ghash-armv4.pl revision 290207
1#!/usr/bin/env perl
2#
3# ====================================================================
4# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
5# project. The module is, however, dual licensed under OpenSSL and
6# CRYPTOGAMS licenses depending on where you obtain it. For further
7# details see http://www.openssl.org/~appro/cryptogams/.
8# ====================================================================
9#
10# April 2010
11#
12# The module implements "4-bit" GCM GHASH function and underlying
13# single multiplication operation in GF(2^128). "4-bit" means that it
14# uses 256 bytes per-key table [+32 bytes shared table]. There is no
15# experimental performance data available yet. The only approximation
16# that can be made at this point is based on code size. Inner loop is
17# 32 instructions long and on single-issue core should execute in <40
18# cycles. Having verified that gcc 3.4 didn't unroll corresponding
19# loop, this assembler loop body was found to be ~3x smaller than
20# compiler-generated one...
21#
22# July 2010
23#
24# Rescheduling for dual-issue pipeline resulted in 8.5% improvement on
25# Cortex A8 core and ~25 cycles per processed byte (which was observed
26# to be ~3 times faster than gcc-generated code:-)
27#
28# February 2011
29#
30# Profiler-assisted and platform-specific optimization resulted in 7%
31# improvement on Cortex A8 core and ~23.5 cycles per byte.
32#
33# March 2011
34#
35# Add NEON implementation featuring polynomial multiplication, i.e. no
36# lookup tables involved. On Cortex A8 it was measured to process one
37# byte in 15 cycles or 55% faster than integer-only code.
38#
39# April 2014
40#
41# Switch to multiplication algorithm suggested in paper referred
42# below and combine it with reduction algorithm from x86 module.
43# Performance improvement over previous version varies from 65% on
44# Snapdragon S4 to 110% on Cortex A9. In absolute terms Cortex A8
45# processes one byte in 8.45 cycles, A9 - in 10.2, Snapdragon S4 -
46# in 9.33.
47#
48# C�mara, D.; Gouv�a, C. P. L.; L�pez, J. & Dahab, R.: Fast Software
49# Polynomial Multiplication on ARM Processors using the NEON Engine.
50#
51# http://conradoplg.cryptoland.net/files/2010/12/mocrysen13.pdf
52
53# ====================================================================
54# Note about "528B" variant. In ARM case it makes lesser sense to
55# implement it for following reasons:
56#
57# - performance improvement won't be anywhere near 50%, because 128-
58#   bit shift operation is neatly fused with 128-bit xor here, and
59#   "538B" variant would eliminate only 4-5 instructions out of 32
60#   in the inner loop (meaning that estimated improvement is ~15%);
61# - ARM-based systems are often embedded ones and extra memory
62#   consumption might be unappreciated (for so little improvement);
63#
64# Byte order [in]dependence. =========================================
65#
66# Caller is expected to maintain specific *dword* order in Htable,
67# namely with *least* significant dword of 128-bit value at *lower*
68# address. This differs completely from C code and has everything to
69# do with ldm instruction and order in which dwords are "consumed" by
70# algorithm. *Byte* order within these dwords in turn is whatever
71# *native* byte order on current platform. See gcm128.c for working
72# example...
73
74while (($output=shift) && ($output!~/^\w[\w\-]*\.\w+$/)) {}
75open STDOUT,">$output";
76
77$Xi="r0";	# argument block
78$Htbl="r1";
79$inp="r2";
80$len="r3";
81
82$Zll="r4";	# variables
83$Zlh="r5";
84$Zhl="r6";
85$Zhh="r7";
86$Tll="r8";
87$Tlh="r9";
88$Thl="r10";
89$Thh="r11";
90$nlo="r12";
91################# r13 is stack pointer
92$nhi="r14";
93################# r15 is program counter
94
95$rem_4bit=$inp;	# used in gcm_gmult_4bit
96$cnt=$len;
97
98sub Zsmash() {
99  my $i=12;
100  my @args=@_;
101  for ($Zll,$Zlh,$Zhl,$Zhh) {
102    $code.=<<___;
103#if __ARM_ARCH__>=7 && defined(__ARMEL__)
104	rev	$_,$_
105	str	$_,[$Xi,#$i]
106#elif defined(__ARMEB__)
107	str	$_,[$Xi,#$i]
108#else
109	mov	$Tlh,$_,lsr#8
110	strb	$_,[$Xi,#$i+3]
111	mov	$Thl,$_,lsr#16
112	strb	$Tlh,[$Xi,#$i+2]
113	mov	$Thh,$_,lsr#24
114	strb	$Thl,[$Xi,#$i+1]
115	strb	$Thh,[$Xi,#$i]
116#endif
117___
118    $code.="\t".shift(@args)."\n";
119    $i-=4;
120  }
121}
122
123$code=<<___;
124#include "arm_arch.h"
125
126.text
127.code	32
128
129.type	rem_4bit,%object
130.align	5
131rem_4bit:
132.short	0x0000,0x1C20,0x3840,0x2460
133.short	0x7080,0x6CA0,0x48C0,0x54E0
134.short	0xE100,0xFD20,0xD940,0xC560
135.short	0x9180,0x8DA0,0xA9C0,0xB5E0
136.size	rem_4bit,.-rem_4bit
137
138.type	rem_4bit_get,%function
139rem_4bit_get:
140	sub	$rem_4bit,pc,#8
141	sub	$rem_4bit,$rem_4bit,#32	@ &rem_4bit
142	b	.Lrem_4bit_got
143	nop
144.size	rem_4bit_get,.-rem_4bit_get
145
146.global	gcm_ghash_4bit
147.type	gcm_ghash_4bit,%function
148gcm_ghash_4bit:
149	sub	r12,pc,#8
150	add	$len,$inp,$len		@ $len to point at the end
151	stmdb	sp!,{r3-r11,lr}		@ save $len/end too
152	sub	r12,r12,#48		@ &rem_4bit
153
154	ldmia	r12,{r4-r11}		@ copy rem_4bit ...
155	stmdb	sp!,{r4-r11}		@ ... to stack
156
157	ldrb	$nlo,[$inp,#15]
158	ldrb	$nhi,[$Xi,#15]
159.Louter:
160	eor	$nlo,$nlo,$nhi
161	and	$nhi,$nlo,#0xf0
162	and	$nlo,$nlo,#0x0f
163	mov	$cnt,#14
164
165	add	$Zhh,$Htbl,$nlo,lsl#4
166	ldmia	$Zhh,{$Zll-$Zhh}	@ load Htbl[nlo]
167	add	$Thh,$Htbl,$nhi
168	ldrb	$nlo,[$inp,#14]
169
170	and	$nhi,$Zll,#0xf		@ rem
171	ldmia	$Thh,{$Tll-$Thh}	@ load Htbl[nhi]
172	add	$nhi,$nhi,$nhi
173	eor	$Zll,$Tll,$Zll,lsr#4
174	ldrh	$Tll,[sp,$nhi]		@ rem_4bit[rem]
175	eor	$Zll,$Zll,$Zlh,lsl#28
176	ldrb	$nhi,[$Xi,#14]
177	eor	$Zlh,$Tlh,$Zlh,lsr#4
178	eor	$Zlh,$Zlh,$Zhl,lsl#28
179	eor	$Zhl,$Thl,$Zhl,lsr#4
180	eor	$Zhl,$Zhl,$Zhh,lsl#28
181	eor	$Zhh,$Thh,$Zhh,lsr#4
182	eor	$nlo,$nlo,$nhi
183	and	$nhi,$nlo,#0xf0
184	and	$nlo,$nlo,#0x0f
185	eor	$Zhh,$Zhh,$Tll,lsl#16
186
187.Linner:
188	add	$Thh,$Htbl,$nlo,lsl#4
189	and	$nlo,$Zll,#0xf		@ rem
190	subs	$cnt,$cnt,#1
191	add	$nlo,$nlo,$nlo
192	ldmia	$Thh,{$Tll-$Thh}	@ load Htbl[nlo]
193	eor	$Zll,$Tll,$Zll,lsr#4
194	eor	$Zll,$Zll,$Zlh,lsl#28
195	eor	$Zlh,$Tlh,$Zlh,lsr#4
196	eor	$Zlh,$Zlh,$Zhl,lsl#28
197	ldrh	$Tll,[sp,$nlo]		@ rem_4bit[rem]
198	eor	$Zhl,$Thl,$Zhl,lsr#4
199	ldrplb	$nlo,[$inp,$cnt]
200	eor	$Zhl,$Zhl,$Zhh,lsl#28
201	eor	$Zhh,$Thh,$Zhh,lsr#4
202
203	add	$Thh,$Htbl,$nhi
204	and	$nhi,$Zll,#0xf		@ rem
205	eor	$Zhh,$Zhh,$Tll,lsl#16	@ ^= rem_4bit[rem]
206	add	$nhi,$nhi,$nhi
207	ldmia	$Thh,{$Tll-$Thh}	@ load Htbl[nhi]
208	eor	$Zll,$Tll,$Zll,lsr#4
209	ldrplb	$Tll,[$Xi,$cnt]
210	eor	$Zll,$Zll,$Zlh,lsl#28
211	eor	$Zlh,$Tlh,$Zlh,lsr#4
212	ldrh	$Tlh,[sp,$nhi]
213	eor	$Zlh,$Zlh,$Zhl,lsl#28
214	eor	$Zhl,$Thl,$Zhl,lsr#4
215	eor	$Zhl,$Zhl,$Zhh,lsl#28
216	eorpl	$nlo,$nlo,$Tll
217	eor	$Zhh,$Thh,$Zhh,lsr#4
218	andpl	$nhi,$nlo,#0xf0
219	andpl	$nlo,$nlo,#0x0f
220	eor	$Zhh,$Zhh,$Tlh,lsl#16	@ ^= rem_4bit[rem]
221	bpl	.Linner
222
223	ldr	$len,[sp,#32]		@ re-load $len/end
224	add	$inp,$inp,#16
225	mov	$nhi,$Zll
226___
227	&Zsmash("cmp\t$inp,$len","ldrneb\t$nlo,[$inp,#15]");
228$code.=<<___;
229	bne	.Louter
230
231	add	sp,sp,#36
232#if __ARM_ARCH__>=5
233	ldmia	sp!,{r4-r11,pc}
234#else
235	ldmia	sp!,{r4-r11,lr}
236	tst	lr,#1
237	moveq	pc,lr			@ be binary compatible with V4, yet
238	bx	lr			@ interoperable with Thumb ISA:-)
239#endif
240.size	gcm_ghash_4bit,.-gcm_ghash_4bit
241
242.global	gcm_gmult_4bit
243.type	gcm_gmult_4bit,%function
244gcm_gmult_4bit:
245	stmdb	sp!,{r4-r11,lr}
246	ldrb	$nlo,[$Xi,#15]
247	b	rem_4bit_get
248.Lrem_4bit_got:
249	and	$nhi,$nlo,#0xf0
250	and	$nlo,$nlo,#0x0f
251	mov	$cnt,#14
252
253	add	$Zhh,$Htbl,$nlo,lsl#4
254	ldmia	$Zhh,{$Zll-$Zhh}	@ load Htbl[nlo]
255	ldrb	$nlo,[$Xi,#14]
256
257	add	$Thh,$Htbl,$nhi
258	and	$nhi,$Zll,#0xf		@ rem
259	ldmia	$Thh,{$Tll-$Thh}	@ load Htbl[nhi]
260	add	$nhi,$nhi,$nhi
261	eor	$Zll,$Tll,$Zll,lsr#4
262	ldrh	$Tll,[$rem_4bit,$nhi]	@ rem_4bit[rem]
263	eor	$Zll,$Zll,$Zlh,lsl#28
264	eor	$Zlh,$Tlh,$Zlh,lsr#4
265	eor	$Zlh,$Zlh,$Zhl,lsl#28
266	eor	$Zhl,$Thl,$Zhl,lsr#4
267	eor	$Zhl,$Zhl,$Zhh,lsl#28
268	eor	$Zhh,$Thh,$Zhh,lsr#4
269	and	$nhi,$nlo,#0xf0
270	eor	$Zhh,$Zhh,$Tll,lsl#16
271	and	$nlo,$nlo,#0x0f
272
273.Loop:
274	add	$Thh,$Htbl,$nlo,lsl#4
275	and	$nlo,$Zll,#0xf		@ rem
276	subs	$cnt,$cnt,#1
277	add	$nlo,$nlo,$nlo
278	ldmia	$Thh,{$Tll-$Thh}	@ load Htbl[nlo]
279	eor	$Zll,$Tll,$Zll,lsr#4
280	eor	$Zll,$Zll,$Zlh,lsl#28
281	eor	$Zlh,$Tlh,$Zlh,lsr#4
282	eor	$Zlh,$Zlh,$Zhl,lsl#28
283	ldrh	$Tll,[$rem_4bit,$nlo]	@ rem_4bit[rem]
284	eor	$Zhl,$Thl,$Zhl,lsr#4
285	ldrplb	$nlo,[$Xi,$cnt]
286	eor	$Zhl,$Zhl,$Zhh,lsl#28
287	eor	$Zhh,$Thh,$Zhh,lsr#4
288
289	add	$Thh,$Htbl,$nhi
290	and	$nhi,$Zll,#0xf		@ rem
291	eor	$Zhh,$Zhh,$Tll,lsl#16	@ ^= rem_4bit[rem]
292	add	$nhi,$nhi,$nhi
293	ldmia	$Thh,{$Tll-$Thh}	@ load Htbl[nhi]
294	eor	$Zll,$Tll,$Zll,lsr#4
295	eor	$Zll,$Zll,$Zlh,lsl#28
296	eor	$Zlh,$Tlh,$Zlh,lsr#4
297	ldrh	$Tll,[$rem_4bit,$nhi]	@ rem_4bit[rem]
298	eor	$Zlh,$Zlh,$Zhl,lsl#28
299	eor	$Zhl,$Thl,$Zhl,lsr#4
300	eor	$Zhl,$Zhl,$Zhh,lsl#28
301	eor	$Zhh,$Thh,$Zhh,lsr#4
302	andpl	$nhi,$nlo,#0xf0
303	andpl	$nlo,$nlo,#0x0f
304	eor	$Zhh,$Zhh,$Tll,lsl#16	@ ^= rem_4bit[rem]
305	bpl	.Loop
306___
307	&Zsmash();
308$code.=<<___;
309#if __ARM_ARCH__>=5
310	ldmia	sp!,{r4-r11,pc}
311#else
312	ldmia	sp!,{r4-r11,lr}
313	tst	lr,#1
314	moveq	pc,lr			@ be binary compatible with V4, yet
315	bx	lr			@ interoperable with Thumb ISA:-)
316#endif
317.size	gcm_gmult_4bit,.-gcm_gmult_4bit
318___
319{
320my ($Xl,$Xm,$Xh,$IN)=map("q$_",(0..3));
321my ($t0,$t1,$t2,$t3)=map("q$_",(8..12));
322my ($Hlo,$Hhi,$Hhl,$k48,$k32,$k16)=map("d$_",(26..31));
323
324sub clmul64x64 {
325my ($r,$a,$b)=@_;
326$code.=<<___;
327	vext.8		$t0#lo, $a, $a, #1	@ A1
328	vmull.p8	$t0, $t0#lo, $b		@ F = A1*B
329	vext.8		$r#lo, $b, $b, #1	@ B1
330	vmull.p8	$r, $a, $r#lo		@ E = A*B1
331	vext.8		$t1#lo, $a, $a, #2	@ A2
332	vmull.p8	$t1, $t1#lo, $b		@ H = A2*B
333	vext.8		$t3#lo, $b, $b, #2	@ B2
334	vmull.p8	$t3, $a, $t3#lo		@ G = A*B2
335	vext.8		$t2#lo, $a, $a, #3	@ A3
336	veor		$t0, $t0, $r		@ L = E + F
337	vmull.p8	$t2, $t2#lo, $b		@ J = A3*B
338	vext.8		$r#lo, $b, $b, #3	@ B3
339	veor		$t1, $t1, $t3		@ M = G + H
340	vmull.p8	$r, $a, $r#lo		@ I = A*B3
341	veor		$t0#lo, $t0#lo, $t0#hi	@ t0 = (L) (P0 + P1) << 8
342	vand		$t0#hi, $t0#hi, $k48
343	vext.8		$t3#lo, $b, $b, #4	@ B4
344	veor		$t1#lo, $t1#lo, $t1#hi	@ t1 = (M) (P2 + P3) << 16
345	vand		$t1#hi, $t1#hi, $k32
346	vmull.p8	$t3, $a, $t3#lo		@ K = A*B4
347	veor		$t2, $t2, $r		@ N = I + J
348	veor		$t0#lo, $t0#lo, $t0#hi
349	veor		$t1#lo, $t1#lo, $t1#hi
350	veor		$t2#lo, $t2#lo, $t2#hi	@ t2 = (N) (P4 + P5) << 24
351	vand		$t2#hi, $t2#hi, $k16
352	vext.8		$t0, $t0, $t0, #15
353	veor		$t3#lo, $t3#lo, $t3#hi	@ t3 = (K) (P6 + P7) << 32
354	vmov.i64	$t3#hi, #0
355	vext.8		$t1, $t1, $t1, #14
356	veor		$t2#lo, $t2#lo, $t2#hi
357	vmull.p8	$r, $a, $b		@ D = A*B
358	vext.8		$t3, $t3, $t3, #12
359	vext.8		$t2, $t2, $t2, #13
360	veor		$t0, $t0, $t1
361	veor		$t2, $t2, $t3
362	veor		$r, $r, $t0
363	veor		$r, $r, $t2
364___
365}
366
367$code.=<<___;
368#if __ARM_MAX_ARCH__>=7
369.arch	armv7-a
370.fpu	neon
371
372.global	gcm_init_neon
373.type	gcm_init_neon,%function
374.align	4
375gcm_init_neon:
376	vld1.64		$IN#hi,[r1,:64]!	@ load H
377	vmov.i8		$t0,#0xe1
378	vld1.64		$IN#lo,[r1,:64]
379	vshl.i64	$t0#hi,#57
380	vshr.u64	$t0#lo,#63		@ t0=0xc2....01
381	vdup.8		$t1,$IN#hi[7]
382	vshr.u64	$Hlo,$IN#lo,#63
383	vshr.s8		$t1,#7			@ broadcast carry bit
384	vshl.i64	$IN,$IN,#1
385	vand		$t0,$t0,$t1
386	vorr		$IN#hi,$Hlo		@ H<<<=1
387	veor		$IN,$IN,$t0		@ twisted H
388	vstmia		r0,{$IN}
389
390	ret					@ bx lr
391.size	gcm_init_neon,.-gcm_init_neon
392
393.global	gcm_gmult_neon
394.type	gcm_gmult_neon,%function
395.align	4
396gcm_gmult_neon:
397	vld1.64		$IN#hi,[$Xi,:64]!	@ load Xi
398	vld1.64		$IN#lo,[$Xi,:64]!
399	vmov.i64	$k48,#0x0000ffffffffffff
400	vldmia		$Htbl,{$Hlo-$Hhi}	@ load twisted H
401	vmov.i64	$k32,#0x00000000ffffffff
402#ifdef __ARMEL__
403	vrev64.8	$IN,$IN
404#endif
405	vmov.i64	$k16,#0x000000000000ffff
406	veor		$Hhl,$Hlo,$Hhi		@ Karatsuba pre-processing
407	mov		$len,#16
408	b		.Lgmult_neon
409.size	gcm_gmult_neon,.-gcm_gmult_neon
410
411.global	gcm_ghash_neon
412.type	gcm_ghash_neon,%function
413.align	4
414gcm_ghash_neon:
415	vld1.64		$Xl#hi,[$Xi,:64]!	@ load Xi
416	vld1.64		$Xl#lo,[$Xi,:64]!
417	vmov.i64	$k48,#0x0000ffffffffffff
418	vldmia		$Htbl,{$Hlo-$Hhi}	@ load twisted H
419	vmov.i64	$k32,#0x00000000ffffffff
420#ifdef __ARMEL__
421	vrev64.8	$Xl,$Xl
422#endif
423	vmov.i64	$k16,#0x000000000000ffff
424	veor		$Hhl,$Hlo,$Hhi		@ Karatsuba pre-processing
425
426.Loop_neon:
427	vld1.64		$IN#hi,[$inp]!		@ load inp
428	vld1.64		$IN#lo,[$inp]!
429#ifdef __ARMEL__
430	vrev64.8	$IN,$IN
431#endif
432	veor		$IN,$Xl			@ inp^=Xi
433.Lgmult_neon:
434___
435	&clmul64x64	($Xl,$Hlo,"$IN#lo");	# H.lo�Xi.lo
436$code.=<<___;
437	veor		$IN#lo,$IN#lo,$IN#hi	@ Karatsuba pre-processing
438___
439	&clmul64x64	($Xm,$Hhl,"$IN#lo");	# (H.lo+H.hi)�(Xi.lo+Xi.hi)
440	&clmul64x64	($Xh,$Hhi,"$IN#hi");	# H.hi�Xi.hi
441$code.=<<___;
442	veor		$Xm,$Xm,$Xl		@ Karatsuba post-processing
443	veor		$Xm,$Xm,$Xh
444	veor		$Xl#hi,$Xl#hi,$Xm#lo
445	veor		$Xh#lo,$Xh#lo,$Xm#hi	@ Xh|Xl - 256-bit result
446
447	@ equivalent of reduction_avx from ghash-x86_64.pl
448	vshl.i64	$t1,$Xl,#57		@ 1st phase
449	vshl.i64	$t2,$Xl,#62
450	veor		$t2,$t2,$t1		@
451	vshl.i64	$t1,$Xl,#63
452	veor		$t2, $t2, $t1		@
453 	veor		$Xl#hi,$Xl#hi,$t2#lo	@
454	veor		$Xh#lo,$Xh#lo,$t2#hi
455
456	vshr.u64	$t2,$Xl,#1		@ 2nd phase
457	veor		$Xh,$Xh,$Xl
458	veor		$Xl,$Xl,$t2		@
459	vshr.u64	$t2,$t2,#6
460	vshr.u64	$Xl,$Xl,#1		@
461	veor		$Xl,$Xl,$Xh		@
462	veor		$Xl,$Xl,$t2		@
463
464	subs		$len,#16
465	bne		.Loop_neon
466
467#ifdef __ARMEL__
468	vrev64.8	$Xl,$Xl
469#endif
470	sub		$Xi,#16
471	vst1.64		$Xl#hi,[$Xi,:64]!	@ write out Xi
472	vst1.64		$Xl#lo,[$Xi,:64]
473
474	ret					@ bx lr
475.size	gcm_ghash_neon,.-gcm_ghash_neon
476#endif
477___
478}
479$code.=<<___;
480.asciz  "GHASH for ARMv4/NEON, CRYPTOGAMS by <appro\@openssl.org>"
481.align  2
482___
483
484foreach (split("\n",$code)) {
485	s/\`([^\`]*)\`/eval $1/geo;
486
487	s/\bq([0-9]+)#(lo|hi)/sprintf "d%d",2*$1+($2 eq "hi")/geo	or
488	s/\bret\b/bx	lr/go		or
489	s/\bbx\s+lr\b/.word\t0xe12fff1e/go;    # make it possible to compile with -march=armv4
490
491	print $_,"\n";
492}
493close STDOUT; # enforce flush
494