wp_dgst.c revision 325337
1/**
2 * The Whirlpool hashing function.
3 *
4 * <P>
5 * <b>References</b>
6 *
7 * <P>
8 * The Whirlpool algorithm was developed by
9 * <a href="mailto:pbarreto@scopus.com.br">Paulo S. L. M. Barreto</a> and
10 * <a href="mailto:vincent.rijmen@cryptomathic.com">Vincent Rijmen</a>.
11 *
12 * See
13 *      P.S.L.M. Barreto, V. Rijmen,
14 *      ``The Whirlpool hashing function,''
15 *      NESSIE submission, 2000 (tweaked version, 2001),
16 *      <https://www.cosic.esat.kuleuven.ac.be/nessie/workshop/submissions/whirlpool.zip>
17 *
18 * Based on "@version 3.0 (2003.03.12)" by Paulo S.L.M. Barreto and
19 * Vincent Rijmen. Lookup "reference implementations" on
20 * <http://planeta.terra.com.br/informatica/paulobarreto/>
21 *
22 * =============================================================================
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ''AS IS'' AND ANY EXPRESS
25 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
26 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE
28 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
31 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
32 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
33 * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
34 * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35 *
36 */
37
38/*
39 * OpenSSL-specific implementation notes.
40 *
41 * WHIRLPOOL_Update as well as one-stroke WHIRLPOOL both expect
42 * number of *bytes* as input length argument. Bit-oriented routine
43 * as specified by authors is called WHIRLPOOL_BitUpdate[!] and
44 * does not have one-stroke counterpart.
45 *
46 * WHIRLPOOL_BitUpdate implements byte-oriented loop, essentially
47 * to serve WHIRLPOOL_Update. This is done for performance.
48 *
49 * Unlike authors' reference implementation, block processing
50 * routine whirlpool_block is designed to operate on multi-block
51 * input. This is done for perfomance.
52 */
53
54#include <openssl/crypto.h>
55#include "wp_locl.h"
56#include <openssl/crypto.h>
57#include <string.h>
58
59fips_md_init(WHIRLPOOL)
60{
61    memset(c, 0, sizeof(*c));
62    return (1);
63}
64
65int WHIRLPOOL_Update(WHIRLPOOL_CTX *c, const void *_inp, size_t bytes)
66{
67    /*
68     * Well, largest suitable chunk size actually is
69     * (1<<(sizeof(size_t)*8-3))-64, but below number is large enough for not
70     * to care about excessive calls to WHIRLPOOL_BitUpdate...
71     */
72    size_t chunk = ((size_t)1) << (sizeof(size_t) * 8 - 4);
73    const unsigned char *inp = _inp;
74
75    while (bytes >= chunk) {
76        WHIRLPOOL_BitUpdate(c, inp, chunk * 8);
77        bytes -= chunk;
78        inp += chunk;
79    }
80    if (bytes)
81        WHIRLPOOL_BitUpdate(c, inp, bytes * 8);
82
83    return (1);
84}
85
86void WHIRLPOOL_BitUpdate(WHIRLPOOL_CTX *c, const void *_inp, size_t bits)
87{
88    size_t n;
89    unsigned int bitoff = c->bitoff,
90        bitrem = bitoff % 8, inpgap = (8 - (unsigned int)bits % 8) & 7;
91    const unsigned char *inp = _inp;
92
93    /*
94     * This 256-bit increment procedure relies on the size_t being natural
95     * size of CPU register, so that we don't have to mask the value in order
96     * to detect overflows.
97     */
98    c->bitlen[0] += bits;
99    if (c->bitlen[0] < bits) {  /* overflow */
100        n = 1;
101        do {
102            c->bitlen[n]++;
103        } while (c->bitlen[n] == 0
104                 && ++n < (WHIRLPOOL_COUNTER / sizeof(size_t)));
105    }
106#ifndef OPENSSL_SMALL_FOOTPRINT
107 reconsider:
108    if (inpgap == 0 && bitrem == 0) { /* byte-oriented loop */
109        while (bits) {
110            if (bitoff == 0 && (n = bits / WHIRLPOOL_BBLOCK)) {
111                whirlpool_block(c, inp, n);
112                inp += n * WHIRLPOOL_BBLOCK / 8;
113                bits %= WHIRLPOOL_BBLOCK;
114            } else {
115                unsigned int byteoff = bitoff / 8;
116
117                bitrem = WHIRLPOOL_BBLOCK - bitoff; /* re-use bitrem */
118                if (bits >= bitrem) {
119                    bits -= bitrem;
120                    bitrem /= 8;
121                    memcpy(c->data + byteoff, inp, bitrem);
122                    inp += bitrem;
123                    whirlpool_block(c, c->data, 1);
124                    bitoff = 0;
125                } else {
126                    memcpy(c->data + byteoff, inp, bits / 8);
127                    bitoff += (unsigned int)bits;
128                    bits = 0;
129                }
130                c->bitoff = bitoff;
131            }
132        }
133    } else                      /* bit-oriented loop */
134#endif
135    {
136        /*-
137                   inp
138                   |
139                   +-------+-------+-------
140                      |||||||||||||||||||||
141                   +-------+-------+-------
142        +-------+-------+-------+-------+-------
143        ||||||||||||||                          c->data
144        +-------+-------+-------+-------+-------
145                |
146                c->bitoff/8
147        */
148        while (bits) {
149            unsigned int byteoff = bitoff / 8;
150            unsigned char b;
151
152#ifndef OPENSSL_SMALL_FOOTPRINT
153            if (bitrem == inpgap) {
154                c->data[byteoff++] |= inp[0] & (0xff >> inpgap);
155                inpgap = 8 - inpgap;
156                bitoff += inpgap;
157                bitrem = 0;     /* bitoff%8 */
158                bits -= inpgap;
159                inpgap = 0;     /* bits%8 */
160                inp++;
161                if (bitoff == WHIRLPOOL_BBLOCK) {
162                    whirlpool_block(c, c->data, 1);
163                    bitoff = 0;
164                }
165                c->bitoff = bitoff;
166                goto reconsider;
167            } else
168#endif
169            if (bits > 8) {
170                b = ((inp[0] << inpgap) | (inp[1] >> (8 - inpgap)));
171                b &= 0xff;
172                if (bitrem)
173                    c->data[byteoff++] |= b >> bitrem;
174                else
175                    c->data[byteoff++] = b;
176                bitoff += 8;
177                bits -= 8;
178                inp++;
179                if (bitoff >= WHIRLPOOL_BBLOCK) {
180                    whirlpool_block(c, c->data, 1);
181                    byteoff = 0;
182                    bitoff %= WHIRLPOOL_BBLOCK;
183                }
184                if (bitrem)
185                    c->data[byteoff] = b << (8 - bitrem);
186            } else {            /* remaining less than or equal to 8 bits */
187
188                b = (inp[0] << inpgap) & 0xff;
189                if (bitrem)
190                    c->data[byteoff++] |= b >> bitrem;
191                else
192                    c->data[byteoff++] = b;
193                bitoff += (unsigned int)bits;
194                if (bitoff == WHIRLPOOL_BBLOCK) {
195                    whirlpool_block(c, c->data, 1);
196                    byteoff = 0;
197                    bitoff %= WHIRLPOOL_BBLOCK;
198                }
199                if (bitrem)
200                    c->data[byteoff] = b << (8 - bitrem);
201                bits = 0;
202            }
203            c->bitoff = bitoff;
204        }
205    }
206}
207
208int WHIRLPOOL_Final(unsigned char *md, WHIRLPOOL_CTX *c)
209{
210    unsigned int bitoff = c->bitoff, byteoff = bitoff / 8;
211    size_t i, j, v;
212    unsigned char *p;
213
214    bitoff %= 8;
215    if (bitoff)
216        c->data[byteoff] |= 0x80 >> bitoff;
217    else
218        c->data[byteoff] = 0x80;
219    byteoff++;
220
221    /* pad with zeros */
222    if (byteoff > (WHIRLPOOL_BBLOCK / 8 - WHIRLPOOL_COUNTER)) {
223        if (byteoff < WHIRLPOOL_BBLOCK / 8)
224            memset(&c->data[byteoff], 0, WHIRLPOOL_BBLOCK / 8 - byteoff);
225        whirlpool_block(c, c->data, 1);
226        byteoff = 0;
227    }
228    if (byteoff < (WHIRLPOOL_BBLOCK / 8 - WHIRLPOOL_COUNTER))
229        memset(&c->data[byteoff], 0,
230               (WHIRLPOOL_BBLOCK / 8 - WHIRLPOOL_COUNTER) - byteoff);
231    /* smash 256-bit c->bitlen in big-endian order */
232    p = &c->data[WHIRLPOOL_BBLOCK / 8 - 1]; /* last byte in c->data */
233    for (i = 0; i < WHIRLPOOL_COUNTER / sizeof(size_t); i++)
234        for (v = c->bitlen[i], j = 0; j < sizeof(size_t); j++, v >>= 8)
235            *p-- = (unsigned char)(v & 0xff);
236
237    whirlpool_block(c, c->data, 1);
238
239    if (md) {
240        memcpy(md, c->H.c, WHIRLPOOL_DIGEST_LENGTH);
241        OPENSSL_cleanse(c, sizeof(*c));
242        return (1);
243    }
244    return (0);
245}
246
247unsigned char *WHIRLPOOL(const void *inp, size_t bytes, unsigned char *md)
248{
249    WHIRLPOOL_CTX ctx;
250    static unsigned char m[WHIRLPOOL_DIGEST_LENGTH];
251
252    if (md == NULL)
253        md = m;
254    WHIRLPOOL_Init(&ctx);
255    WHIRLPOOL_Update(&ctx, inp, bytes);
256    WHIRLPOOL_Final(md, &ctx);
257    return (md);
258}
259