e_aes_cbc_hmac_sha256.c revision 325335
1/* ====================================================================
2 * Copyright (c) 2011-2013 The OpenSSL Project.  All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 *
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 *
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in
13 *    the documentation and/or other materials provided with the
14 *    distribution.
15 *
16 * 3. All advertising materials mentioning features or use of this
17 *    software must display the following acknowledgment:
18 *    "This product includes software developed by the OpenSSL Project
19 *    for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
20 *
21 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
22 *    endorse or promote products derived from this software without
23 *    prior written permission. For written permission, please contact
24 *    licensing@OpenSSL.org.
25 *
26 * 5. Products derived from this software may not be called "OpenSSL"
27 *    nor may "OpenSSL" appear in their names without prior written
28 *    permission of the OpenSSL Project.
29 *
30 * 6. Redistributions of any form whatsoever must retain the following
31 *    acknowledgment:
32 *    "This product includes software developed by the OpenSSL Project
33 *    for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
34 *
35 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
36 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
38 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
39 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
40 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
41 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
42 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
43 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
44 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
45 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
46 * OF THE POSSIBILITY OF SUCH DAMAGE.
47 * ====================================================================
48 */
49
50#include <openssl/opensslconf.h>
51
52#include <stdio.h>
53#include <string.h>
54
55#if !defined(OPENSSL_NO_AES) && !defined(OPENSSL_NO_SHA256)
56
57# include <openssl/evp.h>
58# include <openssl/objects.h>
59# include <openssl/aes.h>
60# include <openssl/sha.h>
61# include <openssl/rand.h>
62# include "modes_lcl.h"
63# include "constant_time_locl.h"
64
65# ifndef EVP_CIPH_FLAG_AEAD_CIPHER
66#  define EVP_CIPH_FLAG_AEAD_CIPHER       0x200000
67#  define EVP_CTRL_AEAD_TLS1_AAD          0x16
68#  define EVP_CTRL_AEAD_SET_MAC_KEY       0x17
69# endif
70
71# if !defined(EVP_CIPH_FLAG_DEFAULT_ASN1)
72#  define EVP_CIPH_FLAG_DEFAULT_ASN1 0
73# endif
74
75# if !defined(EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK)
76#  define EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK 0
77# endif
78
79# define TLS1_1_VERSION 0x0302
80
81typedef struct {
82    AES_KEY ks;
83    SHA256_CTX head, tail, md;
84    size_t payload_length;      /* AAD length in decrypt case */
85    union {
86        unsigned int tls_ver;
87        unsigned char tls_aad[16]; /* 13 used */
88    } aux;
89} EVP_AES_HMAC_SHA256;
90
91# define NO_PAYLOAD_LENGTH       ((size_t)-1)
92
93# if     defined(AES_ASM) &&     ( \
94        defined(__x86_64)       || defined(__x86_64__)  || \
95        defined(_M_AMD64)       || defined(_M_X64)      || \
96        defined(__INTEL__)      )
97
98extern unsigned int OPENSSL_ia32cap_P[];
99#  define AESNI_CAPABLE   (1<<(57-32))
100
101int aesni_set_encrypt_key(const unsigned char *userKey, int bits,
102                          AES_KEY *key);
103int aesni_set_decrypt_key(const unsigned char *userKey, int bits,
104                          AES_KEY *key);
105
106void aesni_cbc_encrypt(const unsigned char *in,
107                       unsigned char *out,
108                       size_t length,
109                       const AES_KEY *key, unsigned char *ivec, int enc);
110
111int aesni_cbc_sha256_enc(const void *inp, void *out, size_t blocks,
112                         const AES_KEY *key, unsigned char iv[16],
113                         SHA256_CTX *ctx, const void *in0);
114
115#  define data(ctx) ((EVP_AES_HMAC_SHA256 *)(ctx)->cipher_data)
116
117static int aesni_cbc_hmac_sha256_init_key(EVP_CIPHER_CTX *ctx,
118                                          const unsigned char *inkey,
119                                          const unsigned char *iv, int enc)
120{
121    EVP_AES_HMAC_SHA256 *key = data(ctx);
122    int ret;
123
124    if (enc)
125        memset(&key->ks, 0, sizeof(key->ks.rd_key)),
126            ret = aesni_set_encrypt_key(inkey, ctx->key_len * 8, &key->ks);
127    else
128        ret = aesni_set_decrypt_key(inkey, ctx->key_len * 8, &key->ks);
129
130    SHA256_Init(&key->head);    /* handy when benchmarking */
131    key->tail = key->head;
132    key->md = key->head;
133
134    key->payload_length = NO_PAYLOAD_LENGTH;
135
136    return ret < 0 ? 0 : 1;
137}
138
139#  define STITCHED_CALL
140
141#  if !defined(STITCHED_CALL)
142#   define aes_off 0
143#  endif
144
145void sha256_block_data_order(void *c, const void *p, size_t len);
146
147static void sha256_update(SHA256_CTX *c, const void *data, size_t len)
148{
149    const unsigned char *ptr = data;
150    size_t res;
151
152    if ((res = c->num)) {
153        res = SHA256_CBLOCK - res;
154        if (len < res)
155            res = len;
156        SHA256_Update(c, ptr, res);
157        ptr += res;
158        len -= res;
159    }
160
161    res = len % SHA256_CBLOCK;
162    len -= res;
163
164    if (len) {
165        sha256_block_data_order(c, ptr, len / SHA256_CBLOCK);
166
167        ptr += len;
168        c->Nh += len >> 29;
169        c->Nl += len <<= 3;
170        if (c->Nl < (unsigned int)len)
171            c->Nh++;
172    }
173
174    if (res)
175        SHA256_Update(c, ptr, res);
176}
177
178#  ifdef SHA256_Update
179#   undef SHA256_Update
180#  endif
181#  define SHA256_Update sha256_update
182
183#  if !defined(OPENSSL_NO_MULTIBLOCK) && EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK
184
185typedef struct {
186    unsigned int A[8], B[8], C[8], D[8], E[8], F[8], G[8], H[8];
187} SHA256_MB_CTX;
188typedef struct {
189    const unsigned char *ptr;
190    int blocks;
191} HASH_DESC;
192
193void sha256_multi_block(SHA256_MB_CTX *, const HASH_DESC *, int);
194
195typedef struct {
196    const unsigned char *inp;
197    unsigned char *out;
198    int blocks;
199    u64 iv[2];
200} CIPH_DESC;
201
202void aesni_multi_cbc_encrypt(CIPH_DESC *, void *, int);
203
204static size_t tls1_1_multi_block_encrypt(EVP_AES_HMAC_SHA256 *key,
205                                         unsigned char *out,
206                                         const unsigned char *inp,
207                                         size_t inp_len, int n4x)
208{                               /* n4x is 1 or 2 */
209    HASH_DESC hash_d[8], edges[8];
210    CIPH_DESC ciph_d[8];
211    unsigned char storage[sizeof(SHA256_MB_CTX) + 32];
212    union {
213        u64 q[16];
214        u32 d[32];
215        u8 c[128];
216    } blocks[8];
217    SHA256_MB_CTX *ctx;
218    unsigned int frag, last, packlen, i, x4 = 4 * n4x, minblocks, processed =
219        0;
220    size_t ret = 0;
221    u8 *IVs;
222#   if defined(BSWAP8)
223    u64 seqnum;
224#   endif
225
226    /* ask for IVs in bulk */
227    if (RAND_bytes((IVs = blocks[0].c), 16 * x4) <= 0)
228        return 0;
229
230    /* align */
231    ctx = (SHA256_MB_CTX *) (storage + 32 - ((size_t)storage % 32));
232
233    frag = (unsigned int)inp_len >> (1 + n4x);
234    last = (unsigned int)inp_len + frag - (frag << (1 + n4x));
235    if (last > frag && ((last + 13 + 9) % 64) < (x4 - 1)) {
236        frag++;
237        last -= x4 - 1;
238    }
239
240    packlen = 5 + 16 + ((frag + 32 + 16) & -16);
241
242    /* populate descriptors with pointers and IVs */
243    hash_d[0].ptr = inp;
244    ciph_d[0].inp = inp;
245    /* 5+16 is place for header and explicit IV */
246    ciph_d[0].out = out + 5 + 16;
247    memcpy(ciph_d[0].out - 16, IVs, 16);
248    memcpy(ciph_d[0].iv, IVs, 16);
249    IVs += 16;
250
251    for (i = 1; i < x4; i++) {
252        ciph_d[i].inp = hash_d[i].ptr = hash_d[i - 1].ptr + frag;
253        ciph_d[i].out = ciph_d[i - 1].out + packlen;
254        memcpy(ciph_d[i].out - 16, IVs, 16);
255        memcpy(ciph_d[i].iv, IVs, 16);
256        IVs += 16;
257    }
258
259#   if defined(BSWAP8)
260    memcpy(blocks[0].c, key->md.data, 8);
261    seqnum = BSWAP8(blocks[0].q[0]);
262#   endif
263    for (i = 0; i < x4; i++) {
264        unsigned int len = (i == (x4 - 1) ? last : frag);
265#   if !defined(BSWAP8)
266        unsigned int carry, j;
267#   endif
268
269        ctx->A[i] = key->md.h[0];
270        ctx->B[i] = key->md.h[1];
271        ctx->C[i] = key->md.h[2];
272        ctx->D[i] = key->md.h[3];
273        ctx->E[i] = key->md.h[4];
274        ctx->F[i] = key->md.h[5];
275        ctx->G[i] = key->md.h[6];
276        ctx->H[i] = key->md.h[7];
277
278        /* fix seqnum */
279#   if defined(BSWAP8)
280        blocks[i].q[0] = BSWAP8(seqnum + i);
281#   else
282        for (carry = i, j = 8; j--;) {
283            blocks[i].c[j] = ((u8 *)key->md.data)[j] + carry;
284            carry = (blocks[i].c[j] - carry) >> (sizeof(carry) * 8 - 1);
285        }
286#   endif
287        blocks[i].c[8] = ((u8 *)key->md.data)[8];
288        blocks[i].c[9] = ((u8 *)key->md.data)[9];
289        blocks[i].c[10] = ((u8 *)key->md.data)[10];
290        /* fix length */
291        blocks[i].c[11] = (u8)(len >> 8);
292        blocks[i].c[12] = (u8)(len);
293
294        memcpy(blocks[i].c + 13, hash_d[i].ptr, 64 - 13);
295        hash_d[i].ptr += 64 - 13;
296        hash_d[i].blocks = (len - (64 - 13)) / 64;
297
298        edges[i].ptr = blocks[i].c;
299        edges[i].blocks = 1;
300    }
301
302    /* hash 13-byte headers and first 64-13 bytes of inputs */
303    sha256_multi_block(ctx, edges, n4x);
304    /* hash bulk inputs */
305#   define MAXCHUNKSIZE    2048
306#   if     MAXCHUNKSIZE%64
307#    error  "MAXCHUNKSIZE is not divisible by 64"
308#   elif   MAXCHUNKSIZE
309    /*
310     * goal is to minimize pressure on L1 cache by moving in shorter steps,
311     * so that hashed data is still in the cache by the time we encrypt it
312     */
313    minblocks = ((frag <= last ? frag : last) - (64 - 13)) / 64;
314    if (minblocks > MAXCHUNKSIZE / 64) {
315        for (i = 0; i < x4; i++) {
316            edges[i].ptr = hash_d[i].ptr;
317            edges[i].blocks = MAXCHUNKSIZE / 64;
318            ciph_d[i].blocks = MAXCHUNKSIZE / 16;
319        }
320        do {
321            sha256_multi_block(ctx, edges, n4x);
322            aesni_multi_cbc_encrypt(ciph_d, &key->ks, n4x);
323
324            for (i = 0; i < x4; i++) {
325                edges[i].ptr = hash_d[i].ptr += MAXCHUNKSIZE;
326                hash_d[i].blocks -= MAXCHUNKSIZE / 64;
327                edges[i].blocks = MAXCHUNKSIZE / 64;
328                ciph_d[i].inp += MAXCHUNKSIZE;
329                ciph_d[i].out += MAXCHUNKSIZE;
330                ciph_d[i].blocks = MAXCHUNKSIZE / 16;
331                memcpy(ciph_d[i].iv, ciph_d[i].out - 16, 16);
332            }
333            processed += MAXCHUNKSIZE;
334            minblocks -= MAXCHUNKSIZE / 64;
335        } while (minblocks > MAXCHUNKSIZE / 64);
336    }
337#   endif
338#   undef  MAXCHUNKSIZE
339    sha256_multi_block(ctx, hash_d, n4x);
340
341    memset(blocks, 0, sizeof(blocks));
342    for (i = 0; i < x4; i++) {
343        unsigned int len = (i == (x4 - 1) ? last : frag),
344            off = hash_d[i].blocks * 64;
345        const unsigned char *ptr = hash_d[i].ptr + off;
346
347        off = (len - processed) - (64 - 13) - off; /* remainder actually */
348        memcpy(blocks[i].c, ptr, off);
349        blocks[i].c[off] = 0x80;
350        len += 64 + 13;         /* 64 is HMAC header */
351        len *= 8;               /* convert to bits */
352        if (off < (64 - 8)) {
353#   ifdef BSWAP4
354            blocks[i].d[15] = BSWAP4(len);
355#   else
356            PUTU32(blocks[i].c + 60, len);
357#   endif
358            edges[i].blocks = 1;
359        } else {
360#   ifdef BSWAP4
361            blocks[i].d[31] = BSWAP4(len);
362#   else
363            PUTU32(blocks[i].c + 124, len);
364#   endif
365            edges[i].blocks = 2;
366        }
367        edges[i].ptr = blocks[i].c;
368    }
369
370    /* hash input tails and finalize */
371    sha256_multi_block(ctx, edges, n4x);
372
373    memset(blocks, 0, sizeof(blocks));
374    for (i = 0; i < x4; i++) {
375#   ifdef BSWAP4
376        blocks[i].d[0] = BSWAP4(ctx->A[i]);
377        ctx->A[i] = key->tail.h[0];
378        blocks[i].d[1] = BSWAP4(ctx->B[i]);
379        ctx->B[i] = key->tail.h[1];
380        blocks[i].d[2] = BSWAP4(ctx->C[i]);
381        ctx->C[i] = key->tail.h[2];
382        blocks[i].d[3] = BSWAP4(ctx->D[i]);
383        ctx->D[i] = key->tail.h[3];
384        blocks[i].d[4] = BSWAP4(ctx->E[i]);
385        ctx->E[i] = key->tail.h[4];
386        blocks[i].d[5] = BSWAP4(ctx->F[i]);
387        ctx->F[i] = key->tail.h[5];
388        blocks[i].d[6] = BSWAP4(ctx->G[i]);
389        ctx->G[i] = key->tail.h[6];
390        blocks[i].d[7] = BSWAP4(ctx->H[i]);
391        ctx->H[i] = key->tail.h[7];
392        blocks[i].c[32] = 0x80;
393        blocks[i].d[15] = BSWAP4((64 + 32) * 8);
394#   else
395        PUTU32(blocks[i].c + 0, ctx->A[i]);
396        ctx->A[i] = key->tail.h[0];
397        PUTU32(blocks[i].c + 4, ctx->B[i]);
398        ctx->B[i] = key->tail.h[1];
399        PUTU32(blocks[i].c + 8, ctx->C[i]);
400        ctx->C[i] = key->tail.h[2];
401        PUTU32(blocks[i].c + 12, ctx->D[i]);
402        ctx->D[i] = key->tail.h[3];
403        PUTU32(blocks[i].c + 16, ctx->E[i]);
404        ctx->E[i] = key->tail.h[4];
405        PUTU32(blocks[i].c + 20, ctx->F[i]);
406        ctx->F[i] = key->tail.h[5];
407        PUTU32(blocks[i].c + 24, ctx->G[i]);
408        ctx->G[i] = key->tail.h[6];
409        PUTU32(blocks[i].c + 28, ctx->H[i]);
410        ctx->H[i] = key->tail.h[7];
411        blocks[i].c[32] = 0x80;
412        PUTU32(blocks[i].c + 60, (64 + 32) * 8);
413#   endif
414        edges[i].ptr = blocks[i].c;
415        edges[i].blocks = 1;
416    }
417
418    /* finalize MACs */
419    sha256_multi_block(ctx, edges, n4x);
420
421    for (i = 0; i < x4; i++) {
422        unsigned int len = (i == (x4 - 1) ? last : frag), pad, j;
423        unsigned char *out0 = out;
424
425        memcpy(ciph_d[i].out, ciph_d[i].inp, len - processed);
426        ciph_d[i].inp = ciph_d[i].out;
427
428        out += 5 + 16 + len;
429
430        /* write MAC */
431        PUTU32(out + 0, ctx->A[i]);
432        PUTU32(out + 4, ctx->B[i]);
433        PUTU32(out + 8, ctx->C[i]);
434        PUTU32(out + 12, ctx->D[i]);
435        PUTU32(out + 16, ctx->E[i]);
436        PUTU32(out + 20, ctx->F[i]);
437        PUTU32(out + 24, ctx->G[i]);
438        PUTU32(out + 28, ctx->H[i]);
439        out += 32;
440        len += 32;
441
442        /* pad */
443        pad = 15 - len % 16;
444        for (j = 0; j <= pad; j++)
445            *(out++) = pad;
446        len += pad + 1;
447
448        ciph_d[i].blocks = (len - processed) / 16;
449        len += 16;              /* account for explicit iv */
450
451        /* arrange header */
452        out0[0] = ((u8 *)key->md.data)[8];
453        out0[1] = ((u8 *)key->md.data)[9];
454        out0[2] = ((u8 *)key->md.data)[10];
455        out0[3] = (u8)(len >> 8);
456        out0[4] = (u8)(len);
457
458        ret += len + 5;
459        inp += frag;
460    }
461
462    aesni_multi_cbc_encrypt(ciph_d, &key->ks, n4x);
463
464    OPENSSL_cleanse(blocks, sizeof(blocks));
465    OPENSSL_cleanse(ctx, sizeof(*ctx));
466
467    return ret;
468}
469#  endif
470
471static int aesni_cbc_hmac_sha256_cipher(EVP_CIPHER_CTX *ctx,
472                                        unsigned char *out,
473                                        const unsigned char *in, size_t len)
474{
475    EVP_AES_HMAC_SHA256 *key = data(ctx);
476    unsigned int l;
477    size_t plen = key->payload_length, iv = 0, /* explicit IV in TLS 1.1 and
478                                                * later */
479        sha_off = 0;
480#  if defined(STITCHED_CALL)
481    size_t aes_off = 0, blocks;
482
483    sha_off = SHA256_CBLOCK - key->md.num;
484#  endif
485
486    key->payload_length = NO_PAYLOAD_LENGTH;
487
488    if (len % AES_BLOCK_SIZE)
489        return 0;
490
491    if (ctx->encrypt) {
492        if (plen == NO_PAYLOAD_LENGTH)
493            plen = len;
494        else if (len !=
495                 ((plen + SHA256_DIGEST_LENGTH +
496                   AES_BLOCK_SIZE) & -AES_BLOCK_SIZE))
497            return 0;
498        else if (key->aux.tls_ver >= TLS1_1_VERSION)
499            iv = AES_BLOCK_SIZE;
500
501#  if defined(STITCHED_CALL)
502        /*
503         * Assembly stitch handles AVX-capable processors, but its
504         * performance is not optimal on AMD Jaguar, ~40% worse, for
505         * unknown reasons. Incidentally processor in question supports
506         * AVX, but not AMD-specific XOP extension, which can be used
507         * to identify it and avoid stitch invocation. So that after we
508         * establish that current CPU supports AVX, we even see if it's
509         * either even XOP-capable Bulldozer-based or GenuineIntel one.
510         */
511        if (OPENSSL_ia32cap_P[1] & (1 << (60 - 32)) && /* AVX? */
512            ((OPENSSL_ia32cap_P[1] & (1 << (43 - 32))) /* XOP? */
513             | (OPENSSL_ia32cap_P[0] & (1<<30))) &&    /* "Intel CPU"? */
514            plen > (sha_off + iv) &&
515            (blocks = (plen - (sha_off + iv)) / SHA256_CBLOCK)) {
516            SHA256_Update(&key->md, in + iv, sha_off);
517
518            (void)aesni_cbc_sha256_enc(in, out, blocks, &key->ks,
519                                       ctx->iv, &key->md, in + iv + sha_off);
520            blocks *= SHA256_CBLOCK;
521            aes_off += blocks;
522            sha_off += blocks;
523            key->md.Nh += blocks >> 29;
524            key->md.Nl += blocks <<= 3;
525            if (key->md.Nl < (unsigned int)blocks)
526                key->md.Nh++;
527        } else {
528            sha_off = 0;
529        }
530#  endif
531        sha_off += iv;
532        SHA256_Update(&key->md, in + sha_off, plen - sha_off);
533
534        if (plen != len) {      /* "TLS" mode of operation */
535            if (in != out)
536                memcpy(out + aes_off, in + aes_off, plen - aes_off);
537
538            /* calculate HMAC and append it to payload */
539            SHA256_Final(out + plen, &key->md);
540            key->md = key->tail;
541            SHA256_Update(&key->md, out + plen, SHA256_DIGEST_LENGTH);
542            SHA256_Final(out + plen, &key->md);
543
544            /* pad the payload|hmac */
545            plen += SHA256_DIGEST_LENGTH;
546            for (l = len - plen - 1; plen < len; plen++)
547                out[plen] = l;
548            /* encrypt HMAC|padding at once */
549            aesni_cbc_encrypt(out + aes_off, out + aes_off, len - aes_off,
550                              &key->ks, ctx->iv, 1);
551        } else {
552            aesni_cbc_encrypt(in + aes_off, out + aes_off, len - aes_off,
553                              &key->ks, ctx->iv, 1);
554        }
555    } else {
556        union {
557            unsigned int u[SHA256_DIGEST_LENGTH / sizeof(unsigned int)];
558            unsigned char c[64 + SHA256_DIGEST_LENGTH];
559        } mac, *pmac;
560
561        /* arrange cache line alignment */
562        pmac = (void *)(((size_t)mac.c + 63) & ((size_t)0 - 64));
563
564        /* decrypt HMAC|padding at once */
565        aesni_cbc_encrypt(in, out, len, &key->ks, ctx->iv, 0);
566
567        if (plen != NO_PAYLOAD_LENGTH) { /* "TLS" mode of operation */
568            size_t inp_len, mask, j, i;
569            unsigned int res, maxpad, pad, bitlen;
570            int ret = 1;
571            union {
572                unsigned int u[SHA_LBLOCK];
573                unsigned char c[SHA256_CBLOCK];
574            } *data = (void *)key->md.data;
575
576            if ((key->aux.tls_aad[plen - 4] << 8 | key->aux.tls_aad[plen - 3])
577                >= TLS1_1_VERSION)
578                iv = AES_BLOCK_SIZE;
579
580            if (len < (iv + SHA256_DIGEST_LENGTH + 1))
581                return 0;
582
583            /* omit explicit iv */
584            out += iv;
585            len -= iv;
586
587            /* figure out payload length */
588            pad = out[len - 1];
589            maxpad = len - (SHA256_DIGEST_LENGTH + 1);
590            maxpad |= (255 - maxpad) >> (sizeof(maxpad) * 8 - 8);
591            maxpad &= 255;
592
593            ret &= constant_time_ge(maxpad, pad);
594
595            inp_len = len - (SHA256_DIGEST_LENGTH + pad + 1);
596            mask = (0 - ((inp_len - len) >> (sizeof(inp_len) * 8 - 1)));
597            inp_len &= mask;
598            ret &= (int)mask;
599
600            key->aux.tls_aad[plen - 2] = inp_len >> 8;
601            key->aux.tls_aad[plen - 1] = inp_len;
602
603            /* calculate HMAC */
604            key->md = key->head;
605            SHA256_Update(&key->md, key->aux.tls_aad, plen);
606
607#  if 1
608            len -= SHA256_DIGEST_LENGTH; /* amend mac */
609            if (len >= (256 + SHA256_CBLOCK)) {
610                j = (len - (256 + SHA256_CBLOCK)) & (0 - SHA256_CBLOCK);
611                j += SHA256_CBLOCK - key->md.num;
612                SHA256_Update(&key->md, out, j);
613                out += j;
614                len -= j;
615                inp_len -= j;
616            }
617
618            /* but pretend as if we hashed padded payload */
619            bitlen = key->md.Nl + (inp_len << 3); /* at most 18 bits */
620#   ifdef BSWAP4
621            bitlen = BSWAP4(bitlen);
622#   else
623            mac.c[0] = 0;
624            mac.c[1] = (unsigned char)(bitlen >> 16);
625            mac.c[2] = (unsigned char)(bitlen >> 8);
626            mac.c[3] = (unsigned char)bitlen;
627            bitlen = mac.u[0];
628#   endif
629
630            pmac->u[0] = 0;
631            pmac->u[1] = 0;
632            pmac->u[2] = 0;
633            pmac->u[3] = 0;
634            pmac->u[4] = 0;
635            pmac->u[5] = 0;
636            pmac->u[6] = 0;
637            pmac->u[7] = 0;
638
639            for (res = key->md.num, j = 0; j < len; j++) {
640                size_t c = out[j];
641                mask = (j - inp_len) >> (sizeof(j) * 8 - 8);
642                c &= mask;
643                c |= 0x80 & ~mask & ~((inp_len - j) >> (sizeof(j) * 8 - 8));
644                data->c[res++] = (unsigned char)c;
645
646                if (res != SHA256_CBLOCK)
647                    continue;
648
649                /* j is not incremented yet */
650                mask = 0 - ((inp_len + 7 - j) >> (sizeof(j) * 8 - 1));
651                data->u[SHA_LBLOCK - 1] |= bitlen & mask;
652                sha256_block_data_order(&key->md, data, 1);
653                mask &= 0 - ((j - inp_len - 72) >> (sizeof(j) * 8 - 1));
654                pmac->u[0] |= key->md.h[0] & mask;
655                pmac->u[1] |= key->md.h[1] & mask;
656                pmac->u[2] |= key->md.h[2] & mask;
657                pmac->u[3] |= key->md.h[3] & mask;
658                pmac->u[4] |= key->md.h[4] & mask;
659                pmac->u[5] |= key->md.h[5] & mask;
660                pmac->u[6] |= key->md.h[6] & mask;
661                pmac->u[7] |= key->md.h[7] & mask;
662                res = 0;
663            }
664
665            for (i = res; i < SHA256_CBLOCK; i++, j++)
666                data->c[i] = 0;
667
668            if (res > SHA256_CBLOCK - 8) {
669                mask = 0 - ((inp_len + 8 - j) >> (sizeof(j) * 8 - 1));
670                data->u[SHA_LBLOCK - 1] |= bitlen & mask;
671                sha256_block_data_order(&key->md, data, 1);
672                mask &= 0 - ((j - inp_len - 73) >> (sizeof(j) * 8 - 1));
673                pmac->u[0] |= key->md.h[0] & mask;
674                pmac->u[1] |= key->md.h[1] & mask;
675                pmac->u[2] |= key->md.h[2] & mask;
676                pmac->u[3] |= key->md.h[3] & mask;
677                pmac->u[4] |= key->md.h[4] & mask;
678                pmac->u[5] |= key->md.h[5] & mask;
679                pmac->u[6] |= key->md.h[6] & mask;
680                pmac->u[7] |= key->md.h[7] & mask;
681
682                memset(data, 0, SHA256_CBLOCK);
683                j += 64;
684            }
685            data->u[SHA_LBLOCK - 1] = bitlen;
686            sha256_block_data_order(&key->md, data, 1);
687            mask = 0 - ((j - inp_len - 73) >> (sizeof(j) * 8 - 1));
688            pmac->u[0] |= key->md.h[0] & mask;
689            pmac->u[1] |= key->md.h[1] & mask;
690            pmac->u[2] |= key->md.h[2] & mask;
691            pmac->u[3] |= key->md.h[3] & mask;
692            pmac->u[4] |= key->md.h[4] & mask;
693            pmac->u[5] |= key->md.h[5] & mask;
694            pmac->u[6] |= key->md.h[6] & mask;
695            pmac->u[7] |= key->md.h[7] & mask;
696
697#   ifdef BSWAP4
698            pmac->u[0] = BSWAP4(pmac->u[0]);
699            pmac->u[1] = BSWAP4(pmac->u[1]);
700            pmac->u[2] = BSWAP4(pmac->u[2]);
701            pmac->u[3] = BSWAP4(pmac->u[3]);
702            pmac->u[4] = BSWAP4(pmac->u[4]);
703            pmac->u[5] = BSWAP4(pmac->u[5]);
704            pmac->u[6] = BSWAP4(pmac->u[6]);
705            pmac->u[7] = BSWAP4(pmac->u[7]);
706#   else
707            for (i = 0; i < 8; i++) {
708                res = pmac->u[i];
709                pmac->c[4 * i + 0] = (unsigned char)(res >> 24);
710                pmac->c[4 * i + 1] = (unsigned char)(res >> 16);
711                pmac->c[4 * i + 2] = (unsigned char)(res >> 8);
712                pmac->c[4 * i + 3] = (unsigned char)res;
713            }
714#   endif
715            len += SHA256_DIGEST_LENGTH;
716#  else
717            SHA256_Update(&key->md, out, inp_len);
718            res = key->md.num;
719            SHA256_Final(pmac->c, &key->md);
720
721            {
722                unsigned int inp_blocks, pad_blocks;
723
724                /* but pretend as if we hashed padded payload */
725                inp_blocks =
726                    1 + ((SHA256_CBLOCK - 9 - res) >> (sizeof(res) * 8 - 1));
727                res += (unsigned int)(len - inp_len);
728                pad_blocks = res / SHA256_CBLOCK;
729                res %= SHA256_CBLOCK;
730                pad_blocks +=
731                    1 + ((SHA256_CBLOCK - 9 - res) >> (sizeof(res) * 8 - 1));
732                for (; inp_blocks < pad_blocks; inp_blocks++)
733                    sha1_block_data_order(&key->md, data, 1);
734            }
735#  endif
736            key->md = key->tail;
737            SHA256_Update(&key->md, pmac->c, SHA256_DIGEST_LENGTH);
738            SHA256_Final(pmac->c, &key->md);
739
740            /* verify HMAC */
741            out += inp_len;
742            len -= inp_len;
743#  if 1
744            {
745                unsigned char *p =
746                    out + len - 1 - maxpad - SHA256_DIGEST_LENGTH;
747                size_t off = out - p;
748                unsigned int c, cmask;
749
750                maxpad += SHA256_DIGEST_LENGTH;
751                for (res = 0, i = 0, j = 0; j < maxpad; j++) {
752                    c = p[j];
753                    cmask =
754                        ((int)(j - off - SHA256_DIGEST_LENGTH)) >>
755                        (sizeof(int) * 8 - 1);
756                    res |= (c ^ pad) & ~cmask; /* ... and padding */
757                    cmask &= ((int)(off - 1 - j)) >> (sizeof(int) * 8 - 1);
758                    res |= (c ^ pmac->c[i]) & cmask;
759                    i += 1 & cmask;
760                }
761                maxpad -= SHA256_DIGEST_LENGTH;
762
763                res = 0 - ((0 - res) >> (sizeof(res) * 8 - 1));
764                ret &= (int)~res;
765            }
766#  else
767            for (res = 0, i = 0; i < SHA256_DIGEST_LENGTH; i++)
768                res |= out[i] ^ pmac->c[i];
769            res = 0 - ((0 - res) >> (sizeof(res) * 8 - 1));
770            ret &= (int)~res;
771
772            /* verify padding */
773            pad = (pad & ~res) | (maxpad & res);
774            out = out + len - 1 - pad;
775            for (res = 0, i = 0; i < pad; i++)
776                res |= out[i] ^ pad;
777
778            res = (0 - res) >> (sizeof(res) * 8 - 1);
779            ret &= (int)~res;
780#  endif
781            return ret;
782        } else {
783            SHA256_Update(&key->md, out, len);
784        }
785    }
786
787    return 1;
788}
789
790static int aesni_cbc_hmac_sha256_ctrl(EVP_CIPHER_CTX *ctx, int type, int arg,
791                                      void *ptr)
792{
793    EVP_AES_HMAC_SHA256 *key = data(ctx);
794
795    switch (type) {
796    case EVP_CTRL_AEAD_SET_MAC_KEY:
797        {
798            unsigned int i;
799            unsigned char hmac_key[64];
800
801            memset(hmac_key, 0, sizeof(hmac_key));
802
803            if (arg > (int)sizeof(hmac_key)) {
804                SHA256_Init(&key->head);
805                SHA256_Update(&key->head, ptr, arg);
806                SHA256_Final(hmac_key, &key->head);
807            } else {
808                memcpy(hmac_key, ptr, arg);
809            }
810
811            for (i = 0; i < sizeof(hmac_key); i++)
812                hmac_key[i] ^= 0x36; /* ipad */
813            SHA256_Init(&key->head);
814            SHA256_Update(&key->head, hmac_key, sizeof(hmac_key));
815
816            for (i = 0; i < sizeof(hmac_key); i++)
817                hmac_key[i] ^= 0x36 ^ 0x5c; /* opad */
818            SHA256_Init(&key->tail);
819            SHA256_Update(&key->tail, hmac_key, sizeof(hmac_key));
820
821            OPENSSL_cleanse(hmac_key, sizeof(hmac_key));
822
823            return 1;
824        }
825    case EVP_CTRL_AEAD_TLS1_AAD:
826        {
827            unsigned char *p = ptr;
828            unsigned int len;
829
830            if (arg != EVP_AEAD_TLS1_AAD_LEN)
831                return -1;
832
833            len = p[arg - 2] << 8 | p[arg - 1];
834
835            if (ctx->encrypt) {
836                key->payload_length = len;
837                if ((key->aux.tls_ver =
838                     p[arg - 4] << 8 | p[arg - 3]) >= TLS1_1_VERSION) {
839                    if (len < AES_BLOCK_SIZE)
840                        return 0;
841                    len -= AES_BLOCK_SIZE;
842                    p[arg - 2] = len >> 8;
843                    p[arg - 1] = len;
844                }
845                key->md = key->head;
846                SHA256_Update(&key->md, p, arg);
847
848                return (int)(((len + SHA256_DIGEST_LENGTH +
849                               AES_BLOCK_SIZE) & -AES_BLOCK_SIZE)
850                             - len);
851            } else {
852                memcpy(key->aux.tls_aad, ptr, arg);
853                key->payload_length = arg;
854
855                return SHA256_DIGEST_LENGTH;
856            }
857        }
858#  if !defined(OPENSSL_NO_MULTIBLOCK) && EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK
859    case EVP_CTRL_TLS1_1_MULTIBLOCK_MAX_BUFSIZE:
860        return (int)(5 + 16 + ((arg + 32 + 16) & -16));
861    case EVP_CTRL_TLS1_1_MULTIBLOCK_AAD:
862        {
863            EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM *param =
864                (EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM *) ptr;
865            unsigned int n4x = 1, x4;
866            unsigned int frag, last, packlen, inp_len;
867
868            if (arg < (int)sizeof(EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM))
869                return -1;
870
871            inp_len = param->inp[11] << 8 | param->inp[12];
872
873            if (ctx->encrypt) {
874                if ((param->inp[9] << 8 | param->inp[10]) < TLS1_1_VERSION)
875                    return -1;
876
877                if (inp_len) {
878                    if (inp_len < 4096)
879                        return 0; /* too short */
880
881                    if (inp_len >= 8192 && OPENSSL_ia32cap_P[2] & (1 << 5))
882                        n4x = 2; /* AVX2 */
883                } else if ((n4x = param->interleave / 4) && n4x <= 2)
884                    inp_len = param->len;
885                else
886                    return -1;
887
888                key->md = key->head;
889                SHA256_Update(&key->md, param->inp, 13);
890
891                x4 = 4 * n4x;
892                n4x += 1;
893
894                frag = inp_len >> n4x;
895                last = inp_len + frag - (frag << n4x);
896                if (last > frag && ((last + 13 + 9) % 64 < (x4 - 1))) {
897                    frag++;
898                    last -= x4 - 1;
899                }
900
901                packlen = 5 + 16 + ((frag + 32 + 16) & -16);
902                packlen = (packlen << n4x) - packlen;
903                packlen += 5 + 16 + ((last + 32 + 16) & -16);
904
905                param->interleave = x4;
906
907                return (int)packlen;
908            } else
909                return -1;      /* not yet */
910        }
911    case EVP_CTRL_TLS1_1_MULTIBLOCK_ENCRYPT:
912        {
913            EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM *param =
914                (EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM *) ptr;
915
916            return (int)tls1_1_multi_block_encrypt(key, param->out,
917                                                   param->inp, param->len,
918                                                   param->interleave / 4);
919        }
920    case EVP_CTRL_TLS1_1_MULTIBLOCK_DECRYPT:
921#  endif
922    default:
923        return -1;
924    }
925}
926
927static EVP_CIPHER aesni_128_cbc_hmac_sha256_cipher = {
928#  ifdef NID_aes_128_cbc_hmac_sha256
929    NID_aes_128_cbc_hmac_sha256,
930#  else
931    NID_undef,
932#  endif
933    16, 16, 16,
934    EVP_CIPH_CBC_MODE | EVP_CIPH_FLAG_DEFAULT_ASN1 |
935        EVP_CIPH_FLAG_AEAD_CIPHER | EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK,
936    aesni_cbc_hmac_sha256_init_key,
937    aesni_cbc_hmac_sha256_cipher,
938    NULL,
939    sizeof(EVP_AES_HMAC_SHA256),
940    EVP_CIPH_FLAG_DEFAULT_ASN1 ? NULL : EVP_CIPHER_set_asn1_iv,
941    EVP_CIPH_FLAG_DEFAULT_ASN1 ? NULL : EVP_CIPHER_get_asn1_iv,
942    aesni_cbc_hmac_sha256_ctrl,
943    NULL
944};
945
946static EVP_CIPHER aesni_256_cbc_hmac_sha256_cipher = {
947#  ifdef NID_aes_256_cbc_hmac_sha256
948    NID_aes_256_cbc_hmac_sha256,
949#  else
950    NID_undef,
951#  endif
952    16, 32, 16,
953    EVP_CIPH_CBC_MODE | EVP_CIPH_FLAG_DEFAULT_ASN1 |
954        EVP_CIPH_FLAG_AEAD_CIPHER | EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK,
955    aesni_cbc_hmac_sha256_init_key,
956    aesni_cbc_hmac_sha256_cipher,
957    NULL,
958    sizeof(EVP_AES_HMAC_SHA256),
959    EVP_CIPH_FLAG_DEFAULT_ASN1 ? NULL : EVP_CIPHER_set_asn1_iv,
960    EVP_CIPH_FLAG_DEFAULT_ASN1 ? NULL : EVP_CIPHER_get_asn1_iv,
961    aesni_cbc_hmac_sha256_ctrl,
962    NULL
963};
964
965const EVP_CIPHER *EVP_aes_128_cbc_hmac_sha256(void)
966{
967    return ((OPENSSL_ia32cap_P[1] & AESNI_CAPABLE) &&
968            aesni_cbc_sha256_enc(NULL, NULL, 0, NULL, NULL, NULL, NULL) ?
969            &aesni_128_cbc_hmac_sha256_cipher : NULL);
970}
971
972const EVP_CIPHER *EVP_aes_256_cbc_hmac_sha256(void)
973{
974    return ((OPENSSL_ia32cap_P[1] & AESNI_CAPABLE) &&
975            aesni_cbc_sha256_enc(NULL, NULL, 0, NULL, NULL, NULL, NULL) ?
976            &aesni_256_cbc_hmac_sha256_cipher : NULL);
977}
978# else
979const EVP_CIPHER *EVP_aes_128_cbc_hmac_sha256(void)
980{
981    return NULL;
982}
983
984const EVP_CIPHER *EVP_aes_256_cbc_hmac_sha256(void)
985{
986    return NULL;
987}
988# endif
989#endif
990