parisc-mont.pl revision 337982
1#!/usr/bin/env perl
2
3# ====================================================================
4# Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
5# project. The module is, however, dual licensed under OpenSSL and
6# CRYPTOGAMS licenses depending on where you obtain it. For further
7# details see http://www.openssl.org/~appro/cryptogams/.
8# ====================================================================
9
10# On PA-7100LC this module performs ~90-50% better, less for longer
11# keys, than code generated by gcc 3.2 for PA-RISC 1.1. Latter means
12# that compiler utilized xmpyu instruction to perform 32x32=64-bit
13# multiplication, which in turn means that "baseline" performance was
14# optimal in respect to instruction set capabilities. Fair comparison
15# with vendor compiler is problematic, because OpenSSL doesn't define
16# BN_LLONG [presumably] for historical reasons, which drives compiler
17# toward 4 times 16x16=32-bit multiplicatons [plus complementary
18# shifts and additions] instead. This means that you should observe
19# several times improvement over code generated by vendor compiler
20# for PA-RISC 1.1, but the "baseline" is far from optimal. The actual
21# improvement coefficient was never collected on PA-7100LC, or any
22# other 1.1 CPU, because I don't have access to such machine with
23# vendor compiler. But to give you a taste, PA-RISC 1.1 code path
24# reportedly outperformed code generated by cc +DA1.1 +O3 by factor
25# of ~5x on PA-8600.
26#
27# On PA-RISC 2.0 it has to compete with pa-risc2[W].s, which is
28# reportedly ~2x faster than vendor compiler generated code [according
29# to comment in pa-risc2[W].s]. Here comes a catch. Execution core of
30# this implementation is actually 32-bit one, in the sense that it
31# operates on 32-bit values. But pa-risc2[W].s operates on arrays of
32# 64-bit BN_LONGs... How do they interoperate then? No problem. This
33# module picks halves of 64-bit values in reverse order and pretends
34# they were 32-bit BN_LONGs. But can 32-bit core compete with "pure"
35# 64-bit code such as pa-risc2[W].s then? Well, the thing is that
36# 32x32=64-bit multiplication is the best even PA-RISC 2.0 can do,
37# i.e. there is no "wider" multiplication like on most other 64-bit
38# platforms. This means that even being effectively 32-bit, this
39# implementation performs "64-bit" computational task in same amount
40# of arithmetic operations, most notably multiplications. It requires
41# more memory references, most notably to tp[num], but this doesn't
42# seem to exhaust memory port capacity. And indeed, dedicated PA-RISC
43# 2.0 code path provides virtually same performance as pa-risc2[W].s:
44# it's ~10% better for shortest key length and ~10% worse for longest
45# one.
46#
47# In case it wasn't clear. The module has two distinct code paths:
48# PA-RISC 1.1 and PA-RISC 2.0 ones. Latter features carry-free 64-bit
49# additions and 64-bit integer loads, not to mention specific
50# instruction scheduling. In 64-bit build naturally only 2.0 code path
51# is assembled. In 32-bit application context both code paths are
52# assembled, PA-RISC 2.0 CPU is detected at run-time and proper path
53# is taken automatically. Also, in 32-bit build the module imposes
54# couple of limitations: vector lengths has to be even and vector
55# addresses has to be 64-bit aligned. Normally neither is a problem:
56# most common key lengths are even and vectors are commonly malloc-ed,
57# which ensures alignment.
58#
59# Special thanks to polarhome.com for providing HP-UX account on
60# PA-RISC 1.1 machine, and to correspondent who chose to remain
61# anonymous for testing the code on PA-RISC 2.0 machine.
62
63$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
64
65$flavour = shift;
66$output = shift;
67
68open STDOUT,">$output";
69
70if ($flavour =~ /64/) {
71	$LEVEL		="2.0W";
72	$SIZE_T		=8;
73	$FRAME_MARKER	=80;
74	$SAVED_RP	=16;
75	$PUSH		="std";
76	$PUSHMA		="std,ma";
77	$POP		="ldd";
78	$POPMB		="ldd,mb";
79	$BN_SZ		=$SIZE_T;
80} else {
81	$LEVEL		="1.1";	#$LEVEL.="\n\t.ALLOW\t2.0";
82	$SIZE_T		=4;
83	$FRAME_MARKER	=48;
84	$SAVED_RP	=20;
85	$PUSH		="stw";
86	$PUSHMA		="stwm";
87	$POP		="ldw";
88	$POPMB		="ldwm";
89	$BN_SZ		=$SIZE_T;
90	if (open CONF,"<${dir}../../opensslconf.h") {
91	    while(<CONF>) {
92		if (m/#\s*define\s+SIXTY_FOUR_BIT/) {
93		    $BN_SZ=8;
94		    $LEVEL="2.0";
95		    last;
96		}
97	    }
98	    close CONF;
99	}
100}
101
102$FRAME=8*$SIZE_T+$FRAME_MARKER;	# 8 saved regs + frame marker
103				#                [+ argument transfer]
104$LOCALS=$FRAME-$FRAME_MARKER;
105$FRAME+=32;			# local variables
106
107$tp="%r31";
108$ti1="%r29";
109$ti0="%r28";
110
111$rp="%r26";
112$ap="%r25";
113$bp="%r24";
114$np="%r23";
115$n0="%r22";	# passed through stack in 32-bit
116$num="%r21";	# passed through stack in 32-bit
117$idx="%r20";
118$arrsz="%r19";
119
120$nm1="%r7";
121$nm0="%r6";
122$ab1="%r5";
123$ab0="%r4";
124
125$fp="%r3";
126$hi1="%r2";
127$hi0="%r1";
128
129$xfer=$n0;	# accomodates [-16..15] offset in fld[dw]s
130
131$fm0="%fr4";	$fti=$fm0;
132$fbi="%fr5L";
133$fn0="%fr5R";
134$fai="%fr6";	$fab0="%fr7";	$fab1="%fr8";
135$fni="%fr9";	$fnm0="%fr10";	$fnm1="%fr11";
136
137$code=<<___;
138	.LEVEL	$LEVEL
139	.SPACE	\$TEXT\$
140	.SUBSPA	\$CODE\$,QUAD=0,ALIGN=8,ACCESS=0x2C,CODE_ONLY
141
142	.EXPORT	bn_mul_mont,ENTRY,ARGW0=GR,ARGW1=GR,ARGW2=GR,ARGW3=GR
143	.ALIGN	64
144bn_mul_mont
145	.PROC
146	.CALLINFO	FRAME=`$FRAME-8*$SIZE_T`,NO_CALLS,SAVE_RP,SAVE_SP,ENTRY_GR=6
147	.ENTRY
148	$PUSH	%r2,-$SAVED_RP(%sp)		; standard prologue
149	$PUSHMA	%r3,$FRAME(%sp)
150	$PUSH	%r4,`-$FRAME+1*$SIZE_T`(%sp)
151	$PUSH	%r5,`-$FRAME+2*$SIZE_T`(%sp)
152	$PUSH	%r6,`-$FRAME+3*$SIZE_T`(%sp)
153	$PUSH	%r7,`-$FRAME+4*$SIZE_T`(%sp)
154	$PUSH	%r8,`-$FRAME+5*$SIZE_T`(%sp)
155	$PUSH	%r9,`-$FRAME+6*$SIZE_T`(%sp)
156	$PUSH	%r10,`-$FRAME+7*$SIZE_T`(%sp)
157	ldo	-$FRAME(%sp),$fp
158___
159$code.=<<___ if ($SIZE_T==4);
160	ldw	`-$FRAME_MARKER-4`($fp),$n0
161	ldw	`-$FRAME_MARKER-8`($fp),$num
162	nop
163	nop					; alignment
164___
165$code.=<<___ if ($BN_SZ==4);
166	comiclr,<=	6,$num,%r0		; are vectors long enough?
167	b		L\$abort
168	ldi		0,%r28			; signal "unhandled"
169	add,ev		%r0,$num,$num		; is $num even?
170	b		L\$abort
171	nop
172	or		$ap,$np,$ti1
173	extru,=		$ti1,31,3,%r0		; are ap and np 64-bit aligned?
174	b		L\$abort
175	nop
176	nop					; alignment
177	nop
178
179	fldws		0($n0),${fn0}
180	fldws,ma	4($bp),${fbi}		; bp[0]
181___
182$code.=<<___ if ($BN_SZ==8);
183	comib,>		3,$num,L\$abort		; are vectors long enough?
184	ldi		0,%r28			; signal "unhandled"
185	addl		$num,$num,$num		; I operate on 32-bit values
186
187	fldws		4($n0),${fn0}		; only low part of n0
188	fldws		4($bp),${fbi}		; bp[0] in flipped word order
189___
190$code.=<<___;
191	fldds		0($ap),${fai}		; ap[0,1]
192	fldds		0($np),${fni}		; np[0,1]
193
194	sh2addl		$num,%r0,$arrsz
195	ldi		31,$hi0
196	ldo		36($arrsz),$hi1		; space for tp[num+1]
197	andcm		$hi1,$hi0,$hi1		; align
198	addl		$hi1,%sp,%sp
199	$PUSH		$fp,-$SIZE_T(%sp)
200
201	ldo		`$LOCALS+16`($fp),$xfer
202	ldo		`$LOCALS+32+4`($fp),$tp
203
204	xmpyu		${fai}L,${fbi},${fab0}	; ap[0]*bp[0]
205	xmpyu		${fai}R,${fbi},${fab1}	; ap[1]*bp[0]
206	xmpyu		${fn0},${fab0}R,${fm0}
207
208	addl		$arrsz,$ap,$ap		; point at the end
209	addl		$arrsz,$np,$np
210	subi		0,$arrsz,$idx		; j=0
211	ldo		8($idx),$idx		; j++++
212
213	xmpyu		${fni}L,${fm0}R,${fnm0}	; np[0]*m
214	xmpyu		${fni}R,${fm0}R,${fnm1}	; np[1]*m
215	fstds		${fab0},-16($xfer)
216	fstds		${fnm0},-8($xfer)
217	fstds		${fab1},0($xfer)
218	fstds		${fnm1},8($xfer)
219	 flddx		$idx($ap),${fai}	; ap[2,3]
220	 flddx		$idx($np),${fni}	; np[2,3]
221___
222$code.=<<___ if ($BN_SZ==4);
223	mtctl		$hi0,%cr11		; $hi0 still holds 31
224	extrd,u,*=	$hi0,%sar,1,$hi0	; executes on PA-RISC 1.0
225	b		L\$parisc11
226	nop
227___
228$code.=<<___;					# PA-RISC 2.0 code-path
229	xmpyu		${fai}L,${fbi},${fab0}	; ap[j]*bp[0]
230	xmpyu		${fni}L,${fm0}R,${fnm0}	; np[j]*m
231	ldd		-16($xfer),$ab0
232	fstds		${fab0},-16($xfer)
233
234	extrd,u		$ab0,31,32,$hi0
235	extrd,u		$ab0,63,32,$ab0
236	ldd		-8($xfer),$nm0
237	fstds		${fnm0},-8($xfer)
238	 ldo		8($idx),$idx		; j++++
239	 addl		$ab0,$nm0,$nm0		; low part is discarded
240	 extrd,u	$nm0,31,32,$hi1
241
242L\$1st
243	xmpyu		${fai}R,${fbi},${fab1}	; ap[j+1]*bp[0]
244	xmpyu		${fni}R,${fm0}R,${fnm1}	; np[j+1]*m
245	ldd		0($xfer),$ab1
246	fstds		${fab1},0($xfer)
247	 addl		$hi0,$ab1,$ab1
248	 extrd,u	$ab1,31,32,$hi0
249	ldd		8($xfer),$nm1
250	fstds		${fnm1},8($xfer)
251	 extrd,u	$ab1,63,32,$ab1
252	 addl		$hi1,$nm1,$nm1
253	flddx		$idx($ap),${fai}	; ap[j,j+1]
254	flddx		$idx($np),${fni}	; np[j,j+1]
255	 addl		$ab1,$nm1,$nm1
256	 extrd,u	$nm1,31,32,$hi1
257
258	xmpyu		${fai}L,${fbi},${fab0}	; ap[j]*bp[0]
259	xmpyu		${fni}L,${fm0}R,${fnm0}	; np[j]*m
260	ldd		-16($xfer),$ab0
261	fstds		${fab0},-16($xfer)
262	 addl		$hi0,$ab0,$ab0
263	 extrd,u	$ab0,31,32,$hi0
264	ldd		-8($xfer),$nm0
265	fstds		${fnm0},-8($xfer)
266	 extrd,u	$ab0,63,32,$ab0
267	 addl		$hi1,$nm0,$nm0
268	stw		$nm1,-4($tp)		; tp[j-1]
269	 addl		$ab0,$nm0,$nm0
270	 stw,ma		$nm0,8($tp)		; tp[j-1]
271	addib,<>	8,$idx,L\$1st		; j++++
272	 extrd,u	$nm0,31,32,$hi1
273
274	xmpyu		${fai}R,${fbi},${fab1}	; ap[j]*bp[0]
275	xmpyu		${fni}R,${fm0}R,${fnm1}	; np[j]*m
276	ldd		0($xfer),$ab1
277	fstds		${fab1},0($xfer)
278	 addl		$hi0,$ab1,$ab1
279	 extrd,u	$ab1,31,32,$hi0
280	ldd		8($xfer),$nm1
281	fstds		${fnm1},8($xfer)
282	 extrd,u	$ab1,63,32,$ab1
283	 addl		$hi1,$nm1,$nm1
284	ldd		-16($xfer),$ab0
285	 addl		$ab1,$nm1,$nm1
286	ldd		-8($xfer),$nm0
287	 extrd,u	$nm1,31,32,$hi1
288
289	 addl		$hi0,$ab0,$ab0
290	 extrd,u	$ab0,31,32,$hi0
291	stw		$nm1,-4($tp)		; tp[j-1]
292	 extrd,u	$ab0,63,32,$ab0
293	 addl		$hi1,$nm0,$nm0
294	ldd		0($xfer),$ab1
295	 addl		$ab0,$nm0,$nm0
296	ldd,mb		8($xfer),$nm1
297	 extrd,u	$nm0,31,32,$hi1
298	stw,ma		$nm0,8($tp)		; tp[j-1]
299
300	ldo		-1($num),$num		; i--
301	subi		0,$arrsz,$idx		; j=0
302___
303$code.=<<___ if ($BN_SZ==4);
304	fldws,ma	4($bp),${fbi}		; bp[1]
305___
306$code.=<<___ if ($BN_SZ==8);
307	fldws		0($bp),${fbi}		; bp[1] in flipped word order
308___
309$code.=<<___;
310	 flddx		$idx($ap),${fai}	; ap[0,1]
311	 flddx		$idx($np),${fni}	; np[0,1]
312	 fldws		8($xfer),${fti}R	; tp[0]
313	addl		$hi0,$ab1,$ab1
314	 extrd,u	$ab1,31,32,$hi0
315	 extrd,u	$ab1,63,32,$ab1
316	 ldo		8($idx),$idx		; j++++
317	 xmpyu		${fai}L,${fbi},${fab0}	; ap[0]*bp[1]
318	 xmpyu		${fai}R,${fbi},${fab1}	; ap[1]*bp[1]
319	addl		$hi1,$nm1,$nm1
320	addl		$ab1,$nm1,$nm1
321	extrd,u		$nm1,31,32,$hi1
322	 fstws,mb	${fab0}L,-8($xfer)	; save high part
323	stw		$nm1,-4($tp)		; tp[j-1]
324
325	 fcpy,sgl	%fr0,${fti}L		; zero high part
326	 fcpy,sgl	%fr0,${fab0}L
327	addl		$hi1,$hi0,$hi0
328	extrd,u		$hi0,31,32,$hi1
329	 fcnvxf,dbl,dbl	${fti},${fti}		; 32-bit unsigned int -> double
330	 fcnvxf,dbl,dbl	${fab0},${fab0}
331	stw		$hi0,0($tp)
332	stw		$hi1,4($tp)
333
334	fadd,dbl	${fti},${fab0},${fab0}	; add tp[0]
335	fcnvfx,dbl,dbl	${fab0},${fab0}		; double -> 33-bit unsigned int
336	xmpyu		${fn0},${fab0}R,${fm0}
337	ldo		`$LOCALS+32+4`($fp),$tp
338L\$outer
339	xmpyu		${fni}L,${fm0}R,${fnm0}	; np[0]*m
340	xmpyu		${fni}R,${fm0}R,${fnm1}	; np[1]*m
341	fstds		${fab0},-16($xfer)	; 33-bit value
342	fstds		${fnm0},-8($xfer)
343	 flddx		$idx($ap),${fai}	; ap[2]
344	 flddx		$idx($np),${fni}	; np[2]
345	 ldo		8($idx),$idx		; j++++
346	ldd		-16($xfer),$ab0		; 33-bit value
347	ldd		-8($xfer),$nm0
348	ldw		0($xfer),$hi0		; high part
349
350	xmpyu		${fai}L,${fbi},${fab0}	; ap[j]*bp[i]
351	xmpyu		${fni}L,${fm0}R,${fnm0}	; np[j]*m
352	 extrd,u	$ab0,31,32,$ti0		; carry bit
353	 extrd,u	$ab0,63,32,$ab0
354	fstds		${fab1},0($xfer)
355	 addl		$ti0,$hi0,$hi0		; account carry bit
356	fstds		${fnm1},8($xfer)
357	 addl		$ab0,$nm0,$nm0		; low part is discarded
358	ldw		0($tp),$ti1		; tp[1]
359	 extrd,u	$nm0,31,32,$hi1
360	fstds		${fab0},-16($xfer)
361	fstds		${fnm0},-8($xfer)
362
363L\$inner
364	xmpyu		${fai}R,${fbi},${fab1}	; ap[j+1]*bp[i]
365	xmpyu		${fni}R,${fm0}R,${fnm1}	; np[j+1]*m
366	ldd		0($xfer),$ab1
367	fstds		${fab1},0($xfer)
368	 addl		$hi0,$ti1,$ti1
369	 addl		$ti1,$ab1,$ab1
370	ldd		8($xfer),$nm1
371	fstds		${fnm1},8($xfer)
372	 extrd,u	$ab1,31,32,$hi0
373	 extrd,u	$ab1,63,32,$ab1
374	flddx		$idx($ap),${fai}	; ap[j,j+1]
375	flddx		$idx($np),${fni}	; np[j,j+1]
376	 addl		$hi1,$nm1,$nm1
377	 addl		$ab1,$nm1,$nm1
378	ldw		4($tp),$ti0		; tp[j]
379	stw		$nm1,-4($tp)		; tp[j-1]
380
381	xmpyu		${fai}L,${fbi},${fab0}	; ap[j]*bp[i]
382	xmpyu		${fni}L,${fm0}R,${fnm0}	; np[j]*m
383	ldd		-16($xfer),$ab0
384	fstds		${fab0},-16($xfer)
385	 addl		$hi0,$ti0,$ti0
386	 addl		$ti0,$ab0,$ab0
387	ldd		-8($xfer),$nm0
388	fstds		${fnm0},-8($xfer)
389	 extrd,u	$ab0,31,32,$hi0
390	 extrd,u	$nm1,31,32,$hi1
391	ldw		8($tp),$ti1		; tp[j]
392	 extrd,u	$ab0,63,32,$ab0
393	 addl		$hi1,$nm0,$nm0
394	 addl		$ab0,$nm0,$nm0
395	 stw,ma		$nm0,8($tp)		; tp[j-1]
396	addib,<>	8,$idx,L\$inner		; j++++
397	 extrd,u	$nm0,31,32,$hi1
398
399	xmpyu		${fai}R,${fbi},${fab1}	; ap[j]*bp[i]
400	xmpyu		${fni}R,${fm0}R,${fnm1}	; np[j]*m
401	ldd		0($xfer),$ab1
402	fstds		${fab1},0($xfer)
403	 addl		$hi0,$ti1,$ti1
404	 addl		$ti1,$ab1,$ab1
405	ldd		8($xfer),$nm1
406	fstds		${fnm1},8($xfer)
407	 extrd,u	$ab1,31,32,$hi0
408	 extrd,u	$ab1,63,32,$ab1
409	ldw		4($tp),$ti0		; tp[j]
410	 addl		$hi1,$nm1,$nm1
411	 addl		$ab1,$nm1,$nm1
412	ldd		-16($xfer),$ab0
413	ldd		-8($xfer),$nm0
414	 extrd,u	$nm1,31,32,$hi1
415
416	addl		$hi0,$ab0,$ab0
417	 addl		$ti0,$ab0,$ab0
418	 stw		$nm1,-4($tp)		; tp[j-1]
419	 extrd,u	$ab0,31,32,$hi0
420	ldw		8($tp),$ti1		; tp[j]
421	 extrd,u	$ab0,63,32,$ab0
422	 addl		$hi1,$nm0,$nm0
423	ldd		0($xfer),$ab1
424	 addl		$ab0,$nm0,$nm0
425	ldd,mb		8($xfer),$nm1
426	 extrd,u	$nm0,31,32,$hi1
427	 stw,ma		$nm0,8($tp)		; tp[j-1]
428
429	addib,=		-1,$num,L\$outerdone	; i--
430	subi		0,$arrsz,$idx		; j=0
431___
432$code.=<<___ if ($BN_SZ==4);
433	fldws,ma	4($bp),${fbi}		; bp[i]
434___
435$code.=<<___ if ($BN_SZ==8);
436	ldi		12,$ti0			; bp[i] in flipped word order
437	addl,ev		%r0,$num,$num
438	ldi		-4,$ti0
439	addl		$ti0,$bp,$bp
440	fldws		0($bp),${fbi}
441___
442$code.=<<___;
443	 flddx		$idx($ap),${fai}	; ap[0]
444	addl		$hi0,$ab1,$ab1
445	 flddx		$idx($np),${fni}	; np[0]
446	 fldws		8($xfer),${fti}R	; tp[0]
447	addl		$ti1,$ab1,$ab1
448	extrd,u		$ab1,31,32,$hi0
449	extrd,u		$ab1,63,32,$ab1
450
451	 ldo		8($idx),$idx		; j++++
452	 xmpyu		${fai}L,${fbi},${fab0}	; ap[0]*bp[i]
453	 xmpyu		${fai}R,${fbi},${fab1}	; ap[1]*bp[i]
454	ldw		4($tp),$ti0		; tp[j]
455
456	addl		$hi1,$nm1,$nm1
457	 fstws,mb	${fab0}L,-8($xfer)	; save high part
458	addl		$ab1,$nm1,$nm1
459	extrd,u		$nm1,31,32,$hi1
460	 fcpy,sgl	%fr0,${fti}L		; zero high part
461	 fcpy,sgl	%fr0,${fab0}L
462	stw		$nm1,-4($tp)		; tp[j-1]
463
464	 fcnvxf,dbl,dbl	${fti},${fti}		; 32-bit unsigned int -> double
465	 fcnvxf,dbl,dbl	${fab0},${fab0}
466	addl		$hi1,$hi0,$hi0
467	 fadd,dbl	${fti},${fab0},${fab0}	; add tp[0]
468	addl		$ti0,$hi0,$hi0
469	extrd,u		$hi0,31,32,$hi1
470	 fcnvfx,dbl,dbl	${fab0},${fab0}		; double -> 33-bit unsigned int
471	stw		$hi0,0($tp)
472	stw		$hi1,4($tp)
473	 xmpyu		${fn0},${fab0}R,${fm0}
474
475	b		L\$outer
476	ldo		`$LOCALS+32+4`($fp),$tp
477
478L\$outerdone
479	addl		$hi0,$ab1,$ab1
480	addl		$ti1,$ab1,$ab1
481	extrd,u		$ab1,31,32,$hi0
482	extrd,u		$ab1,63,32,$ab1
483
484	ldw		4($tp),$ti0		; tp[j]
485
486	addl		$hi1,$nm1,$nm1
487	addl		$ab1,$nm1,$nm1
488	extrd,u		$nm1,31,32,$hi1
489	stw		$nm1,-4($tp)		; tp[j-1]
490
491	addl		$hi1,$hi0,$hi0
492	addl		$ti0,$hi0,$hi0
493	extrd,u		$hi0,31,32,$hi1
494	stw		$hi0,0($tp)
495	stw		$hi1,4($tp)
496
497	ldo		`$LOCALS+32`($fp),$tp
498	sub		%r0,%r0,%r0		; clear borrow
499___
500$code.=<<___ if ($BN_SZ==4);
501	ldws,ma		4($tp),$ti0
502	extru,=		$rp,31,3,%r0		; is rp 64-bit aligned?
503	b		L\$sub_pa11
504	addl		$tp,$arrsz,$tp
505L\$sub
506	ldwx		$idx($np),$hi0
507	subb		$ti0,$hi0,$hi1
508	ldwx		$idx($tp),$ti0
509	addib,<>	4,$idx,L\$sub
510	stws,ma		$hi1,4($rp)
511
512	subb		$ti0,%r0,$hi1
513___
514$code.=<<___ if ($BN_SZ==8);
515	ldd,ma		8($tp),$ti0
516L\$sub
517	ldd		$idx($np),$hi0
518	shrpd		$ti0,$ti0,32,$ti0	; flip word order
519	std		$ti0,-8($tp)		; save flipped value
520	sub,db		$ti0,$hi0,$hi1
521	ldd,ma		8($tp),$ti0
522	addib,<>	8,$idx,L\$sub
523	std,ma		$hi1,8($rp)
524
525	extrd,u		$ti0,31,32,$ti0		; carry in flipped word order
526	sub,db		$ti0,%r0,$hi1
527___
528$code.=<<___;
529	ldo		`$LOCALS+32`($fp),$tp
530	sub		$rp,$arrsz,$rp		; rewind rp
531	subi		0,$arrsz,$idx
532L\$copy
533	ldd		0($tp),$ti0
534	ldd		0($rp),$hi0
535	std,ma		%r0,8($tp)
536	comiclr,=	0,$hi1,%r0
537	copy		$ti0,$hi0
538	addib,<>	8,$idx,L\$copy
539	std,ma		$hi0,8($rp)
540___
541
542if ($BN_SZ==4) {				# PA-RISC 1.1 code-path
543$ablo=$ab0;
544$abhi=$ab1;
545$nmlo0=$nm0;
546$nmhi0=$nm1;
547$nmlo1="%r9";
548$nmhi1="%r8";
549
550$code.=<<___;
551	b		L\$done
552	nop
553
554	.ALIGN		8
555L\$parisc11
556	xmpyu		${fai}L,${fbi},${fab0}	; ap[j]*bp[0]
557	xmpyu		${fni}L,${fm0}R,${fnm0}	; np[j]*m
558	ldw		-12($xfer),$ablo
559	ldw		-16($xfer),$hi0
560	ldw		-4($xfer),$nmlo0
561	ldw		-8($xfer),$nmhi0
562	fstds		${fab0},-16($xfer)
563	fstds		${fnm0},-8($xfer)
564
565	 ldo		8($idx),$idx		; j++++
566	 add		$ablo,$nmlo0,$nmlo0	; discarded
567	 addc		%r0,$nmhi0,$hi1
568	ldw		4($xfer),$ablo
569	ldw		0($xfer),$abhi
570	nop
571
572L\$1st_pa11
573	xmpyu		${fai}R,${fbi},${fab1}	; ap[j+1]*bp[0]
574	flddx		$idx($ap),${fai}	; ap[j,j+1]
575	xmpyu		${fni}R,${fm0}R,${fnm1}	; np[j+1]*m
576	flddx		$idx($np),${fni}	; np[j,j+1]
577	 add		$hi0,$ablo,$ablo
578	ldw		12($xfer),$nmlo1
579	 addc		%r0,$abhi,$hi0
580	ldw		8($xfer),$nmhi1
581	 add		$ablo,$nmlo1,$nmlo1
582	fstds		${fab1},0($xfer)
583	 addc		%r0,$nmhi1,$nmhi1
584	fstds		${fnm1},8($xfer)
585	 add		$hi1,$nmlo1,$nmlo1
586	ldw		-12($xfer),$ablo
587	 addc		%r0,$nmhi1,$hi1
588	ldw		-16($xfer),$abhi
589
590	xmpyu		${fai}L,${fbi},${fab0}	; ap[j]*bp[0]
591	ldw		-4($xfer),$nmlo0
592	xmpyu		${fni}L,${fm0}R,${fnm0}	; np[j]*m
593	ldw		-8($xfer),$nmhi0
594	 add		$hi0,$ablo,$ablo
595	stw		$nmlo1,-4($tp)		; tp[j-1]
596	 addc		%r0,$abhi,$hi0
597	fstds		${fab0},-16($xfer)
598	 add		$ablo,$nmlo0,$nmlo0
599	fstds		${fnm0},-8($xfer)
600	 addc		%r0,$nmhi0,$nmhi0
601	ldw		0($xfer),$abhi
602	 add		$hi1,$nmlo0,$nmlo0
603	ldw		4($xfer),$ablo
604	 stws,ma	$nmlo0,8($tp)		; tp[j-1]
605	addib,<>	8,$idx,L\$1st_pa11	; j++++
606	 addc		%r0,$nmhi0,$hi1
607
608	 ldw		8($xfer),$nmhi1
609	 ldw		12($xfer),$nmlo1
610	xmpyu		${fai}R,${fbi},${fab1}	; ap[j]*bp[0]
611	xmpyu		${fni}R,${fm0}R,${fnm1}	; np[j]*m
612	 add		$hi0,$ablo,$ablo
613	fstds		${fab1},0($xfer)
614	 addc		%r0,$abhi,$hi0
615	fstds		${fnm1},8($xfer)
616	 add		$ablo,$nmlo1,$nmlo1
617	ldw		-16($xfer),$abhi
618	 addc		%r0,$nmhi1,$nmhi1
619	ldw		-12($xfer),$ablo
620	 add		$hi1,$nmlo1,$nmlo1
621	ldw		-8($xfer),$nmhi0
622	 addc		%r0,$nmhi1,$hi1
623	ldw		-4($xfer),$nmlo0
624
625	 add		$hi0,$ablo,$ablo
626	stw		$nmlo1,-4($tp)		; tp[j-1]
627	 addc		%r0,$abhi,$hi0
628	ldw		0($xfer),$abhi
629	 add		$ablo,$nmlo0,$nmlo0
630	ldw		4($xfer),$ablo
631	 addc		%r0,$nmhi0,$nmhi0
632	ldws,mb		8($xfer),$nmhi1
633	 add		$hi1,$nmlo0,$nmlo0
634	ldw		4($xfer),$nmlo1
635	 addc		%r0,$nmhi0,$hi1
636	stws,ma		$nmlo0,8($tp)		; tp[j-1]
637
638	ldo		-1($num),$num		; i--
639	subi		0,$arrsz,$idx		; j=0
640
641	 fldws,ma	4($bp),${fbi}		; bp[1]
642	 flddx		$idx($ap),${fai}	; ap[0,1]
643	 flddx		$idx($np),${fni}	; np[0,1]
644	 fldws		8($xfer),${fti}R	; tp[0]
645	add		$hi0,$ablo,$ablo
646	addc		%r0,$abhi,$hi0
647	 ldo		8($idx),$idx		; j++++
648	 xmpyu		${fai}L,${fbi},${fab0}	; ap[0]*bp[1]
649	 xmpyu		${fai}R,${fbi},${fab1}	; ap[1]*bp[1]
650	add		$hi1,$nmlo1,$nmlo1
651	addc		%r0,$nmhi1,$nmhi1
652	add		$ablo,$nmlo1,$nmlo1
653	addc		%r0,$nmhi1,$hi1
654	 fstws,mb	${fab0}L,-8($xfer)	; save high part
655	stw		$nmlo1,-4($tp)		; tp[j-1]
656
657	 fcpy,sgl	%fr0,${fti}L		; zero high part
658	 fcpy,sgl	%fr0,${fab0}L
659	add		$hi1,$hi0,$hi0
660	addc		%r0,%r0,$hi1
661	 fcnvxf,dbl,dbl	${fti},${fti}		; 32-bit unsigned int -> double
662	 fcnvxf,dbl,dbl	${fab0},${fab0}
663	stw		$hi0,0($tp)
664	stw		$hi1,4($tp)
665
666	fadd,dbl	${fti},${fab0},${fab0}	; add tp[0]
667	fcnvfx,dbl,dbl	${fab0},${fab0}		; double -> 33-bit unsigned int
668	xmpyu		${fn0},${fab0}R,${fm0}
669	ldo		`$LOCALS+32+4`($fp),$tp
670L\$outer_pa11
671	xmpyu		${fni}L,${fm0}R,${fnm0}	; np[0]*m
672	xmpyu		${fni}R,${fm0}R,${fnm1}	; np[1]*m
673	fstds		${fab0},-16($xfer)	; 33-bit value
674	fstds		${fnm0},-8($xfer)
675	 flddx		$idx($ap),${fai}	; ap[2,3]
676	 flddx		$idx($np),${fni}	; np[2,3]
677	ldw		-16($xfer),$abhi	; carry bit actually
678	 ldo		8($idx),$idx		; j++++
679	ldw		-12($xfer),$ablo
680	ldw		-8($xfer),$nmhi0
681	ldw		-4($xfer),$nmlo0
682	ldw		0($xfer),$hi0		; high part
683
684	xmpyu		${fai}L,${fbi},${fab0}	; ap[j]*bp[i]
685	xmpyu		${fni}L,${fm0}R,${fnm0}	; np[j]*m
686	fstds		${fab1},0($xfer)
687	 addl		$abhi,$hi0,$hi0		; account carry bit
688	fstds		${fnm1},8($xfer)
689	 add		$ablo,$nmlo0,$nmlo0	; discarded
690	ldw		0($tp),$ti1		; tp[1]
691	 addc		%r0,$nmhi0,$hi1
692	fstds		${fab0},-16($xfer)
693	fstds		${fnm0},-8($xfer)
694	ldw		4($xfer),$ablo
695	ldw		0($xfer),$abhi
696
697L\$inner_pa11
698	xmpyu		${fai}R,${fbi},${fab1}	; ap[j+1]*bp[i]
699	flddx		$idx($ap),${fai}	; ap[j,j+1]
700	xmpyu		${fni}R,${fm0}R,${fnm1}	; np[j+1]*m
701	flddx		$idx($np),${fni}	; np[j,j+1]
702	 add		$hi0,$ablo,$ablo
703	ldw		4($tp),$ti0		; tp[j]
704	 addc		%r0,$abhi,$abhi
705	ldw		12($xfer),$nmlo1
706	 add		$ti1,$ablo,$ablo
707	ldw		8($xfer),$nmhi1
708	 addc		%r0,$abhi,$hi0
709	fstds		${fab1},0($xfer)
710	 add		$ablo,$nmlo1,$nmlo1
711	fstds		${fnm1},8($xfer)
712	 addc		%r0,$nmhi1,$nmhi1
713	ldw		-12($xfer),$ablo
714	 add		$hi1,$nmlo1,$nmlo1
715	ldw		-16($xfer),$abhi
716	 addc		%r0,$nmhi1,$hi1
717
718	xmpyu		${fai}L,${fbi},${fab0}	; ap[j]*bp[i]
719	ldw		8($tp),$ti1		; tp[j]
720	xmpyu		${fni}L,${fm0}R,${fnm0}	; np[j]*m
721	ldw		-4($xfer),$nmlo0
722	 add		$hi0,$ablo,$ablo
723	ldw		-8($xfer),$nmhi0
724	 addc		%r0,$abhi,$abhi
725	stw		$nmlo1,-4($tp)		; tp[j-1]
726	 add		$ti0,$ablo,$ablo
727	fstds		${fab0},-16($xfer)
728	 addc		%r0,$abhi,$hi0
729	fstds		${fnm0},-8($xfer)
730	 add		$ablo,$nmlo0,$nmlo0
731	ldw		4($xfer),$ablo
732	 addc		%r0,$nmhi0,$nmhi0
733	ldw		0($xfer),$abhi
734	 add		$hi1,$nmlo0,$nmlo0
735	 stws,ma	$nmlo0,8($tp)		; tp[j-1]
736	addib,<>	8,$idx,L\$inner_pa11	; j++++
737	 addc		%r0,$nmhi0,$hi1
738
739	xmpyu		${fai}R,${fbi},${fab1}	; ap[j]*bp[i]
740	ldw		12($xfer),$nmlo1
741	xmpyu		${fni}R,${fm0}R,${fnm1}	; np[j]*m
742	ldw		8($xfer),$nmhi1
743	 add		$hi0,$ablo,$ablo
744	ldw		4($tp),$ti0		; tp[j]
745	 addc		%r0,$abhi,$abhi
746	fstds		${fab1},0($xfer)
747	 add		$ti1,$ablo,$ablo
748	fstds		${fnm1},8($xfer)
749	 addc		%r0,$abhi,$hi0
750	ldw		-16($xfer),$abhi
751	 add		$ablo,$nmlo1,$nmlo1
752	ldw		-12($xfer),$ablo
753	 addc		%r0,$nmhi1,$nmhi1
754	ldw		-8($xfer),$nmhi0
755	 add		$hi1,$nmlo1,$nmlo1
756	ldw		-4($xfer),$nmlo0
757	 addc		%r0,$nmhi1,$hi1
758
759	add		$hi0,$ablo,$ablo
760	 stw		$nmlo1,-4($tp)		; tp[j-1]
761	addc		%r0,$abhi,$abhi
762	 add		$ti0,$ablo,$ablo
763	ldw		8($tp),$ti1		; tp[j]
764	 addc		%r0,$abhi,$hi0
765	ldw		0($xfer),$abhi
766	 add		$ablo,$nmlo0,$nmlo0
767	ldw		4($xfer),$ablo
768	 addc		%r0,$nmhi0,$nmhi0
769	ldws,mb		8($xfer),$nmhi1
770	 add		$hi1,$nmlo0,$nmlo0
771	ldw		4($xfer),$nmlo1
772	 addc		%r0,$nmhi0,$hi1
773	 stws,ma	$nmlo0,8($tp)		; tp[j-1]
774
775	addib,=		-1,$num,L\$outerdone_pa11; i--
776	subi		0,$arrsz,$idx		; j=0
777
778	 fldws,ma	4($bp),${fbi}		; bp[i]
779	 flddx		$idx($ap),${fai}	; ap[0]
780	add		$hi0,$ablo,$ablo
781	addc		%r0,$abhi,$abhi
782	 flddx		$idx($np),${fni}	; np[0]
783	 fldws		8($xfer),${fti}R	; tp[0]
784	add		$ti1,$ablo,$ablo
785	addc		%r0,$abhi,$hi0
786
787	 ldo		8($idx),$idx		; j++++
788	 xmpyu		${fai}L,${fbi},${fab0}	; ap[0]*bp[i]
789	 xmpyu		${fai}R,${fbi},${fab1}	; ap[1]*bp[i]
790	ldw		4($tp),$ti0		; tp[j]
791
792	add		$hi1,$nmlo1,$nmlo1
793	addc		%r0,$nmhi1,$nmhi1
794	 fstws,mb	${fab0}L,-8($xfer)	; save high part
795	add		$ablo,$nmlo1,$nmlo1
796	addc		%r0,$nmhi1,$hi1
797	 fcpy,sgl	%fr0,${fti}L		; zero high part
798	 fcpy,sgl	%fr0,${fab0}L
799	stw		$nmlo1,-4($tp)		; tp[j-1]
800
801	 fcnvxf,dbl,dbl	${fti},${fti}		; 32-bit unsigned int -> double
802	 fcnvxf,dbl,dbl	${fab0},${fab0}
803	add		$hi1,$hi0,$hi0
804	addc		%r0,%r0,$hi1
805	 fadd,dbl	${fti},${fab0},${fab0}	; add tp[0]
806	add		$ti0,$hi0,$hi0
807	addc		%r0,$hi1,$hi1
808	 fcnvfx,dbl,dbl	${fab0},${fab0}		; double -> 33-bit unsigned int
809	stw		$hi0,0($tp)
810	stw		$hi1,4($tp)
811	 xmpyu		${fn0},${fab0}R,${fm0}
812
813	b		L\$outer_pa11
814	ldo		`$LOCALS+32+4`($fp),$tp
815
816L\$outerdone_pa11
817	add		$hi0,$ablo,$ablo
818	addc		%r0,$abhi,$abhi
819	add		$ti1,$ablo,$ablo
820	addc		%r0,$abhi,$hi0
821
822	ldw		4($tp),$ti0		; tp[j]
823
824	add		$hi1,$nmlo1,$nmlo1
825	addc		%r0,$nmhi1,$nmhi1
826	add		$ablo,$nmlo1,$nmlo1
827	addc		%r0,$nmhi1,$hi1
828	stw		$nmlo1,-4($tp)		; tp[j-1]
829
830	add		$hi1,$hi0,$hi0
831	addc		%r0,%r0,$hi1
832	add		$ti0,$hi0,$hi0
833	addc		%r0,$hi1,$hi1
834	stw		$hi0,0($tp)
835	stw		$hi1,4($tp)
836
837	ldo		`$LOCALS+32+4`($fp),$tp
838	sub		%r0,%r0,%r0		; clear borrow
839	ldw		-4($tp),$ti0
840	addl		$tp,$arrsz,$tp
841L\$sub_pa11
842	ldwx		$idx($np),$hi0
843	subb		$ti0,$hi0,$hi1
844	ldwx		$idx($tp),$ti0
845	addib,<>	4,$idx,L\$sub_pa11
846	stws,ma		$hi1,4($rp)
847
848	subb		$ti0,%r0,$hi1
849
850	ldo		`$LOCALS+32`($fp),$tp
851	sub		$rp,$arrsz,$rp		; rewind rp
852	subi		0,$arrsz,$idx
853L\$copy_pa11
854	ldw		0($tp),$ti0
855	ldw		0($rp),$hi0
856	stws,ma		%r0,4($tp)
857	comiclr,=	0,$hi1,%r0
858	copy		$ti0,$hi0
859	addib,<>	4,$idx,L\$copy_pa11
860	stws,ma		$hi0,4($rp)
861
862	nop					; alignment
863L\$done
864___
865}
866
867$code.=<<___;
868	ldi		1,%r28			; signal "handled"
869	ldo		$FRAME($fp),%sp		; destroy tp[num+1]
870
871	$POP	`-$FRAME-$SAVED_RP`(%sp),%r2	; standard epilogue
872	$POP	`-$FRAME+1*$SIZE_T`(%sp),%r4
873	$POP	`-$FRAME+2*$SIZE_T`(%sp),%r5
874	$POP	`-$FRAME+3*$SIZE_T`(%sp),%r6
875	$POP	`-$FRAME+4*$SIZE_T`(%sp),%r7
876	$POP	`-$FRAME+5*$SIZE_T`(%sp),%r8
877	$POP	`-$FRAME+6*$SIZE_T`(%sp),%r9
878	$POP	`-$FRAME+7*$SIZE_T`(%sp),%r10
879L\$abort
880	bv	(%r2)
881	.EXIT
882	$POPMB	-$FRAME(%sp),%r3
883	.PROCEND
884	.STRINGZ "Montgomery Multiplication for PA-RISC, CRYPTOGAMS by <appro\@openssl.org>"
885___
886
887# Explicitly encode PA-RISC 2.0 instructions used in this module, so
888# that it can be compiled with .LEVEL 1.0. It should be noted that I
889# wouldn't have to do this, if GNU assembler understood .ALLOW 2.0
890# directive...
891
892my $ldd = sub {
893  my ($mod,$args) = @_;
894  my $orig = "ldd$mod\t$args";
895
896    if ($args =~ /%r([0-9]+)\(%r([0-9]+)\),%r([0-9]+)/)		# format 4
897    {	my $opcode=(0x03<<26)|($2<<21)|($1<<16)|(3<<6)|$3;
898	sprintf "\t.WORD\t0x%08x\t; %s",$opcode,$orig;
899    }
900    elsif ($args =~ /(\-?[0-9]+)\(%r([0-9]+)\),%r([0-9]+)/)	# format 5
901    {	my $opcode=(0x03<<26)|($2<<21)|(1<<12)|(3<<6)|$3;
902	$opcode|=(($1&0xF)<<17)|(($1&0x10)<<12);		# encode offset
903	$opcode|=(1<<5)  if ($mod =~ /^,m/);
904	$opcode|=(1<<13) if ($mod =~ /^,mb/);
905	sprintf "\t.WORD\t0x%08x\t; %s",$opcode,$orig;
906    }
907    else { "\t".$orig; }
908};
909
910my $std = sub {
911  my ($mod,$args) = @_;
912  my $orig = "std$mod\t$args";
913
914    if ($args =~ /%r([0-9]+),(\-?[0-9]+)\(%r([0-9]+)\)/)	# format 6
915    {	my $opcode=(0x03<<26)|($3<<21)|($1<<16)|(1<<12)|(0xB<<6);
916	$opcode|=(($2&0xF)<<1)|(($2&0x10)>>4);			# encode offset
917	$opcode|=(1<<5)  if ($mod =~ /^,m/);
918	$opcode|=(1<<13) if ($mod =~ /^,mb/);
919	sprintf "\t.WORD\t0x%08x\t; %s",$opcode,$orig;
920    }
921    else { "\t".$orig; }
922};
923
924my $extrd = sub {
925  my ($mod,$args) = @_;
926  my $orig = "extrd$mod\t$args";
927
928    # I only have ",u" completer, it's implicitly encoded...
929    if ($args =~ /%r([0-9]+),([0-9]+),([0-9]+),%r([0-9]+)/)	# format 15
930    {	my $opcode=(0x36<<26)|($1<<21)|($4<<16);
931	my $len=32-$3;
932	$opcode |= (($2&0x20)<<6)|(($2&0x1f)<<5);		# encode pos
933	$opcode |= (($len&0x20)<<7)|($len&0x1f);		# encode len
934	sprintf "\t.WORD\t0x%08x\t; %s",$opcode,$orig;
935    }
936    elsif ($args =~ /%r([0-9]+),%sar,([0-9]+),%r([0-9]+)/)	# format 12
937    {	my $opcode=(0x34<<26)|($1<<21)|($3<<16)|(2<<11)|(1<<9);
938	my $len=32-$2;
939	$opcode |= (($len&0x20)<<3)|($len&0x1f);		# encode len
940	$opcode |= (1<<13) if ($mod =~ /,\**=/);
941	sprintf "\t.WORD\t0x%08x\t; %s",$opcode,$orig;
942    }
943    else { "\t".$orig; }
944};
945
946my $shrpd = sub {
947  my ($mod,$args) = @_;
948  my $orig = "shrpd$mod\t$args";
949
950    if ($args =~ /%r([0-9]+),%r([0-9]+),([0-9]+),%r([0-9]+)/)	# format 14
951    {	my $opcode=(0x34<<26)|($2<<21)|($1<<16)|(1<<10)|$4;
952	my $cpos=63-$3;
953	$opcode |= (($cpos&0x20)<<6)|(($cpos&0x1f)<<5);		# encode sa
954	sprintf "\t.WORD\t0x%08x\t; %s",$opcode,$orig;
955    }
956    else { "\t".$orig; }
957};
958
959my $sub = sub {
960  my ($mod,$args) = @_;
961  my $orig = "sub$mod\t$args";
962
963    if ($mod eq ",db" && $args =~ /%r([0-9]+),%r([0-9]+),%r([0-9]+)/) {
964	my $opcode=(0x02<<26)|($2<<21)|($1<<16)|$3;
965	$opcode|=(1<<10);	# e1
966	$opcode|=(1<<8);	# e2
967	$opcode|=(1<<5);	# d
968	sprintf "\t.WORD\t0x%08x\t; %s",$opcode,$orig
969    }
970    else { "\t".$orig; }
971};
972
973sub assemble {
974  my ($mnemonic,$mod,$args)=@_;
975  my $opcode = eval("\$$mnemonic");
976
977    ref($opcode) eq 'CODE' ? &$opcode($mod,$args) : "\t$mnemonic$mod\t$args";
978}
979
980foreach (split("\n",$code)) {
981	s/\`([^\`]*)\`/eval $1/ge;
982	# flip word order in 64-bit mode...
983	s/(xmpyu\s+)($fai|$fni)([LR])/$1.$2.($3 eq "L"?"R":"L")/e if ($BN_SZ==8);
984	# assemble 2.0 instructions in 32-bit mode...
985	s/^\s+([a-z]+)([\S]*)\s+([\S]*)/&assemble($1,$2,$3)/e if ($BN_SZ==4);
986
987	s/\bbv\b/bve/gm	if ($SIZE_T==8);
988
989	print $_,"\n";
990}
991close STDOUT;
992