e_aes_cbc_hmac_sha1.c revision 325337
1/* ====================================================================
2 * Copyright (c) 2011-2013 The OpenSSL Project.  All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 *
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 *
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in
13 *    the documentation and/or other materials provided with the
14 *    distribution.
15 *
16 * 3. All advertising materials mentioning features or use of this
17 *    software must display the following acknowledgment:
18 *    "This product includes software developed by the OpenSSL Project
19 *    for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
20 *
21 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
22 *    endorse or promote products derived from this software without
23 *    prior written permission. For written permission, please contact
24 *    licensing@OpenSSL.org.
25 *
26 * 5. Products derived from this software may not be called "OpenSSL"
27 *    nor may "OpenSSL" appear in their names without prior written
28 *    permission of the OpenSSL Project.
29 *
30 * 6. Redistributions of any form whatsoever must retain the following
31 *    acknowledgment:
32 *    "This product includes software developed by the OpenSSL Project
33 *    for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
34 *
35 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
36 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
38 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
39 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
40 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
41 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
42 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
43 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
44 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
45 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
46 * OF THE POSSIBILITY OF SUCH DAMAGE.
47 * ====================================================================
48 */
49
50#include <openssl/opensslconf.h>
51
52#include <stdio.h>
53#include <string.h>
54
55#if !defined(OPENSSL_NO_AES) && !defined(OPENSSL_NO_SHA1)
56
57# include <openssl/evp.h>
58# include <openssl/objects.h>
59# include <openssl/aes.h>
60# include <openssl/sha.h>
61# include <openssl/rand.h>
62# include "modes_lcl.h"
63# include "constant_time_locl.h"
64
65# ifndef EVP_CIPH_FLAG_AEAD_CIPHER
66#  define EVP_CIPH_FLAG_AEAD_CIPHER       0x200000
67#  define EVP_CTRL_AEAD_TLS1_AAD          0x16
68#  define EVP_CTRL_AEAD_SET_MAC_KEY       0x17
69# endif
70
71# if !defined(EVP_CIPH_FLAG_DEFAULT_ASN1)
72#  define EVP_CIPH_FLAG_DEFAULT_ASN1 0
73# endif
74
75# if !defined(EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK)
76#  define EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK 0
77# endif
78
79# define TLS1_1_VERSION 0x0302
80
81typedef struct {
82    AES_KEY ks;
83    SHA_CTX head, tail, md;
84    size_t payload_length;      /* AAD length in decrypt case */
85    union {
86        unsigned int tls_ver;
87        unsigned char tls_aad[16]; /* 13 used */
88    } aux;
89} EVP_AES_HMAC_SHA1;
90
91# define NO_PAYLOAD_LENGTH       ((size_t)-1)
92
93# if     defined(AES_ASM) &&     ( \
94        defined(__x86_64)       || defined(__x86_64__)  || \
95        defined(_M_AMD64)       || defined(_M_X64)      || \
96        defined(__INTEL__)      )
97
98extern unsigned int OPENSSL_ia32cap_P[];
99#  define AESNI_CAPABLE   (1<<(57-32))
100
101int aesni_set_encrypt_key(const unsigned char *userKey, int bits,
102                          AES_KEY *key);
103int aesni_set_decrypt_key(const unsigned char *userKey, int bits,
104                          AES_KEY *key);
105
106void aesni_cbc_encrypt(const unsigned char *in,
107                       unsigned char *out,
108                       size_t length,
109                       const AES_KEY *key, unsigned char *ivec, int enc);
110
111void aesni_cbc_sha1_enc(const void *inp, void *out, size_t blocks,
112                        const AES_KEY *key, unsigned char iv[16],
113                        SHA_CTX *ctx, const void *in0);
114
115void aesni256_cbc_sha1_dec(const void *inp, void *out, size_t blocks,
116                           const AES_KEY *key, unsigned char iv[16],
117                           SHA_CTX *ctx, const void *in0);
118
119#  define data(ctx) ((EVP_AES_HMAC_SHA1 *)(ctx)->cipher_data)
120
121static int aesni_cbc_hmac_sha1_init_key(EVP_CIPHER_CTX *ctx,
122                                        const unsigned char *inkey,
123                                        const unsigned char *iv, int enc)
124{
125    EVP_AES_HMAC_SHA1 *key = data(ctx);
126    int ret;
127
128    if (enc)
129        ret = aesni_set_encrypt_key(inkey, ctx->key_len * 8, &key->ks);
130    else
131        ret = aesni_set_decrypt_key(inkey, ctx->key_len * 8, &key->ks);
132
133    SHA1_Init(&key->head);      /* handy when benchmarking */
134    key->tail = key->head;
135    key->md = key->head;
136
137    key->payload_length = NO_PAYLOAD_LENGTH;
138
139    return ret < 0 ? 0 : 1;
140}
141
142#  define STITCHED_CALL
143#  undef  STITCHED_DECRYPT_CALL
144
145#  if !defined(STITCHED_CALL)
146#   define aes_off 0
147#  endif
148
149void sha1_block_data_order(void *c, const void *p, size_t len);
150
151static void sha1_update(SHA_CTX *c, const void *data, size_t len)
152{
153    const unsigned char *ptr = data;
154    size_t res;
155
156    if ((res = c->num)) {
157        res = SHA_CBLOCK - res;
158        if (len < res)
159            res = len;
160        SHA1_Update(c, ptr, res);
161        ptr += res;
162        len -= res;
163    }
164
165    res = len % SHA_CBLOCK;
166    len -= res;
167
168    if (len) {
169        sha1_block_data_order(c, ptr, len / SHA_CBLOCK);
170
171        ptr += len;
172        c->Nh += len >> 29;
173        c->Nl += len <<= 3;
174        if (c->Nl < (unsigned int)len)
175            c->Nh++;
176    }
177
178    if (res)
179        SHA1_Update(c, ptr, res);
180}
181
182#  ifdef SHA1_Update
183#   undef SHA1_Update
184#  endif
185#  define SHA1_Update sha1_update
186
187#  if !defined(OPENSSL_NO_MULTIBLOCK) && EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK
188
189typedef struct {
190    unsigned int A[8], B[8], C[8], D[8], E[8];
191} SHA1_MB_CTX;
192typedef struct {
193    const unsigned char *ptr;
194    int blocks;
195} HASH_DESC;
196
197void sha1_multi_block(SHA1_MB_CTX *, const HASH_DESC *, int);
198
199typedef struct {
200    const unsigned char *inp;
201    unsigned char *out;
202    int blocks;
203    u64 iv[2];
204} CIPH_DESC;
205
206void aesni_multi_cbc_encrypt(CIPH_DESC *, void *, int);
207
208static size_t tls1_1_multi_block_encrypt(EVP_AES_HMAC_SHA1 *key,
209                                         unsigned char *out,
210                                         const unsigned char *inp,
211                                         size_t inp_len, int n4x)
212{                               /* n4x is 1 or 2 */
213    HASH_DESC hash_d[8], edges[8];
214    CIPH_DESC ciph_d[8];
215    unsigned char storage[sizeof(SHA1_MB_CTX) + 32];
216    union {
217        u64 q[16];
218        u32 d[32];
219        u8 c[128];
220    } blocks[8];
221    SHA1_MB_CTX *ctx;
222    unsigned int frag, last, packlen, i, x4 = 4 * n4x, minblocks, processed =
223        0;
224    size_t ret = 0;
225    u8 *IVs;
226#   if defined(BSWAP8)
227    u64 seqnum;
228#   endif
229
230    /* ask for IVs in bulk */
231    if (RAND_bytes((IVs = blocks[0].c), 16 * x4) <= 0)
232        return 0;
233
234    ctx = (SHA1_MB_CTX *) (storage + 32 - ((size_t)storage % 32)); /* align */
235
236    frag = (unsigned int)inp_len >> (1 + n4x);
237    last = (unsigned int)inp_len + frag - (frag << (1 + n4x));
238    if (last > frag && ((last + 13 + 9) % 64) < (x4 - 1)) {
239        frag++;
240        last -= x4 - 1;
241    }
242
243    packlen = 5 + 16 + ((frag + 20 + 16) & -16);
244
245    /* populate descriptors with pointers and IVs */
246    hash_d[0].ptr = inp;
247    ciph_d[0].inp = inp;
248    /* 5+16 is place for header and explicit IV */
249    ciph_d[0].out = out + 5 + 16;
250    memcpy(ciph_d[0].out - 16, IVs, 16);
251    memcpy(ciph_d[0].iv, IVs, 16);
252    IVs += 16;
253
254    for (i = 1; i < x4; i++) {
255        ciph_d[i].inp = hash_d[i].ptr = hash_d[i - 1].ptr + frag;
256        ciph_d[i].out = ciph_d[i - 1].out + packlen;
257        memcpy(ciph_d[i].out - 16, IVs, 16);
258        memcpy(ciph_d[i].iv, IVs, 16);
259        IVs += 16;
260    }
261
262#   if defined(BSWAP8)
263    memcpy(blocks[0].c, key->md.data, 8);
264    seqnum = BSWAP8(blocks[0].q[0]);
265#   endif
266    for (i = 0; i < x4; i++) {
267        unsigned int len = (i == (x4 - 1) ? last : frag);
268#   if !defined(BSWAP8)
269        unsigned int carry, j;
270#   endif
271
272        ctx->A[i] = key->md.h0;
273        ctx->B[i] = key->md.h1;
274        ctx->C[i] = key->md.h2;
275        ctx->D[i] = key->md.h3;
276        ctx->E[i] = key->md.h4;
277
278        /* fix seqnum */
279#   if defined(BSWAP8)
280        blocks[i].q[0] = BSWAP8(seqnum + i);
281#   else
282        for (carry = i, j = 8; j--;) {
283            blocks[i].c[j] = ((u8 *)key->md.data)[j] + carry;
284            carry = (blocks[i].c[j] - carry) >> (sizeof(carry) * 8 - 1);
285        }
286#   endif
287        blocks[i].c[8] = ((u8 *)key->md.data)[8];
288        blocks[i].c[9] = ((u8 *)key->md.data)[9];
289        blocks[i].c[10] = ((u8 *)key->md.data)[10];
290        /* fix length */
291        blocks[i].c[11] = (u8)(len >> 8);
292        blocks[i].c[12] = (u8)(len);
293
294        memcpy(blocks[i].c + 13, hash_d[i].ptr, 64 - 13);
295        hash_d[i].ptr += 64 - 13;
296        hash_d[i].blocks = (len - (64 - 13)) / 64;
297
298        edges[i].ptr = blocks[i].c;
299        edges[i].blocks = 1;
300    }
301
302    /* hash 13-byte headers and first 64-13 bytes of inputs */
303    sha1_multi_block(ctx, edges, n4x);
304    /* hash bulk inputs */
305#   define MAXCHUNKSIZE    2048
306#   if     MAXCHUNKSIZE%64
307#    error  "MAXCHUNKSIZE is not divisible by 64"
308#   elif   MAXCHUNKSIZE
309    /*
310     * goal is to minimize pressure on L1 cache by moving in shorter steps,
311     * so that hashed data is still in the cache by the time we encrypt it
312     */
313    minblocks = ((frag <= last ? frag : last) - (64 - 13)) / 64;
314    if (minblocks > MAXCHUNKSIZE / 64) {
315        for (i = 0; i < x4; i++) {
316            edges[i].ptr = hash_d[i].ptr;
317            edges[i].blocks = MAXCHUNKSIZE / 64;
318            ciph_d[i].blocks = MAXCHUNKSIZE / 16;
319        }
320        do {
321            sha1_multi_block(ctx, edges, n4x);
322            aesni_multi_cbc_encrypt(ciph_d, &key->ks, n4x);
323
324            for (i = 0; i < x4; i++) {
325                edges[i].ptr = hash_d[i].ptr += MAXCHUNKSIZE;
326                hash_d[i].blocks -= MAXCHUNKSIZE / 64;
327                edges[i].blocks = MAXCHUNKSIZE / 64;
328                ciph_d[i].inp += MAXCHUNKSIZE;
329                ciph_d[i].out += MAXCHUNKSIZE;
330                ciph_d[i].blocks = MAXCHUNKSIZE / 16;
331                memcpy(ciph_d[i].iv, ciph_d[i].out - 16, 16);
332            }
333            processed += MAXCHUNKSIZE;
334            minblocks -= MAXCHUNKSIZE / 64;
335        } while (minblocks > MAXCHUNKSIZE / 64);
336    }
337#   endif
338#   undef  MAXCHUNKSIZE
339    sha1_multi_block(ctx, hash_d, n4x);
340
341    memset(blocks, 0, sizeof(blocks));
342    for (i = 0; i < x4; i++) {
343        unsigned int len = (i == (x4 - 1) ? last : frag),
344            off = hash_d[i].blocks * 64;
345        const unsigned char *ptr = hash_d[i].ptr + off;
346
347        off = (len - processed) - (64 - 13) - off; /* remainder actually */
348        memcpy(blocks[i].c, ptr, off);
349        blocks[i].c[off] = 0x80;
350        len += 64 + 13;         /* 64 is HMAC header */
351        len *= 8;               /* convert to bits */
352        if (off < (64 - 8)) {
353#   ifdef BSWAP4
354            blocks[i].d[15] = BSWAP4(len);
355#   else
356            PUTU32(blocks[i].c + 60, len);
357#   endif
358            edges[i].blocks = 1;
359        } else {
360#   ifdef BSWAP4
361            blocks[i].d[31] = BSWAP4(len);
362#   else
363            PUTU32(blocks[i].c + 124, len);
364#   endif
365            edges[i].blocks = 2;
366        }
367        edges[i].ptr = blocks[i].c;
368    }
369
370    /* hash input tails and finalize */
371    sha1_multi_block(ctx, edges, n4x);
372
373    memset(blocks, 0, sizeof(blocks));
374    for (i = 0; i < x4; i++) {
375#   ifdef BSWAP4
376        blocks[i].d[0] = BSWAP4(ctx->A[i]);
377        ctx->A[i] = key->tail.h0;
378        blocks[i].d[1] = BSWAP4(ctx->B[i]);
379        ctx->B[i] = key->tail.h1;
380        blocks[i].d[2] = BSWAP4(ctx->C[i]);
381        ctx->C[i] = key->tail.h2;
382        blocks[i].d[3] = BSWAP4(ctx->D[i]);
383        ctx->D[i] = key->tail.h3;
384        blocks[i].d[4] = BSWAP4(ctx->E[i]);
385        ctx->E[i] = key->tail.h4;
386        blocks[i].c[20] = 0x80;
387        blocks[i].d[15] = BSWAP4((64 + 20) * 8);
388#   else
389        PUTU32(blocks[i].c + 0, ctx->A[i]);
390        ctx->A[i] = key->tail.h0;
391        PUTU32(blocks[i].c + 4, ctx->B[i]);
392        ctx->B[i] = key->tail.h1;
393        PUTU32(blocks[i].c + 8, ctx->C[i]);
394        ctx->C[i] = key->tail.h2;
395        PUTU32(blocks[i].c + 12, ctx->D[i]);
396        ctx->D[i] = key->tail.h3;
397        PUTU32(blocks[i].c + 16, ctx->E[i]);
398        ctx->E[i] = key->tail.h4;
399        blocks[i].c[20] = 0x80;
400        PUTU32(blocks[i].c + 60, (64 + 20) * 8);
401#   endif
402        edges[i].ptr = blocks[i].c;
403        edges[i].blocks = 1;
404    }
405
406    /* finalize MACs */
407    sha1_multi_block(ctx, edges, n4x);
408
409    for (i = 0; i < x4; i++) {
410        unsigned int len = (i == (x4 - 1) ? last : frag), pad, j;
411        unsigned char *out0 = out;
412
413        memcpy(ciph_d[i].out, ciph_d[i].inp, len - processed);
414        ciph_d[i].inp = ciph_d[i].out;
415
416        out += 5 + 16 + len;
417
418        /* write MAC */
419        PUTU32(out + 0, ctx->A[i]);
420        PUTU32(out + 4, ctx->B[i]);
421        PUTU32(out + 8, ctx->C[i]);
422        PUTU32(out + 12, ctx->D[i]);
423        PUTU32(out + 16, ctx->E[i]);
424        out += 20;
425        len += 20;
426
427        /* pad */
428        pad = 15 - len % 16;
429        for (j = 0; j <= pad; j++)
430            *(out++) = pad;
431        len += pad + 1;
432
433        ciph_d[i].blocks = (len - processed) / 16;
434        len += 16;              /* account for explicit iv */
435
436        /* arrange header */
437        out0[0] = ((u8 *)key->md.data)[8];
438        out0[1] = ((u8 *)key->md.data)[9];
439        out0[2] = ((u8 *)key->md.data)[10];
440        out0[3] = (u8)(len >> 8);
441        out0[4] = (u8)(len);
442
443        ret += len + 5;
444        inp += frag;
445    }
446
447    aesni_multi_cbc_encrypt(ciph_d, &key->ks, n4x);
448
449    OPENSSL_cleanse(blocks, sizeof(blocks));
450    OPENSSL_cleanse(ctx, sizeof(*ctx));
451
452    return ret;
453}
454#  endif
455
456static int aesni_cbc_hmac_sha1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
457                                      const unsigned char *in, size_t len)
458{
459    EVP_AES_HMAC_SHA1 *key = data(ctx);
460    unsigned int l;
461    size_t plen = key->payload_length, iv = 0, /* explicit IV in TLS 1.1 and
462                                                * later */
463        sha_off = 0;
464#  if defined(STITCHED_CALL)
465    size_t aes_off = 0, blocks;
466
467    sha_off = SHA_CBLOCK - key->md.num;
468#  endif
469
470    key->payload_length = NO_PAYLOAD_LENGTH;
471
472    if (len % AES_BLOCK_SIZE)
473        return 0;
474
475    if (ctx->encrypt) {
476        if (plen == NO_PAYLOAD_LENGTH)
477            plen = len;
478        else if (len !=
479                 ((plen + SHA_DIGEST_LENGTH +
480                   AES_BLOCK_SIZE) & -AES_BLOCK_SIZE))
481            return 0;
482        else if (key->aux.tls_ver >= TLS1_1_VERSION)
483            iv = AES_BLOCK_SIZE;
484
485#  if defined(STITCHED_CALL)
486        if (plen > (sha_off + iv)
487            && (blocks = (plen - (sha_off + iv)) / SHA_CBLOCK)) {
488            SHA1_Update(&key->md, in + iv, sha_off);
489
490            aesni_cbc_sha1_enc(in, out, blocks, &key->ks,
491                               ctx->iv, &key->md, in + iv + sha_off);
492            blocks *= SHA_CBLOCK;
493            aes_off += blocks;
494            sha_off += blocks;
495            key->md.Nh += blocks >> 29;
496            key->md.Nl += blocks <<= 3;
497            if (key->md.Nl < (unsigned int)blocks)
498                key->md.Nh++;
499        } else {
500            sha_off = 0;
501        }
502#  endif
503        sha_off += iv;
504        SHA1_Update(&key->md, in + sha_off, plen - sha_off);
505
506        if (plen != len) {      /* "TLS" mode of operation */
507            if (in != out)
508                memcpy(out + aes_off, in + aes_off, plen - aes_off);
509
510            /* calculate HMAC and append it to payload */
511            SHA1_Final(out + plen, &key->md);
512            key->md = key->tail;
513            SHA1_Update(&key->md, out + plen, SHA_DIGEST_LENGTH);
514            SHA1_Final(out + plen, &key->md);
515
516            /* pad the payload|hmac */
517            plen += SHA_DIGEST_LENGTH;
518            for (l = len - plen - 1; plen < len; plen++)
519                out[plen] = l;
520            /* encrypt HMAC|padding at once */
521            aesni_cbc_encrypt(out + aes_off, out + aes_off, len - aes_off,
522                              &key->ks, ctx->iv, 1);
523        } else {
524            aesni_cbc_encrypt(in + aes_off, out + aes_off, len - aes_off,
525                              &key->ks, ctx->iv, 1);
526        }
527    } else {
528        union {
529            unsigned int u[SHA_DIGEST_LENGTH / sizeof(unsigned int)];
530            unsigned char c[32 + SHA_DIGEST_LENGTH];
531        } mac, *pmac;
532
533        /* arrange cache line alignment */
534        pmac = (void *)(((size_t)mac.c + 31) & ((size_t)0 - 32));
535
536        if (plen != NO_PAYLOAD_LENGTH) { /* "TLS" mode of operation */
537            size_t inp_len, mask, j, i;
538            unsigned int res, maxpad, pad, bitlen;
539            int ret = 1;
540            union {
541                unsigned int u[SHA_LBLOCK];
542                unsigned char c[SHA_CBLOCK];
543            } *data = (void *)key->md.data;
544#  if defined(STITCHED_DECRYPT_CALL)
545            unsigned char tail_iv[AES_BLOCK_SIZE];
546            int stitch = 0;
547#  endif
548
549            if ((key->aux.tls_aad[plen - 4] << 8 | key->aux.tls_aad[plen - 3])
550                >= TLS1_1_VERSION) {
551                if (len < (AES_BLOCK_SIZE + SHA_DIGEST_LENGTH + 1))
552                    return 0;
553
554                /* omit explicit iv */
555                memcpy(ctx->iv, in, AES_BLOCK_SIZE);
556                in += AES_BLOCK_SIZE;
557                out += AES_BLOCK_SIZE;
558                len -= AES_BLOCK_SIZE;
559            } else if (len < (SHA_DIGEST_LENGTH + 1))
560                return 0;
561
562#  if defined(STITCHED_DECRYPT_CALL)
563            if (len >= 1024 && ctx->key_len == 32) {
564                /* decrypt last block */
565                memcpy(tail_iv, in + len - 2 * AES_BLOCK_SIZE,
566                       AES_BLOCK_SIZE);
567                aesni_cbc_encrypt(in + len - AES_BLOCK_SIZE,
568                                  out + len - AES_BLOCK_SIZE, AES_BLOCK_SIZE,
569                                  &key->ks, tail_iv, 0);
570                stitch = 1;
571            } else
572#  endif
573                /* decrypt HMAC|padding at once */
574                aesni_cbc_encrypt(in, out, len, &key->ks, ctx->iv, 0);
575
576            /* figure out payload length */
577            pad = out[len - 1];
578            maxpad = len - (SHA_DIGEST_LENGTH + 1);
579            maxpad |= (255 - maxpad) >> (sizeof(maxpad) * 8 - 8);
580            maxpad &= 255;
581
582            mask = constant_time_ge(maxpad, pad);
583            ret &= mask;
584            /*
585             * If pad is invalid then we will fail the above test but we must
586             * continue anyway because we are in constant time code. However,
587             * we'll use the maxpad value instead of the supplied pad to make
588             * sure we perform well defined pointer arithmetic.
589             */
590            pad = constant_time_select(mask, pad, maxpad);
591
592            inp_len = len - (SHA_DIGEST_LENGTH + pad + 1);
593
594            key->aux.tls_aad[plen - 2] = inp_len >> 8;
595            key->aux.tls_aad[plen - 1] = inp_len;
596
597            /* calculate HMAC */
598            key->md = key->head;
599            SHA1_Update(&key->md, key->aux.tls_aad, plen);
600
601#  if defined(STITCHED_DECRYPT_CALL)
602            if (stitch) {
603                blocks = (len - (256 + 32 + SHA_CBLOCK)) / SHA_CBLOCK;
604                aes_off = len - AES_BLOCK_SIZE - blocks * SHA_CBLOCK;
605                sha_off = SHA_CBLOCK - plen;
606
607                aesni_cbc_encrypt(in, out, aes_off, &key->ks, ctx->iv, 0);
608
609                SHA1_Update(&key->md, out, sha_off);
610                aesni256_cbc_sha1_dec(in + aes_off,
611                                      out + aes_off, blocks, &key->ks,
612                                      ctx->iv, &key->md, out + sha_off);
613
614                sha_off += blocks *= SHA_CBLOCK;
615                out += sha_off;
616                len -= sha_off;
617                inp_len -= sha_off;
618
619                key->md.Nl += (blocks << 3); /* at most 18 bits */
620                memcpy(ctx->iv, tail_iv, AES_BLOCK_SIZE);
621            }
622#  endif
623
624#  if 1
625            len -= SHA_DIGEST_LENGTH; /* amend mac */
626            if (len >= (256 + SHA_CBLOCK)) {
627                j = (len - (256 + SHA_CBLOCK)) & (0 - SHA_CBLOCK);
628                j += SHA_CBLOCK - key->md.num;
629                SHA1_Update(&key->md, out, j);
630                out += j;
631                len -= j;
632                inp_len -= j;
633            }
634
635            /* but pretend as if we hashed padded payload */
636            bitlen = key->md.Nl + (inp_len << 3); /* at most 18 bits */
637#   ifdef BSWAP4
638            bitlen = BSWAP4(bitlen);
639#   else
640            mac.c[0] = 0;
641            mac.c[1] = (unsigned char)(bitlen >> 16);
642            mac.c[2] = (unsigned char)(bitlen >> 8);
643            mac.c[3] = (unsigned char)bitlen;
644            bitlen = mac.u[0];
645#   endif
646
647            pmac->u[0] = 0;
648            pmac->u[1] = 0;
649            pmac->u[2] = 0;
650            pmac->u[3] = 0;
651            pmac->u[4] = 0;
652
653            for (res = key->md.num, j = 0; j < len; j++) {
654                size_t c = out[j];
655                mask = (j - inp_len) >> (sizeof(j) * 8 - 8);
656                c &= mask;
657                c |= 0x80 & ~mask & ~((inp_len - j) >> (sizeof(j) * 8 - 8));
658                data->c[res++] = (unsigned char)c;
659
660                if (res != SHA_CBLOCK)
661                    continue;
662
663                /* j is not incremented yet */
664                mask = 0 - ((inp_len + 7 - j) >> (sizeof(j) * 8 - 1));
665                data->u[SHA_LBLOCK - 1] |= bitlen & mask;
666                sha1_block_data_order(&key->md, data, 1);
667                mask &= 0 - ((j - inp_len - 72) >> (sizeof(j) * 8 - 1));
668                pmac->u[0] |= key->md.h0 & mask;
669                pmac->u[1] |= key->md.h1 & mask;
670                pmac->u[2] |= key->md.h2 & mask;
671                pmac->u[3] |= key->md.h3 & mask;
672                pmac->u[4] |= key->md.h4 & mask;
673                res = 0;
674            }
675
676            for (i = res; i < SHA_CBLOCK; i++, j++)
677                data->c[i] = 0;
678
679            if (res > SHA_CBLOCK - 8) {
680                mask = 0 - ((inp_len + 8 - j) >> (sizeof(j) * 8 - 1));
681                data->u[SHA_LBLOCK - 1] |= bitlen & mask;
682                sha1_block_data_order(&key->md, data, 1);
683                mask &= 0 - ((j - inp_len - 73) >> (sizeof(j) * 8 - 1));
684                pmac->u[0] |= key->md.h0 & mask;
685                pmac->u[1] |= key->md.h1 & mask;
686                pmac->u[2] |= key->md.h2 & mask;
687                pmac->u[3] |= key->md.h3 & mask;
688                pmac->u[4] |= key->md.h4 & mask;
689
690                memset(data, 0, SHA_CBLOCK);
691                j += 64;
692            }
693            data->u[SHA_LBLOCK - 1] = bitlen;
694            sha1_block_data_order(&key->md, data, 1);
695            mask = 0 - ((j - inp_len - 73) >> (sizeof(j) * 8 - 1));
696            pmac->u[0] |= key->md.h0 & mask;
697            pmac->u[1] |= key->md.h1 & mask;
698            pmac->u[2] |= key->md.h2 & mask;
699            pmac->u[3] |= key->md.h3 & mask;
700            pmac->u[4] |= key->md.h4 & mask;
701
702#   ifdef BSWAP4
703            pmac->u[0] = BSWAP4(pmac->u[0]);
704            pmac->u[1] = BSWAP4(pmac->u[1]);
705            pmac->u[2] = BSWAP4(pmac->u[2]);
706            pmac->u[3] = BSWAP4(pmac->u[3]);
707            pmac->u[4] = BSWAP4(pmac->u[4]);
708#   else
709            for (i = 0; i < 5; i++) {
710                res = pmac->u[i];
711                pmac->c[4 * i + 0] = (unsigned char)(res >> 24);
712                pmac->c[4 * i + 1] = (unsigned char)(res >> 16);
713                pmac->c[4 * i + 2] = (unsigned char)(res >> 8);
714                pmac->c[4 * i + 3] = (unsigned char)res;
715            }
716#   endif
717            len += SHA_DIGEST_LENGTH;
718#  else
719            SHA1_Update(&key->md, out, inp_len);
720            res = key->md.num;
721            SHA1_Final(pmac->c, &key->md);
722
723            {
724                unsigned int inp_blocks, pad_blocks;
725
726                /* but pretend as if we hashed padded payload */
727                inp_blocks =
728                    1 + ((SHA_CBLOCK - 9 - res) >> (sizeof(res) * 8 - 1));
729                res += (unsigned int)(len - inp_len);
730                pad_blocks = res / SHA_CBLOCK;
731                res %= SHA_CBLOCK;
732                pad_blocks +=
733                    1 + ((SHA_CBLOCK - 9 - res) >> (sizeof(res) * 8 - 1));
734                for (; inp_blocks < pad_blocks; inp_blocks++)
735                    sha1_block_data_order(&key->md, data, 1);
736            }
737#  endif
738            key->md = key->tail;
739            SHA1_Update(&key->md, pmac->c, SHA_DIGEST_LENGTH);
740            SHA1_Final(pmac->c, &key->md);
741
742            /* verify HMAC */
743            out += inp_len;
744            len -= inp_len;
745#  if 1
746            {
747                unsigned char *p = out + len - 1 - maxpad - SHA_DIGEST_LENGTH;
748                size_t off = out - p;
749                unsigned int c, cmask;
750
751                maxpad += SHA_DIGEST_LENGTH;
752                for (res = 0, i = 0, j = 0; j < maxpad; j++) {
753                    c = p[j];
754                    cmask =
755                        ((int)(j - off - SHA_DIGEST_LENGTH)) >> (sizeof(int) *
756                                                                 8 - 1);
757                    res |= (c ^ pad) & ~cmask; /* ... and padding */
758                    cmask &= ((int)(off - 1 - j)) >> (sizeof(int) * 8 - 1);
759                    res |= (c ^ pmac->c[i]) & cmask;
760                    i += 1 & cmask;
761                }
762                maxpad -= SHA_DIGEST_LENGTH;
763
764                res = 0 - ((0 - res) >> (sizeof(res) * 8 - 1));
765                ret &= (int)~res;
766            }
767#  else
768            for (res = 0, i = 0; i < SHA_DIGEST_LENGTH; i++)
769                res |= out[i] ^ pmac->c[i];
770            res = 0 - ((0 - res) >> (sizeof(res) * 8 - 1));
771            ret &= (int)~res;
772
773            /* verify padding */
774            pad = (pad & ~res) | (maxpad & res);
775            out = out + len - 1 - pad;
776            for (res = 0, i = 0; i < pad; i++)
777                res |= out[i] ^ pad;
778
779            res = (0 - res) >> (sizeof(res) * 8 - 1);
780            ret &= (int)~res;
781#  endif
782            return ret;
783        } else {
784#  if defined(STITCHED_DECRYPT_CALL)
785            if (len >= 1024 && ctx->key_len == 32) {
786                if (sha_off %= SHA_CBLOCK)
787                    blocks = (len - 3 * SHA_CBLOCK) / SHA_CBLOCK;
788                else
789                    blocks = (len - 2 * SHA_CBLOCK) / SHA_CBLOCK;
790                aes_off = len - blocks * SHA_CBLOCK;
791
792                aesni_cbc_encrypt(in, out, aes_off, &key->ks, ctx->iv, 0);
793                SHA1_Update(&key->md, out, sha_off);
794                aesni256_cbc_sha1_dec(in + aes_off,
795                                      out + aes_off, blocks, &key->ks,
796                                      ctx->iv, &key->md, out + sha_off);
797
798                sha_off += blocks *= SHA_CBLOCK;
799                out += sha_off;
800                len -= sha_off;
801
802                key->md.Nh += blocks >> 29;
803                key->md.Nl += blocks <<= 3;
804                if (key->md.Nl < (unsigned int)blocks)
805                    key->md.Nh++;
806            } else
807#  endif
808                /* decrypt HMAC|padding at once */
809                aesni_cbc_encrypt(in, out, len, &key->ks, ctx->iv, 0);
810
811            SHA1_Update(&key->md, out, len);
812        }
813    }
814
815    return 1;
816}
817
818static int aesni_cbc_hmac_sha1_ctrl(EVP_CIPHER_CTX *ctx, int type, int arg,
819                                    void *ptr)
820{
821    EVP_AES_HMAC_SHA1 *key = data(ctx);
822
823    switch (type) {
824    case EVP_CTRL_AEAD_SET_MAC_KEY:
825        {
826            unsigned int i;
827            unsigned char hmac_key[64];
828
829            memset(hmac_key, 0, sizeof(hmac_key));
830
831            if (arg > (int)sizeof(hmac_key)) {
832                SHA1_Init(&key->head);
833                SHA1_Update(&key->head, ptr, arg);
834                SHA1_Final(hmac_key, &key->head);
835            } else {
836                memcpy(hmac_key, ptr, arg);
837            }
838
839            for (i = 0; i < sizeof(hmac_key); i++)
840                hmac_key[i] ^= 0x36; /* ipad */
841            SHA1_Init(&key->head);
842            SHA1_Update(&key->head, hmac_key, sizeof(hmac_key));
843
844            for (i = 0; i < sizeof(hmac_key); i++)
845                hmac_key[i] ^= 0x36 ^ 0x5c; /* opad */
846            SHA1_Init(&key->tail);
847            SHA1_Update(&key->tail, hmac_key, sizeof(hmac_key));
848
849            OPENSSL_cleanse(hmac_key, sizeof(hmac_key));
850
851            return 1;
852        }
853    case EVP_CTRL_AEAD_TLS1_AAD:
854        {
855            unsigned char *p = ptr;
856            unsigned int len;
857
858            if (arg != EVP_AEAD_TLS1_AAD_LEN)
859                return -1;
860
861            len = p[arg - 2] << 8 | p[arg - 1];
862
863            if (ctx->encrypt) {
864                key->payload_length = len;
865                if ((key->aux.tls_ver =
866                     p[arg - 4] << 8 | p[arg - 3]) >= TLS1_1_VERSION) {
867                    if (len < AES_BLOCK_SIZE)
868                        return 0;
869                    len -= AES_BLOCK_SIZE;
870                    p[arg - 2] = len >> 8;
871                    p[arg - 1] = len;
872                }
873                key->md = key->head;
874                SHA1_Update(&key->md, p, arg);
875
876                return (int)(((len + SHA_DIGEST_LENGTH +
877                               AES_BLOCK_SIZE) & -AES_BLOCK_SIZE)
878                             - len);
879            } else {
880                memcpy(key->aux.tls_aad, ptr, arg);
881                key->payload_length = arg;
882
883                return SHA_DIGEST_LENGTH;
884            }
885        }
886#  if !defined(OPENSSL_NO_MULTIBLOCK) && EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK
887    case EVP_CTRL_TLS1_1_MULTIBLOCK_MAX_BUFSIZE:
888        return (int)(5 + 16 + ((arg + 20 + 16) & -16));
889    case EVP_CTRL_TLS1_1_MULTIBLOCK_AAD:
890        {
891            EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM *param =
892                (EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM *) ptr;
893            unsigned int n4x = 1, x4;
894            unsigned int frag, last, packlen, inp_len;
895
896            if (arg < (int)sizeof(EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM))
897                return -1;
898
899            inp_len = param->inp[11] << 8 | param->inp[12];
900
901            if (ctx->encrypt) {
902                if ((param->inp[9] << 8 | param->inp[10]) < TLS1_1_VERSION)
903                    return -1;
904
905                if (inp_len) {
906                    if (inp_len < 4096)
907                        return 0; /* too short */
908
909                    if (inp_len >= 8192 && OPENSSL_ia32cap_P[2] & (1 << 5))
910                        n4x = 2; /* AVX2 */
911                } else if ((n4x = param->interleave / 4) && n4x <= 2)
912                    inp_len = param->len;
913                else
914                    return -1;
915
916                key->md = key->head;
917                SHA1_Update(&key->md, param->inp, 13);
918
919                x4 = 4 * n4x;
920                n4x += 1;
921
922                frag = inp_len >> n4x;
923                last = inp_len + frag - (frag << n4x);
924                if (last > frag && ((last + 13 + 9) % 64 < (x4 - 1))) {
925                    frag++;
926                    last -= x4 - 1;
927                }
928
929                packlen = 5 + 16 + ((frag + 20 + 16) & -16);
930                packlen = (packlen << n4x) - packlen;
931                packlen += 5 + 16 + ((last + 20 + 16) & -16);
932
933                param->interleave = x4;
934
935                return (int)packlen;
936            } else
937                return -1;      /* not yet */
938        }
939    case EVP_CTRL_TLS1_1_MULTIBLOCK_ENCRYPT:
940        {
941            EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM *param =
942                (EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM *) ptr;
943
944            return (int)tls1_1_multi_block_encrypt(key, param->out,
945                                                   param->inp, param->len,
946                                                   param->interleave / 4);
947        }
948    case EVP_CTRL_TLS1_1_MULTIBLOCK_DECRYPT:
949#  endif
950    default:
951        return -1;
952    }
953}
954
955static EVP_CIPHER aesni_128_cbc_hmac_sha1_cipher = {
956#  ifdef NID_aes_128_cbc_hmac_sha1
957    NID_aes_128_cbc_hmac_sha1,
958#  else
959    NID_undef,
960#  endif
961    16, 16, 16,
962    EVP_CIPH_CBC_MODE | EVP_CIPH_FLAG_DEFAULT_ASN1 |
963        EVP_CIPH_FLAG_AEAD_CIPHER | EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK,
964    aesni_cbc_hmac_sha1_init_key,
965    aesni_cbc_hmac_sha1_cipher,
966    NULL,
967    sizeof(EVP_AES_HMAC_SHA1),
968    EVP_CIPH_FLAG_DEFAULT_ASN1 ? NULL : EVP_CIPHER_set_asn1_iv,
969    EVP_CIPH_FLAG_DEFAULT_ASN1 ? NULL : EVP_CIPHER_get_asn1_iv,
970    aesni_cbc_hmac_sha1_ctrl,
971    NULL
972};
973
974static EVP_CIPHER aesni_256_cbc_hmac_sha1_cipher = {
975#  ifdef NID_aes_256_cbc_hmac_sha1
976    NID_aes_256_cbc_hmac_sha1,
977#  else
978    NID_undef,
979#  endif
980    16, 32, 16,
981    EVP_CIPH_CBC_MODE | EVP_CIPH_FLAG_DEFAULT_ASN1 |
982        EVP_CIPH_FLAG_AEAD_CIPHER | EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK,
983    aesni_cbc_hmac_sha1_init_key,
984    aesni_cbc_hmac_sha1_cipher,
985    NULL,
986    sizeof(EVP_AES_HMAC_SHA1),
987    EVP_CIPH_FLAG_DEFAULT_ASN1 ? NULL : EVP_CIPHER_set_asn1_iv,
988    EVP_CIPH_FLAG_DEFAULT_ASN1 ? NULL : EVP_CIPHER_get_asn1_iv,
989    aesni_cbc_hmac_sha1_ctrl,
990    NULL
991};
992
993const EVP_CIPHER *EVP_aes_128_cbc_hmac_sha1(void)
994{
995    return (OPENSSL_ia32cap_P[1] & AESNI_CAPABLE ?
996            &aesni_128_cbc_hmac_sha1_cipher : NULL);
997}
998
999const EVP_CIPHER *EVP_aes_256_cbc_hmac_sha1(void)
1000{
1001    return (OPENSSL_ia32cap_P[1] & AESNI_CAPABLE ?
1002            &aesni_256_cbc_hmac_sha1_cipher : NULL);
1003}
1004# else
1005const EVP_CIPHER *EVP_aes_128_cbc_hmac_sha1(void)
1006{
1007    return NULL;
1008}
1009
1010const EVP_CIPHER *EVP_aes_256_cbc_hmac_sha1(void)
1011{
1012    return NULL;
1013}
1014# endif
1015#endif
1016