rsaz-avx2.pl revision 337982
1#!/usr/bin/env perl
2
3##############################################################################
4#                                                                            #
5#  Copyright (c) 2012, Intel Corporation                                     #
6#                                                                            #
7#  All rights reserved.                                                      #
8#                                                                            #
9#  Redistribution and use in source and binary forms, with or without        #
10#  modification, are permitted provided that the following conditions are    #
11#  met:                                                                      #
12#                                                                            #
13#  *  Redistributions of source code must retain the above copyright         #
14#     notice, this list of conditions and the following disclaimer.          #
15#                                                                            #
16#  *  Redistributions in binary form must reproduce the above copyright      #
17#     notice, this list of conditions and the following disclaimer in the    #
18#     documentation and/or other materials provided with the                 #
19#     distribution.                                                          #
20#                                                                            #
21#  *  Neither the name of the Intel Corporation nor the names of its         #
22#     contributors may be used to endorse or promote products derived from   #
23#     this software without specific prior written permission.               #
24#                                                                            #
25#                                                                            #
26#  THIS SOFTWARE IS PROVIDED BY INTEL CORPORATION ""AS IS"" AND ANY          #
27#  EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE         #
28#  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR        #
29#  PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL CORPORATION OR            #
30#  CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,     #
31#  EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,       #
32#  PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR        #
33#  PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF    #
34#  LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING      #
35#  NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS        #
36#  SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.              #
37#                                                                            #
38##############################################################################
39# Developers and authors:                                                    #
40# Shay Gueron (1, 2), and Vlad Krasnov (1)                                   #
41# (1) Intel Corporation, Israel Development Center, Haifa, Israel            #
42# (2) University of Haifa, Israel                                            #
43##############################################################################
44# Reference:                                                                 #
45# [1] S. Gueron, V. Krasnov: "Software Implementation of Modular             #
46#     Exponentiation,  Using Advanced Vector Instructions Architectures",    #
47#     F. Ozbudak and F. Rodriguez-Henriquez (Eds.): WAIFI 2012, LNCS 7369,   #
48#     pp. 119?135, 2012. Springer-Verlag Berlin Heidelberg 2012              #
49# [2] S. Gueron: "Efficient Software Implementations of Modular              #
50#     Exponentiation", Journal of Cryptographic Engineering 2:31-43 (2012).  #
51# [3] S. Gueron, V. Krasnov: "Speeding up Big-numbers Squaring",IEEE         #
52#     Proceedings of 9th International Conference on Information Technology: #
53#     New Generations (ITNG 2012), pp.821-823 (2012)                         #
54# [4] S. Gueron, V. Krasnov: "[PATCH] Efficient and side channel analysis    #
55#     resistant 1024-bit modular exponentiation, for optimizing RSA2048      #
56#     on AVX2 capable x86_64 platforms",                                     #
57#     http://rt.openssl.org/Ticket/Display.html?id=2850&user=guest&pass=guest#
58##############################################################################
59#
60# +13% improvement over original submission by <appro@openssl.org>
61#
62# rsa2048 sign/sec	OpenSSL 1.0.1	scalar(*)	this
63# 2.3GHz Haswell	621		765/+23%	1113/+79%
64# 2.3GHz Broadwell(**)	688		1200(***)/+74%	1120/+63%
65#
66# (*)	if system doesn't support AVX2, for reference purposes;
67# (**)	scaled to 2.3GHz to simplify comparison;
68# (***)	scalar AD*X code is faster than AVX2 and is preferred code
69#	path for Broadwell;
70
71$flavour = shift;
72$output  = shift;
73if ($flavour =~ /\./) { $output = $flavour; undef $flavour; }
74
75$win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/);
76
77$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
78( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or
79( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or
80die "can't locate x86_64-xlate.pl";
81
82if (`$ENV{CC} -Wa,-v -c -o /dev/null -x assembler /dev/null 2>&1`
83		=~ /GNU assembler version ([2-9]\.[0-9]+)/) {
84	$avx = ($1>=2.19) + ($1>=2.22);
85	$addx = ($1>=2.23);
86}
87
88if (!$avx && $win64 && ($flavour =~ /nasm/ || $ENV{ASM} =~ /nasm/) &&
89	    `nasm -v 2>&1` =~ /NASM version ([2-9]\.[0-9]+)/) {
90	$avx = ($1>=2.09) + ($1>=2.10);
91	$addx = ($1>=2.10);
92}
93
94if (!$avx && $win64 && ($flavour =~ /masm/ || $ENV{ASM} =~ /ml64/) &&
95	    `ml64 2>&1` =~ /Version ([0-9]+)\./) {
96	$avx = ($1>=10) + ($1>=11);
97	$addx = ($1>=11);
98}
99
100if (!$avx && `$ENV{CC} -v 2>&1` =~ /((?:^clang|LLVM) version|based on LLVM) ([3-9])\.([0-9]+)/) {
101	my $ver = $2 + $3/100.0;	# 3.1->3.01, 3.10->3.10
102	$avx = ($ver>=3.0) + ($ver>=3.01);
103	$addx = ($ver>=3.03);
104}
105
106open OUT,"| \"$^X\" $xlate $flavour $output";
107*STDOUT = *OUT;
108
109if ($avx>1) {{{
110{ # void AMS_WW(
111my $rp="%rdi";	# BN_ULONG *rp,
112my $ap="%rsi";	# const BN_ULONG *ap,
113my $np="%rdx";	# const BN_ULONG *np,
114my $n0="%ecx";	# const BN_ULONG n0,
115my $rep="%r8d";	# int repeat);
116
117# The registers that hold the accumulated redundant result
118# The AMM works on 1024 bit operands, and redundant word size is 29
119# Therefore: ceil(1024/29)/4 = 9
120my $ACC0="%ymm0";
121my $ACC1="%ymm1";
122my $ACC2="%ymm2";
123my $ACC3="%ymm3";
124my $ACC4="%ymm4";
125my $ACC5="%ymm5";
126my $ACC6="%ymm6";
127my $ACC7="%ymm7";
128my $ACC8="%ymm8";
129my $ACC9="%ymm9";
130# Registers that hold the broadcasted words of bp, currently used
131my $B1="%ymm10";
132my $B2="%ymm11";
133# Registers that hold the broadcasted words of Y, currently used
134my $Y1="%ymm12";
135my $Y2="%ymm13";
136# Helper registers
137my $TEMP1="%ymm14";
138my $AND_MASK="%ymm15";
139# alu registers that hold the first words of the ACC
140my $r0="%r9";
141my $r1="%r10";
142my $r2="%r11";
143my $r3="%r12";
144
145my $i="%r14d";			# loop counter
146my $tmp = "%r15";
147
148my $FrameSize=32*18+32*8;	# place for A^2 and 2*A
149
150my $aap=$r0;
151my $tp0="%rbx";
152my $tp1=$r3;
153my $tpa=$tmp;
154
155$np="%r13";			# reassigned argument
156
157$code.=<<___;
158.text
159
160.globl	rsaz_1024_sqr_avx2
161.type	rsaz_1024_sqr_avx2,\@function,5
162.align	64
163rsaz_1024_sqr_avx2:		# 702 cycles, 14% faster than rsaz_1024_mul_avx2
164	lea	(%rsp), %rax
165	push	%rbx
166	push	%rbp
167	push	%r12
168	push	%r13
169	push	%r14
170	push	%r15
171	vzeroupper
172___
173$code.=<<___ if ($win64);
174	lea	-0xa8(%rsp),%rsp
175	vmovaps	%xmm6,-0xd8(%rax)
176	vmovaps	%xmm7,-0xc8(%rax)
177	vmovaps	%xmm8,-0xb8(%rax)
178	vmovaps	%xmm9,-0xa8(%rax)
179	vmovaps	%xmm10,-0x98(%rax)
180	vmovaps	%xmm11,-0x88(%rax)
181	vmovaps	%xmm12,-0x78(%rax)
182	vmovaps	%xmm13,-0x68(%rax)
183	vmovaps	%xmm14,-0x58(%rax)
184	vmovaps	%xmm15,-0x48(%rax)
185.Lsqr_1024_body:
186___
187$code.=<<___;
188	mov	%rax,%rbp
189	mov	%rdx, $np			# reassigned argument
190	sub	\$$FrameSize, %rsp
191	mov	$np, $tmp
192	sub	\$-128, $rp			# size optimization
193	sub	\$-128, $ap
194	sub	\$-128, $np
195
196	and	\$4095, $tmp			# see if $np crosses page
197	add	\$32*10, $tmp
198	shr	\$12, $tmp
199	vpxor	$ACC9,$ACC9,$ACC9
200	jz	.Lsqr_1024_no_n_copy
201
202	# unaligned 256-bit load that crosses page boundary can
203	# cause >2x performance degradation here, so if $np does
204	# cross page boundary, copy it to stack and make sure stack
205	# frame doesn't...
206	sub		\$32*10,%rsp
207	vmovdqu		32*0-128($np), $ACC0
208	and		\$-2048, %rsp
209	vmovdqu		32*1-128($np), $ACC1
210	vmovdqu		32*2-128($np), $ACC2
211	vmovdqu		32*3-128($np), $ACC3
212	vmovdqu		32*4-128($np), $ACC4
213	vmovdqu		32*5-128($np), $ACC5
214	vmovdqu		32*6-128($np), $ACC6
215	vmovdqu		32*7-128($np), $ACC7
216	vmovdqu		32*8-128($np), $ACC8
217	lea		$FrameSize+128(%rsp),$np
218	vmovdqu		$ACC0, 32*0-128($np)
219	vmovdqu		$ACC1, 32*1-128($np)
220	vmovdqu		$ACC2, 32*2-128($np)
221	vmovdqu		$ACC3, 32*3-128($np)
222	vmovdqu		$ACC4, 32*4-128($np)
223	vmovdqu		$ACC5, 32*5-128($np)
224	vmovdqu		$ACC6, 32*6-128($np)
225	vmovdqu		$ACC7, 32*7-128($np)
226	vmovdqu		$ACC8, 32*8-128($np)
227	vmovdqu		$ACC9, 32*9-128($np)	# $ACC9 is zero
228
229.Lsqr_1024_no_n_copy:
230	and		\$-1024, %rsp
231
232	vmovdqu		32*1-128($ap), $ACC1
233	vmovdqu		32*2-128($ap), $ACC2
234	vmovdqu		32*3-128($ap), $ACC3
235	vmovdqu		32*4-128($ap), $ACC4
236	vmovdqu		32*5-128($ap), $ACC5
237	vmovdqu		32*6-128($ap), $ACC6
238	vmovdqu		32*7-128($ap), $ACC7
239	vmovdqu		32*8-128($ap), $ACC8
240
241	lea	192(%rsp), $tp0			# 64+128=192
242	vmovdqu	.Land_mask(%rip), $AND_MASK
243	jmp	.LOOP_GRANDE_SQR_1024
244
245.align	32
246.LOOP_GRANDE_SQR_1024:
247	lea	32*18+128(%rsp), $aap		# size optimization
248	lea	448(%rsp), $tp1			# 64+128+256=448
249
250	# the squaring is performed as described in Variant B of
251	# "Speeding up Big-Number Squaring", so start by calculating
252	# the A*2=A+A vector
253	vpaddq		$ACC1, $ACC1, $ACC1
254	 vpbroadcastq	32*0-128($ap), $B1
255	vpaddq		$ACC2, $ACC2, $ACC2
256	vmovdqa		$ACC1, 32*0-128($aap)
257	vpaddq		$ACC3, $ACC3, $ACC3
258	vmovdqa		$ACC2, 32*1-128($aap)
259	vpaddq		$ACC4, $ACC4, $ACC4
260	vmovdqa		$ACC3, 32*2-128($aap)
261	vpaddq		$ACC5, $ACC5, $ACC5
262	vmovdqa		$ACC4, 32*3-128($aap)
263	vpaddq		$ACC6, $ACC6, $ACC6
264	vmovdqa		$ACC5, 32*4-128($aap)
265	vpaddq		$ACC7, $ACC7, $ACC7
266	vmovdqa		$ACC6, 32*5-128($aap)
267	vpaddq		$ACC8, $ACC8, $ACC8
268	vmovdqa		$ACC7, 32*6-128($aap)
269	vpxor		$ACC9, $ACC9, $ACC9
270	vmovdqa		$ACC8, 32*7-128($aap)
271
272	vpmuludq	32*0-128($ap), $B1, $ACC0
273	 vpbroadcastq	32*1-128($ap), $B2
274	 vmovdqu	$ACC9, 32*9-192($tp0)	# zero upper half
275	vpmuludq	$B1, $ACC1, $ACC1
276	 vmovdqu	$ACC9, 32*10-448($tp1)
277	vpmuludq	$B1, $ACC2, $ACC2
278	 vmovdqu	$ACC9, 32*11-448($tp1)
279	vpmuludq	$B1, $ACC3, $ACC3
280	 vmovdqu	$ACC9, 32*12-448($tp1)
281	vpmuludq	$B1, $ACC4, $ACC4
282	 vmovdqu	$ACC9, 32*13-448($tp1)
283	vpmuludq	$B1, $ACC5, $ACC5
284	 vmovdqu	$ACC9, 32*14-448($tp1)
285	vpmuludq	$B1, $ACC6, $ACC6
286	 vmovdqu	$ACC9, 32*15-448($tp1)
287	vpmuludq	$B1, $ACC7, $ACC7
288	 vmovdqu	$ACC9, 32*16-448($tp1)
289	vpmuludq	$B1, $ACC8, $ACC8
290	 vpbroadcastq	32*2-128($ap), $B1
291	 vmovdqu	$ACC9, 32*17-448($tp1)
292
293	mov	$ap, $tpa
294	mov 	\$4, $i
295	jmp	.Lsqr_entry_1024
296___
297$TEMP0=$Y1;
298$TEMP2=$Y2;
299$code.=<<___;
300.align	32
301.LOOP_SQR_1024:
302	 vpbroadcastq	32*1-128($tpa), $B2
303	vpmuludq	32*0-128($ap), $B1, $ACC0
304	vpaddq		32*0-192($tp0), $ACC0, $ACC0
305	vpmuludq	32*0-128($aap), $B1, $ACC1
306	vpaddq		32*1-192($tp0), $ACC1, $ACC1
307	vpmuludq	32*1-128($aap), $B1, $ACC2
308	vpaddq		32*2-192($tp0), $ACC2, $ACC2
309	vpmuludq	32*2-128($aap), $B1, $ACC3
310	vpaddq		32*3-192($tp0), $ACC3, $ACC3
311	vpmuludq	32*3-128($aap), $B1, $ACC4
312	vpaddq		32*4-192($tp0), $ACC4, $ACC4
313	vpmuludq	32*4-128($aap), $B1, $ACC5
314	vpaddq		32*5-192($tp0), $ACC5, $ACC5
315	vpmuludq	32*5-128($aap), $B1, $ACC6
316	vpaddq		32*6-192($tp0), $ACC6, $ACC6
317	vpmuludq	32*6-128($aap), $B1, $ACC7
318	vpaddq		32*7-192($tp0), $ACC7, $ACC7
319	vpmuludq	32*7-128($aap), $B1, $ACC8
320	 vpbroadcastq	32*2-128($tpa), $B1
321	vpaddq		32*8-192($tp0), $ACC8, $ACC8
322.Lsqr_entry_1024:
323	vmovdqu		$ACC0, 32*0-192($tp0)
324	vmovdqu		$ACC1, 32*1-192($tp0)
325
326	vpmuludq	32*1-128($ap), $B2, $TEMP0
327	vpaddq		$TEMP0, $ACC2, $ACC2
328	vpmuludq	32*1-128($aap), $B2, $TEMP1
329	vpaddq		$TEMP1, $ACC3, $ACC3
330	vpmuludq	32*2-128($aap), $B2, $TEMP2
331	vpaddq		$TEMP2, $ACC4, $ACC4
332	vpmuludq	32*3-128($aap), $B2, $TEMP0
333	vpaddq		$TEMP0, $ACC5, $ACC5
334	vpmuludq	32*4-128($aap), $B2, $TEMP1
335	vpaddq		$TEMP1, $ACC6, $ACC6
336	vpmuludq	32*5-128($aap), $B2, $TEMP2
337	vpaddq		$TEMP2, $ACC7, $ACC7
338	vpmuludq	32*6-128($aap), $B2, $TEMP0
339	vpaddq		$TEMP0, $ACC8, $ACC8
340	vpmuludq	32*7-128($aap), $B2, $ACC0
341	 vpbroadcastq	32*3-128($tpa), $B2
342	vpaddq		32*9-192($tp0), $ACC0, $ACC0
343
344	vmovdqu		$ACC2, 32*2-192($tp0)
345	vmovdqu		$ACC3, 32*3-192($tp0)
346
347	vpmuludq	32*2-128($ap), $B1, $TEMP2
348	vpaddq		$TEMP2, $ACC4, $ACC4
349	vpmuludq	32*2-128($aap), $B1, $TEMP0
350	vpaddq		$TEMP0, $ACC5, $ACC5
351	vpmuludq	32*3-128($aap), $B1, $TEMP1
352	vpaddq		$TEMP1, $ACC6, $ACC6
353	vpmuludq	32*4-128($aap), $B1, $TEMP2
354	vpaddq		$TEMP2, $ACC7, $ACC7
355	vpmuludq	32*5-128($aap), $B1, $TEMP0
356	vpaddq		$TEMP0, $ACC8, $ACC8
357	vpmuludq	32*6-128($aap), $B1, $TEMP1
358	vpaddq		$TEMP1, $ACC0, $ACC0
359	vpmuludq	32*7-128($aap), $B1, $ACC1
360	 vpbroadcastq	32*4-128($tpa), $B1
361	vpaddq		32*10-448($tp1), $ACC1, $ACC1
362
363	vmovdqu		$ACC4, 32*4-192($tp0)
364	vmovdqu		$ACC5, 32*5-192($tp0)
365
366	vpmuludq	32*3-128($ap), $B2, $TEMP0
367	vpaddq		$TEMP0, $ACC6, $ACC6
368	vpmuludq	32*3-128($aap), $B2, $TEMP1
369	vpaddq		$TEMP1, $ACC7, $ACC7
370	vpmuludq	32*4-128($aap), $B2, $TEMP2
371	vpaddq		$TEMP2, $ACC8, $ACC8
372	vpmuludq	32*5-128($aap), $B2, $TEMP0
373	vpaddq		$TEMP0, $ACC0, $ACC0
374	vpmuludq	32*6-128($aap), $B2, $TEMP1
375	vpaddq		$TEMP1, $ACC1, $ACC1
376	vpmuludq	32*7-128($aap), $B2, $ACC2
377	 vpbroadcastq	32*5-128($tpa), $B2
378	vpaddq		32*11-448($tp1), $ACC2, $ACC2
379
380	vmovdqu		$ACC6, 32*6-192($tp0)
381	vmovdqu		$ACC7, 32*7-192($tp0)
382
383	vpmuludq	32*4-128($ap), $B1, $TEMP0
384	vpaddq		$TEMP0, $ACC8, $ACC8
385	vpmuludq	32*4-128($aap), $B1, $TEMP1
386	vpaddq		$TEMP1, $ACC0, $ACC0
387	vpmuludq	32*5-128($aap), $B1, $TEMP2
388	vpaddq		$TEMP2, $ACC1, $ACC1
389	vpmuludq	32*6-128($aap), $B1, $TEMP0
390	vpaddq		$TEMP0, $ACC2, $ACC2
391	vpmuludq	32*7-128($aap), $B1, $ACC3
392	 vpbroadcastq	32*6-128($tpa), $B1
393	vpaddq		32*12-448($tp1), $ACC3, $ACC3
394
395	vmovdqu		$ACC8, 32*8-192($tp0)
396	vmovdqu		$ACC0, 32*9-192($tp0)
397	lea		8($tp0), $tp0
398
399	vpmuludq	32*5-128($ap), $B2, $TEMP2
400	vpaddq		$TEMP2, $ACC1, $ACC1
401	vpmuludq	32*5-128($aap), $B2, $TEMP0
402	vpaddq		$TEMP0, $ACC2, $ACC2
403	vpmuludq	32*6-128($aap), $B2, $TEMP1
404	vpaddq		$TEMP1, $ACC3, $ACC3
405	vpmuludq	32*7-128($aap), $B2, $ACC4
406	 vpbroadcastq	32*7-128($tpa), $B2
407	vpaddq		32*13-448($tp1), $ACC4, $ACC4
408
409	vmovdqu		$ACC1, 32*10-448($tp1)
410	vmovdqu		$ACC2, 32*11-448($tp1)
411
412	vpmuludq	32*6-128($ap), $B1, $TEMP0
413	vpaddq		$TEMP0, $ACC3, $ACC3
414	vpmuludq	32*6-128($aap), $B1, $TEMP1
415	 vpbroadcastq	32*8-128($tpa), $ACC0		# borrow $ACC0 for $B1
416	vpaddq		$TEMP1, $ACC4, $ACC4
417	vpmuludq	32*7-128($aap), $B1, $ACC5
418	 vpbroadcastq	32*0+8-128($tpa), $B1		# for next iteration
419	vpaddq		32*14-448($tp1), $ACC5, $ACC5
420
421	vmovdqu		$ACC3, 32*12-448($tp1)
422	vmovdqu		$ACC4, 32*13-448($tp1)
423	lea		8($tpa), $tpa
424
425	vpmuludq	32*7-128($ap), $B2, $TEMP0
426	vpaddq		$TEMP0, $ACC5, $ACC5
427	vpmuludq	32*7-128($aap), $B2, $ACC6
428	vpaddq		32*15-448($tp1), $ACC6, $ACC6
429
430	vpmuludq	32*8-128($ap), $ACC0, $ACC7
431	vmovdqu		$ACC5, 32*14-448($tp1)
432	vpaddq		32*16-448($tp1), $ACC7, $ACC7
433	vmovdqu		$ACC6, 32*15-448($tp1)
434	vmovdqu		$ACC7, 32*16-448($tp1)
435	lea		8($tp1), $tp1
436
437	dec	$i
438	jnz	.LOOP_SQR_1024
439___
440$ZERO = $ACC9;
441$TEMP0 = $B1;
442$TEMP2 = $B2;
443$TEMP3 = $Y1;
444$TEMP4 = $Y2;
445$code.=<<___;
446	# we need to fix indices 32-39 to avoid overflow
447	vmovdqu		32*8(%rsp), $ACC8		# 32*8-192($tp0),
448	vmovdqu		32*9(%rsp), $ACC1		# 32*9-192($tp0)
449	vmovdqu		32*10(%rsp), $ACC2		# 32*10-192($tp0)
450	lea		192(%rsp), $tp0			# 64+128=192
451
452	vpsrlq		\$29, $ACC8, $TEMP1
453	vpand		$AND_MASK, $ACC8, $ACC8
454	vpsrlq		\$29, $ACC1, $TEMP2
455	vpand		$AND_MASK, $ACC1, $ACC1
456
457	vpermq		\$0x93, $TEMP1, $TEMP1
458	vpxor		$ZERO, $ZERO, $ZERO
459	vpermq		\$0x93, $TEMP2, $TEMP2
460
461	vpblendd	\$3, $ZERO, $TEMP1, $TEMP0
462	vpblendd	\$3, $TEMP1, $TEMP2, $TEMP1
463	vpaddq		$TEMP0, $ACC8, $ACC8
464	vpblendd	\$3, $TEMP2, $ZERO, $TEMP2
465	vpaddq		$TEMP1, $ACC1, $ACC1
466	vpaddq		$TEMP2, $ACC2, $ACC2
467	vmovdqu		$ACC1, 32*9-192($tp0)
468	vmovdqu		$ACC2, 32*10-192($tp0)
469
470	mov	(%rsp), %rax
471	mov	8(%rsp), $r1
472	mov	16(%rsp), $r2
473	mov	24(%rsp), $r3
474	vmovdqu	32*1(%rsp), $ACC1
475	vmovdqu	32*2-192($tp0), $ACC2
476	vmovdqu	32*3-192($tp0), $ACC3
477	vmovdqu	32*4-192($tp0), $ACC4
478	vmovdqu	32*5-192($tp0), $ACC5
479	vmovdqu	32*6-192($tp0), $ACC6
480	vmovdqu	32*7-192($tp0), $ACC7
481
482	mov	%rax, $r0
483	imull	$n0, %eax
484	and	\$0x1fffffff, %eax
485	vmovd	%eax, $Y1
486
487	mov	%rax, %rdx
488	imulq	-128($np), %rax
489	 vpbroadcastq	$Y1, $Y1
490	add	%rax, $r0
491	mov	%rdx, %rax
492	imulq	8-128($np), %rax
493	shr	\$29, $r0
494	add	%rax, $r1
495	mov	%rdx, %rax
496	imulq	16-128($np), %rax
497	add	$r0, $r1
498	add	%rax, $r2
499	imulq	24-128($np), %rdx
500	add	%rdx, $r3
501
502	mov	$r1, %rax
503	imull	$n0, %eax
504	and	\$0x1fffffff, %eax
505
506	mov \$9, $i
507	jmp .LOOP_REDUCE_1024
508
509.align	32
510.LOOP_REDUCE_1024:
511	vmovd	%eax, $Y2
512	vpbroadcastq	$Y2, $Y2
513
514	vpmuludq	32*1-128($np), $Y1, $TEMP0
515	 mov	%rax, %rdx
516	 imulq	-128($np), %rax
517	vpaddq		$TEMP0, $ACC1, $ACC1
518	 add	%rax, $r1
519	vpmuludq	32*2-128($np), $Y1, $TEMP1
520	 mov	%rdx, %rax
521	 imulq	8-128($np), %rax
522	vpaddq		$TEMP1, $ACC2, $ACC2
523	vpmuludq	32*3-128($np), $Y1, $TEMP2
524	 .byte	0x67
525	 add	%rax, $r2
526	 .byte	0x67
527	 mov	%rdx, %rax
528	 imulq	16-128($np), %rax
529	 shr	\$29, $r1
530	vpaddq		$TEMP2, $ACC3, $ACC3
531	vpmuludq	32*4-128($np), $Y1, $TEMP0
532	 add	%rax, $r3
533	 add	$r1, $r2
534	vpaddq		$TEMP0, $ACC4, $ACC4
535	vpmuludq	32*5-128($np), $Y1, $TEMP1
536	 mov	$r2, %rax
537	 imull	$n0, %eax
538	vpaddq		$TEMP1, $ACC5, $ACC5
539	vpmuludq	32*6-128($np), $Y1, $TEMP2
540	 and	\$0x1fffffff, %eax
541	vpaddq		$TEMP2, $ACC6, $ACC6
542	vpmuludq	32*7-128($np), $Y1, $TEMP0
543	vpaddq		$TEMP0, $ACC7, $ACC7
544	vpmuludq	32*8-128($np), $Y1, $TEMP1
545	 vmovd	%eax, $Y1
546	 #vmovdqu	32*1-8-128($np), $TEMP2		# moved below
547	vpaddq		$TEMP1, $ACC8, $ACC8
548	 #vmovdqu	32*2-8-128($np), $TEMP0		# moved below
549	 vpbroadcastq	$Y1, $Y1
550
551	vpmuludq	32*1-8-128($np), $Y2, $TEMP2	# see above
552	vmovdqu		32*3-8-128($np), $TEMP1
553	 mov	%rax, %rdx
554	 imulq	-128($np), %rax
555	vpaddq		$TEMP2, $ACC1, $ACC1
556	vpmuludq	32*2-8-128($np), $Y2, $TEMP0	# see above
557	vmovdqu		32*4-8-128($np), $TEMP2
558	 add	%rax, $r2
559	 mov	%rdx, %rax
560	 imulq	8-128($np), %rax
561	vpaddq		$TEMP0, $ACC2, $ACC2
562	 add	$r3, %rax
563	 shr	\$29, $r2
564	vpmuludq	$Y2, $TEMP1, $TEMP1
565	vmovdqu		32*5-8-128($np), $TEMP0
566	 add	$r2, %rax
567	vpaddq		$TEMP1, $ACC3, $ACC3
568	vpmuludq	$Y2, $TEMP2, $TEMP2
569	vmovdqu		32*6-8-128($np), $TEMP1
570	 .byte	0x67
571	 mov	%rax, $r3
572	 imull	$n0, %eax
573	vpaddq		$TEMP2, $ACC4, $ACC4
574	vpmuludq	$Y2, $TEMP0, $TEMP0
575	.byte	0xc4,0x41,0x7e,0x6f,0x9d,0x58,0x00,0x00,0x00	# vmovdqu		32*7-8-128($np), $TEMP2
576	 and	\$0x1fffffff, %eax
577	vpaddq		$TEMP0, $ACC5, $ACC5
578	vpmuludq	$Y2, $TEMP1, $TEMP1
579	vmovdqu		32*8-8-128($np), $TEMP0
580	vpaddq		$TEMP1, $ACC6, $ACC6
581	vpmuludq	$Y2, $TEMP2, $TEMP2
582	vmovdqu		32*9-8-128($np), $ACC9
583	 vmovd	%eax, $ACC0			# borrow ACC0 for Y2
584	 imulq	-128($np), %rax
585	vpaddq		$TEMP2, $ACC7, $ACC7
586	vpmuludq	$Y2, $TEMP0, $TEMP0
587	 vmovdqu	32*1-16-128($np), $TEMP1
588	 vpbroadcastq	$ACC0, $ACC0
589	vpaddq		$TEMP0, $ACC8, $ACC8
590	vpmuludq	$Y2, $ACC9, $ACC9
591	 vmovdqu	32*2-16-128($np), $TEMP2
592	 add	%rax, $r3
593
594___
595($ACC0,$Y2)=($Y2,$ACC0);
596$code.=<<___;
597	 vmovdqu	32*1-24-128($np), $ACC0
598	vpmuludq	$Y1, $TEMP1, $TEMP1
599	vmovdqu		32*3-16-128($np), $TEMP0
600	vpaddq		$TEMP1, $ACC1, $ACC1
601	 vpmuludq	$Y2, $ACC0, $ACC0
602	vpmuludq	$Y1, $TEMP2, $TEMP2
603	.byte	0xc4,0x41,0x7e,0x6f,0xb5,0xf0,0xff,0xff,0xff	# vmovdqu		32*4-16-128($np), $TEMP1
604	 vpaddq		$ACC1, $ACC0, $ACC0
605	vpaddq		$TEMP2, $ACC2, $ACC2
606	vpmuludq	$Y1, $TEMP0, $TEMP0
607	vmovdqu		32*5-16-128($np), $TEMP2
608	 .byte	0x67
609	 vmovq		$ACC0, %rax
610	 vmovdqu	$ACC0, (%rsp)		# transfer $r0-$r3
611	vpaddq		$TEMP0, $ACC3, $ACC3
612	vpmuludq	$Y1, $TEMP1, $TEMP1
613	vmovdqu		32*6-16-128($np), $TEMP0
614	vpaddq		$TEMP1, $ACC4, $ACC4
615	vpmuludq	$Y1, $TEMP2, $TEMP2
616	vmovdqu		32*7-16-128($np), $TEMP1
617	vpaddq		$TEMP2, $ACC5, $ACC5
618	vpmuludq	$Y1, $TEMP0, $TEMP0
619	vmovdqu		32*8-16-128($np), $TEMP2
620	vpaddq		$TEMP0, $ACC6, $ACC6
621	vpmuludq	$Y1, $TEMP1, $TEMP1
622	 shr	\$29, $r3
623	vmovdqu		32*9-16-128($np), $TEMP0
624	 add	$r3, %rax
625	vpaddq		$TEMP1, $ACC7, $ACC7
626	vpmuludq	$Y1, $TEMP2, $TEMP2
627	 #vmovdqu	32*2-24-128($np), $TEMP1	# moved below
628	 mov	%rax, $r0
629	 imull	$n0, %eax
630	vpaddq		$TEMP2, $ACC8, $ACC8
631	vpmuludq	$Y1, $TEMP0, $TEMP0
632	 and	\$0x1fffffff, %eax
633	 vmovd	%eax, $Y1
634	 vmovdqu	32*3-24-128($np), $TEMP2
635	.byte	0x67
636	vpaddq		$TEMP0, $ACC9, $ACC9
637	 vpbroadcastq	$Y1, $Y1
638
639	vpmuludq	32*2-24-128($np), $Y2, $TEMP1	# see above
640	vmovdqu		32*4-24-128($np), $TEMP0
641	 mov	%rax, %rdx
642	 imulq	-128($np), %rax
643	 mov	8(%rsp), $r1
644	vpaddq		$TEMP1, $ACC2, $ACC1
645	vpmuludq	$Y2, $TEMP2, $TEMP2
646	vmovdqu		32*5-24-128($np), $TEMP1
647	 add	%rax, $r0
648	 mov	%rdx, %rax
649	 imulq	8-128($np), %rax
650	 .byte	0x67
651	 shr	\$29, $r0
652	 mov	16(%rsp), $r2
653	vpaddq		$TEMP2, $ACC3, $ACC2
654	vpmuludq	$Y2, $TEMP0, $TEMP0
655	vmovdqu		32*6-24-128($np), $TEMP2
656	 add	%rax, $r1
657	 mov	%rdx, %rax
658	 imulq	16-128($np), %rax
659	vpaddq		$TEMP0, $ACC4, $ACC3
660	vpmuludq	$Y2, $TEMP1, $TEMP1
661	vmovdqu		32*7-24-128($np), $TEMP0
662	 imulq	24-128($np), %rdx		# future $r3
663	 add	%rax, $r2
664	 lea	($r0,$r1), %rax
665	vpaddq		$TEMP1, $ACC5, $ACC4
666	vpmuludq	$Y2, $TEMP2, $TEMP2
667	vmovdqu		32*8-24-128($np), $TEMP1
668	 mov	%rax, $r1
669	 imull	$n0, %eax
670	vpmuludq	$Y2, $TEMP0, $TEMP0
671	vpaddq		$TEMP2, $ACC6, $ACC5
672	vmovdqu		32*9-24-128($np), $TEMP2
673	 and	\$0x1fffffff, %eax
674	vpaddq		$TEMP0, $ACC7, $ACC6
675	vpmuludq	$Y2, $TEMP1, $TEMP1
676	 add	24(%rsp), %rdx
677	vpaddq		$TEMP1, $ACC8, $ACC7
678	vpmuludq	$Y2, $TEMP2, $TEMP2
679	vpaddq		$TEMP2, $ACC9, $ACC8
680	 vmovq	$r3, $ACC9
681	 mov	%rdx, $r3
682
683	dec	$i
684	jnz	.LOOP_REDUCE_1024
685___
686($ACC0,$Y2)=($Y2,$ACC0);
687$code.=<<___;
688	lea	448(%rsp), $tp1			# size optimization
689	vpaddq	$ACC9, $Y2, $ACC0
690	vpxor	$ZERO, $ZERO, $ZERO
691
692	vpaddq		32*9-192($tp0), $ACC0, $ACC0
693	vpaddq		32*10-448($tp1), $ACC1, $ACC1
694	vpaddq		32*11-448($tp1), $ACC2, $ACC2
695	vpaddq		32*12-448($tp1), $ACC3, $ACC3
696	vpaddq		32*13-448($tp1), $ACC4, $ACC4
697	vpaddq		32*14-448($tp1), $ACC5, $ACC5
698	vpaddq		32*15-448($tp1), $ACC6, $ACC6
699	vpaddq		32*16-448($tp1), $ACC7, $ACC7
700	vpaddq		32*17-448($tp1), $ACC8, $ACC8
701
702	vpsrlq		\$29, $ACC0, $TEMP1
703	vpand		$AND_MASK, $ACC0, $ACC0
704	vpsrlq		\$29, $ACC1, $TEMP2
705	vpand		$AND_MASK, $ACC1, $ACC1
706	vpsrlq		\$29, $ACC2, $TEMP3
707	vpermq		\$0x93, $TEMP1, $TEMP1
708	vpand		$AND_MASK, $ACC2, $ACC2
709	vpsrlq		\$29, $ACC3, $TEMP4
710	vpermq		\$0x93, $TEMP2, $TEMP2
711	vpand		$AND_MASK, $ACC3, $ACC3
712	vpermq		\$0x93, $TEMP3, $TEMP3
713
714	vpblendd	\$3, $ZERO, $TEMP1, $TEMP0
715	vpermq		\$0x93, $TEMP4, $TEMP4
716	vpblendd	\$3, $TEMP1, $TEMP2, $TEMP1
717	vpaddq		$TEMP0, $ACC0, $ACC0
718	vpblendd	\$3, $TEMP2, $TEMP3, $TEMP2
719	vpaddq		$TEMP1, $ACC1, $ACC1
720	vpblendd	\$3, $TEMP3, $TEMP4, $TEMP3
721	vpaddq		$TEMP2, $ACC2, $ACC2
722	vpblendd	\$3, $TEMP4, $ZERO, $TEMP4
723	vpaddq		$TEMP3, $ACC3, $ACC3
724	vpaddq		$TEMP4, $ACC4, $ACC4
725
726	vpsrlq		\$29, $ACC0, $TEMP1
727	vpand		$AND_MASK, $ACC0, $ACC0
728	vpsrlq		\$29, $ACC1, $TEMP2
729	vpand		$AND_MASK, $ACC1, $ACC1
730	vpsrlq		\$29, $ACC2, $TEMP3
731	vpermq		\$0x93, $TEMP1, $TEMP1
732	vpand		$AND_MASK, $ACC2, $ACC2
733	vpsrlq		\$29, $ACC3, $TEMP4
734	vpermq		\$0x93, $TEMP2, $TEMP2
735	vpand		$AND_MASK, $ACC3, $ACC3
736	vpermq		\$0x93, $TEMP3, $TEMP3
737
738	vpblendd	\$3, $ZERO, $TEMP1, $TEMP0
739	vpermq		\$0x93, $TEMP4, $TEMP4
740	vpblendd	\$3, $TEMP1, $TEMP2, $TEMP1
741	vpaddq		$TEMP0, $ACC0, $ACC0
742	vpblendd	\$3, $TEMP2, $TEMP3, $TEMP2
743	vpaddq		$TEMP1, $ACC1, $ACC1
744	vmovdqu		$ACC0, 32*0-128($rp)
745	vpblendd	\$3, $TEMP3, $TEMP4, $TEMP3
746	vpaddq		$TEMP2, $ACC2, $ACC2
747	vmovdqu		$ACC1, 32*1-128($rp)
748	vpblendd	\$3, $TEMP4, $ZERO, $TEMP4
749	vpaddq		$TEMP3, $ACC3, $ACC3
750	vmovdqu		$ACC2, 32*2-128($rp)
751	vpaddq		$TEMP4, $ACC4, $ACC4
752	vmovdqu		$ACC3, 32*3-128($rp)
753___
754$TEMP5=$ACC0;
755$code.=<<___;
756	vpsrlq		\$29, $ACC4, $TEMP1
757	vpand		$AND_MASK, $ACC4, $ACC4
758	vpsrlq		\$29, $ACC5, $TEMP2
759	vpand		$AND_MASK, $ACC5, $ACC5
760	vpsrlq		\$29, $ACC6, $TEMP3
761	vpermq		\$0x93, $TEMP1, $TEMP1
762	vpand		$AND_MASK, $ACC6, $ACC6
763	vpsrlq		\$29, $ACC7, $TEMP4
764	vpermq		\$0x93, $TEMP2, $TEMP2
765	vpand		$AND_MASK, $ACC7, $ACC7
766	vpsrlq		\$29, $ACC8, $TEMP5
767	vpermq		\$0x93, $TEMP3, $TEMP3
768	vpand		$AND_MASK, $ACC8, $ACC8
769	vpermq		\$0x93, $TEMP4, $TEMP4
770
771	vpblendd	\$3, $ZERO, $TEMP1, $TEMP0
772	vpermq		\$0x93, $TEMP5, $TEMP5
773	vpblendd	\$3, $TEMP1, $TEMP2, $TEMP1
774	vpaddq		$TEMP0, $ACC4, $ACC4
775	vpblendd	\$3, $TEMP2, $TEMP3, $TEMP2
776	vpaddq		$TEMP1, $ACC5, $ACC5
777	vpblendd	\$3, $TEMP3, $TEMP4, $TEMP3
778	vpaddq		$TEMP2, $ACC6, $ACC6
779	vpblendd	\$3, $TEMP4, $TEMP5, $TEMP4
780	vpaddq		$TEMP3, $ACC7, $ACC7
781	vpaddq		$TEMP4, $ACC8, $ACC8
782
783	vpsrlq		\$29, $ACC4, $TEMP1
784	vpand		$AND_MASK, $ACC4, $ACC4
785	vpsrlq		\$29, $ACC5, $TEMP2
786	vpand		$AND_MASK, $ACC5, $ACC5
787	vpsrlq		\$29, $ACC6, $TEMP3
788	vpermq		\$0x93, $TEMP1, $TEMP1
789	vpand		$AND_MASK, $ACC6, $ACC6
790	vpsrlq		\$29, $ACC7, $TEMP4
791	vpermq		\$0x93, $TEMP2, $TEMP2
792	vpand		$AND_MASK, $ACC7, $ACC7
793	vpsrlq		\$29, $ACC8, $TEMP5
794	vpermq		\$0x93, $TEMP3, $TEMP3
795	vpand		$AND_MASK, $ACC8, $ACC8
796	vpermq		\$0x93, $TEMP4, $TEMP4
797
798	vpblendd	\$3, $ZERO, $TEMP1, $TEMP0
799	vpermq		\$0x93, $TEMP5, $TEMP5
800	vpblendd	\$3, $TEMP1, $TEMP2, $TEMP1
801	vpaddq		$TEMP0, $ACC4, $ACC4
802	vpblendd	\$3, $TEMP2, $TEMP3, $TEMP2
803	vpaddq		$TEMP1, $ACC5, $ACC5
804	vmovdqu		$ACC4, 32*4-128($rp)
805	vpblendd	\$3, $TEMP3, $TEMP4, $TEMP3
806	vpaddq		$TEMP2, $ACC6, $ACC6
807	vmovdqu		$ACC5, 32*5-128($rp)
808	vpblendd	\$3, $TEMP4, $TEMP5, $TEMP4
809	vpaddq		$TEMP3, $ACC7, $ACC7
810	vmovdqu		$ACC6, 32*6-128($rp)
811	vpaddq		$TEMP4, $ACC8, $ACC8
812	vmovdqu		$ACC7, 32*7-128($rp)
813	vmovdqu		$ACC8, 32*8-128($rp)
814
815	mov	$rp, $ap
816	dec	$rep
817	jne	.LOOP_GRANDE_SQR_1024
818
819	vzeroall
820	mov	%rbp, %rax
821___
822$code.=<<___ if ($win64);
823	movaps	-0xd8(%rax),%xmm6
824	movaps	-0xc8(%rax),%xmm7
825	movaps	-0xb8(%rax),%xmm8
826	movaps	-0xa8(%rax),%xmm9
827	movaps	-0x98(%rax),%xmm10
828	movaps	-0x88(%rax),%xmm11
829	movaps	-0x78(%rax),%xmm12
830	movaps	-0x68(%rax),%xmm13
831	movaps	-0x58(%rax),%xmm14
832	movaps	-0x48(%rax),%xmm15
833___
834$code.=<<___;
835	mov	-48(%rax),%r15
836	mov	-40(%rax),%r14
837	mov	-32(%rax),%r13
838	mov	-24(%rax),%r12
839	mov	-16(%rax),%rbp
840	mov	-8(%rax),%rbx
841	lea	(%rax),%rsp		# restore %rsp
842.Lsqr_1024_epilogue:
843	ret
844.size	rsaz_1024_sqr_avx2,.-rsaz_1024_sqr_avx2
845___
846}
847
848{ # void AMM_WW(
849my $rp="%rdi";	# BN_ULONG *rp,
850my $ap="%rsi";	# const BN_ULONG *ap,
851my $bp="%rdx";	# const BN_ULONG *bp,
852my $np="%rcx";	# const BN_ULONG *np,
853my $n0="%r8d";	# unsigned int n0);
854
855# The registers that hold the accumulated redundant result
856# The AMM works on 1024 bit operands, and redundant word size is 29
857# Therefore: ceil(1024/29)/4 = 9
858my $ACC0="%ymm0";
859my $ACC1="%ymm1";
860my $ACC2="%ymm2";
861my $ACC3="%ymm3";
862my $ACC4="%ymm4";
863my $ACC5="%ymm5";
864my $ACC6="%ymm6";
865my $ACC7="%ymm7";
866my $ACC8="%ymm8";
867my $ACC9="%ymm9";
868
869# Registers that hold the broadcasted words of multiplier, currently used
870my $Bi="%ymm10";
871my $Yi="%ymm11";
872
873# Helper registers
874my $TEMP0=$ACC0;
875my $TEMP1="%ymm12";
876my $TEMP2="%ymm13";
877my $ZERO="%ymm14";
878my $AND_MASK="%ymm15";
879
880# alu registers that hold the first words of the ACC
881my $r0="%r9";
882my $r1="%r10";
883my $r2="%r11";
884my $r3="%r12";
885
886my $i="%r14d";
887my $tmp="%r15";
888
889$bp="%r13";	# reassigned argument
890
891$code.=<<___;
892.globl	rsaz_1024_mul_avx2
893.type	rsaz_1024_mul_avx2,\@function,5
894.align	64
895rsaz_1024_mul_avx2:
896	lea	(%rsp), %rax
897	push	%rbx
898	push	%rbp
899	push	%r12
900	push	%r13
901	push	%r14
902	push	%r15
903___
904$code.=<<___ if ($win64);
905	vzeroupper
906	lea	-0xa8(%rsp),%rsp
907	vmovaps	%xmm6,-0xd8(%rax)
908	vmovaps	%xmm7,-0xc8(%rax)
909	vmovaps	%xmm8,-0xb8(%rax)
910	vmovaps	%xmm9,-0xa8(%rax)
911	vmovaps	%xmm10,-0x98(%rax)
912	vmovaps	%xmm11,-0x88(%rax)
913	vmovaps	%xmm12,-0x78(%rax)
914	vmovaps	%xmm13,-0x68(%rax)
915	vmovaps	%xmm14,-0x58(%rax)
916	vmovaps	%xmm15,-0x48(%rax)
917.Lmul_1024_body:
918___
919$code.=<<___;
920	mov	%rax,%rbp
921	vzeroall
922	mov	%rdx, $bp	# reassigned argument
923	sub	\$64,%rsp
924
925	# unaligned 256-bit load that crosses page boundary can
926	# cause severe performance degradation here, so if $ap does
927	# cross page boundary, swap it with $bp [meaning that caller
928	# is advised to lay down $ap and $bp next to each other, so
929	# that only one can cross page boundary].
930	.byte	0x67,0x67
931	mov	$ap, $tmp
932	and	\$4095, $tmp
933	add	\$32*10, $tmp
934	shr	\$12, $tmp
935	mov	$ap, $tmp
936	cmovnz	$bp, $ap
937	cmovnz	$tmp, $bp
938
939	mov	$np, $tmp
940	sub	\$-128,$ap	# size optimization
941	sub	\$-128,$np
942	sub	\$-128,$rp
943
944	and	\$4095, $tmp	# see if $np crosses page
945	add	\$32*10, $tmp
946	.byte	0x67,0x67
947	shr	\$12, $tmp
948	jz	.Lmul_1024_no_n_copy
949
950	# unaligned 256-bit load that crosses page boundary can
951	# cause severe performance degradation here, so if $np does
952	# cross page boundary, copy it to stack and make sure stack
953	# frame doesn't...
954	sub		\$32*10,%rsp
955	vmovdqu		32*0-128($np), $ACC0
956	and		\$-512, %rsp
957	vmovdqu		32*1-128($np), $ACC1
958	vmovdqu		32*2-128($np), $ACC2
959	vmovdqu		32*3-128($np), $ACC3
960	vmovdqu		32*4-128($np), $ACC4
961	vmovdqu		32*5-128($np), $ACC5
962	vmovdqu		32*6-128($np), $ACC6
963	vmovdqu		32*7-128($np), $ACC7
964	vmovdqu		32*8-128($np), $ACC8
965	lea		64+128(%rsp),$np
966	vmovdqu		$ACC0, 32*0-128($np)
967	vpxor		$ACC0, $ACC0, $ACC0
968	vmovdqu		$ACC1, 32*1-128($np)
969	vpxor		$ACC1, $ACC1, $ACC1
970	vmovdqu		$ACC2, 32*2-128($np)
971	vpxor		$ACC2, $ACC2, $ACC2
972	vmovdqu		$ACC3, 32*3-128($np)
973	vpxor		$ACC3, $ACC3, $ACC3
974	vmovdqu		$ACC4, 32*4-128($np)
975	vpxor		$ACC4, $ACC4, $ACC4
976	vmovdqu		$ACC5, 32*5-128($np)
977	vpxor		$ACC5, $ACC5, $ACC5
978	vmovdqu		$ACC6, 32*6-128($np)
979	vpxor		$ACC6, $ACC6, $ACC6
980	vmovdqu		$ACC7, 32*7-128($np)
981	vpxor		$ACC7, $ACC7, $ACC7
982	vmovdqu		$ACC8, 32*8-128($np)
983	vmovdqa		$ACC0, $ACC8
984	vmovdqu		$ACC9, 32*9-128($np)	# $ACC9 is zero after vzeroall
985.Lmul_1024_no_n_copy:
986	and	\$-64,%rsp
987
988	mov	($bp), %rbx
989	vpbroadcastq ($bp), $Bi
990	vmovdqu	$ACC0, (%rsp)			# clear top of stack
991	xor	$r0, $r0
992	.byte	0x67
993	xor	$r1, $r1
994	xor	$r2, $r2
995	xor	$r3, $r3
996
997	vmovdqu	.Land_mask(%rip), $AND_MASK
998	mov	\$9, $i
999	vmovdqu	$ACC9, 32*9-128($rp)		# $ACC9 is zero after vzeroall
1000	jmp	.Loop_mul_1024
1001
1002.align	32
1003.Loop_mul_1024:
1004	 vpsrlq		\$29, $ACC3, $ACC9		# correct $ACC3(*)
1005	mov	%rbx, %rax
1006	imulq	-128($ap), %rax
1007	add	$r0, %rax
1008	mov	%rbx, $r1
1009	imulq	8-128($ap), $r1
1010	add	8(%rsp), $r1
1011
1012	mov	%rax, $r0
1013	imull	$n0, %eax
1014	and	\$0x1fffffff, %eax
1015
1016	 mov	%rbx, $r2
1017	 imulq	16-128($ap), $r2
1018	 add	16(%rsp), $r2
1019
1020	 mov	%rbx, $r3
1021	 imulq	24-128($ap), $r3
1022	 add	24(%rsp), $r3
1023	vpmuludq	32*1-128($ap),$Bi,$TEMP0
1024	 vmovd		%eax, $Yi
1025	vpaddq		$TEMP0,$ACC1,$ACC1
1026	vpmuludq	32*2-128($ap),$Bi,$TEMP1
1027	 vpbroadcastq	$Yi, $Yi
1028	vpaddq		$TEMP1,$ACC2,$ACC2
1029	vpmuludq	32*3-128($ap),$Bi,$TEMP2
1030	 vpand		$AND_MASK, $ACC3, $ACC3		# correct $ACC3
1031	vpaddq		$TEMP2,$ACC3,$ACC3
1032	vpmuludq	32*4-128($ap),$Bi,$TEMP0
1033	vpaddq		$TEMP0,$ACC4,$ACC4
1034	vpmuludq	32*5-128($ap),$Bi,$TEMP1
1035	vpaddq		$TEMP1,$ACC5,$ACC5
1036	vpmuludq	32*6-128($ap),$Bi,$TEMP2
1037	vpaddq		$TEMP2,$ACC6,$ACC6
1038	vpmuludq	32*7-128($ap),$Bi,$TEMP0
1039	 vpermq		\$0x93, $ACC9, $ACC9		# correct $ACC3
1040	vpaddq		$TEMP0,$ACC7,$ACC7
1041	vpmuludq	32*8-128($ap),$Bi,$TEMP1
1042	 vpbroadcastq	8($bp), $Bi
1043	vpaddq		$TEMP1,$ACC8,$ACC8
1044
1045	mov	%rax,%rdx
1046	imulq	-128($np),%rax
1047	add	%rax,$r0
1048	mov	%rdx,%rax
1049	imulq	8-128($np),%rax
1050	add	%rax,$r1
1051	mov	%rdx,%rax
1052	imulq	16-128($np),%rax
1053	add	%rax,$r2
1054	shr	\$29, $r0
1055	imulq	24-128($np),%rdx
1056	add	%rdx,$r3
1057	add	$r0, $r1
1058
1059	vpmuludq	32*1-128($np),$Yi,$TEMP2
1060	 vmovq		$Bi, %rbx
1061	vpaddq		$TEMP2,$ACC1,$ACC1
1062	vpmuludq	32*2-128($np),$Yi,$TEMP0
1063	vpaddq		$TEMP0,$ACC2,$ACC2
1064	vpmuludq	32*3-128($np),$Yi,$TEMP1
1065	vpaddq		$TEMP1,$ACC3,$ACC3
1066	vpmuludq	32*4-128($np),$Yi,$TEMP2
1067	vpaddq		$TEMP2,$ACC4,$ACC4
1068	vpmuludq	32*5-128($np),$Yi,$TEMP0
1069	vpaddq		$TEMP0,$ACC5,$ACC5
1070	vpmuludq	32*6-128($np),$Yi,$TEMP1
1071	vpaddq		$TEMP1,$ACC6,$ACC6
1072	vpmuludq	32*7-128($np),$Yi,$TEMP2
1073	 vpblendd	\$3, $ZERO, $ACC9, $TEMP1	# correct $ACC3
1074	vpaddq		$TEMP2,$ACC7,$ACC7
1075	vpmuludq	32*8-128($np),$Yi,$TEMP0
1076	 vpaddq		$TEMP1, $ACC3, $ACC3		# correct $ACC3
1077	vpaddq		$TEMP0,$ACC8,$ACC8
1078
1079	mov	%rbx, %rax
1080	imulq	-128($ap),%rax
1081	add	%rax,$r1
1082	 vmovdqu	-8+32*1-128($ap),$TEMP1
1083	mov	%rbx, %rax
1084	imulq	8-128($ap),%rax
1085	add	%rax,$r2
1086	 vmovdqu	-8+32*2-128($ap),$TEMP2
1087
1088	mov	$r1, %rax
1089	 vpblendd	\$0xfc, $ZERO, $ACC9, $ACC9	# correct $ACC3
1090	imull	$n0, %eax
1091	 vpaddq		$ACC9,$ACC4,$ACC4		# correct $ACC3
1092	and	\$0x1fffffff, %eax
1093
1094	 imulq	16-128($ap),%rbx
1095	 add	%rbx,$r3
1096	vpmuludq	$Bi,$TEMP1,$TEMP1
1097	 vmovd		%eax, $Yi
1098	vmovdqu		-8+32*3-128($ap),$TEMP0
1099	vpaddq		$TEMP1,$ACC1,$ACC1
1100	vpmuludq	$Bi,$TEMP2,$TEMP2
1101	 vpbroadcastq	$Yi, $Yi
1102	vmovdqu		-8+32*4-128($ap),$TEMP1
1103	vpaddq		$TEMP2,$ACC2,$ACC2
1104	vpmuludq	$Bi,$TEMP0,$TEMP0
1105	vmovdqu		-8+32*5-128($ap),$TEMP2
1106	vpaddq		$TEMP0,$ACC3,$ACC3
1107	vpmuludq	$Bi,$TEMP1,$TEMP1
1108	vmovdqu		-8+32*6-128($ap),$TEMP0
1109	vpaddq		$TEMP1,$ACC4,$ACC4
1110	vpmuludq	$Bi,$TEMP2,$TEMP2
1111	vmovdqu		-8+32*7-128($ap),$TEMP1
1112	vpaddq		$TEMP2,$ACC5,$ACC5
1113	vpmuludq	$Bi,$TEMP0,$TEMP0
1114	vmovdqu		-8+32*8-128($ap),$TEMP2
1115	vpaddq		$TEMP0,$ACC6,$ACC6
1116	vpmuludq	$Bi,$TEMP1,$TEMP1
1117	vmovdqu		-8+32*9-128($ap),$ACC9
1118	vpaddq		$TEMP1,$ACC7,$ACC7
1119	vpmuludq	$Bi,$TEMP2,$TEMP2
1120	vpaddq		$TEMP2,$ACC8,$ACC8
1121	vpmuludq	$Bi,$ACC9,$ACC9
1122	 vpbroadcastq	16($bp), $Bi
1123
1124	mov	%rax,%rdx
1125	imulq	-128($np),%rax
1126	add	%rax,$r1
1127	 vmovdqu	-8+32*1-128($np),$TEMP0
1128	mov	%rdx,%rax
1129	imulq	8-128($np),%rax
1130	add	%rax,$r2
1131	 vmovdqu	-8+32*2-128($np),$TEMP1
1132	shr	\$29, $r1
1133	imulq	16-128($np),%rdx
1134	add	%rdx,$r3
1135	add	$r1, $r2
1136
1137	vpmuludq	$Yi,$TEMP0,$TEMP0
1138	 vmovq		$Bi, %rbx
1139	vmovdqu		-8+32*3-128($np),$TEMP2
1140	vpaddq		$TEMP0,$ACC1,$ACC1
1141	vpmuludq	$Yi,$TEMP1,$TEMP1
1142	vmovdqu		-8+32*4-128($np),$TEMP0
1143	vpaddq		$TEMP1,$ACC2,$ACC2
1144	vpmuludq	$Yi,$TEMP2,$TEMP2
1145	vmovdqu		-8+32*5-128($np),$TEMP1
1146	vpaddq		$TEMP2,$ACC3,$ACC3
1147	vpmuludq	$Yi,$TEMP0,$TEMP0
1148	vmovdqu		-8+32*6-128($np),$TEMP2
1149	vpaddq		$TEMP0,$ACC4,$ACC4
1150	vpmuludq	$Yi,$TEMP1,$TEMP1
1151	vmovdqu		-8+32*7-128($np),$TEMP0
1152	vpaddq		$TEMP1,$ACC5,$ACC5
1153	vpmuludq	$Yi,$TEMP2,$TEMP2
1154	vmovdqu		-8+32*8-128($np),$TEMP1
1155	vpaddq		$TEMP2,$ACC6,$ACC6
1156	vpmuludq	$Yi,$TEMP0,$TEMP0
1157	vmovdqu		-8+32*9-128($np),$TEMP2
1158	vpaddq		$TEMP0,$ACC7,$ACC7
1159	vpmuludq	$Yi,$TEMP1,$TEMP1
1160	vpaddq		$TEMP1,$ACC8,$ACC8
1161	vpmuludq	$Yi,$TEMP2,$TEMP2
1162	vpaddq		$TEMP2,$ACC9,$ACC9
1163
1164	 vmovdqu	-16+32*1-128($ap),$TEMP0
1165	mov	%rbx,%rax
1166	imulq	-128($ap),%rax
1167	add	$r2,%rax
1168
1169	 vmovdqu	-16+32*2-128($ap),$TEMP1
1170	mov	%rax,$r2
1171	imull	$n0, %eax
1172	and	\$0x1fffffff, %eax
1173
1174	 imulq	8-128($ap),%rbx
1175	 add	%rbx,$r3
1176	vpmuludq	$Bi,$TEMP0,$TEMP0
1177	 vmovd		%eax, $Yi
1178	vmovdqu		-16+32*3-128($ap),$TEMP2
1179	vpaddq		$TEMP0,$ACC1,$ACC1
1180	vpmuludq	$Bi,$TEMP1,$TEMP1
1181	 vpbroadcastq	$Yi, $Yi
1182	vmovdqu		-16+32*4-128($ap),$TEMP0
1183	vpaddq		$TEMP1,$ACC2,$ACC2
1184	vpmuludq	$Bi,$TEMP2,$TEMP2
1185	vmovdqu		-16+32*5-128($ap),$TEMP1
1186	vpaddq		$TEMP2,$ACC3,$ACC3
1187	vpmuludq	$Bi,$TEMP0,$TEMP0
1188	vmovdqu		-16+32*6-128($ap),$TEMP2
1189	vpaddq		$TEMP0,$ACC4,$ACC4
1190	vpmuludq	$Bi,$TEMP1,$TEMP1
1191	vmovdqu		-16+32*7-128($ap),$TEMP0
1192	vpaddq		$TEMP1,$ACC5,$ACC5
1193	vpmuludq	$Bi,$TEMP2,$TEMP2
1194	vmovdqu		-16+32*8-128($ap),$TEMP1
1195	vpaddq		$TEMP2,$ACC6,$ACC6
1196	vpmuludq	$Bi,$TEMP0,$TEMP0
1197	vmovdqu		-16+32*9-128($ap),$TEMP2
1198	vpaddq		$TEMP0,$ACC7,$ACC7
1199	vpmuludq	$Bi,$TEMP1,$TEMP1
1200	vpaddq		$TEMP1,$ACC8,$ACC8
1201	vpmuludq	$Bi,$TEMP2,$TEMP2
1202	 vpbroadcastq	24($bp), $Bi
1203	vpaddq		$TEMP2,$ACC9,$ACC9
1204
1205	 vmovdqu	-16+32*1-128($np),$TEMP0
1206	mov	%rax,%rdx
1207	imulq	-128($np),%rax
1208	add	%rax,$r2
1209	 vmovdqu	-16+32*2-128($np),$TEMP1
1210	imulq	8-128($np),%rdx
1211	add	%rdx,$r3
1212	shr	\$29, $r2
1213
1214	vpmuludq	$Yi,$TEMP0,$TEMP0
1215	 vmovq		$Bi, %rbx
1216	vmovdqu		-16+32*3-128($np),$TEMP2
1217	vpaddq		$TEMP0,$ACC1,$ACC1
1218	vpmuludq	$Yi,$TEMP1,$TEMP1
1219	vmovdqu		-16+32*4-128($np),$TEMP0
1220	vpaddq		$TEMP1,$ACC2,$ACC2
1221	vpmuludq	$Yi,$TEMP2,$TEMP2
1222	vmovdqu		-16+32*5-128($np),$TEMP1
1223	vpaddq		$TEMP2,$ACC3,$ACC3
1224	vpmuludq	$Yi,$TEMP0,$TEMP0
1225	vmovdqu		-16+32*6-128($np),$TEMP2
1226	vpaddq		$TEMP0,$ACC4,$ACC4
1227	vpmuludq	$Yi,$TEMP1,$TEMP1
1228	vmovdqu		-16+32*7-128($np),$TEMP0
1229	vpaddq		$TEMP1,$ACC5,$ACC5
1230	vpmuludq	$Yi,$TEMP2,$TEMP2
1231	vmovdqu		-16+32*8-128($np),$TEMP1
1232	vpaddq		$TEMP2,$ACC6,$ACC6
1233	vpmuludq	$Yi,$TEMP0,$TEMP0
1234	vmovdqu		-16+32*9-128($np),$TEMP2
1235	vpaddq		$TEMP0,$ACC7,$ACC7
1236	vpmuludq	$Yi,$TEMP1,$TEMP1
1237	 vmovdqu	-24+32*1-128($ap),$TEMP0
1238	vpaddq		$TEMP1,$ACC8,$ACC8
1239	vpmuludq	$Yi,$TEMP2,$TEMP2
1240	 vmovdqu	-24+32*2-128($ap),$TEMP1
1241	vpaddq		$TEMP2,$ACC9,$ACC9
1242
1243	add	$r2, $r3
1244	imulq	-128($ap),%rbx
1245	add	%rbx,$r3
1246
1247	mov	$r3, %rax
1248	imull	$n0, %eax
1249	and	\$0x1fffffff, %eax
1250
1251	vpmuludq	$Bi,$TEMP0,$TEMP0
1252	 vmovd		%eax, $Yi
1253	vmovdqu		-24+32*3-128($ap),$TEMP2
1254	vpaddq		$TEMP0,$ACC1,$ACC1
1255	vpmuludq	$Bi,$TEMP1,$TEMP1
1256	 vpbroadcastq	$Yi, $Yi
1257	vmovdqu		-24+32*4-128($ap),$TEMP0
1258	vpaddq		$TEMP1,$ACC2,$ACC2
1259	vpmuludq	$Bi,$TEMP2,$TEMP2
1260	vmovdqu		-24+32*5-128($ap),$TEMP1
1261	vpaddq		$TEMP2,$ACC3,$ACC3
1262	vpmuludq	$Bi,$TEMP0,$TEMP0
1263	vmovdqu		-24+32*6-128($ap),$TEMP2
1264	vpaddq		$TEMP0,$ACC4,$ACC4
1265	vpmuludq	$Bi,$TEMP1,$TEMP1
1266	vmovdqu		-24+32*7-128($ap),$TEMP0
1267	vpaddq		$TEMP1,$ACC5,$ACC5
1268	vpmuludq	$Bi,$TEMP2,$TEMP2
1269	vmovdqu		-24+32*8-128($ap),$TEMP1
1270	vpaddq		$TEMP2,$ACC6,$ACC6
1271	vpmuludq	$Bi,$TEMP0,$TEMP0
1272	vmovdqu		-24+32*9-128($ap),$TEMP2
1273	vpaddq		$TEMP0,$ACC7,$ACC7
1274	vpmuludq	$Bi,$TEMP1,$TEMP1
1275	vpaddq		$TEMP1,$ACC8,$ACC8
1276	vpmuludq	$Bi,$TEMP2,$TEMP2
1277	 vpbroadcastq	32($bp), $Bi
1278	vpaddq		$TEMP2,$ACC9,$ACC9
1279	 add		\$32, $bp			# $bp++
1280
1281	vmovdqu		-24+32*1-128($np),$TEMP0
1282	imulq	-128($np),%rax
1283	add	%rax,$r3
1284	shr	\$29, $r3
1285
1286	vmovdqu		-24+32*2-128($np),$TEMP1
1287	vpmuludq	$Yi,$TEMP0,$TEMP0
1288	 vmovq		$Bi, %rbx
1289	vmovdqu		-24+32*3-128($np),$TEMP2
1290	vpaddq		$TEMP0,$ACC1,$ACC0		# $ACC0==$TEMP0
1291	vpmuludq	$Yi,$TEMP1,$TEMP1
1292	 vmovdqu	$ACC0, (%rsp)			# transfer $r0-$r3
1293	vpaddq		$TEMP1,$ACC2,$ACC1
1294	vmovdqu		-24+32*4-128($np),$TEMP0
1295	vpmuludq	$Yi,$TEMP2,$TEMP2
1296	vmovdqu		-24+32*5-128($np),$TEMP1
1297	vpaddq		$TEMP2,$ACC3,$ACC2
1298	vpmuludq	$Yi,$TEMP0,$TEMP0
1299	vmovdqu		-24+32*6-128($np),$TEMP2
1300	vpaddq		$TEMP0,$ACC4,$ACC3
1301	vpmuludq	$Yi,$TEMP1,$TEMP1
1302	vmovdqu		-24+32*7-128($np),$TEMP0
1303	vpaddq		$TEMP1,$ACC5,$ACC4
1304	vpmuludq	$Yi,$TEMP2,$TEMP2
1305	vmovdqu		-24+32*8-128($np),$TEMP1
1306	vpaddq		$TEMP2,$ACC6,$ACC5
1307	vpmuludq	$Yi,$TEMP0,$TEMP0
1308	vmovdqu		-24+32*9-128($np),$TEMP2
1309	 mov	$r3, $r0
1310	vpaddq		$TEMP0,$ACC7,$ACC6
1311	vpmuludq	$Yi,$TEMP1,$TEMP1
1312	 add	(%rsp), $r0
1313	vpaddq		$TEMP1,$ACC8,$ACC7
1314	vpmuludq	$Yi,$TEMP2,$TEMP2
1315	 vmovq	$r3, $TEMP1
1316	vpaddq		$TEMP2,$ACC9,$ACC8
1317
1318	dec	$i
1319	jnz	.Loop_mul_1024
1320___
1321
1322# (*)	Original implementation was correcting ACC1-ACC3 for overflow
1323#	after 7 loop runs, or after 28 iterations, or 56 additions.
1324#	But as we underutilize resources, it's possible to correct in
1325#	each iteration with marginal performance loss. But then, as
1326#	we do it in each iteration, we can correct less digits, and
1327#	avoid performance penalties completely.
1328
1329$TEMP0 = $ACC9;
1330$TEMP3 = $Bi;
1331$TEMP4 = $Yi;
1332$code.=<<___;
1333	vpaddq		(%rsp), $TEMP1, $ACC0
1334
1335	vpsrlq		\$29, $ACC0, $TEMP1
1336	vpand		$AND_MASK, $ACC0, $ACC0
1337	vpsrlq		\$29, $ACC1, $TEMP2
1338	vpand		$AND_MASK, $ACC1, $ACC1
1339	vpsrlq		\$29, $ACC2, $TEMP3
1340	vpermq		\$0x93, $TEMP1, $TEMP1
1341	vpand		$AND_MASK, $ACC2, $ACC2
1342	vpsrlq		\$29, $ACC3, $TEMP4
1343	vpermq		\$0x93, $TEMP2, $TEMP2
1344	vpand		$AND_MASK, $ACC3, $ACC3
1345
1346	vpblendd	\$3, $ZERO, $TEMP1, $TEMP0
1347	vpermq		\$0x93, $TEMP3, $TEMP3
1348	vpblendd	\$3, $TEMP1, $TEMP2, $TEMP1
1349	vpermq		\$0x93, $TEMP4, $TEMP4
1350	vpaddq		$TEMP0, $ACC0, $ACC0
1351	vpblendd	\$3, $TEMP2, $TEMP3, $TEMP2
1352	vpaddq		$TEMP1, $ACC1, $ACC1
1353	vpblendd	\$3, $TEMP3, $TEMP4, $TEMP3
1354	vpaddq		$TEMP2, $ACC2, $ACC2
1355	vpblendd	\$3, $TEMP4, $ZERO, $TEMP4
1356	vpaddq		$TEMP3, $ACC3, $ACC3
1357	vpaddq		$TEMP4, $ACC4, $ACC4
1358
1359	vpsrlq		\$29, $ACC0, $TEMP1
1360	vpand		$AND_MASK, $ACC0, $ACC0
1361	vpsrlq		\$29, $ACC1, $TEMP2
1362	vpand		$AND_MASK, $ACC1, $ACC1
1363	vpsrlq		\$29, $ACC2, $TEMP3
1364	vpermq		\$0x93, $TEMP1, $TEMP1
1365	vpand		$AND_MASK, $ACC2, $ACC2
1366	vpsrlq		\$29, $ACC3, $TEMP4
1367	vpermq		\$0x93, $TEMP2, $TEMP2
1368	vpand		$AND_MASK, $ACC3, $ACC3
1369	vpermq		\$0x93, $TEMP3, $TEMP3
1370
1371	vpblendd	\$3, $ZERO, $TEMP1, $TEMP0
1372	vpermq		\$0x93, $TEMP4, $TEMP4
1373	vpblendd	\$3, $TEMP1, $TEMP2, $TEMP1
1374	vpaddq		$TEMP0, $ACC0, $ACC0
1375	vpblendd	\$3, $TEMP2, $TEMP3, $TEMP2
1376	vpaddq		$TEMP1, $ACC1, $ACC1
1377	vpblendd	\$3, $TEMP3, $TEMP4, $TEMP3
1378	vpaddq		$TEMP2, $ACC2, $ACC2
1379	vpblendd	\$3, $TEMP4, $ZERO, $TEMP4
1380	vpaddq		$TEMP3, $ACC3, $ACC3
1381	vpaddq		$TEMP4, $ACC4, $ACC4
1382
1383	vmovdqu		$ACC0, 0-128($rp)
1384	vmovdqu		$ACC1, 32-128($rp)
1385	vmovdqu		$ACC2, 64-128($rp)
1386	vmovdqu		$ACC3, 96-128($rp)
1387___
1388
1389$TEMP5=$ACC0;
1390$code.=<<___;
1391	vpsrlq		\$29, $ACC4, $TEMP1
1392	vpand		$AND_MASK, $ACC4, $ACC4
1393	vpsrlq		\$29, $ACC5, $TEMP2
1394	vpand		$AND_MASK, $ACC5, $ACC5
1395	vpsrlq		\$29, $ACC6, $TEMP3
1396	vpermq		\$0x93, $TEMP1, $TEMP1
1397	vpand		$AND_MASK, $ACC6, $ACC6
1398	vpsrlq		\$29, $ACC7, $TEMP4
1399	vpermq		\$0x93, $TEMP2, $TEMP2
1400	vpand		$AND_MASK, $ACC7, $ACC7
1401	vpsrlq		\$29, $ACC8, $TEMP5
1402	vpermq		\$0x93, $TEMP3, $TEMP3
1403	vpand		$AND_MASK, $ACC8, $ACC8
1404	vpermq		\$0x93, $TEMP4, $TEMP4
1405
1406	vpblendd	\$3, $ZERO, $TEMP1, $TEMP0
1407	vpermq		\$0x93, $TEMP5, $TEMP5
1408	vpblendd	\$3, $TEMP1, $TEMP2, $TEMP1
1409	vpaddq		$TEMP0, $ACC4, $ACC4
1410	vpblendd	\$3, $TEMP2, $TEMP3, $TEMP2
1411	vpaddq		$TEMP1, $ACC5, $ACC5
1412	vpblendd	\$3, $TEMP3, $TEMP4, $TEMP3
1413	vpaddq		$TEMP2, $ACC6, $ACC6
1414	vpblendd	\$3, $TEMP4, $TEMP5, $TEMP4
1415	vpaddq		$TEMP3, $ACC7, $ACC7
1416	vpaddq		$TEMP4, $ACC8, $ACC8
1417
1418	vpsrlq		\$29, $ACC4, $TEMP1
1419	vpand		$AND_MASK, $ACC4, $ACC4
1420	vpsrlq		\$29, $ACC5, $TEMP2
1421	vpand		$AND_MASK, $ACC5, $ACC5
1422	vpsrlq		\$29, $ACC6, $TEMP3
1423	vpermq		\$0x93, $TEMP1, $TEMP1
1424	vpand		$AND_MASK, $ACC6, $ACC6
1425	vpsrlq		\$29, $ACC7, $TEMP4
1426	vpermq		\$0x93, $TEMP2, $TEMP2
1427	vpand		$AND_MASK, $ACC7, $ACC7
1428	vpsrlq		\$29, $ACC8, $TEMP5
1429	vpermq		\$0x93, $TEMP3, $TEMP3
1430	vpand		$AND_MASK, $ACC8, $ACC8
1431	vpermq		\$0x93, $TEMP4, $TEMP4
1432
1433	vpblendd	\$3, $ZERO, $TEMP1, $TEMP0
1434	vpermq		\$0x93, $TEMP5, $TEMP5
1435	vpblendd	\$3, $TEMP1, $TEMP2, $TEMP1
1436	vpaddq		$TEMP0, $ACC4, $ACC4
1437	vpblendd	\$3, $TEMP2, $TEMP3, $TEMP2
1438	vpaddq		$TEMP1, $ACC5, $ACC5
1439	vpblendd	\$3, $TEMP3, $TEMP4, $TEMP3
1440	vpaddq		$TEMP2, $ACC6, $ACC6
1441	vpblendd	\$3, $TEMP4, $TEMP5, $TEMP4
1442	vpaddq		$TEMP3, $ACC7, $ACC7
1443	vpaddq		$TEMP4, $ACC8, $ACC8
1444
1445	vmovdqu		$ACC4, 128-128($rp)
1446	vmovdqu		$ACC5, 160-128($rp)
1447	vmovdqu		$ACC6, 192-128($rp)
1448	vmovdqu		$ACC7, 224-128($rp)
1449	vmovdqu		$ACC8, 256-128($rp)
1450	vzeroupper
1451
1452	mov	%rbp, %rax
1453___
1454$code.=<<___ if ($win64);
1455	movaps	-0xd8(%rax),%xmm6
1456	movaps	-0xc8(%rax),%xmm7
1457	movaps	-0xb8(%rax),%xmm8
1458	movaps	-0xa8(%rax),%xmm9
1459	movaps	-0x98(%rax),%xmm10
1460	movaps	-0x88(%rax),%xmm11
1461	movaps	-0x78(%rax),%xmm12
1462	movaps	-0x68(%rax),%xmm13
1463	movaps	-0x58(%rax),%xmm14
1464	movaps	-0x48(%rax),%xmm15
1465___
1466$code.=<<___;
1467	mov	-48(%rax),%r15
1468	mov	-40(%rax),%r14
1469	mov	-32(%rax),%r13
1470	mov	-24(%rax),%r12
1471	mov	-16(%rax),%rbp
1472	mov	-8(%rax),%rbx
1473	lea	(%rax),%rsp		# restore %rsp
1474.Lmul_1024_epilogue:
1475	ret
1476.size	rsaz_1024_mul_avx2,.-rsaz_1024_mul_avx2
1477___
1478}
1479{
1480my ($out,$inp) = $win64 ? ("%rcx","%rdx") : ("%rdi","%rsi");
1481my @T = map("%r$_",(8..11));
1482
1483$code.=<<___;
1484.globl	rsaz_1024_red2norm_avx2
1485.type	rsaz_1024_red2norm_avx2,\@abi-omnipotent
1486.align	32
1487rsaz_1024_red2norm_avx2:
1488	sub	\$-128,$inp	# size optimization
1489	xor	%rax,%rax
1490___
1491
1492for ($j=0,$i=0; $i<16; $i++) {
1493    my $k=0;
1494    while (29*$j<64*($i+1)) {	# load data till boundary
1495	$code.="	mov	`8*$j-128`($inp), @T[0]\n";
1496	$j++; $k++; push(@T,shift(@T));
1497    }
1498    $l=$k;
1499    while ($k>1) {		# shift loaded data but last value
1500	$code.="	shl	\$`29*($j-$k)`,@T[-$k]\n";
1501	$k--;
1502    }
1503    $code.=<<___;		# shift last value
1504	mov	@T[-1], @T[0]
1505	shl	\$`29*($j-1)`, @T[-1]
1506	shr	\$`-29*($j-1)`, @T[0]
1507___
1508    while ($l) {		# accumulate all values
1509	$code.="	add	@T[-$l], %rax\n";
1510	$l--;
1511    }
1512	$code.=<<___;
1513	adc	\$0, @T[0]	# consume eventual carry
1514	mov	%rax, 8*$i($out)
1515	mov	@T[0], %rax
1516___
1517    push(@T,shift(@T));
1518}
1519$code.=<<___;
1520	ret
1521.size	rsaz_1024_red2norm_avx2,.-rsaz_1024_red2norm_avx2
1522
1523.globl	rsaz_1024_norm2red_avx2
1524.type	rsaz_1024_norm2red_avx2,\@abi-omnipotent
1525.align	32
1526rsaz_1024_norm2red_avx2:
1527	sub	\$-128,$out	# size optimization
1528	mov	($inp),@T[0]
1529	mov	\$0x1fffffff,%eax
1530___
1531for ($j=0,$i=0; $i<16; $i++) {
1532    $code.="	mov	`8*($i+1)`($inp),@T[1]\n"	if ($i<15);
1533    $code.="	xor	@T[1],@T[1]\n"			if ($i==15);
1534    my $k=1;
1535    while (29*($j+1)<64*($i+1)) {
1536    	$code.=<<___;
1537	mov	@T[0],@T[-$k]
1538	shr	\$`29*$j`,@T[-$k]
1539	and	%rax,@T[-$k]				# &0x1fffffff
1540	mov	@T[-$k],`8*$j-128`($out)
1541___
1542	$j++; $k++;
1543    }
1544    $code.=<<___;
1545	shrd	\$`29*$j`,@T[1],@T[0]
1546	and	%rax,@T[0]
1547	mov	@T[0],`8*$j-128`($out)
1548___
1549    $j++;
1550    push(@T,shift(@T));
1551}
1552$code.=<<___;
1553	mov	@T[0],`8*$j-128`($out)			# zero
1554	mov	@T[0],`8*($j+1)-128`($out)
1555	mov	@T[0],`8*($j+2)-128`($out)
1556	mov	@T[0],`8*($j+3)-128`($out)
1557	ret
1558.size	rsaz_1024_norm2red_avx2,.-rsaz_1024_norm2red_avx2
1559___
1560}
1561{
1562my ($out,$inp,$power) = $win64 ? ("%rcx","%rdx","%r8d") : ("%rdi","%rsi","%edx");
1563
1564$code.=<<___;
1565.globl	rsaz_1024_scatter5_avx2
1566.type	rsaz_1024_scatter5_avx2,\@abi-omnipotent
1567.align	32
1568rsaz_1024_scatter5_avx2:
1569	vzeroupper
1570	vmovdqu	.Lscatter_permd(%rip),%ymm5
1571	shl	\$4,$power
1572	lea	($out,$power),$out
1573	mov	\$9,%eax
1574	jmp	.Loop_scatter_1024
1575
1576.align	32
1577.Loop_scatter_1024:
1578	vmovdqu		($inp),%ymm0
1579	lea		32($inp),$inp
1580	vpermd		%ymm0,%ymm5,%ymm0
1581	vmovdqu		%xmm0,($out)
1582	lea		16*32($out),$out
1583	dec	%eax
1584	jnz	.Loop_scatter_1024
1585
1586	vzeroupper
1587	ret
1588.size	rsaz_1024_scatter5_avx2,.-rsaz_1024_scatter5_avx2
1589
1590.globl	rsaz_1024_gather5_avx2
1591.type	rsaz_1024_gather5_avx2,\@abi-omnipotent
1592.align	32
1593rsaz_1024_gather5_avx2:
1594	vzeroupper
1595	mov	%rsp,%r11
1596___
1597$code.=<<___ if ($win64);
1598	lea	-0x88(%rsp),%rax
1599.LSEH_begin_rsaz_1024_gather5:
1600	# I can't trust assembler to use specific encoding:-(
1601	.byte	0x48,0x8d,0x60,0xe0		# lea	-0x20(%rax),%rsp
1602	.byte	0xc5,0xf8,0x29,0x70,0xe0	# vmovaps %xmm6,-0x20(%rax)
1603	.byte	0xc5,0xf8,0x29,0x78,0xf0	# vmovaps %xmm7,-0x10(%rax)
1604	.byte	0xc5,0x78,0x29,0x40,0x00	# vmovaps %xmm8,0(%rax)
1605	.byte	0xc5,0x78,0x29,0x48,0x10	# vmovaps %xmm9,0x10(%rax)
1606	.byte	0xc5,0x78,0x29,0x50,0x20	# vmovaps %xmm10,0x20(%rax)
1607	.byte	0xc5,0x78,0x29,0x58,0x30	# vmovaps %xmm11,0x30(%rax)
1608	.byte	0xc5,0x78,0x29,0x60,0x40	# vmovaps %xmm12,0x40(%rax)
1609	.byte	0xc5,0x78,0x29,0x68,0x50	# vmovaps %xmm13,0x50(%rax)
1610	.byte	0xc5,0x78,0x29,0x70,0x60	# vmovaps %xmm14,0x60(%rax)
1611	.byte	0xc5,0x78,0x29,0x78,0x70	# vmovaps %xmm15,0x70(%rax)
1612___
1613$code.=<<___;
1614	lea	-0x100(%rsp),%rsp
1615	and	\$-32, %rsp
1616	lea	.Linc(%rip), %r10
1617	lea	-128(%rsp),%rax			# control u-op density
1618
1619	vmovd		$power, %xmm4
1620	vmovdqa		(%r10),%ymm0
1621	vmovdqa		32(%r10),%ymm1
1622	vmovdqa		64(%r10),%ymm5
1623	vpbroadcastd	%xmm4,%ymm4
1624
1625	vpaddd		%ymm5, %ymm0, %ymm2
1626	vpcmpeqd	%ymm4, %ymm0, %ymm0
1627	vpaddd		%ymm5, %ymm1, %ymm3
1628	vpcmpeqd	%ymm4, %ymm1, %ymm1
1629	vmovdqa		%ymm0, 32*0+128(%rax)
1630	vpaddd		%ymm5, %ymm2, %ymm0
1631	vpcmpeqd	%ymm4, %ymm2, %ymm2
1632	vmovdqa		%ymm1, 32*1+128(%rax)
1633	vpaddd		%ymm5, %ymm3, %ymm1
1634	vpcmpeqd	%ymm4, %ymm3, %ymm3
1635	vmovdqa		%ymm2, 32*2+128(%rax)
1636	vpaddd		%ymm5, %ymm0, %ymm2
1637	vpcmpeqd	%ymm4, %ymm0, %ymm0
1638	vmovdqa		%ymm3, 32*3+128(%rax)
1639	vpaddd		%ymm5, %ymm1, %ymm3
1640	vpcmpeqd	%ymm4, %ymm1, %ymm1
1641	vmovdqa		%ymm0, 32*4+128(%rax)
1642	vpaddd		%ymm5, %ymm2, %ymm8
1643	vpcmpeqd	%ymm4, %ymm2, %ymm2
1644	vmovdqa		%ymm1, 32*5+128(%rax)
1645	vpaddd		%ymm5, %ymm3, %ymm9
1646	vpcmpeqd	%ymm4, %ymm3, %ymm3
1647	vmovdqa		%ymm2, 32*6+128(%rax)
1648	vpaddd		%ymm5, %ymm8, %ymm10
1649	vpcmpeqd	%ymm4, %ymm8, %ymm8
1650	vmovdqa		%ymm3, 32*7+128(%rax)
1651	vpaddd		%ymm5, %ymm9, %ymm11
1652	vpcmpeqd	%ymm4, %ymm9, %ymm9
1653	vpaddd		%ymm5, %ymm10, %ymm12
1654	vpcmpeqd	%ymm4, %ymm10, %ymm10
1655	vpaddd		%ymm5, %ymm11, %ymm13
1656	vpcmpeqd	%ymm4, %ymm11, %ymm11
1657	vpaddd		%ymm5, %ymm12, %ymm14
1658	vpcmpeqd	%ymm4, %ymm12, %ymm12
1659	vpaddd		%ymm5, %ymm13, %ymm15
1660	vpcmpeqd	%ymm4, %ymm13, %ymm13
1661	vpcmpeqd	%ymm4, %ymm14, %ymm14
1662	vpcmpeqd	%ymm4, %ymm15, %ymm15
1663
1664	vmovdqa	-32(%r10),%ymm7			# .Lgather_permd
1665	lea	128($inp), $inp
1666	mov	\$9,$power
1667
1668.Loop_gather_1024:
1669	vmovdqa		32*0-128($inp),	%ymm0
1670	vmovdqa		32*1-128($inp),	%ymm1
1671	vmovdqa		32*2-128($inp),	%ymm2
1672	vmovdqa		32*3-128($inp),	%ymm3
1673	vpand		32*0+128(%rax),	%ymm0,	%ymm0
1674	vpand		32*1+128(%rax),	%ymm1,	%ymm1
1675	vpand		32*2+128(%rax),	%ymm2,	%ymm2
1676	vpor		%ymm0, %ymm1, %ymm4
1677	vpand		32*3+128(%rax),	%ymm3,	%ymm3
1678	vmovdqa		32*4-128($inp),	%ymm0
1679	vmovdqa		32*5-128($inp),	%ymm1
1680	vpor		%ymm2, %ymm3, %ymm5
1681	vmovdqa		32*6-128($inp),	%ymm2
1682	vmovdqa		32*7-128($inp),	%ymm3
1683	vpand		32*4+128(%rax),	%ymm0,	%ymm0
1684	vpand		32*5+128(%rax),	%ymm1,	%ymm1
1685	vpand		32*6+128(%rax),	%ymm2,	%ymm2
1686	vpor		%ymm0, %ymm4, %ymm4
1687	vpand		32*7+128(%rax),	%ymm3,	%ymm3
1688	vpand		32*8-128($inp),	%ymm8,	%ymm0
1689	vpor		%ymm1, %ymm5, %ymm5
1690	vpand		32*9-128($inp),	%ymm9,	%ymm1
1691	vpor		%ymm2, %ymm4, %ymm4
1692	vpand		32*10-128($inp),%ymm10,	%ymm2
1693	vpor		%ymm3, %ymm5, %ymm5
1694	vpand		32*11-128($inp),%ymm11,	%ymm3
1695	vpor		%ymm0, %ymm4, %ymm4
1696	vpand		32*12-128($inp),%ymm12,	%ymm0
1697	vpor		%ymm1, %ymm5, %ymm5
1698	vpand		32*13-128($inp),%ymm13,	%ymm1
1699	vpor		%ymm2, %ymm4, %ymm4
1700	vpand		32*14-128($inp),%ymm14,	%ymm2
1701	vpor		%ymm3, %ymm5, %ymm5
1702	vpand		32*15-128($inp),%ymm15,	%ymm3
1703	lea		32*16($inp), $inp
1704	vpor		%ymm0, %ymm4, %ymm4
1705	vpor		%ymm1, %ymm5, %ymm5
1706	vpor		%ymm2, %ymm4, %ymm4
1707	vpor		%ymm3, %ymm5, %ymm5
1708
1709	vpor		%ymm5, %ymm4, %ymm4
1710	vextracti128	\$1, %ymm4, %xmm5	# upper half is cleared
1711	vpor		%xmm4, %xmm5, %xmm5
1712	vpermd		%ymm5,%ymm7,%ymm5
1713	vmovdqu		%ymm5,($out)
1714	lea		32($out),$out
1715	dec	$power
1716	jnz	.Loop_gather_1024
1717
1718	vpxor	%ymm0,%ymm0,%ymm0
1719	vmovdqu	%ymm0,($out)
1720	vzeroupper
1721___
1722$code.=<<___ if ($win64);
1723	movaps	-0xa8(%r11),%xmm6
1724	movaps	-0x98(%r11),%xmm7
1725	movaps	-0x88(%r11),%xmm8
1726	movaps	-0x78(%r11),%xmm9
1727	movaps	-0x68(%r11),%xmm10
1728	movaps	-0x58(%r11),%xmm11
1729	movaps	-0x48(%r11),%xmm12
1730	movaps	-0x38(%r11),%xmm13
1731	movaps	-0x28(%r11),%xmm14
1732	movaps	-0x18(%r11),%xmm15
1733.LSEH_end_rsaz_1024_gather5:
1734___
1735$code.=<<___;
1736	lea	(%r11),%rsp
1737	ret
1738.size	rsaz_1024_gather5_avx2,.-rsaz_1024_gather5_avx2
1739___
1740}
1741
1742$code.=<<___;
1743.extern	OPENSSL_ia32cap_P
1744.globl	rsaz_avx2_eligible
1745.type	rsaz_avx2_eligible,\@abi-omnipotent
1746.align	32
1747rsaz_avx2_eligible:
1748	mov	OPENSSL_ia32cap_P+8(%rip),%eax
1749___
1750$code.=<<___	if ($addx);
1751	mov	\$`1<<8|1<<19`,%ecx
1752	mov	\$0,%edx
1753	and	%eax,%ecx
1754	cmp	\$`1<<8|1<<19`,%ecx	# check for BMI2+AD*X
1755	cmove	%edx,%eax
1756___
1757$code.=<<___;
1758	and	\$`1<<5`,%eax
1759	shr	\$5,%eax
1760	ret
1761.size	rsaz_avx2_eligible,.-rsaz_avx2_eligible
1762
1763.align	64
1764.Land_mask:
1765	.quad	0x1fffffff,0x1fffffff,0x1fffffff,0x1fffffff
1766.Lscatter_permd:
1767	.long	0,2,4,6,7,7,7,7
1768.Lgather_permd:
1769	.long	0,7,1,7,2,7,3,7
1770.Linc:
1771	.long	0,0,0,0, 1,1,1,1
1772	.long	2,2,2,2, 3,3,3,3
1773	.long	4,4,4,4, 4,4,4,4
1774.align	64
1775___
1776
1777if ($win64) {
1778$rec="%rcx";
1779$frame="%rdx";
1780$context="%r8";
1781$disp="%r9";
1782
1783$code.=<<___
1784.extern	__imp_RtlVirtualUnwind
1785.type	rsaz_se_handler,\@abi-omnipotent
1786.align	16
1787rsaz_se_handler:
1788	push	%rsi
1789	push	%rdi
1790	push	%rbx
1791	push	%rbp
1792	push	%r12
1793	push	%r13
1794	push	%r14
1795	push	%r15
1796	pushfq
1797	sub	\$64,%rsp
1798
1799	mov	120($context),%rax	# pull context->Rax
1800	mov	248($context),%rbx	# pull context->Rip
1801
1802	mov	8($disp),%rsi		# disp->ImageBase
1803	mov	56($disp),%r11		# disp->HandlerData
1804
1805	mov	0(%r11),%r10d		# HandlerData[0]
1806	lea	(%rsi,%r10),%r10	# prologue label
1807	cmp	%r10,%rbx		# context->Rip<prologue label
1808	jb	.Lcommon_seh_tail
1809
1810	mov	152($context),%rax	# pull context->Rsp
1811
1812	mov	4(%r11),%r10d		# HandlerData[1]
1813	lea	(%rsi,%r10),%r10	# epilogue label
1814	cmp	%r10,%rbx		# context->Rip>=epilogue label
1815	jae	.Lcommon_seh_tail
1816
1817	mov	160($context),%rax	# pull context->Rbp
1818
1819	mov	-48(%rax),%r15
1820	mov	-40(%rax),%r14
1821	mov	-32(%rax),%r13
1822	mov	-24(%rax),%r12
1823	mov	-16(%rax),%rbp
1824	mov	-8(%rax),%rbx
1825	mov	%r15,240($context)
1826	mov	%r14,232($context)
1827	mov	%r13,224($context)
1828	mov	%r12,216($context)
1829	mov	%rbp,160($context)
1830	mov	%rbx,144($context)
1831
1832	lea	-0xd8(%rax),%rsi	# %xmm save area
1833	lea	512($context),%rdi	# & context.Xmm6
1834	mov	\$20,%ecx		# 10*sizeof(%xmm0)/sizeof(%rax)
1835	.long	0xa548f3fc		# cld; rep movsq
1836
1837.Lcommon_seh_tail:
1838	mov	8(%rax),%rdi
1839	mov	16(%rax),%rsi
1840	mov	%rax,152($context)	# restore context->Rsp
1841	mov	%rsi,168($context)	# restore context->Rsi
1842	mov	%rdi,176($context)	# restore context->Rdi
1843
1844	mov	40($disp),%rdi		# disp->ContextRecord
1845	mov	$context,%rsi		# context
1846	mov	\$154,%ecx		# sizeof(CONTEXT)
1847	.long	0xa548f3fc		# cld; rep movsq
1848
1849	mov	$disp,%rsi
1850	xor	%rcx,%rcx		# arg1, UNW_FLAG_NHANDLER
1851	mov	8(%rsi),%rdx		# arg2, disp->ImageBase
1852	mov	0(%rsi),%r8		# arg3, disp->ControlPc
1853	mov	16(%rsi),%r9		# arg4, disp->FunctionEntry
1854	mov	40(%rsi),%r10		# disp->ContextRecord
1855	lea	56(%rsi),%r11		# &disp->HandlerData
1856	lea	24(%rsi),%r12		# &disp->EstablisherFrame
1857	mov	%r10,32(%rsp)		# arg5
1858	mov	%r11,40(%rsp)		# arg6
1859	mov	%r12,48(%rsp)		# arg7
1860	mov	%rcx,56(%rsp)		# arg8, (NULL)
1861	call	*__imp_RtlVirtualUnwind(%rip)
1862
1863	mov	\$1,%eax		# ExceptionContinueSearch
1864	add	\$64,%rsp
1865	popfq
1866	pop	%r15
1867	pop	%r14
1868	pop	%r13
1869	pop	%r12
1870	pop	%rbp
1871	pop	%rbx
1872	pop	%rdi
1873	pop	%rsi
1874	ret
1875.size	rsaz_se_handler,.-rsaz_se_handler
1876
1877.section	.pdata
1878.align	4
1879	.rva	.LSEH_begin_rsaz_1024_sqr_avx2
1880	.rva	.LSEH_end_rsaz_1024_sqr_avx2
1881	.rva	.LSEH_info_rsaz_1024_sqr_avx2
1882
1883	.rva	.LSEH_begin_rsaz_1024_mul_avx2
1884	.rva	.LSEH_end_rsaz_1024_mul_avx2
1885	.rva	.LSEH_info_rsaz_1024_mul_avx2
1886
1887	.rva	.LSEH_begin_rsaz_1024_gather5
1888	.rva	.LSEH_end_rsaz_1024_gather5
1889	.rva	.LSEH_info_rsaz_1024_gather5
1890.section	.xdata
1891.align	8
1892.LSEH_info_rsaz_1024_sqr_avx2:
1893	.byte	9,0,0,0
1894	.rva	rsaz_se_handler
1895	.rva	.Lsqr_1024_body,.Lsqr_1024_epilogue
1896.LSEH_info_rsaz_1024_mul_avx2:
1897	.byte	9,0,0,0
1898	.rva	rsaz_se_handler
1899	.rva	.Lmul_1024_body,.Lmul_1024_epilogue
1900.LSEH_info_rsaz_1024_gather5:
1901	.byte	0x01,0x36,0x17,0x0b
1902	.byte	0x36,0xf8,0x09,0x00	# vmovaps 0x90(rsp),xmm15
1903	.byte	0x31,0xe8,0x08,0x00	# vmovaps 0x80(rsp),xmm14
1904	.byte	0x2c,0xd8,0x07,0x00	# vmovaps 0x70(rsp),xmm13
1905	.byte	0x27,0xc8,0x06,0x00	# vmovaps 0x60(rsp),xmm12
1906	.byte	0x22,0xb8,0x05,0x00	# vmovaps 0x50(rsp),xmm11
1907	.byte	0x1d,0xa8,0x04,0x00	# vmovaps 0x40(rsp),xmm10
1908	.byte	0x18,0x98,0x03,0x00	# vmovaps 0x30(rsp),xmm9
1909	.byte	0x13,0x88,0x02,0x00	# vmovaps 0x20(rsp),xmm8
1910	.byte	0x0e,0x78,0x01,0x00	# vmovaps 0x10(rsp),xmm7
1911	.byte	0x09,0x68,0x00,0x00	# vmovaps 0x00(rsp),xmm6
1912	.byte	0x04,0x01,0x15,0x00	# sub	  rsp,0xa8
1913	.byte	0x00,0xb3,0x00,0x00	# set_frame r11
1914___
1915}
1916
1917foreach (split("\n",$code)) {
1918	s/\`([^\`]*)\`/eval($1)/ge;
1919
1920	s/\b(sh[rl]d?\s+\$)(-?[0-9]+)/$1.$2%64/ge		or
1921
1922	s/\b(vmov[dq])\b(.+)%ymm([0-9]+)/$1$2%xmm$3/go		or
1923	s/\b(vmovdqu)\b(.+)%x%ymm([0-9]+)/$1$2%xmm$3/go		or
1924	s/\b(vpinsr[qd])\b(.+)%ymm([0-9]+)/$1$2%xmm$3/go	or
1925	s/\b(vpextr[qd])\b(.+)%ymm([0-9]+)/$1$2%xmm$3/go	or
1926	s/\b(vpbroadcast[qd]\s+)%ymm([0-9]+)/$1%xmm$2/go;
1927	print $_,"\n";
1928}
1929
1930}}} else {{{
1931print <<___;	# assembler is too old
1932.text
1933
1934.globl	rsaz_avx2_eligible
1935.type	rsaz_avx2_eligible,\@abi-omnipotent
1936rsaz_avx2_eligible:
1937	xor	%eax,%eax
1938	ret
1939.size	rsaz_avx2_eligible,.-rsaz_avx2_eligible
1940
1941.globl	rsaz_1024_sqr_avx2
1942.globl	rsaz_1024_mul_avx2
1943.globl	rsaz_1024_norm2red_avx2
1944.globl	rsaz_1024_red2norm_avx2
1945.globl	rsaz_1024_scatter5_avx2
1946.globl	rsaz_1024_gather5_avx2
1947.type	rsaz_1024_sqr_avx2,\@abi-omnipotent
1948rsaz_1024_sqr_avx2:
1949rsaz_1024_mul_avx2:
1950rsaz_1024_norm2red_avx2:
1951rsaz_1024_red2norm_avx2:
1952rsaz_1024_scatter5_avx2:
1953rsaz_1024_gather5_avx2:
1954	.byte	0x0f,0x0b	# ud2
1955	ret
1956.size	rsaz_1024_sqr_avx2,.-rsaz_1024_sqr_avx2
1957___
1958}}}
1959
1960close STDOUT;
1961