is a variable key
346length cipher.
347
348=item EVP_rc5_32_12_16_cbc(void), EVP_rc5_32_12_16_ecb(void), EVP_rc5_32_12_16_cfb(void), EVP_rc5_32_12_16_ofb(void)
349
350RC5 encryption algorithm in CBC, ECB, CFB and OFB modes respectively. This is a variable key length
351cipher with an additional "number of rounds" parameter. By default the key length is set to 128
352bits and 12 rounds.
353
354=item EVP_aes_128_gcm(void), EVP_aes_192_gcm(void), EVP_aes_256_gcm(void)
355
356AES Galois Counter Mode (GCM) for 128, 192 and 256 bit keys respectively.
357These ciphers require additional control operations to function correctly: see
358L<GCM mode> section below for details.
359
360=item EVP_aes_128_ccm(void), EVP_aes_192_ccm(void), EVP_aes_256_ccm(void)
361
362AES Counter with CBC-MAC Mode (CCM) for 128, 192 and 256 bit keys respectively.
363These ciphers require additional control operations to function correctly: see
364CCM mode section below for details.
365
366=back
367
368=head1 GCM Mode
369
370For GCM mode ciphers the behaviour of the EVP interface is subtly altered and
371several GCM specific ctrl operations are supported.
372
373To specify any additional authenticated data (AAD) a call to EVP_CipherUpdate(),
374EVP_EncryptUpdate() or EVP_DecryptUpdate() should be made with the output 
375parameter B<out> set to B<NULL>.
376
377When decrypting the return value of EVP_DecryptFinal() or EVP_CipherFinal()
378indicates if the operation was successful. If it does not indicate success
379the authentication operation has failed and any output data B<MUST NOT>
380be used as it is corrupted.
381
382The following ctrls are supported in GCM mode:
383
384 EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_GCM_SET_IVLEN, ivlen, NULL);
385
386Sets the GCM IV length: this call can only be made before specifying an IV. If
387not called a default IV length is used (96 bits for AES).
388 
389 EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_GCM_GET_TAG, taglen, tag);
390
391Writes B<taglen> bytes of the tag value to the buffer indicated by B<tag>.
392This call can only be made when encrypting data and B<after> all data has been
393processed (e.g. after an EVP_EncryptFinal() call).
394
395 EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_GCM_SET_TAG, taglen, tag);
396
397Sets the expected tag to B<taglen> bytes from B<tag>. This call is only legal
398when decrypting data.
399
400=head1 CCM Mode
401
402The behaviour of CCM mode ciphers is similar to CCM mode but with a few
403additional requirements and different ctrl values.
404
405Like GCM mode any additional authenticated data (AAD) is passed by calling
406EVP_CipherUpdate(), EVP_EncryptUpdate() or EVP_DecryptUpdate() with the output 
407parameter B<out> set to B<NULL>. Additionally the total plaintext or ciphertext
408length B<MUST> be passed to EVP_CipherUpdate(), EVP_EncryptUpdate() or
409EVP_DecryptUpdate() with the output and input parameters (B<in> and B<out>) 
410set to B<NULL> and the length passed in the B<inl> parameter.
411
412The following ctrls are supported in CCM mode:
413 
414 EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_CCM_SET_TAG, taglen, tag);
415
416This call is made to set the expected B<CCM> tag value when decrypting or
417the length of the tag (with the B<tag> parameter set to NULL) when encrypting.
418The tag length is often referred to as B<M>. If not set a default value is
419used (12 for AES).
420
421 EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_CCM_SET_L, ivlen, NULL);
422
423Sets the CCM B<L> value. If not set a default is used (8 for AES).
424
425 EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_CCM_SET_IVLEN, ivlen, NULL);
426
427Sets the CCM nonce (IV) length: this call can only be made before specifying
428an nonce value. The nonce length is given by B<15 - L> so it is 7 by default
429for AES.
430
431
432
433=head1 NOTES
434
435Where possible the B<EVP> interface to symmetric ciphers should be used in
436preference to the low level interfaces. This is because the code then becomes
437transparent to the cipher used and much more flexible. Additionally, the
438B<EVP> interface will ensure the use of platform specific cryptographic
439acceleration such as AES-NI (the low level interfaces do not provide the
440guarantee).
441
442PKCS padding works by adding B<n> padding bytes of value B<n> to make the total 
443length of the encrypted data a multiple of the block size. Padding is always
444added so if the data is already a multiple of the block size B<n> will equal
445the block size. For example if the block size is 8 and 11 bytes are to be
446encrypted then 5 padding bytes of value 5 will be added.
447
448When decrypting the final block is checked to see if it has the correct form.
449
450Although the decryption operation can produce an error if padding is enabled,
451it is not a strong test that the input data or key is correct. A random block
452has better than 1 in 256 chance of being of the correct format and problems with
453the input data earlier on will not produce a final decrypt error.
454
455If padding is disabled then the decryption operation will always succeed if
456the total amount of data decrypted is a multiple of the block size.
457
458The functions EVP_EncryptInit(), EVP_EncryptFinal(), EVP_DecryptInit(),
459EVP_CipherInit() and EVP_CipherFinal() are obsolete but are retained for
460compatibility with existing code. New code should use EVP_EncryptInit_ex(),
461EVP_EncryptFinal_ex(), EVP_DecryptInit_ex(), EVP_DecryptFinal_ex(),
462EVP_CipherInit_ex() and EVP_CipherFinal_ex() because they can reuse an
463existing context without allocating and freeing it up on each call.
464
465=head1 BUGS
466
467For RC5 the number of rounds can currently only be set to 8, 12 or 16. This is
468a limitation of the current RC5 code rather than the EVP interface.
469
470EVP_MAX_KEY_LENGTH and EVP_MAX_IV_LENGTH only refer to the internal ciphers with
471default key lengths. If custom ciphers exceed these values the results are
472unpredictable. This is because it has become standard practice to define a 
473generic key as a fixed unsigned char array containing EVP_MAX_KEY_LENGTH bytes.
474
475The ASN1 code is incomplete (and sometimes inaccurate) it has only been tested
476for certain common S/MIME ciphers (RC2, DES, triple DES) in CBC mode.
477
478=head1 EXAMPLES
479
480Encrypt a string using IDEA:
481
482 int do_crypt(char *outfile)
483 	{
484	unsigned char outbuf[1024];
485	int outlen, tmplen;
486	/* Bogus key and IV: we'd normally set these from
487	 * another source.
488	 */
489	unsigned char key[] = {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15};
490	unsigned char iv[] = {1,2,3,4,5,6,7,8};
491	char intext[] = "Some Crypto Text";
492	EVP_CIPHER_CTX ctx;
493	FILE *out;
494
495	EVP_CIPHER_CTX_init(&ctx);
496	EVP_EncryptInit_ex(&ctx, EVP_idea_cbc(), NULL, key, iv);
497
498	if(!EVP_EncryptUpdate(&ctx, outbuf, &outlen, intext, strlen(intext)))
499		{
500		/* Error */
501		return 0;
502		}
503	/* Buffer passed to EVP_EncryptFinal() must be after data just
504	 * encrypted to avoid overwriting it.
505	 */
506	if(!EVP_EncryptFinal_ex(&ctx, outbuf + outlen, &tmplen))
507		{
508		/* Error */
509		return 0;
510		}
511	outlen += tmplen;
512	EVP_CIPHER_CTX_cleanup(&ctx);
513	/* Need binary mode for fopen because encrypted data is
514	 * binary data. Also cannot use strlen() on it because
515         * it wont be null terminated and may contain embedded
516	 * nulls.
517	 */
518	out = fopen(outfile, "wb");
519	fwrite(outbuf, 1, outlen, out);
520	fclose(out);
521	return 1;
522	}
523
524The ciphertext from the above example can be decrypted using the B<openssl>
525utility with the command line (shown on two lines for clarity):
526 
527 openssl idea -d <filename
528          -K 000102030405060708090A0B0C0D0E0F -iv 0102030405060708
529
530General encryption and decryption function example using FILE I/O and AES128
531with a 128-bit key:
532
533 int do_crypt(FILE *in, FILE *out, int do_encrypt)
534 	{
535	/* Allow enough space in output buffer for additional block */
536	unsigned char inbuf[1024], outbuf[1024 + EVP_MAX_BLOCK_LENGTH];
537	int inlen, outlen;
538	EVP_CIPHER_CTX ctx;
539	/* Bogus key and IV: we'd normally set these from
540	 * another source.
541	 */
542	unsigned char key[] = "0123456789abcdeF";
543	unsigned char iv[] = "1234567887654321";
544
545	/* Don't set key or IV right away; we want to check lengths */
546	EVP_CIPHER_CTX_init(&ctx);
547	EVP_CipherInit_ex(&ctx, EVP_aes_128_cbc(), NULL, NULL, NULL,
548		do_encrypt);
549	OPENSSL_assert(EVP_CIPHER_CTX_key_length(&ctx) == 16);
550	OPENSSL_assert(EVP_CIPHER_CTX_iv_length(&ctx) == 16);
551
552	/* Now we can set key and IV */
553	EVP_CipherInit_ex(&ctx, NULL, NULL, key, iv, do_encrypt);
554
555	for(;;) 
556		{
557		inlen = fread(inbuf, 1, 1024, in);
558		if(inlen <= 0) break;
559		if(!EVP_CipherUpdate(&ctx, outbuf, &outlen, inbuf, inlen))
560			{
561			/* Error */
562			EVP_CIPHER_CTX_cleanup(&ctx);
563			return 0;
564			}
565		fwrite(outbuf, 1, outlen, out);
566		}
567	if(!EVP_CipherFinal_ex(&ctx, outbuf, &outlen))
568		{
569		/* Error */
570		EVP_CIPHER_CTX_cleanup(&ctx);
571		return 0;
572		}
573	fwrite(outbuf, 1, outlen, out);
574
575	EVP_CIPHER_CTX_cleanup(&ctx);
576	return 1;
577	}
578
579
580=head1 SEE ALSO
581
582L<evp(3)|evp(3)>
583
584=head1 HISTORY
585
586EVP_CIPHER_CTX_init(), EVP_EncryptInit_ex(), EVP_EncryptFinal_ex(),
587EVP_DecryptInit_ex(), EVP_DecryptFinal_ex(), EVP_CipherInit_ex(),
588EVP_CipherFinal_ex() and EVP_CIPHER_CTX_set_padding() appeared in
589OpenSSL 0.9.7.
590
591IDEA appeared in OpenSSL 0.9.7 but was often disabled due to
592patent concerns; the last patents expired in 2012.
593
594=cut
595