ec_mult.c revision 325335
1/* crypto/ec/ec_mult.c */
2/*
3 * Originally written by Bodo Moeller and Nils Larsch for the OpenSSL project.
4 */
5/* ====================================================================
6 * Copyright (c) 1998-2007 The OpenSSL Project.  All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in
17 *    the documentation and/or other materials provided with the
18 *    distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 *    software must display the following acknowledgment:
22 *    "This product includes software developed by the OpenSSL Project
23 *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 *    endorse or promote products derived from this software without
27 *    prior written permission. For written permission, please contact
28 *    openssl-core@openssl.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 *    nor may "OpenSSL" appear in their names without prior written
32 *    permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 *    acknowledgment:
36 *    "This product includes software developed by the OpenSSL Project
37 *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ====================================================================
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com).  This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */
58/* ====================================================================
59 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
60 * Portions of this software developed by SUN MICROSYSTEMS, INC.,
61 * and contributed to the OpenSSL project.
62 */
63
64#include <string.h>
65
66#include <openssl/err.h>
67
68#include "ec_lcl.h"
69
70/*
71 * This file implements the wNAF-based interleaving multi-exponentiation method
72 * Formerly at:
73 *   http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#multiexp
74 * You might now find it here:
75 *   http://link.springer.com/chapter/10.1007%2F3-540-45537-X_13
76 *   http://www.bmoeller.de/pdf/TI-01-08.multiexp.pdf
77 * For multiplication with precomputation, we use wNAF splitting, formerly at:
78 *   http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#fastexp
79 */
80
81/* structure for precomputed multiples of the generator */
82typedef struct ec_pre_comp_st {
83    const EC_GROUP *group;      /* parent EC_GROUP object */
84    size_t blocksize;           /* block size for wNAF splitting */
85    size_t numblocks;           /* max. number of blocks for which we have
86                                 * precomputation */
87    size_t w;                   /* window size */
88    EC_POINT **points;          /* array with pre-calculated multiples of
89                                 * generator: 'num' pointers to EC_POINT
90                                 * objects followed by a NULL */
91    size_t num;                 /* numblocks * 2^(w-1) */
92    int references;
93} EC_PRE_COMP;
94
95/* functions to manage EC_PRE_COMP within the EC_GROUP extra_data framework */
96static void *ec_pre_comp_dup(void *);
97static void ec_pre_comp_free(void *);
98static void ec_pre_comp_clear_free(void *);
99
100static EC_PRE_COMP *ec_pre_comp_new(const EC_GROUP *group)
101{
102    EC_PRE_COMP *ret = NULL;
103
104    if (!group)
105        return NULL;
106
107    ret = (EC_PRE_COMP *)OPENSSL_malloc(sizeof(EC_PRE_COMP));
108    if (!ret) {
109        ECerr(EC_F_EC_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
110        return ret;
111    }
112    ret->group = group;
113    ret->blocksize = 8;         /* default */
114    ret->numblocks = 0;
115    ret->w = 4;                 /* default */
116    ret->points = NULL;
117    ret->num = 0;
118    ret->references = 1;
119    return ret;
120}
121
122static void *ec_pre_comp_dup(void *src_)
123{
124    EC_PRE_COMP *src = src_;
125
126    /* no need to actually copy, these objects never change! */
127
128    CRYPTO_add(&src->references, 1, CRYPTO_LOCK_EC_PRE_COMP);
129
130    return src_;
131}
132
133static void ec_pre_comp_free(void *pre_)
134{
135    int i;
136    EC_PRE_COMP *pre = pre_;
137
138    if (!pre)
139        return;
140
141    i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP);
142    if (i > 0)
143        return;
144
145    if (pre->points) {
146        EC_POINT **p;
147
148        for (p = pre->points; *p != NULL; p++)
149            EC_POINT_free(*p);
150        OPENSSL_free(pre->points);
151    }
152    OPENSSL_free(pre);
153}
154
155static void ec_pre_comp_clear_free(void *pre_)
156{
157    int i;
158    EC_PRE_COMP *pre = pre_;
159
160    if (!pre)
161        return;
162
163    i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP);
164    if (i > 0)
165        return;
166
167    if (pre->points) {
168        EC_POINT **p;
169
170        for (p = pre->points; *p != NULL; p++) {
171            EC_POINT_clear_free(*p);
172            OPENSSL_cleanse(p, sizeof *p);
173        }
174        OPENSSL_free(pre->points);
175    }
176    OPENSSL_cleanse(pre, sizeof *pre);
177    OPENSSL_free(pre);
178}
179
180/*-
181 * Determine the modified width-(w+1) Non-Adjacent Form (wNAF) of 'scalar'.
182 * This is an array  r[]  of values that are either zero or odd with an
183 * absolute value less than  2^w  satisfying
184 *     scalar = \sum_j r[j]*2^j
185 * where at most one of any  w+1  consecutive digits is non-zero
186 * with the exception that the most significant digit may be only
187 * w-1 zeros away from that next non-zero digit.
188 */
189static signed char *compute_wNAF(const BIGNUM *scalar, int w, size_t *ret_len)
190{
191    int window_val;
192    int ok = 0;
193    signed char *r = NULL;
194    int sign = 1;
195    int bit, next_bit, mask;
196    size_t len = 0, j;
197
198    if (BN_is_zero(scalar)) {
199        r = OPENSSL_malloc(1);
200        if (!r) {
201            ECerr(EC_F_COMPUTE_WNAF, ERR_R_MALLOC_FAILURE);
202            goto err;
203        }
204        r[0] = 0;
205        *ret_len = 1;
206        return r;
207    }
208
209    if (w <= 0 || w > 7) {      /* 'signed char' can represent integers with
210                                 * absolute values less than 2^7 */
211        ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
212        goto err;
213    }
214    bit = 1 << w;               /* at most 128 */
215    next_bit = bit << 1;        /* at most 256 */
216    mask = next_bit - 1;        /* at most 255 */
217
218    if (BN_is_negative(scalar)) {
219        sign = -1;
220    }
221
222    if (scalar->d == NULL || scalar->top == 0) {
223        ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
224        goto err;
225    }
226
227    len = BN_num_bits(scalar);
228    r = OPENSSL_malloc(len + 1); /* modified wNAF may be one digit longer
229                                  * than binary representation (*ret_len will
230                                  * be set to the actual length, i.e. at most
231                                  * BN_num_bits(scalar) + 1) */
232    if (r == NULL) {
233        ECerr(EC_F_COMPUTE_WNAF, ERR_R_MALLOC_FAILURE);
234        goto err;
235    }
236    window_val = scalar->d[0] & mask;
237    j = 0;
238    while ((window_val != 0) || (j + w + 1 < len)) { /* if j+w+1 >= len,
239                                                      * window_val will not
240                                                      * increase */
241        int digit = 0;
242
243        /* 0 <= window_val <= 2^(w+1) */
244
245        if (window_val & 1) {
246            /* 0 < window_val < 2^(w+1) */
247
248            if (window_val & bit) {
249                digit = window_val - next_bit; /* -2^w < digit < 0 */
250
251#if 1                           /* modified wNAF */
252                if (j + w + 1 >= len) {
253                    /*
254                     * special case for generating modified wNAFs: no new
255                     * bits will be added into window_val, so using a
256                     * positive digit here will decrease the total length of
257                     * the representation
258                     */
259
260                    digit = window_val & (mask >> 1); /* 0 < digit < 2^w */
261                }
262#endif
263            } else {
264                digit = window_val; /* 0 < digit < 2^w */
265            }
266
267            if (digit <= -bit || digit >= bit || !(digit & 1)) {
268                ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
269                goto err;
270            }
271
272            window_val -= digit;
273
274            /*
275             * now window_val is 0 or 2^(w+1) in standard wNAF generation;
276             * for modified window NAFs, it may also be 2^w
277             */
278            if (window_val != 0 && window_val != next_bit
279                && window_val != bit) {
280                ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
281                goto err;
282            }
283        }
284
285        r[j++] = sign * digit;
286
287        window_val >>= 1;
288        window_val += bit * BN_is_bit_set(scalar, j + w);
289
290        if (window_val > next_bit) {
291            ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
292            goto err;
293        }
294    }
295
296    if (j > len + 1) {
297        ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
298        goto err;
299    }
300    len = j;
301    ok = 1;
302
303 err:
304    if (!ok) {
305        OPENSSL_free(r);
306        r = NULL;
307    }
308    if (ok)
309        *ret_len = len;
310    return r;
311}
312
313/*
314 * TODO: table should be optimised for the wNAF-based implementation,
315 * sometimes smaller windows will give better performance (thus the
316 * boundaries should be increased)
317 */
318#define EC_window_bits_for_scalar_size(b) \
319                ((size_t) \
320                 ((b) >= 2000 ? 6 : \
321                  (b) >=  800 ? 5 : \
322                  (b) >=  300 ? 4 : \
323                  (b) >=   70 ? 3 : \
324                  (b) >=   20 ? 2 : \
325                  1))
326
327/*-
328 * Compute
329 *      \sum scalars[i]*points[i],
330 * also including
331 *      scalar*generator
332 * in the addition if scalar != NULL
333 */
334int ec_wNAF_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,
335                size_t num, const EC_POINT *points[], const BIGNUM *scalars[],
336                BN_CTX *ctx)
337{
338    BN_CTX *new_ctx = NULL;
339    const EC_POINT *generator = NULL;
340    EC_POINT *tmp = NULL;
341    size_t totalnum;
342    size_t blocksize = 0, numblocks = 0; /* for wNAF splitting */
343    size_t pre_points_per_block = 0;
344    size_t i, j;
345    int k;
346    int r_is_inverted = 0;
347    int r_is_at_infinity = 1;
348    size_t *wsize = NULL;       /* individual window sizes */
349    signed char **wNAF = NULL;  /* individual wNAFs */
350    size_t *wNAF_len = NULL;
351    size_t max_len = 0;
352    size_t num_val;
353    EC_POINT **val = NULL;      /* precomputation */
354    EC_POINT **v;
355    EC_POINT ***val_sub = NULL; /* pointers to sub-arrays of 'val' or
356                                 * 'pre_comp->points' */
357    const EC_PRE_COMP *pre_comp = NULL;
358    int num_scalar = 0;         /* flag: will be set to 1 if 'scalar' must be
359                                 * treated like other scalars, i.e.
360                                 * precomputation is not available */
361    int ret = 0;
362
363    if (group->meth != r->meth) {
364        ECerr(EC_F_EC_WNAF_MUL, EC_R_INCOMPATIBLE_OBJECTS);
365        return 0;
366    }
367
368    if ((scalar == NULL) && (num == 0)) {
369        return EC_POINT_set_to_infinity(group, r);
370    }
371
372    for (i = 0; i < num; i++) {
373        if (group->meth != points[i]->meth) {
374            ECerr(EC_F_EC_WNAF_MUL, EC_R_INCOMPATIBLE_OBJECTS);
375            return 0;
376        }
377    }
378
379    if (ctx == NULL) {
380        ctx = new_ctx = BN_CTX_new();
381        if (ctx == NULL)
382            goto err;
383    }
384
385    if (scalar != NULL) {
386        generator = EC_GROUP_get0_generator(group);
387        if (generator == NULL) {
388            ECerr(EC_F_EC_WNAF_MUL, EC_R_UNDEFINED_GENERATOR);
389            goto err;
390        }
391
392        /* look if we can use precomputed multiples of generator */
393
394        pre_comp =
395            EC_EX_DATA_get_data(group->extra_data, ec_pre_comp_dup,
396                                ec_pre_comp_free, ec_pre_comp_clear_free);
397
398        if (pre_comp && pre_comp->numblocks
399            && (EC_POINT_cmp(group, generator, pre_comp->points[0], ctx) ==
400                0)) {
401            blocksize = pre_comp->blocksize;
402
403            /*
404             * determine maximum number of blocks that wNAF splitting may
405             * yield (NB: maximum wNAF length is bit length plus one)
406             */
407            numblocks = (BN_num_bits(scalar) / blocksize) + 1;
408
409            /*
410             * we cannot use more blocks than we have precomputation for
411             */
412            if (numblocks > pre_comp->numblocks)
413                numblocks = pre_comp->numblocks;
414
415            pre_points_per_block = (size_t)1 << (pre_comp->w - 1);
416
417            /* check that pre_comp looks sane */
418            if (pre_comp->num != (pre_comp->numblocks * pre_points_per_block)) {
419                ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
420                goto err;
421            }
422        } else {
423            /* can't use precomputation */
424            pre_comp = NULL;
425            numblocks = 1;
426            num_scalar = 1;     /* treat 'scalar' like 'num'-th element of
427                                 * 'scalars' */
428        }
429    }
430
431    totalnum = num + numblocks;
432
433    wsize = OPENSSL_malloc(totalnum * sizeof wsize[0]);
434    wNAF_len = OPENSSL_malloc(totalnum * sizeof wNAF_len[0]);
435    wNAF = OPENSSL_malloc((totalnum + 1) * sizeof wNAF[0]); /* includes space
436                                                             * for pivot */
437    val_sub = OPENSSL_malloc(totalnum * sizeof val_sub[0]);
438
439    /* Ensure wNAF is initialised in case we end up going to err */
440    if (wNAF)
441        wNAF[0] = NULL;         /* preliminary pivot */
442
443    if (!wsize || !wNAF_len || !wNAF || !val_sub) {
444        ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE);
445        goto err;
446    }
447
448    /*
449     * num_val will be the total number of temporarily precomputed points
450     */
451    num_val = 0;
452
453    for (i = 0; i < num + num_scalar; i++) {
454        size_t bits;
455
456        bits = i < num ? BN_num_bits(scalars[i]) : BN_num_bits(scalar);
457        wsize[i] = EC_window_bits_for_scalar_size(bits);
458        num_val += (size_t)1 << (wsize[i] - 1);
459        wNAF[i + 1] = NULL;     /* make sure we always have a pivot */
460        wNAF[i] =
461            compute_wNAF((i < num ? scalars[i] : scalar), wsize[i],
462                         &wNAF_len[i]);
463        if (wNAF[i] == NULL)
464            goto err;
465        if (wNAF_len[i] > max_len)
466            max_len = wNAF_len[i];
467    }
468
469    if (numblocks) {
470        /* we go here iff scalar != NULL */
471
472        if (pre_comp == NULL) {
473            if (num_scalar != 1) {
474                ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
475                goto err;
476            }
477            /* we have already generated a wNAF for 'scalar' */
478        } else {
479            signed char *tmp_wNAF = NULL;
480            size_t tmp_len = 0;
481
482            if (num_scalar != 0) {
483                ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
484                goto err;
485            }
486
487            /*
488             * use the window size for which we have precomputation
489             */
490            wsize[num] = pre_comp->w;
491            tmp_wNAF = compute_wNAF(scalar, wsize[num], &tmp_len);
492            if (!tmp_wNAF)
493                goto err;
494
495            if (tmp_len <= max_len) {
496                /*
497                 * One of the other wNAFs is at least as long as the wNAF
498                 * belonging to the generator, so wNAF splitting will not buy
499                 * us anything.
500                 */
501
502                numblocks = 1;
503                totalnum = num + 1; /* don't use wNAF splitting */
504                wNAF[num] = tmp_wNAF;
505                wNAF[num + 1] = NULL;
506                wNAF_len[num] = tmp_len;
507                if (tmp_len > max_len)
508                    max_len = tmp_len;
509                /*
510                 * pre_comp->points starts with the points that we need here:
511                 */
512                val_sub[num] = pre_comp->points;
513            } else {
514                /*
515                 * don't include tmp_wNAF directly into wNAF array - use wNAF
516                 * splitting and include the blocks
517                 */
518
519                signed char *pp;
520                EC_POINT **tmp_points;
521
522                if (tmp_len < numblocks * blocksize) {
523                    /*
524                     * possibly we can do with fewer blocks than estimated
525                     */
526                    numblocks = (tmp_len + blocksize - 1) / blocksize;
527                    if (numblocks > pre_comp->numblocks) {
528                        ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
529                        goto err;
530                    }
531                    totalnum = num + numblocks;
532                }
533
534                /* split wNAF in 'numblocks' parts */
535                pp = tmp_wNAF;
536                tmp_points = pre_comp->points;
537
538                for (i = num; i < totalnum; i++) {
539                    if (i < totalnum - 1) {
540                        wNAF_len[i] = blocksize;
541                        if (tmp_len < blocksize) {
542                            ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
543                            goto err;
544                        }
545                        tmp_len -= blocksize;
546                    } else
547                        /*
548                         * last block gets whatever is left (this could be
549                         * more or less than 'blocksize'!)
550                         */
551                        wNAF_len[i] = tmp_len;
552
553                    wNAF[i + 1] = NULL;
554                    wNAF[i] = OPENSSL_malloc(wNAF_len[i]);
555                    if (wNAF[i] == NULL) {
556                        ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE);
557                        OPENSSL_free(tmp_wNAF);
558                        goto err;
559                    }
560                    memcpy(wNAF[i], pp, wNAF_len[i]);
561                    if (wNAF_len[i] > max_len)
562                        max_len = wNAF_len[i];
563
564                    if (*tmp_points == NULL) {
565                        ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
566                        OPENSSL_free(tmp_wNAF);
567                        goto err;
568                    }
569                    val_sub[i] = tmp_points;
570                    tmp_points += pre_points_per_block;
571                    pp += blocksize;
572                }
573                OPENSSL_free(tmp_wNAF);
574            }
575        }
576    }
577
578    /*
579     * All points we precompute now go into a single array 'val'.
580     * 'val_sub[i]' is a pointer to the subarray for the i-th point, or to a
581     * subarray of 'pre_comp->points' if we already have precomputation.
582     */
583    val = OPENSSL_malloc((num_val + 1) * sizeof val[0]);
584    if (val == NULL) {
585        ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE);
586        goto err;
587    }
588    val[num_val] = NULL;        /* pivot element */
589
590    /* allocate points for precomputation */
591    v = val;
592    for (i = 0; i < num + num_scalar; i++) {
593        val_sub[i] = v;
594        for (j = 0; j < ((size_t)1 << (wsize[i] - 1)); j++) {
595            *v = EC_POINT_new(group);
596            if (*v == NULL)
597                goto err;
598            v++;
599        }
600    }
601    if (!(v == val + num_val)) {
602        ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
603        goto err;
604    }
605
606    if (!(tmp = EC_POINT_new(group)))
607        goto err;
608
609    /*-
610     * prepare precomputed values:
611     *    val_sub[i][0] :=     points[i]
612     *    val_sub[i][1] := 3 * points[i]
613     *    val_sub[i][2] := 5 * points[i]
614     *    ...
615     */
616    for (i = 0; i < num + num_scalar; i++) {
617        if (i < num) {
618            if (!EC_POINT_copy(val_sub[i][0], points[i]))
619                goto err;
620        } else {
621            if (!EC_POINT_copy(val_sub[i][0], generator))
622                goto err;
623        }
624
625        if (wsize[i] > 1) {
626            if (!EC_POINT_dbl(group, tmp, val_sub[i][0], ctx))
627                goto err;
628            for (j = 1; j < ((size_t)1 << (wsize[i] - 1)); j++) {
629                if (!EC_POINT_add
630                    (group, val_sub[i][j], val_sub[i][j - 1], tmp, ctx))
631                    goto err;
632            }
633        }
634    }
635
636#if 1                           /* optional; EC_window_bits_for_scalar_size
637                                 * assumes we do this step */
638    if (!EC_POINTs_make_affine(group, num_val, val, ctx))
639        goto err;
640#endif
641
642    r_is_at_infinity = 1;
643
644    for (k = max_len - 1; k >= 0; k--) {
645        if (!r_is_at_infinity) {
646            if (!EC_POINT_dbl(group, r, r, ctx))
647                goto err;
648        }
649
650        for (i = 0; i < totalnum; i++) {
651            if (wNAF_len[i] > (size_t)k) {
652                int digit = wNAF[i][k];
653                int is_neg;
654
655                if (digit) {
656                    is_neg = digit < 0;
657
658                    if (is_neg)
659                        digit = -digit;
660
661                    if (is_neg != r_is_inverted) {
662                        if (!r_is_at_infinity) {
663                            if (!EC_POINT_invert(group, r, ctx))
664                                goto err;
665                        }
666                        r_is_inverted = !r_is_inverted;
667                    }
668
669                    /* digit > 0 */
670
671                    if (r_is_at_infinity) {
672                        if (!EC_POINT_copy(r, val_sub[i][digit >> 1]))
673                            goto err;
674                        r_is_at_infinity = 0;
675                    } else {
676                        if (!EC_POINT_add
677                            (group, r, r, val_sub[i][digit >> 1], ctx))
678                            goto err;
679                    }
680                }
681            }
682        }
683    }
684
685    if (r_is_at_infinity) {
686        if (!EC_POINT_set_to_infinity(group, r))
687            goto err;
688    } else {
689        if (r_is_inverted)
690            if (!EC_POINT_invert(group, r, ctx))
691                goto err;
692    }
693
694    ret = 1;
695
696 err:
697    if (new_ctx != NULL)
698        BN_CTX_free(new_ctx);
699    if (tmp != NULL)
700        EC_POINT_free(tmp);
701    if (wsize != NULL)
702        OPENSSL_free(wsize);
703    if (wNAF_len != NULL)
704        OPENSSL_free(wNAF_len);
705    if (wNAF != NULL) {
706        signed char **w;
707
708        for (w = wNAF; *w != NULL; w++)
709            OPENSSL_free(*w);
710
711        OPENSSL_free(wNAF);
712    }
713    if (val != NULL) {
714        for (v = val; *v != NULL; v++)
715            EC_POINT_clear_free(*v);
716
717        OPENSSL_free(val);
718    }
719    if (val_sub != NULL) {
720        OPENSSL_free(val_sub);
721    }
722    return ret;
723}
724
725/*-
726 * ec_wNAF_precompute_mult()
727 * creates an EC_PRE_COMP object with preprecomputed multiples of the generator
728 * for use with wNAF splitting as implemented in ec_wNAF_mul().
729 *
730 * 'pre_comp->points' is an array of multiples of the generator
731 * of the following form:
732 * points[0] =     generator;
733 * points[1] = 3 * generator;
734 * ...
735 * points[2^(w-1)-1] =     (2^(w-1)-1) * generator;
736 * points[2^(w-1)]   =     2^blocksize * generator;
737 * points[2^(w-1)+1] = 3 * 2^blocksize * generator;
738 * ...
739 * points[2^(w-1)*(numblocks-1)-1] = (2^(w-1)) *  2^(blocksize*(numblocks-2)) * generator
740 * points[2^(w-1)*(numblocks-1)]   =              2^(blocksize*(numblocks-1)) * generator
741 * ...
742 * points[2^(w-1)*numblocks-1]     = (2^(w-1)) *  2^(blocksize*(numblocks-1)) * generator
743 * points[2^(w-1)*numblocks]       = NULL
744 */
745int ec_wNAF_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
746{
747    const EC_POINT *generator;
748    EC_POINT *tmp_point = NULL, *base = NULL, **var;
749    BN_CTX *new_ctx = NULL;
750    BIGNUM *order;
751    size_t i, bits, w, pre_points_per_block, blocksize, numblocks, num;
752    EC_POINT **points = NULL;
753    EC_PRE_COMP *pre_comp;
754    int ret = 0;
755
756    /* if there is an old EC_PRE_COMP object, throw it away */
757    EC_EX_DATA_free_data(&group->extra_data, ec_pre_comp_dup,
758                         ec_pre_comp_free, ec_pre_comp_clear_free);
759
760    if ((pre_comp = ec_pre_comp_new(group)) == NULL)
761        return 0;
762
763    generator = EC_GROUP_get0_generator(group);
764    if (generator == NULL) {
765        ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, EC_R_UNDEFINED_GENERATOR);
766        goto err;
767    }
768
769    if (ctx == NULL) {
770        ctx = new_ctx = BN_CTX_new();
771        if (ctx == NULL)
772            goto err;
773    }
774
775    BN_CTX_start(ctx);
776    order = BN_CTX_get(ctx);
777    if (order == NULL)
778        goto err;
779
780    if (!EC_GROUP_get_order(group, order, ctx))
781        goto err;
782    if (BN_is_zero(order)) {
783        ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, EC_R_UNKNOWN_ORDER);
784        goto err;
785    }
786
787    bits = BN_num_bits(order);
788    /*
789     * The following parameters mean we precompute (approximately) one point
790     * per bit. TBD: The combination 8, 4 is perfect for 160 bits; for other
791     * bit lengths, other parameter combinations might provide better
792     * efficiency.
793     */
794    blocksize = 8;
795    w = 4;
796    if (EC_window_bits_for_scalar_size(bits) > w) {
797        /* let's not make the window too small ... */
798        w = EC_window_bits_for_scalar_size(bits);
799    }
800
801    numblocks = (bits + blocksize - 1) / blocksize; /* max. number of blocks
802                                                     * to use for wNAF
803                                                     * splitting */
804
805    pre_points_per_block = (size_t)1 << (w - 1);
806    num = pre_points_per_block * numblocks; /* number of points to compute
807                                             * and store */
808
809    points = OPENSSL_malloc(sizeof(EC_POINT *) * (num + 1));
810    if (!points) {
811        ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE);
812        goto err;
813    }
814
815    var = points;
816    var[num] = NULL;            /* pivot */
817    for (i = 0; i < num; i++) {
818        if ((var[i] = EC_POINT_new(group)) == NULL) {
819            ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE);
820            goto err;
821        }
822    }
823
824    if (!(tmp_point = EC_POINT_new(group)) || !(base = EC_POINT_new(group))) {
825        ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE);
826        goto err;
827    }
828
829    if (!EC_POINT_copy(base, generator))
830        goto err;
831
832    /* do the precomputation */
833    for (i = 0; i < numblocks; i++) {
834        size_t j;
835
836        if (!EC_POINT_dbl(group, tmp_point, base, ctx))
837            goto err;
838
839        if (!EC_POINT_copy(*var++, base))
840            goto err;
841
842        for (j = 1; j < pre_points_per_block; j++, var++) {
843            /*
844             * calculate odd multiples of the current base point
845             */
846            if (!EC_POINT_add(group, *var, tmp_point, *(var - 1), ctx))
847                goto err;
848        }
849
850        if (i < numblocks - 1) {
851            /*
852             * get the next base (multiply current one by 2^blocksize)
853             */
854            size_t k;
855
856            if (blocksize <= 2) {
857                ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_INTERNAL_ERROR);
858                goto err;
859            }
860
861            if (!EC_POINT_dbl(group, base, tmp_point, ctx))
862                goto err;
863            for (k = 2; k < blocksize; k++) {
864                if (!EC_POINT_dbl(group, base, base, ctx))
865                    goto err;
866            }
867        }
868    }
869
870    if (!EC_POINTs_make_affine(group, num, points, ctx))
871        goto err;
872
873    pre_comp->group = group;
874    pre_comp->blocksize = blocksize;
875    pre_comp->numblocks = numblocks;
876    pre_comp->w = w;
877    pre_comp->points = points;
878    points = NULL;
879    pre_comp->num = num;
880
881    if (!EC_EX_DATA_set_data(&group->extra_data, pre_comp,
882                             ec_pre_comp_dup, ec_pre_comp_free,
883                             ec_pre_comp_clear_free))
884        goto err;
885    pre_comp = NULL;
886
887    ret = 1;
888 err:
889    if (ctx != NULL)
890        BN_CTX_end(ctx);
891    if (new_ctx != NULL)
892        BN_CTX_free(new_ctx);
893    if (pre_comp)
894        ec_pre_comp_free(pre_comp);
895    if (points) {
896        EC_POINT **p;
897
898        for (p = points; *p != NULL; p++)
899            EC_POINT_free(*p);
900        OPENSSL_free(points);
901    }
902    if (tmp_point)
903        EC_POINT_free(tmp_point);
904    if (base)
905        EC_POINT_free(base);
906    return ret;
907}
908
909int ec_wNAF_have_precompute_mult(const EC_GROUP *group)
910{
911    if (EC_EX_DATA_get_data
912        (group->extra_data, ec_pre_comp_dup, ec_pre_comp_free,
913         ec_pre_comp_clear_free) != NULL)
914        return 1;
915    else
916        return 0;
917}
918