sys-tree.h revision 106121
1/*	$OpenBSD: tree.h,v 1.6 2002/06/11 22:09:52 provos Exp $	*/
2/*
3 * Copyright 2002 Niels Provos <provos@citi.umich.edu>
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27#ifndef	_SYS_TREE_H_
28#define	_SYS_TREE_H_
29
30/*
31 * This file defines data structures for different types of trees:
32 * splay trees and red-black trees.
33 *
34 * A splay tree is a self-organizing data structure.  Every operation
35 * on the tree causes a splay to happen.  The splay moves the requested
36 * node to the root of the tree and partly rebalances it.
37 *
38 * This has the benefit that request locality causes faster lookups as
39 * the requested nodes move to the top of the tree.  On the other hand,
40 * every lookup causes memory writes.
41 *
42 * The Balance Theorem bounds the total access time for m operations
43 * and n inserts on an initially empty tree as O((m + n)lg n).  The
44 * amortized cost for a sequence of m accesses to a splay tree is O(lg n);
45 *
46 * A red-black tree is a binary search tree with the node color as an
47 * extra attribute.  It fulfills a set of conditions:
48 *	- every search path from the root to a leaf consists of the
49 *	  same number of black nodes,
50 *	- each red node (except for the root) has a black parent,
51 *	- each leaf node is black.
52 *
53 * Every operation on a red-black tree is bounded as O(lg n).
54 * The maximum height of a red-black tree is 2lg (n+1).
55 */
56
57#define SPLAY_HEAD(name, type)						\
58struct name {								\
59	struct type *sph_root; /* root of the tree */			\
60}
61
62#define SPLAY_INITIALIZER(root)						\
63	{ NULL }
64
65#define SPLAY_INIT(root) do {						\
66	(root)->sph_root = NULL;					\
67} while (0)
68
69#define SPLAY_ENTRY(type)						\
70struct {								\
71	struct type *spe_left; /* left element */			\
72	struct type *spe_right; /* right element */			\
73}
74
75#define SPLAY_LEFT(elm, field)		(elm)->field.spe_left
76#define SPLAY_RIGHT(elm, field)		(elm)->field.spe_right
77#define SPLAY_ROOT(head)		(head)->sph_root
78#define SPLAY_EMPTY(head)		(SPLAY_ROOT(head) == NULL)
79
80/* SPLAY_ROTATE_{LEFT,RIGHT} expect that tmp hold SPLAY_{RIGHT,LEFT} */
81#define SPLAY_ROTATE_RIGHT(head, tmp, field) do {			\
82	SPLAY_LEFT((head)->sph_root, field) = SPLAY_RIGHT(tmp, field);	\
83	SPLAY_RIGHT(tmp, field) = (head)->sph_root;			\
84	(head)->sph_root = tmp;						\
85} while (0)
86
87#define SPLAY_ROTATE_LEFT(head, tmp, field) do {			\
88	SPLAY_RIGHT((head)->sph_root, field) = SPLAY_LEFT(tmp, field);	\
89	SPLAY_LEFT(tmp, field) = (head)->sph_root;			\
90	(head)->sph_root = tmp;						\
91} while (0)
92
93#define SPLAY_LINKLEFT(head, tmp, field) do {				\
94	SPLAY_LEFT(tmp, field) = (head)->sph_root;			\
95	tmp = (head)->sph_root;						\
96	(head)->sph_root = SPLAY_LEFT((head)->sph_root, field);		\
97} while (0)
98
99#define SPLAY_LINKRIGHT(head, tmp, field) do {				\
100	SPLAY_RIGHT(tmp, field) = (head)->sph_root;			\
101	tmp = (head)->sph_root;						\
102	(head)->sph_root = SPLAY_RIGHT((head)->sph_root, field);	\
103} while (0)
104
105#define SPLAY_ASSEMBLE(head, node, left, right, field) do {		\
106	SPLAY_RIGHT(left, field) = SPLAY_LEFT((head)->sph_root, field);	\
107	SPLAY_LEFT(right, field) = SPLAY_RIGHT((head)->sph_root, field);\
108	SPLAY_LEFT((head)->sph_root, field) = SPLAY_RIGHT(node, field);	\
109	SPLAY_RIGHT((head)->sph_root, field) = SPLAY_LEFT(node, field);	\
110} while (0)
111
112/* Generates prototypes and inline functions */
113
114#define SPLAY_PROTOTYPE(name, type, field, cmp)				\
115void name##_SPLAY(struct name *, struct type *);			\
116void name##_SPLAY_MINMAX(struct name *, int);				\
117struct type *name##_SPLAY_INSERT(struct name *, struct type *);		\
118struct type *name##_SPLAY_REMOVE(struct name *, struct type *);		\
119									\
120/* Finds the node with the same key as elm */				\
121static __inline struct type *						\
122name##_SPLAY_FIND(struct name *head, struct type *elm)			\
123{									\
124	if (SPLAY_EMPTY(head))						\
125		return(NULL);						\
126	name##_SPLAY(head, elm);					\
127	if ((cmp)(elm, (head)->sph_root) == 0)				\
128		return (head->sph_root);				\
129	return (NULL);							\
130}									\
131									\
132static __inline struct type *						\
133name##_SPLAY_NEXT(struct name *head, struct type *elm)			\
134{									\
135	name##_SPLAY(head, elm);					\
136	if (SPLAY_RIGHT(elm, field) != NULL) {				\
137		elm = SPLAY_RIGHT(elm, field);				\
138		while (SPLAY_LEFT(elm, field) != NULL) {		\
139			elm = SPLAY_LEFT(elm, field);			\
140		}							\
141	} else								\
142		elm = NULL;						\
143	return (elm);							\
144}									\
145									\
146static __inline struct type *						\
147name##_SPLAY_MIN_MAX(struct name *head, int val)			\
148{									\
149	name##_SPLAY_MINMAX(head, val);					\
150        return (SPLAY_ROOT(head));					\
151}
152
153/* Main splay operation.
154 * Moves node close to the key of elm to top
155 */
156#define SPLAY_GENERATE(name, type, field, cmp)				\
157struct type *								\
158name##_SPLAY_INSERT(struct name *head, struct type *elm)		\
159{									\
160    if (SPLAY_EMPTY(head)) {						\
161	    SPLAY_LEFT(elm, field) = SPLAY_RIGHT(elm, field) = NULL;	\
162    } else {								\
163	    int __comp;							\
164	    name##_SPLAY(head, elm);					\
165	    __comp = (cmp)(elm, (head)->sph_root);			\
166	    if(__comp < 0) {						\
167		    SPLAY_LEFT(elm, field) = SPLAY_LEFT((head)->sph_root, field);\
168		    SPLAY_RIGHT(elm, field) = (head)->sph_root;		\
169		    SPLAY_LEFT((head)->sph_root, field) = NULL;		\
170	    } else if (__comp > 0) {					\
171		    SPLAY_RIGHT(elm, field) = SPLAY_RIGHT((head)->sph_root, field);\
172		    SPLAY_LEFT(elm, field) = (head)->sph_root;		\
173		    SPLAY_RIGHT((head)->sph_root, field) = NULL;	\
174	    } else							\
175		    return ((head)->sph_root);				\
176    }									\
177    (head)->sph_root = (elm);						\
178    return (NULL);							\
179}									\
180									\
181struct type *								\
182name##_SPLAY_REMOVE(struct name *head, struct type *elm)		\
183{									\
184	struct type *__tmp;						\
185	if (SPLAY_EMPTY(head))						\
186		return (NULL);						\
187	name##_SPLAY(head, elm);					\
188	if ((cmp)(elm, (head)->sph_root) == 0) {			\
189		if (SPLAY_LEFT((head)->sph_root, field) == NULL) {	\
190			(head)->sph_root = SPLAY_RIGHT((head)->sph_root, field);\
191		} else {						\
192			__tmp = SPLAY_RIGHT((head)->sph_root, field);	\
193			(head)->sph_root = SPLAY_LEFT((head)->sph_root, field);\
194			name##_SPLAY(head, elm);			\
195			SPLAY_RIGHT((head)->sph_root, field) = __tmp;	\
196		}							\
197		return (elm);						\
198	}								\
199	return (NULL);							\
200}									\
201									\
202void									\
203name##_SPLAY(struct name *head, struct type *elm)			\
204{									\
205	struct type __node, *__left, *__right, *__tmp;			\
206	int __comp;							\
207\
208	SPLAY_LEFT(&__node, field) = SPLAY_RIGHT(&__node, field) = NULL;\
209	__left = __right = &__node;					\
210\
211	while ((__comp = (cmp)(elm, (head)->sph_root))) {		\
212		if (__comp < 0) {					\
213			__tmp = SPLAY_LEFT((head)->sph_root, field);	\
214			if (__tmp == NULL)				\
215				break;					\
216			if ((cmp)(elm, __tmp) < 0){			\
217				SPLAY_ROTATE_RIGHT(head, __tmp, field);	\
218				if (SPLAY_LEFT((head)->sph_root, field) == NULL)\
219					break;				\
220			}						\
221			SPLAY_LINKLEFT(head, __right, field);		\
222		} else if (__comp > 0) {				\
223			__tmp = SPLAY_RIGHT((head)->sph_root, field);	\
224			if (__tmp == NULL)				\
225				break;					\
226			if ((cmp)(elm, __tmp) > 0){			\
227				SPLAY_ROTATE_LEFT(head, __tmp, field);	\
228				if (SPLAY_RIGHT((head)->sph_root, field) == NULL)\
229					break;				\
230			}						\
231			SPLAY_LINKRIGHT(head, __left, field);		\
232		}							\
233	}								\
234	SPLAY_ASSEMBLE(head, &__node, __left, __right, field);		\
235}									\
236									\
237/* Splay with either the minimum or the maximum element			\
238 * Used to find minimum or maximum element in tree.			\
239 */									\
240void name##_SPLAY_MINMAX(struct name *head, int __comp) \
241{									\
242	struct type __node, *__left, *__right, *__tmp;			\
243\
244	SPLAY_LEFT(&__node, field) = SPLAY_RIGHT(&__node, field) = NULL;\
245	__left = __right = &__node;					\
246\
247	while (1) {							\
248		if (__comp < 0) {					\
249			__tmp = SPLAY_LEFT((head)->sph_root, field);	\
250			if (__tmp == NULL)				\
251				break;					\
252			if (__comp < 0){				\
253				SPLAY_ROTATE_RIGHT(head, __tmp, field);	\
254				if (SPLAY_LEFT((head)->sph_root, field) == NULL)\
255					break;				\
256			}						\
257			SPLAY_LINKLEFT(head, __right, field);		\
258		} else if (__comp > 0) {				\
259			__tmp = SPLAY_RIGHT((head)->sph_root, field);	\
260			if (__tmp == NULL)				\
261				break;					\
262			if (__comp > 0) {				\
263				SPLAY_ROTATE_LEFT(head, __tmp, field);	\
264				if (SPLAY_RIGHT((head)->sph_root, field) == NULL)\
265					break;				\
266			}						\
267			SPLAY_LINKRIGHT(head, __left, field);		\
268		}							\
269	}								\
270	SPLAY_ASSEMBLE(head, &__node, __left, __right, field);		\
271}
272
273#define SPLAY_NEGINF	-1
274#define SPLAY_INF	1
275
276#define SPLAY_INSERT(name, x, y)	name##_SPLAY_INSERT(x, y)
277#define SPLAY_REMOVE(name, x, y)	name##_SPLAY_REMOVE(x, y)
278#define SPLAY_FIND(name, x, y)		name##_SPLAY_FIND(x, y)
279#define SPLAY_NEXT(name, x, y)		name##_SPLAY_NEXT(x, y)
280#define SPLAY_MIN(name, x)		(SPLAY_EMPTY(x) ? NULL	\
281					: name##_SPLAY_MIN_MAX(x, SPLAY_NEGINF))
282#define SPLAY_MAX(name, x)		(SPLAY_EMPTY(x) ? NULL	\
283					: name##_SPLAY_MIN_MAX(x, SPLAY_INF))
284
285#define SPLAY_FOREACH(x, name, head)					\
286	for ((x) = SPLAY_MIN(name, head);				\
287	     (x) != NULL;						\
288	     (x) = SPLAY_NEXT(name, head, x))
289
290/* Macros that define a red-back tree */
291#define RB_HEAD(name, type)						\
292struct name {								\
293	struct type *rbh_root; /* root of the tree */			\
294}
295
296#define RB_INITIALIZER(root)						\
297	{ NULL }
298
299#define RB_INIT(root) do {						\
300	(root)->rbh_root = NULL;					\
301} while (0)
302
303#define RB_BLACK	0
304#define RB_RED		1
305#define RB_ENTRY(type)							\
306struct {								\
307	struct type *rbe_left;		/* left element */		\
308	struct type *rbe_right;		/* right element */		\
309	struct type *rbe_parent;	/* parent element */		\
310	int rbe_color;			/* node color */		\
311}
312
313#define RB_LEFT(elm, field)		(elm)->field.rbe_left
314#define RB_RIGHT(elm, field)		(elm)->field.rbe_right
315#define RB_PARENT(elm, field)		(elm)->field.rbe_parent
316#define RB_COLOR(elm, field)		(elm)->field.rbe_color
317#define RB_ROOT(head)			(head)->rbh_root
318#define RB_EMPTY(head)			(RB_ROOT(head) == NULL)
319
320#define RB_SET(elm, parent, field) do {					\
321	RB_PARENT(elm, field) = parent;					\
322	RB_LEFT(elm, field) = RB_RIGHT(elm, field) = NULL;		\
323	RB_COLOR(elm, field) = RB_RED;					\
324} while (0)
325
326#define RB_SET_BLACKRED(black, red, field) do {				\
327	RB_COLOR(black, field) = RB_BLACK;				\
328	RB_COLOR(red, field) = RB_RED;					\
329} while (0)
330
331#ifndef RB_AUGMENT
332#define RB_AUGMENT(x)
333#endif
334
335#define RB_ROTATE_LEFT(head, elm, tmp, field) do {			\
336	(tmp) = RB_RIGHT(elm, field);					\
337	if ((RB_RIGHT(elm, field) = RB_LEFT(tmp, field))) {		\
338		RB_PARENT(RB_LEFT(tmp, field), field) = (elm);		\
339	}								\
340	RB_AUGMENT(elm);						\
341	if ((RB_PARENT(tmp, field) = RB_PARENT(elm, field))) {		\
342		if ((elm) == RB_LEFT(RB_PARENT(elm, field), field))	\
343			RB_LEFT(RB_PARENT(elm, field), field) = (tmp);	\
344		else							\
345			RB_RIGHT(RB_PARENT(elm, field), field) = (tmp);	\
346		RB_AUGMENT(RB_PARENT(elm, field));			\
347	} else								\
348		(head)->rbh_root = (tmp);				\
349	RB_LEFT(tmp, field) = (elm);					\
350	RB_PARENT(elm, field) = (tmp);					\
351	RB_AUGMENT(tmp);						\
352} while (0)
353
354#define RB_ROTATE_RIGHT(head, elm, tmp, field) do {			\
355	(tmp) = RB_LEFT(elm, field);					\
356	if ((RB_LEFT(elm, field) = RB_RIGHT(tmp, field))) {		\
357		RB_PARENT(RB_RIGHT(tmp, field), field) = (elm);		\
358	}								\
359	RB_AUGMENT(elm);						\
360	if ((RB_PARENT(tmp, field) = RB_PARENT(elm, field))) {		\
361		if ((elm) == RB_LEFT(RB_PARENT(elm, field), field))	\
362			RB_LEFT(RB_PARENT(elm, field), field) = (tmp);	\
363		else							\
364			RB_RIGHT(RB_PARENT(elm, field), field) = (tmp);	\
365		RB_AUGMENT(RB_PARENT(elm, field));			\
366	} else								\
367		(head)->rbh_root = (tmp);				\
368	RB_RIGHT(tmp, field) = (elm);					\
369	RB_PARENT(elm, field) = (tmp);					\
370	RB_AUGMENT(tmp);						\
371} while (0)
372
373/* Generates prototypes and inline functions */
374#define RB_PROTOTYPE(name, type, field, cmp)				\
375void name##_RB_INSERT_COLOR(struct name *, struct type *);	\
376void name##_RB_REMOVE_COLOR(struct name *, struct type *, struct type *);\
377struct type *name##_RB_REMOVE(struct name *, struct type *);		\
378struct type *name##_RB_INSERT(struct name *, struct type *);		\
379struct type *name##_RB_FIND(struct name *, struct type *);		\
380struct type *name##_RB_NEXT(struct name *, struct type *);		\
381struct type *name##_RB_MINMAX(struct name *, int);			\
382									\
383
384/* Main rb operation.
385 * Moves node close to the key of elm to top
386 */
387#define RB_GENERATE(name, type, field, cmp)				\
388void									\
389name##_RB_INSERT_COLOR(struct name *head, struct type *elm)		\
390{									\
391	struct type *parent, *gparent, *tmp;				\
392	while ((parent = RB_PARENT(elm, field)) &&			\
393	    RB_COLOR(parent, field) == RB_RED) {			\
394		gparent = RB_PARENT(parent, field);			\
395		if (parent == RB_LEFT(gparent, field)) {		\
396			tmp = RB_RIGHT(gparent, field);			\
397			if (tmp && RB_COLOR(tmp, field) == RB_RED) {	\
398				RB_COLOR(tmp, field) = RB_BLACK;	\
399				RB_SET_BLACKRED(parent, gparent, field);\
400				elm = gparent;				\
401				continue;				\
402			}						\
403			if (RB_RIGHT(parent, field) == elm) {		\
404				RB_ROTATE_LEFT(head, parent, tmp, field);\
405				tmp = parent;				\
406				parent = elm;				\
407				elm = tmp;				\
408			}						\
409			RB_SET_BLACKRED(parent, gparent, field);	\
410			RB_ROTATE_RIGHT(head, gparent, tmp, field);	\
411		} else {						\
412			tmp = RB_LEFT(gparent, field);			\
413			if (tmp && RB_COLOR(tmp, field) == RB_RED) {	\
414				RB_COLOR(tmp, field) = RB_BLACK;	\
415				RB_SET_BLACKRED(parent, gparent, field);\
416				elm = gparent;				\
417				continue;				\
418			}						\
419			if (RB_LEFT(parent, field) == elm) {		\
420				RB_ROTATE_RIGHT(head, parent, tmp, field);\
421				tmp = parent;				\
422				parent = elm;				\
423				elm = tmp;				\
424			}						\
425			RB_SET_BLACKRED(parent, gparent, field);	\
426			RB_ROTATE_LEFT(head, gparent, tmp, field);	\
427		}							\
428	}								\
429	RB_COLOR(head->rbh_root, field) = RB_BLACK;			\
430}									\
431									\
432void									\
433name##_RB_REMOVE_COLOR(struct name *head, struct type *parent, struct type *elm) \
434{									\
435	struct type *tmp;						\
436	while ((elm == NULL || RB_COLOR(elm, field) == RB_BLACK) &&	\
437	    elm != RB_ROOT(head)) {					\
438		if (RB_LEFT(parent, field) == elm) {			\
439			tmp = RB_RIGHT(parent, field);			\
440			if (RB_COLOR(tmp, field) == RB_RED) {		\
441				RB_SET_BLACKRED(tmp, parent, field);	\
442				RB_ROTATE_LEFT(head, parent, tmp, field);\
443				tmp = RB_RIGHT(parent, field);		\
444			}						\
445			if ((RB_LEFT(tmp, field) == NULL ||		\
446			    RB_COLOR(RB_LEFT(tmp, field), field) == RB_BLACK) &&\
447			    (RB_RIGHT(tmp, field) == NULL ||		\
448			    RB_COLOR(RB_RIGHT(tmp, field), field) == RB_BLACK)) {\
449				RB_COLOR(tmp, field) = RB_RED;		\
450				elm = parent;				\
451				parent = RB_PARENT(elm, field);		\
452			} else {					\
453				if (RB_RIGHT(tmp, field) == NULL ||	\
454				    RB_COLOR(RB_RIGHT(tmp, field), field) == RB_BLACK) {\
455					struct type *oleft;		\
456					if ((oleft = RB_LEFT(tmp, field)))\
457						RB_COLOR(oleft, field) = RB_BLACK;\
458					RB_COLOR(tmp, field) = RB_RED;	\
459					RB_ROTATE_RIGHT(head, tmp, oleft, field);\
460					tmp = RB_RIGHT(parent, field);	\
461				}					\
462				RB_COLOR(tmp, field) = RB_COLOR(parent, field);\
463				RB_COLOR(parent, field) = RB_BLACK;	\
464				if (RB_RIGHT(tmp, field))		\
465					RB_COLOR(RB_RIGHT(tmp, field), field) = RB_BLACK;\
466				RB_ROTATE_LEFT(head, parent, tmp, field);\
467				elm = RB_ROOT(head);			\
468				break;					\
469			}						\
470		} else {						\
471			tmp = RB_LEFT(parent, field);			\
472			if (RB_COLOR(tmp, field) == RB_RED) {		\
473				RB_SET_BLACKRED(tmp, parent, field);	\
474				RB_ROTATE_RIGHT(head, parent, tmp, field);\
475				tmp = RB_LEFT(parent, field);		\
476			}						\
477			if ((RB_LEFT(tmp, field) == NULL ||		\
478			    RB_COLOR(RB_LEFT(tmp, field), field) == RB_BLACK) &&\
479			    (RB_RIGHT(tmp, field) == NULL ||		\
480			    RB_COLOR(RB_RIGHT(tmp, field), field) == RB_BLACK)) {\
481				RB_COLOR(tmp, field) = RB_RED;		\
482				elm = parent;				\
483				parent = RB_PARENT(elm, field);		\
484			} else {					\
485				if (RB_LEFT(tmp, field) == NULL ||	\
486				    RB_COLOR(RB_LEFT(tmp, field), field) == RB_BLACK) {\
487					struct type *oright;		\
488					if ((oright = RB_RIGHT(tmp, field)))\
489						RB_COLOR(oright, field) = RB_BLACK;\
490					RB_COLOR(tmp, field) = RB_RED;	\
491					RB_ROTATE_LEFT(head, tmp, oright, field);\
492					tmp = RB_LEFT(parent, field);	\
493				}					\
494				RB_COLOR(tmp, field) = RB_COLOR(parent, field);\
495				RB_COLOR(parent, field) = RB_BLACK;	\
496				if (RB_LEFT(tmp, field))		\
497					RB_COLOR(RB_LEFT(tmp, field), field) = RB_BLACK;\
498				RB_ROTATE_RIGHT(head, parent, tmp, field);\
499				elm = RB_ROOT(head);			\
500				break;					\
501			}						\
502		}							\
503	}								\
504	if (elm)							\
505		RB_COLOR(elm, field) = RB_BLACK;			\
506}									\
507									\
508struct type *								\
509name##_RB_REMOVE(struct name *head, struct type *elm)			\
510{									\
511	struct type *child, *parent, *old = elm;			\
512	int color;							\
513	if (RB_LEFT(elm, field) == NULL)				\
514		child = RB_RIGHT(elm, field);				\
515	else if (RB_RIGHT(elm, field) == NULL)				\
516		child = RB_LEFT(elm, field);				\
517	else {								\
518		struct type *left;					\
519		elm = RB_RIGHT(elm, field);				\
520		while ((left = RB_LEFT(elm, field)))			\
521			elm = left;					\
522		child = RB_RIGHT(elm, field);				\
523		parent = RB_PARENT(elm, field);				\
524		color = RB_COLOR(elm, field);				\
525		if (child)						\
526			RB_PARENT(child, field) = parent;		\
527		if (parent) {						\
528			if (RB_LEFT(parent, field) == elm)		\
529				RB_LEFT(parent, field) = child;		\
530			else						\
531				RB_RIGHT(parent, field) = child;	\
532			RB_AUGMENT(parent);				\
533		} else							\
534			RB_ROOT(head) = child;				\
535		if (RB_PARENT(elm, field) == old)			\
536			parent = elm;					\
537		(elm)->field = (old)->field;				\
538		if (RB_PARENT(old, field)) {				\
539			if (RB_LEFT(RB_PARENT(old, field), field) == old)\
540				RB_LEFT(RB_PARENT(old, field), field) = elm;\
541			else						\
542				RB_RIGHT(RB_PARENT(old, field), field) = elm;\
543			RB_AUGMENT(RB_PARENT(old, field));		\
544		} else							\
545			RB_ROOT(head) = elm;				\
546		RB_PARENT(RB_LEFT(old, field), field) = elm;		\
547		if (RB_RIGHT(old, field))				\
548			RB_PARENT(RB_RIGHT(old, field), field) = elm;	\
549		if (parent) {						\
550			left = parent;					\
551			do {						\
552				RB_AUGMENT(left);			\
553			} while ((left = RB_PARENT(left, field)));	\
554		}							\
555		goto color;						\
556	}								\
557	parent = RB_PARENT(elm, field);					\
558	color = RB_COLOR(elm, field);					\
559	if (child)							\
560		RB_PARENT(child, field) = parent;			\
561	if (parent) {							\
562		if (RB_LEFT(parent, field) == elm)			\
563			RB_LEFT(parent, field) = child;			\
564		else							\
565			RB_RIGHT(parent, field) = child;		\
566		RB_AUGMENT(parent);					\
567	} else								\
568		RB_ROOT(head) = child;					\
569color:									\
570	if (color == RB_BLACK)						\
571		name##_RB_REMOVE_COLOR(head, parent, child);		\
572	return (old);							\
573}									\
574									\
575/* Inserts a node into the RB tree */					\
576struct type *								\
577name##_RB_INSERT(struct name *head, struct type *elm)			\
578{									\
579	struct type *tmp;						\
580	struct type *parent = NULL;					\
581	int comp = 0;							\
582	tmp = RB_ROOT(head);						\
583	while (tmp) {							\
584		parent = tmp;						\
585		comp = (cmp)(elm, parent);				\
586		if (comp < 0)						\
587			tmp = RB_LEFT(tmp, field);			\
588		else if (comp > 0)					\
589			tmp = RB_RIGHT(tmp, field);			\
590		else							\
591			return (tmp);					\
592	}								\
593	RB_SET(elm, parent, field);					\
594	if (parent != NULL) {						\
595		if (comp < 0)						\
596			RB_LEFT(parent, field) = elm;			\
597		else							\
598			RB_RIGHT(parent, field) = elm;			\
599		RB_AUGMENT(parent);					\
600	} else								\
601		RB_ROOT(head) = elm;					\
602	name##_RB_INSERT_COLOR(head, elm);				\
603	return (NULL);							\
604}									\
605									\
606/* Finds the node with the same key as elm */				\
607struct type *								\
608name##_RB_FIND(struct name *head, struct type *elm)			\
609{									\
610	struct type *tmp = RB_ROOT(head);				\
611	int comp;							\
612	while (tmp) {							\
613		comp = cmp(elm, tmp);					\
614		if (comp < 0)						\
615			tmp = RB_LEFT(tmp, field);			\
616		else if (comp > 0)					\
617			tmp = RB_RIGHT(tmp, field);			\
618		else							\
619			return (tmp);					\
620	}								\
621	return (NULL);							\
622}									\
623									\
624struct type *								\
625name##_RB_NEXT(struct name *head, struct type *elm)			\
626{									\
627	if (RB_RIGHT(elm, field)) {					\
628		elm = RB_RIGHT(elm, field);				\
629		while (RB_LEFT(elm, field))				\
630			elm = RB_LEFT(elm, field);			\
631	} else {							\
632		if (RB_PARENT(elm, field) &&				\
633		    (elm == RB_LEFT(RB_PARENT(elm, field), field)))	\
634			elm = RB_PARENT(elm, field);			\
635		else {							\
636			while (RB_PARENT(elm, field) &&			\
637			    (elm == RB_RIGHT(RB_PARENT(elm, field), field)))\
638				elm = RB_PARENT(elm, field);		\
639			elm = RB_PARENT(elm, field);			\
640		}							\
641	}								\
642	return (elm);							\
643}									\
644									\
645struct type *								\
646name##_RB_MINMAX(struct name *head, int val)				\
647{									\
648	struct type *tmp = RB_ROOT(head);				\
649	struct type *parent = NULL;					\
650	while (tmp) {							\
651		parent = tmp;						\
652		if (val < 0)						\
653			tmp = RB_LEFT(tmp, field);			\
654		else							\
655			tmp = RB_RIGHT(tmp, field);			\
656	}								\
657	return (parent);						\
658}
659
660#define RB_NEGINF	-1
661#define RB_INF	1
662
663#define RB_INSERT(name, x, y)	name##_RB_INSERT(x, y)
664#define RB_REMOVE(name, x, y)	name##_RB_REMOVE(x, y)
665#define RB_FIND(name, x, y)	name##_RB_FIND(x, y)
666#define RB_NEXT(name, x, y)	name##_RB_NEXT(x, y)
667#define RB_MIN(name, x)		name##_RB_MINMAX(x, RB_NEGINF)
668#define RB_MAX(name, x)		name##_RB_MINMAX(x, RB_INF)
669
670#define RB_FOREACH(x, name, head)					\
671	for ((x) = RB_MIN(name, head);					\
672	     (x) != NULL;						\
673	     (x) = name##_RB_NEXT(head, x))
674
675#endif	/* _SYS_TREE_H_ */
676