bn_gf2m.c revision 337982
1/* crypto/bn/bn_gf2m.c */
2/* ====================================================================
3 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
4 *
5 * The Elliptic Curve Public-Key Crypto Library (ECC Code) included
6 * herein is developed by SUN MICROSYSTEMS, INC., and is contributed
7 * to the OpenSSL project.
8 *
9 * The ECC Code is licensed pursuant to the OpenSSL open source
10 * license provided below.
11 *
12 * In addition, Sun covenants to all licensees who provide a reciprocal
13 * covenant with respect to their own patents if any, not to sue under
14 * current and future patent claims necessarily infringed by the making,
15 * using, practicing, selling, offering for sale and/or otherwise
16 * disposing of the ECC Code as delivered hereunder (or portions thereof),
17 * provided that such covenant shall not apply:
18 *  1) for code that a licensee deletes from the ECC Code;
19 *  2) separates from the ECC Code; or
20 *  3) for infringements caused by:
21 *       i) the modification of the ECC Code or
22 *      ii) the combination of the ECC Code with other software or
23 *          devices where such combination causes the infringement.
24 *
25 * The software is originally written by Sheueling Chang Shantz and
26 * Douglas Stebila of Sun Microsystems Laboratories.
27 *
28 */
29
30/*
31 * NOTE: This file is licensed pursuant to the OpenSSL license below and may
32 * be modified; but after modifications, the above covenant may no longer
33 * apply! In such cases, the corresponding paragraph ["In addition, Sun
34 * covenants ... causes the infringement."] and this note can be edited out;
35 * but please keep the Sun copyright notice and attribution.
36 */
37
38/* ====================================================================
39 * Copyright (c) 1998-2018 The OpenSSL Project.  All rights reserved.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 *
45 * 1. Redistributions of source code must retain the above copyright
46 *    notice, this list of conditions and the following disclaimer.
47 *
48 * 2. Redistributions in binary form must reproduce the above copyright
49 *    notice, this list of conditions and the following disclaimer in
50 *    the documentation and/or other materials provided with the
51 *    distribution.
52 *
53 * 3. All advertising materials mentioning features or use of this
54 *    software must display the following acknowledgment:
55 *    "This product includes software developed by the OpenSSL Project
56 *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
57 *
58 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
59 *    endorse or promote products derived from this software without
60 *    prior written permission. For written permission, please contact
61 *    openssl-core@openssl.org.
62 *
63 * 5. Products derived from this software may not be called "OpenSSL"
64 *    nor may "OpenSSL" appear in their names without prior written
65 *    permission of the OpenSSL Project.
66 *
67 * 6. Redistributions of any form whatsoever must retain the following
68 *    acknowledgment:
69 *    "This product includes software developed by the OpenSSL Project
70 *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
71 *
72 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
73 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
74 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
75 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
76 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
77 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
78 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
79 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
80 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
81 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
82 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
83 * OF THE POSSIBILITY OF SUCH DAMAGE.
84 * ====================================================================
85 *
86 * This product includes cryptographic software written by Eric Young
87 * (eay@cryptsoft.com).  This product includes software written by Tim
88 * Hudson (tjh@cryptsoft.com).
89 *
90 */
91
92#include <assert.h>
93#include <limits.h>
94#include <stdio.h>
95#include "cryptlib.h"
96#include "bn_lcl.h"
97
98#ifndef OPENSSL_NO_EC2M
99
100/*
101 * Maximum number of iterations before BN_GF2m_mod_solve_quad_arr should
102 * fail.
103 */
104# define MAX_ITERATIONS 50
105
106# define SQR_nibble(w)   ((((w) & 8) << 3) \
107                       |  (((w) & 4) << 2) \
108                       |  (((w) & 2) << 1) \
109                       |   ((w) & 1))
110
111
112/* Platform-specific macros to accelerate squaring. */
113# if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG)
114#  define SQR1(w) \
115    SQR_nibble((w) >> 60) << 56 | SQR_nibble((w) >> 56) << 48 | \
116    SQR_nibble((w) >> 52) << 40 | SQR_nibble((w) >> 48) << 32 | \
117    SQR_nibble((w) >> 44) << 24 | SQR_nibble((w) >> 40) << 16 | \
118    SQR_nibble((w) >> 36) <<  8 | SQR_nibble((w) >> 32)
119#  define SQR0(w) \
120    SQR_nibble((w) >> 28) << 56 | SQR_nibble((w) >> 24) << 48 | \
121    SQR_nibble((w) >> 20) << 40 | SQR_nibble((w) >> 16) << 32 | \
122    SQR_nibble((w) >> 12) << 24 | SQR_nibble((w) >>  8) << 16 | \
123    SQR_nibble((w) >>  4) <<  8 | SQR_nibble((w)      )
124# endif
125# ifdef THIRTY_TWO_BIT
126#  define SQR1(w) \
127    SQR_nibble((w) >> 28) << 24 | SQR_nibble((w) >> 24) << 16 | \
128    SQR_nibble((w) >> 20) <<  8 | SQR_nibble((w) >> 16)
129#  define SQR0(w) \
130    SQR_nibble((w) >> 12) << 24 | SQR_nibble((w) >>  8) << 16 | \
131    SQR_nibble((w) >>  4) <<  8 | SQR_nibble((w)      )
132# endif
133
134# if !defined(OPENSSL_BN_ASM_GF2m)
135/*
136 * Product of two polynomials a, b each with degree < BN_BITS2 - 1, result is
137 * a polynomial r with degree < 2 * BN_BITS - 1 The caller MUST ensure that
138 * the variables have the right amount of space allocated.
139 */
140#  ifdef THIRTY_TWO_BIT
141static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a,
142                            const BN_ULONG b)
143{
144    register BN_ULONG h, l, s;
145    BN_ULONG tab[8], top2b = a >> 30;
146    register BN_ULONG a1, a2, a4;
147
148    a1 = a & (0x3FFFFFFF);
149    a2 = a1 << 1;
150    a4 = a2 << 1;
151
152    tab[0] = 0;
153    tab[1] = a1;
154    tab[2] = a2;
155    tab[3] = a1 ^ a2;
156    tab[4] = a4;
157    tab[5] = a1 ^ a4;
158    tab[6] = a2 ^ a4;
159    tab[7] = a1 ^ a2 ^ a4;
160
161    s = tab[b & 0x7];
162    l = s;
163    s = tab[b >> 3 & 0x7];
164    l ^= s << 3;
165    h = s >> 29;
166    s = tab[b >> 6 & 0x7];
167    l ^= s << 6;
168    h ^= s >> 26;
169    s = tab[b >> 9 & 0x7];
170    l ^= s << 9;
171    h ^= s >> 23;
172    s = tab[b >> 12 & 0x7];
173    l ^= s << 12;
174    h ^= s >> 20;
175    s = tab[b >> 15 & 0x7];
176    l ^= s << 15;
177    h ^= s >> 17;
178    s = tab[b >> 18 & 0x7];
179    l ^= s << 18;
180    h ^= s >> 14;
181    s = tab[b >> 21 & 0x7];
182    l ^= s << 21;
183    h ^= s >> 11;
184    s = tab[b >> 24 & 0x7];
185    l ^= s << 24;
186    h ^= s >> 8;
187    s = tab[b >> 27 & 0x7];
188    l ^= s << 27;
189    h ^= s >> 5;
190    s = tab[b >> 30];
191    l ^= s << 30;
192    h ^= s >> 2;
193
194    /* compensate for the top two bits of a */
195
196    if (top2b & 01) {
197        l ^= b << 30;
198        h ^= b >> 2;
199    }
200    if (top2b & 02) {
201        l ^= b << 31;
202        h ^= b >> 1;
203    }
204
205    *r1 = h;
206    *r0 = l;
207}
208#  endif
209#  if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG)
210static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a,
211                            const BN_ULONG b)
212{
213    register BN_ULONG h, l, s;
214    BN_ULONG tab[16], top3b = a >> 61;
215    register BN_ULONG a1, a2, a4, a8;
216
217    a1 = a & (0x1FFFFFFFFFFFFFFFULL);
218    a2 = a1 << 1;
219    a4 = a2 << 1;
220    a8 = a4 << 1;
221
222    tab[0] = 0;
223    tab[1] = a1;
224    tab[2] = a2;
225    tab[3] = a1 ^ a2;
226    tab[4] = a4;
227    tab[5] = a1 ^ a4;
228    tab[6] = a2 ^ a4;
229    tab[7] = a1 ^ a2 ^ a4;
230    tab[8] = a8;
231    tab[9] = a1 ^ a8;
232    tab[10] = a2 ^ a8;
233    tab[11] = a1 ^ a2 ^ a8;
234    tab[12] = a4 ^ a8;
235    tab[13] = a1 ^ a4 ^ a8;
236    tab[14] = a2 ^ a4 ^ a8;
237    tab[15] = a1 ^ a2 ^ a4 ^ a8;
238
239    s = tab[b & 0xF];
240    l = s;
241    s = tab[b >> 4 & 0xF];
242    l ^= s << 4;
243    h = s >> 60;
244    s = tab[b >> 8 & 0xF];
245    l ^= s << 8;
246    h ^= s >> 56;
247    s = tab[b >> 12 & 0xF];
248    l ^= s << 12;
249    h ^= s >> 52;
250    s = tab[b >> 16 & 0xF];
251    l ^= s << 16;
252    h ^= s >> 48;
253    s = tab[b >> 20 & 0xF];
254    l ^= s << 20;
255    h ^= s >> 44;
256    s = tab[b >> 24 & 0xF];
257    l ^= s << 24;
258    h ^= s >> 40;
259    s = tab[b >> 28 & 0xF];
260    l ^= s << 28;
261    h ^= s >> 36;
262    s = tab[b >> 32 & 0xF];
263    l ^= s << 32;
264    h ^= s >> 32;
265    s = tab[b >> 36 & 0xF];
266    l ^= s << 36;
267    h ^= s >> 28;
268    s = tab[b >> 40 & 0xF];
269    l ^= s << 40;
270    h ^= s >> 24;
271    s = tab[b >> 44 & 0xF];
272    l ^= s << 44;
273    h ^= s >> 20;
274    s = tab[b >> 48 & 0xF];
275    l ^= s << 48;
276    h ^= s >> 16;
277    s = tab[b >> 52 & 0xF];
278    l ^= s << 52;
279    h ^= s >> 12;
280    s = tab[b >> 56 & 0xF];
281    l ^= s << 56;
282    h ^= s >> 8;
283    s = tab[b >> 60];
284    l ^= s << 60;
285    h ^= s >> 4;
286
287    /* compensate for the top three bits of a */
288
289    if (top3b & 01) {
290        l ^= b << 61;
291        h ^= b >> 3;
292    }
293    if (top3b & 02) {
294        l ^= b << 62;
295        h ^= b >> 2;
296    }
297    if (top3b & 04) {
298        l ^= b << 63;
299        h ^= b >> 1;
300    }
301
302    *r1 = h;
303    *r0 = l;
304}
305#  endif
306
307/*
308 * Product of two polynomials a, b each with degree < 2 * BN_BITS2 - 1,
309 * result is a polynomial r with degree < 4 * BN_BITS2 - 1 The caller MUST
310 * ensure that the variables have the right amount of space allocated.
311 */
312static void bn_GF2m_mul_2x2(BN_ULONG *r, const BN_ULONG a1, const BN_ULONG a0,
313                            const BN_ULONG b1, const BN_ULONG b0)
314{
315    BN_ULONG m1, m0;
316    /* r[3] = h1, r[2] = h0; r[1] = l1; r[0] = l0 */
317    bn_GF2m_mul_1x1(r + 3, r + 2, a1, b1);
318    bn_GF2m_mul_1x1(r + 1, r, a0, b0);
319    bn_GF2m_mul_1x1(&m1, &m0, a0 ^ a1, b0 ^ b1);
320    /* Correction on m1 ^= l1 ^ h1; m0 ^= l0 ^ h0; */
321    r[2] ^= m1 ^ r[1] ^ r[3];   /* h0 ^= m1 ^ l1 ^ h1; */
322    r[1] = r[3] ^ r[2] ^ r[0] ^ m1 ^ m0; /* l1 ^= l0 ^ h0 ^ m0; */
323}
324# else
325void bn_GF2m_mul_2x2(BN_ULONG *r, BN_ULONG a1, BN_ULONG a0, BN_ULONG b1,
326                     BN_ULONG b0);
327# endif
328
329/*
330 * Add polynomials a and b and store result in r; r could be a or b, a and b
331 * could be equal; r is the bitwise XOR of a and b.
332 */
333int BN_GF2m_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b)
334{
335    int i;
336    const BIGNUM *at, *bt;
337
338    bn_check_top(a);
339    bn_check_top(b);
340
341    if (a->top < b->top) {
342        at = b;
343        bt = a;
344    } else {
345        at = a;
346        bt = b;
347    }
348
349    if (bn_wexpand(r, at->top) == NULL)
350        return 0;
351
352    for (i = 0; i < bt->top; i++) {
353        r->d[i] = at->d[i] ^ bt->d[i];
354    }
355    for (; i < at->top; i++) {
356        r->d[i] = at->d[i];
357    }
358
359    r->top = at->top;
360    bn_correct_top(r);
361
362    return 1;
363}
364
365/*-
366 * Some functions allow for representation of the irreducible polynomials
367 * as an int[], say p.  The irreducible f(t) is then of the form:
368 *     t^p[0] + t^p[1] + ... + t^p[k]
369 * where m = p[0] > p[1] > ... > p[k] = 0.
370 */
371
372/* Performs modular reduction of a and store result in r.  r could be a. */
373int BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const int p[])
374{
375    int j, k;
376    int n, dN, d0, d1;
377    BN_ULONG zz, *z;
378
379    bn_check_top(a);
380
381    if (!p[0]) {
382        /* reduction mod 1 => return 0 */
383        BN_zero(r);
384        return 1;
385    }
386
387    /*
388     * Since the algorithm does reduction in the r value, if a != r, copy the
389     * contents of a into r so we can do reduction in r.
390     */
391    if (a != r) {
392        if (!bn_wexpand(r, a->top))
393            return 0;
394        for (j = 0; j < a->top; j++) {
395            r->d[j] = a->d[j];
396        }
397        r->top = a->top;
398    }
399    z = r->d;
400
401    /* start reduction */
402    dN = p[0] / BN_BITS2;
403    for (j = r->top - 1; j > dN;) {
404        zz = z[j];
405        if (z[j] == 0) {
406            j--;
407            continue;
408        }
409        z[j] = 0;
410
411        for (k = 1; p[k] != 0; k++) {
412            /* reducing component t^p[k] */
413            n = p[0] - p[k];
414            d0 = n % BN_BITS2;
415            d1 = BN_BITS2 - d0;
416            n /= BN_BITS2;
417            z[j - n] ^= (zz >> d0);
418            if (d0)
419                z[j - n - 1] ^= (zz << d1);
420        }
421
422        /* reducing component t^0 */
423        n = dN;
424        d0 = p[0] % BN_BITS2;
425        d1 = BN_BITS2 - d0;
426        z[j - n] ^= (zz >> d0);
427        if (d0)
428            z[j - n - 1] ^= (zz << d1);
429    }
430
431    /* final round of reduction */
432    while (j == dN) {
433
434        d0 = p[0] % BN_BITS2;
435        zz = z[dN] >> d0;
436        if (zz == 0)
437            break;
438        d1 = BN_BITS2 - d0;
439
440        /* clear up the top d1 bits */
441        if (d0)
442            z[dN] = (z[dN] << d1) >> d1;
443        else
444            z[dN] = 0;
445        z[0] ^= zz;             /* reduction t^0 component */
446
447        for (k = 1; p[k] != 0; k++) {
448            BN_ULONG tmp_ulong;
449
450            /* reducing component t^p[k] */
451            n = p[k] / BN_BITS2;
452            d0 = p[k] % BN_BITS2;
453            d1 = BN_BITS2 - d0;
454            z[n] ^= (zz << d0);
455            if (d0 && (tmp_ulong = zz >> d1))
456                z[n + 1] ^= tmp_ulong;
457        }
458
459    }
460
461    bn_correct_top(r);
462    return 1;
463}
464
465/*
466 * Performs modular reduction of a by p and store result in r.  r could be a.
467 * This function calls down to the BN_GF2m_mod_arr implementation; this wrapper
468 * function is only provided for convenience; for best performance, use the
469 * BN_GF2m_mod_arr function.
470 */
471int BN_GF2m_mod(BIGNUM *r, const BIGNUM *a, const BIGNUM *p)
472{
473    int ret = 0;
474    int arr[6];
475    bn_check_top(a);
476    bn_check_top(p);
477    ret = BN_GF2m_poly2arr(p, arr, sizeof(arr) / sizeof(arr[0]));
478    if (!ret || ret > (int)(sizeof(arr) / sizeof(arr[0]))) {
479        BNerr(BN_F_BN_GF2M_MOD, BN_R_INVALID_LENGTH);
480        return 0;
481    }
482    ret = BN_GF2m_mod_arr(r, a, arr);
483    bn_check_top(r);
484    return ret;
485}
486
487/*
488 * Compute the product of two polynomials a and b, reduce modulo p, and store
489 * the result in r.  r could be a or b; a could be b.
490 */
491int BN_GF2m_mod_mul_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
492                        const int p[], BN_CTX *ctx)
493{
494    int zlen, i, j, k, ret = 0;
495    BIGNUM *s;
496    BN_ULONG x1, x0, y1, y0, zz[4];
497
498    bn_check_top(a);
499    bn_check_top(b);
500
501    if (a == b) {
502        return BN_GF2m_mod_sqr_arr(r, a, p, ctx);
503    }
504
505    BN_CTX_start(ctx);
506    if ((s = BN_CTX_get(ctx)) == NULL)
507        goto err;
508
509    zlen = a->top + b->top + 4;
510    if (!bn_wexpand(s, zlen))
511        goto err;
512    s->top = zlen;
513
514    for (i = 0; i < zlen; i++)
515        s->d[i] = 0;
516
517    for (j = 0; j < b->top; j += 2) {
518        y0 = b->d[j];
519        y1 = ((j + 1) == b->top) ? 0 : b->d[j + 1];
520        for (i = 0; i < a->top; i += 2) {
521            x0 = a->d[i];
522            x1 = ((i + 1) == a->top) ? 0 : a->d[i + 1];
523            bn_GF2m_mul_2x2(zz, x1, x0, y1, y0);
524            for (k = 0; k < 4; k++)
525                s->d[i + j + k] ^= zz[k];
526        }
527    }
528
529    bn_correct_top(s);
530    if (BN_GF2m_mod_arr(r, s, p))
531        ret = 1;
532    bn_check_top(r);
533
534 err:
535    BN_CTX_end(ctx);
536    return ret;
537}
538
539/*
540 * Compute the product of two polynomials a and b, reduce modulo p, and store
541 * the result in r.  r could be a or b; a could equal b. This function calls
542 * down to the BN_GF2m_mod_mul_arr implementation; this wrapper function is
543 * only provided for convenience; for best performance, use the
544 * BN_GF2m_mod_mul_arr function.
545 */
546int BN_GF2m_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
547                    const BIGNUM *p, BN_CTX *ctx)
548{
549    int ret = 0;
550    const int max = BN_num_bits(p) + 1;
551    int *arr = NULL;
552    bn_check_top(a);
553    bn_check_top(b);
554    bn_check_top(p);
555    if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL)
556        goto err;
557    ret = BN_GF2m_poly2arr(p, arr, max);
558    if (!ret || ret > max) {
559        BNerr(BN_F_BN_GF2M_MOD_MUL, BN_R_INVALID_LENGTH);
560        goto err;
561    }
562    ret = BN_GF2m_mod_mul_arr(r, a, b, arr, ctx);
563    bn_check_top(r);
564 err:
565    if (arr)
566        OPENSSL_free(arr);
567    return ret;
568}
569
570/* Square a, reduce the result mod p, and store it in a.  r could be a. */
571int BN_GF2m_mod_sqr_arr(BIGNUM *r, const BIGNUM *a, const int p[],
572                        BN_CTX *ctx)
573{
574    int i, ret = 0;
575    BIGNUM *s;
576
577    bn_check_top(a);
578    BN_CTX_start(ctx);
579    if ((s = BN_CTX_get(ctx)) == NULL)
580        goto err;
581    if (!bn_wexpand(s, 2 * a->top))
582        goto err;
583
584    for (i = a->top - 1; i >= 0; i--) {
585        s->d[2 * i + 1] = SQR1(a->d[i]);
586        s->d[2 * i] = SQR0(a->d[i]);
587    }
588
589    s->top = 2 * a->top;
590    bn_correct_top(s);
591    if (!BN_GF2m_mod_arr(r, s, p))
592        goto err;
593    bn_check_top(r);
594    ret = 1;
595 err:
596    BN_CTX_end(ctx);
597    return ret;
598}
599
600/*
601 * Square a, reduce the result mod p, and store it in a.  r could be a. This
602 * function calls down to the BN_GF2m_mod_sqr_arr implementation; this
603 * wrapper function is only provided for convenience; for best performance,
604 * use the BN_GF2m_mod_sqr_arr function.
605 */
606int BN_GF2m_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
607{
608    int ret = 0;
609    const int max = BN_num_bits(p) + 1;
610    int *arr = NULL;
611
612    bn_check_top(a);
613    bn_check_top(p);
614    if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL)
615        goto err;
616    ret = BN_GF2m_poly2arr(p, arr, max);
617    if (!ret || ret > max) {
618        BNerr(BN_F_BN_GF2M_MOD_SQR, BN_R_INVALID_LENGTH);
619        goto err;
620    }
621    ret = BN_GF2m_mod_sqr_arr(r, a, arr, ctx);
622    bn_check_top(r);
623 err:
624    if (arr)
625        OPENSSL_free(arr);
626    return ret;
627}
628
629/*
630 * Invert a, reduce modulo p, and store the result in r. r could be a. Uses
631 * Modified Almost Inverse Algorithm (Algorithm 10) from Hankerson, D.,
632 * Hernandez, J.L., and Menezes, A.  "Software Implementation of Elliptic
633 * Curve Cryptography Over Binary Fields".
634 */
635int BN_GF2m_mod_inv(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
636{
637    BIGNUM *b, *c = NULL, *u = NULL, *v = NULL, *tmp;
638    int ret = 0;
639
640    bn_check_top(a);
641    bn_check_top(p);
642
643    BN_CTX_start(ctx);
644
645    if ((b = BN_CTX_get(ctx)) == NULL)
646        goto err;
647    if ((c = BN_CTX_get(ctx)) == NULL)
648        goto err;
649    if ((u = BN_CTX_get(ctx)) == NULL)
650        goto err;
651    if ((v = BN_CTX_get(ctx)) == NULL)
652        goto err;
653
654    if (!BN_GF2m_mod(u, a, p))
655        goto err;
656    if (BN_is_zero(u))
657        goto err;
658
659    if (!BN_copy(v, p))
660        goto err;
661# if 0
662    if (!BN_one(b))
663        goto err;
664
665    while (1) {
666        while (!BN_is_odd(u)) {
667            if (BN_is_zero(u))
668                goto err;
669            if (!BN_rshift1(u, u))
670                goto err;
671            if (BN_is_odd(b)) {
672                if (!BN_GF2m_add(b, b, p))
673                    goto err;
674            }
675            if (!BN_rshift1(b, b))
676                goto err;
677        }
678
679        if (BN_abs_is_word(u, 1))
680            break;
681
682        if (BN_num_bits(u) < BN_num_bits(v)) {
683            tmp = u;
684            u = v;
685            v = tmp;
686            tmp = b;
687            b = c;
688            c = tmp;
689        }
690
691        if (!BN_GF2m_add(u, u, v))
692            goto err;
693        if (!BN_GF2m_add(b, b, c))
694            goto err;
695    }
696# else
697    {
698        int i;
699        int ubits = BN_num_bits(u);
700        int vbits = BN_num_bits(v); /* v is copy of p */
701        int top = p->top;
702        BN_ULONG *udp, *bdp, *vdp, *cdp;
703
704        if (!bn_wexpand(u, top))
705            goto err;
706        udp = u->d;
707        for (i = u->top; i < top; i++)
708            udp[i] = 0;
709        u->top = top;
710        if (!bn_wexpand(b, top))
711          goto err;
712        bdp = b->d;
713        bdp[0] = 1;
714        for (i = 1; i < top; i++)
715            bdp[i] = 0;
716        b->top = top;
717        if (!bn_wexpand(c, top))
718          goto err;
719        cdp = c->d;
720        for (i = 0; i < top; i++)
721            cdp[i] = 0;
722        c->top = top;
723        vdp = v->d;             /* It pays off to "cache" *->d pointers,
724                                 * because it allows optimizer to be more
725                                 * aggressive. But we don't have to "cache"
726                                 * p->d, because *p is declared 'const'... */
727        while (1) {
728            while (ubits && !(udp[0] & 1)) {
729                BN_ULONG u0, u1, b0, b1, mask;
730
731                u0 = udp[0];
732                b0 = bdp[0];
733                mask = (BN_ULONG)0 - (b0 & 1);
734                b0 ^= p->d[0] & mask;
735                for (i = 0; i < top - 1; i++) {
736                    u1 = udp[i + 1];
737                    udp[i] = ((u0 >> 1) | (u1 << (BN_BITS2 - 1))) & BN_MASK2;
738                    u0 = u1;
739                    b1 = bdp[i + 1] ^ (p->d[i + 1] & mask);
740                    bdp[i] = ((b0 >> 1) | (b1 << (BN_BITS2 - 1))) & BN_MASK2;
741                    b0 = b1;
742                }
743                udp[i] = u0 >> 1;
744                bdp[i] = b0 >> 1;
745                ubits--;
746            }
747
748            if (ubits <= BN_BITS2) {
749                if (udp[0] == 0) /* poly was reducible */
750                    goto err;
751                if (udp[0] == 1)
752                    break;
753            }
754
755            if (ubits < vbits) {
756                i = ubits;
757                ubits = vbits;
758                vbits = i;
759                tmp = u;
760                u = v;
761                v = tmp;
762                tmp = b;
763                b = c;
764                c = tmp;
765                udp = vdp;
766                vdp = v->d;
767                bdp = cdp;
768                cdp = c->d;
769            }
770            for (i = 0; i < top; i++) {
771                udp[i] ^= vdp[i];
772                bdp[i] ^= cdp[i];
773            }
774            if (ubits == vbits) {
775                BN_ULONG ul;
776                int utop = (ubits - 1) / BN_BITS2;
777
778                while ((ul = udp[utop]) == 0 && utop)
779                    utop--;
780                ubits = utop * BN_BITS2 + BN_num_bits_word(ul);
781            }
782        }
783        bn_correct_top(b);
784    }
785# endif
786
787    if (!BN_copy(r, b))
788        goto err;
789    bn_check_top(r);
790    ret = 1;
791
792 err:
793# ifdef BN_DEBUG                /* BN_CTX_end would complain about the
794                                 * expanded form */
795    bn_correct_top(c);
796    bn_correct_top(u);
797    bn_correct_top(v);
798# endif
799    BN_CTX_end(ctx);
800    return ret;
801}
802
803/*
804 * Invert xx, reduce modulo p, and store the result in r. r could be xx.
805 * This function calls down to the BN_GF2m_mod_inv implementation; this
806 * wrapper function is only provided for convenience; for best performance,
807 * use the BN_GF2m_mod_inv function.
808 */
809int BN_GF2m_mod_inv_arr(BIGNUM *r, const BIGNUM *xx, const int p[],
810                        BN_CTX *ctx)
811{
812    BIGNUM *field;
813    int ret = 0;
814
815    bn_check_top(xx);
816    BN_CTX_start(ctx);
817    if ((field = BN_CTX_get(ctx)) == NULL)
818        goto err;
819    if (!BN_GF2m_arr2poly(p, field))
820        goto err;
821
822    ret = BN_GF2m_mod_inv(r, xx, field, ctx);
823    bn_check_top(r);
824
825 err:
826    BN_CTX_end(ctx);
827    return ret;
828}
829
830# ifndef OPENSSL_SUN_GF2M_DIV
831/*
832 * Divide y by x, reduce modulo p, and store the result in r. r could be x
833 * or y, x could equal y.
834 */
835int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x,
836                    const BIGNUM *p, BN_CTX *ctx)
837{
838    BIGNUM *xinv = NULL;
839    int ret = 0;
840
841    bn_check_top(y);
842    bn_check_top(x);
843    bn_check_top(p);
844
845    BN_CTX_start(ctx);
846    xinv = BN_CTX_get(ctx);
847    if (xinv == NULL)
848        goto err;
849
850    if (!BN_GF2m_mod_inv(xinv, x, p, ctx))
851        goto err;
852    if (!BN_GF2m_mod_mul(r, y, xinv, p, ctx))
853        goto err;
854    bn_check_top(r);
855    ret = 1;
856
857 err:
858    BN_CTX_end(ctx);
859    return ret;
860}
861# else
862/*
863 * Divide y by x, reduce modulo p, and store the result in r. r could be x
864 * or y, x could equal y. Uses algorithm Modular_Division_GF(2^m) from
865 * Chang-Shantz, S.  "From Euclid's GCD to Montgomery Multiplication to the
866 * Great Divide".
867 */
868int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x,
869                    const BIGNUM *p, BN_CTX *ctx)
870{
871    BIGNUM *a, *b, *u, *v;
872    int ret = 0;
873
874    bn_check_top(y);
875    bn_check_top(x);
876    bn_check_top(p);
877
878    BN_CTX_start(ctx);
879
880    a = BN_CTX_get(ctx);
881    b = BN_CTX_get(ctx);
882    u = BN_CTX_get(ctx);
883    v = BN_CTX_get(ctx);
884    if (v == NULL)
885        goto err;
886
887    /* reduce x and y mod p */
888    if (!BN_GF2m_mod(u, y, p))
889        goto err;
890    if (!BN_GF2m_mod(a, x, p))
891        goto err;
892    if (!BN_copy(b, p))
893        goto err;
894
895    while (!BN_is_odd(a)) {
896        if (!BN_rshift1(a, a))
897            goto err;
898        if (BN_is_odd(u))
899            if (!BN_GF2m_add(u, u, p))
900                goto err;
901        if (!BN_rshift1(u, u))
902            goto err;
903    }
904
905    do {
906        if (BN_GF2m_cmp(b, a) > 0) {
907            if (!BN_GF2m_add(b, b, a))
908                goto err;
909            if (!BN_GF2m_add(v, v, u))
910                goto err;
911            do {
912                if (!BN_rshift1(b, b))
913                    goto err;
914                if (BN_is_odd(v))
915                    if (!BN_GF2m_add(v, v, p))
916                        goto err;
917                if (!BN_rshift1(v, v))
918                    goto err;
919            } while (!BN_is_odd(b));
920        } else if (BN_abs_is_word(a, 1))
921            break;
922        else {
923            if (!BN_GF2m_add(a, a, b))
924                goto err;
925            if (!BN_GF2m_add(u, u, v))
926                goto err;
927            do {
928                if (!BN_rshift1(a, a))
929                    goto err;
930                if (BN_is_odd(u))
931                    if (!BN_GF2m_add(u, u, p))
932                        goto err;
933                if (!BN_rshift1(u, u))
934                    goto err;
935            } while (!BN_is_odd(a));
936        }
937    } while (1);
938
939    if (!BN_copy(r, u))
940        goto err;
941    bn_check_top(r);
942    ret = 1;
943
944 err:
945    BN_CTX_end(ctx);
946    return ret;
947}
948# endif
949
950/*
951 * Divide yy by xx, reduce modulo p, and store the result in r. r could be xx
952 * * or yy, xx could equal yy. This function calls down to the
953 * BN_GF2m_mod_div implementation; this wrapper function is only provided for
954 * convenience; for best performance, use the BN_GF2m_mod_div function.
955 */
956int BN_GF2m_mod_div_arr(BIGNUM *r, const BIGNUM *yy, const BIGNUM *xx,
957                        const int p[], BN_CTX *ctx)
958{
959    BIGNUM *field;
960    int ret = 0;
961
962    bn_check_top(yy);
963    bn_check_top(xx);
964
965    BN_CTX_start(ctx);
966    if ((field = BN_CTX_get(ctx)) == NULL)
967        goto err;
968    if (!BN_GF2m_arr2poly(p, field))
969        goto err;
970
971    ret = BN_GF2m_mod_div(r, yy, xx, field, ctx);
972    bn_check_top(r);
973
974 err:
975    BN_CTX_end(ctx);
976    return ret;
977}
978
979/*
980 * Compute the bth power of a, reduce modulo p, and store the result in r.  r
981 * could be a. Uses simple square-and-multiply algorithm A.5.1 from IEEE
982 * P1363.
983 */
984int BN_GF2m_mod_exp_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
985                        const int p[], BN_CTX *ctx)
986{
987    int ret = 0, i, n;
988    BIGNUM *u;
989
990    bn_check_top(a);
991    bn_check_top(b);
992
993    if (BN_is_zero(b))
994        return (BN_one(r));
995
996    if (BN_abs_is_word(b, 1))
997        return (BN_copy(r, a) != NULL);
998
999    BN_CTX_start(ctx);
1000    if ((u = BN_CTX_get(ctx)) == NULL)
1001        goto err;
1002
1003    if (!BN_GF2m_mod_arr(u, a, p))
1004        goto err;
1005
1006    n = BN_num_bits(b) - 1;
1007    for (i = n - 1; i >= 0; i--) {
1008        if (!BN_GF2m_mod_sqr_arr(u, u, p, ctx))
1009            goto err;
1010        if (BN_is_bit_set(b, i)) {
1011            if (!BN_GF2m_mod_mul_arr(u, u, a, p, ctx))
1012                goto err;
1013        }
1014    }
1015    if (!BN_copy(r, u))
1016        goto err;
1017    bn_check_top(r);
1018    ret = 1;
1019 err:
1020    BN_CTX_end(ctx);
1021    return ret;
1022}
1023
1024/*
1025 * Compute the bth power of a, reduce modulo p, and store the result in r.  r
1026 * could be a. This function calls down to the BN_GF2m_mod_exp_arr
1027 * implementation; this wrapper function is only provided for convenience;
1028 * for best performance, use the BN_GF2m_mod_exp_arr function.
1029 */
1030int BN_GF2m_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
1031                    const BIGNUM *p, BN_CTX *ctx)
1032{
1033    int ret = 0;
1034    const int max = BN_num_bits(p) + 1;
1035    int *arr = NULL;
1036    bn_check_top(a);
1037    bn_check_top(b);
1038    bn_check_top(p);
1039    if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL)
1040        goto err;
1041    ret = BN_GF2m_poly2arr(p, arr, max);
1042    if (!ret || ret > max) {
1043        BNerr(BN_F_BN_GF2M_MOD_EXP, BN_R_INVALID_LENGTH);
1044        goto err;
1045    }
1046    ret = BN_GF2m_mod_exp_arr(r, a, b, arr, ctx);
1047    bn_check_top(r);
1048 err:
1049    if (arr)
1050        OPENSSL_free(arr);
1051    return ret;
1052}
1053
1054/*
1055 * Compute the square root of a, reduce modulo p, and store the result in r.
1056 * r could be a. Uses exponentiation as in algorithm A.4.1 from IEEE P1363.
1057 */
1058int BN_GF2m_mod_sqrt_arr(BIGNUM *r, const BIGNUM *a, const int p[],
1059                         BN_CTX *ctx)
1060{
1061    int ret = 0;
1062    BIGNUM *u;
1063
1064    bn_check_top(a);
1065
1066    if (!p[0]) {
1067        /* reduction mod 1 => return 0 */
1068        BN_zero(r);
1069        return 1;
1070    }
1071
1072    BN_CTX_start(ctx);
1073    if ((u = BN_CTX_get(ctx)) == NULL)
1074        goto err;
1075
1076    if (!BN_set_bit(u, p[0] - 1))
1077        goto err;
1078    ret = BN_GF2m_mod_exp_arr(r, a, u, p, ctx);
1079    bn_check_top(r);
1080
1081 err:
1082    BN_CTX_end(ctx);
1083    return ret;
1084}
1085
1086/*
1087 * Compute the square root of a, reduce modulo p, and store the result in r.
1088 * r could be a. This function calls down to the BN_GF2m_mod_sqrt_arr
1089 * implementation; this wrapper function is only provided for convenience;
1090 * for best performance, use the BN_GF2m_mod_sqrt_arr function.
1091 */
1092int BN_GF2m_mod_sqrt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
1093{
1094    int ret = 0;
1095    const int max = BN_num_bits(p) + 1;
1096    int *arr = NULL;
1097    bn_check_top(a);
1098    bn_check_top(p);
1099    if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL)
1100        goto err;
1101    ret = BN_GF2m_poly2arr(p, arr, max);
1102    if (!ret || ret > max) {
1103        BNerr(BN_F_BN_GF2M_MOD_SQRT, BN_R_INVALID_LENGTH);
1104        goto err;
1105    }
1106    ret = BN_GF2m_mod_sqrt_arr(r, a, arr, ctx);
1107    bn_check_top(r);
1108 err:
1109    if (arr)
1110        OPENSSL_free(arr);
1111    return ret;
1112}
1113
1114/*
1115 * Find r such that r^2 + r = a mod p.  r could be a. If no r exists returns
1116 * 0. Uses algorithms A.4.7 and A.4.6 from IEEE P1363.
1117 */
1118int BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a_, const int p[],
1119                               BN_CTX *ctx)
1120{
1121    int ret = 0, count = 0, j;
1122    BIGNUM *a, *z, *rho, *w, *w2, *tmp;
1123
1124    bn_check_top(a_);
1125
1126    if (!p[0]) {
1127        /* reduction mod 1 => return 0 */
1128        BN_zero(r);
1129        return 1;
1130    }
1131
1132    BN_CTX_start(ctx);
1133    a = BN_CTX_get(ctx);
1134    z = BN_CTX_get(ctx);
1135    w = BN_CTX_get(ctx);
1136    if (w == NULL)
1137        goto err;
1138
1139    if (!BN_GF2m_mod_arr(a, a_, p))
1140        goto err;
1141
1142    if (BN_is_zero(a)) {
1143        BN_zero(r);
1144        ret = 1;
1145        goto err;
1146    }
1147
1148    if (p[0] & 0x1) {           /* m is odd */
1149        /* compute half-trace of a */
1150        if (!BN_copy(z, a))
1151            goto err;
1152        for (j = 1; j <= (p[0] - 1) / 2; j++) {
1153            if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx))
1154                goto err;
1155            if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx))
1156                goto err;
1157            if (!BN_GF2m_add(z, z, a))
1158                goto err;
1159        }
1160
1161    } else {                    /* m is even */
1162
1163        rho = BN_CTX_get(ctx);
1164        w2 = BN_CTX_get(ctx);
1165        tmp = BN_CTX_get(ctx);
1166        if (tmp == NULL)
1167            goto err;
1168        do {
1169            if (!BN_rand(rho, p[0], 0, 0))
1170                goto err;
1171            if (!BN_GF2m_mod_arr(rho, rho, p))
1172                goto err;
1173            BN_zero(z);
1174            if (!BN_copy(w, rho))
1175                goto err;
1176            for (j = 1; j <= p[0] - 1; j++) {
1177                if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx))
1178                    goto err;
1179                if (!BN_GF2m_mod_sqr_arr(w2, w, p, ctx))
1180                    goto err;
1181                if (!BN_GF2m_mod_mul_arr(tmp, w2, a, p, ctx))
1182                    goto err;
1183                if (!BN_GF2m_add(z, z, tmp))
1184                    goto err;
1185                if (!BN_GF2m_add(w, w2, rho))
1186                    goto err;
1187            }
1188            count++;
1189        } while (BN_is_zero(w) && (count < MAX_ITERATIONS));
1190        if (BN_is_zero(w)) {
1191            BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR, BN_R_TOO_MANY_ITERATIONS);
1192            goto err;
1193        }
1194    }
1195
1196    if (!BN_GF2m_mod_sqr_arr(w, z, p, ctx))
1197        goto err;
1198    if (!BN_GF2m_add(w, z, w))
1199        goto err;
1200    if (BN_GF2m_cmp(w, a)) {
1201        BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR, BN_R_NO_SOLUTION);
1202        goto err;
1203    }
1204
1205    if (!BN_copy(r, z))
1206        goto err;
1207    bn_check_top(r);
1208
1209    ret = 1;
1210
1211 err:
1212    BN_CTX_end(ctx);
1213    return ret;
1214}
1215
1216/*
1217 * Find r such that r^2 + r = a mod p.  r could be a. If no r exists returns
1218 * 0. This function calls down to the BN_GF2m_mod_solve_quad_arr
1219 * implementation; this wrapper function is only provided for convenience;
1220 * for best performance, use the BN_GF2m_mod_solve_quad_arr function.
1221 */
1222int BN_GF2m_mod_solve_quad(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
1223                           BN_CTX *ctx)
1224{
1225    int ret = 0;
1226    const int max = BN_num_bits(p) + 1;
1227    int *arr = NULL;
1228    bn_check_top(a);
1229    bn_check_top(p);
1230    if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL)
1231        goto err;
1232    ret = BN_GF2m_poly2arr(p, arr, max);
1233    if (!ret || ret > max) {
1234        BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD, BN_R_INVALID_LENGTH);
1235        goto err;
1236    }
1237    ret = BN_GF2m_mod_solve_quad_arr(r, a, arr, ctx);
1238    bn_check_top(r);
1239 err:
1240    if (arr)
1241        OPENSSL_free(arr);
1242    return ret;
1243}
1244
1245/*
1246 * Convert the bit-string representation of a polynomial ( \sum_{i=0}^n a_i *
1247 * x^i) into an array of integers corresponding to the bits with non-zero
1248 * coefficient.  Array is terminated with -1. Up to max elements of the array
1249 * will be filled.  Return value is total number of array elements that would
1250 * be filled if array was large enough.
1251 */
1252int BN_GF2m_poly2arr(const BIGNUM *a, int p[], int max)
1253{
1254    int i, j, k = 0;
1255    BN_ULONG mask;
1256
1257    if (BN_is_zero(a))
1258        return 0;
1259
1260    for (i = a->top - 1; i >= 0; i--) {
1261        if (!a->d[i])
1262            /* skip word if a->d[i] == 0 */
1263            continue;
1264        mask = BN_TBIT;
1265        for (j = BN_BITS2 - 1; j >= 0; j--) {
1266            if (a->d[i] & mask) {
1267                if (k < max)
1268                    p[k] = BN_BITS2 * i + j;
1269                k++;
1270            }
1271            mask >>= 1;
1272        }
1273    }
1274
1275    if (k < max) {
1276        p[k] = -1;
1277        k++;
1278    }
1279
1280    return k;
1281}
1282
1283/*
1284 * Convert the coefficient array representation of a polynomial to a
1285 * bit-string.  The array must be terminated by -1.
1286 */
1287int BN_GF2m_arr2poly(const int p[], BIGNUM *a)
1288{
1289    int i;
1290
1291    bn_check_top(a);
1292    BN_zero(a);
1293    for (i = 0; p[i] != -1; i++) {
1294        if (BN_set_bit(a, p[i]) == 0)
1295            return 0;
1296    }
1297    bn_check_top(a);
1298
1299    return 1;
1300}
1301
1302#endif
1303