moduli.c revision 323134
1/* $OpenBSD: moduli.c,v 1.31 2016/09/12 01:22:38 deraadt Exp $ */
2/*
3 * Copyright 1994 Phil Karn <karn@qualcomm.com>
4 * Copyright 1996-1998, 2003 William Allen Simpson <wsimpson@greendragon.com>
5 * Copyright 2000 Niels Provos <provos@citi.umich.edu>
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/*
30 * Two-step process to generate safe primes for DHGEX
31 *
32 *  Sieve candidates for "safe" primes,
33 *  suitable for use as Diffie-Hellman moduli;
34 *  that is, where q = (p-1)/2 is also prime.
35 *
36 * First step: generate candidate primes (memory intensive)
37 * Second step: test primes' safety (processor intensive)
38 */
39
40#include "includes.h"
41
42#ifdef WITH_OPENSSL
43
44#include <sys/types.h>
45
46#include <openssl/bn.h>
47#include <openssl/dh.h>
48
49#include <errno.h>
50#include <stdio.h>
51#include <stdlib.h>
52#include <string.h>
53#include <stdarg.h>
54#include <time.h>
55#include <unistd.h>
56#include <limits.h>
57
58#include "xmalloc.h"
59#include "dh.h"
60#include "log.h"
61#include "misc.h"
62
63#include "openbsd-compat/openssl-compat.h"
64
65/*
66 * File output defines
67 */
68
69/* need line long enough for largest moduli plus headers */
70#define QLINESIZE		(100+8192)
71
72/*
73 * Size: decimal.
74 * Specifies the number of the most significant bit (0 to M).
75 * WARNING: internally, usually 1 to N.
76 */
77#define QSIZE_MINIMUM		(511)
78
79/*
80 * Prime sieving defines
81 */
82
83/* Constant: assuming 8 bit bytes and 32 bit words */
84#define SHIFT_BIT	(3)
85#define SHIFT_BYTE	(2)
86#define SHIFT_WORD	(SHIFT_BIT+SHIFT_BYTE)
87#define SHIFT_MEGABYTE	(20)
88#define SHIFT_MEGAWORD	(SHIFT_MEGABYTE-SHIFT_BYTE)
89
90/*
91 * Using virtual memory can cause thrashing.  This should be the largest
92 * number that is supported without a large amount of disk activity --
93 * that would increase the run time from hours to days or weeks!
94 */
95#define LARGE_MINIMUM	(8UL)	/* megabytes */
96
97/*
98 * Do not increase this number beyond the unsigned integer bit size.
99 * Due to a multiple of 4, it must be LESS than 128 (yielding 2**30 bits).
100 */
101#define LARGE_MAXIMUM	(127UL)	/* megabytes */
102
103/*
104 * Constant: when used with 32-bit integers, the largest sieve prime
105 * has to be less than 2**32.
106 */
107#define SMALL_MAXIMUM	(0xffffffffUL)
108
109/* Constant: can sieve all primes less than 2**32, as 65537**2 > 2**32-1. */
110#define TINY_NUMBER	(1UL<<16)
111
112/* Ensure enough bit space for testing 2*q. */
113#define TEST_MAXIMUM	(1UL<<16)
114#define TEST_MINIMUM	(QSIZE_MINIMUM + 1)
115/* real TEST_MINIMUM	(1UL << (SHIFT_WORD - TEST_POWER)) */
116#define TEST_POWER	(3)	/* 2**n, n < SHIFT_WORD */
117
118/* bit operations on 32-bit words */
119#define BIT_CLEAR(a,n)	((a)[(n)>>SHIFT_WORD] &= ~(1L << ((n) & 31)))
120#define BIT_SET(a,n)	((a)[(n)>>SHIFT_WORD] |= (1L << ((n) & 31)))
121#define BIT_TEST(a,n)	((a)[(n)>>SHIFT_WORD] & (1L << ((n) & 31)))
122
123/*
124 * Prime testing defines
125 */
126
127/* Minimum number of primality tests to perform */
128#define TRIAL_MINIMUM	(4)
129
130/*
131 * Sieving data (XXX - move to struct)
132 */
133
134/* sieve 2**16 */
135static u_int32_t *TinySieve, tinybits;
136
137/* sieve 2**30 in 2**16 parts */
138static u_int32_t *SmallSieve, smallbits, smallbase;
139
140/* sieve relative to the initial value */
141static u_int32_t *LargeSieve, largewords, largetries, largenumbers;
142static u_int32_t largebits, largememory;	/* megabytes */
143static BIGNUM *largebase;
144
145int gen_candidates(FILE *, u_int32_t, u_int32_t, BIGNUM *);
146int prime_test(FILE *, FILE *, u_int32_t, u_int32_t, char *, unsigned long,
147    unsigned long);
148
149/*
150 * print moduli out in consistent form,
151 */
152static int
153qfileout(FILE * ofile, u_int32_t otype, u_int32_t otests, u_int32_t otries,
154    u_int32_t osize, u_int32_t ogenerator, BIGNUM * omodulus)
155{
156	struct tm *gtm;
157	time_t time_now;
158	int res;
159
160	time(&time_now);
161	gtm = gmtime(&time_now);
162
163	res = fprintf(ofile, "%04d%02d%02d%02d%02d%02d %u %u %u %u %x ",
164	    gtm->tm_year + 1900, gtm->tm_mon + 1, gtm->tm_mday,
165	    gtm->tm_hour, gtm->tm_min, gtm->tm_sec,
166	    otype, otests, otries, osize, ogenerator);
167
168	if (res < 0)
169		return (-1);
170
171	if (BN_print_fp(ofile, omodulus) < 1)
172		return (-1);
173
174	res = fprintf(ofile, "\n");
175	fflush(ofile);
176
177	return (res > 0 ? 0 : -1);
178}
179
180
181/*
182 ** Sieve p's and q's with small factors
183 */
184static void
185sieve_large(u_int32_t s)
186{
187	u_int32_t r, u;
188
189	debug3("sieve_large %u", s);
190	largetries++;
191	/* r = largebase mod s */
192	r = BN_mod_word(largebase, s);
193	if (r == 0)
194		u = 0; /* s divides into largebase exactly */
195	else
196		u = s - r; /* largebase+u is first entry divisible by s */
197
198	if (u < largebits * 2) {
199		/*
200		 * The sieve omits p's and q's divisible by 2, so ensure that
201		 * largebase+u is odd. Then, step through the sieve in
202		 * increments of 2*s
203		 */
204		if (u & 0x1)
205			u += s; /* Make largebase+u odd, and u even */
206
207		/* Mark all multiples of 2*s */
208		for (u /= 2; u < largebits; u += s)
209			BIT_SET(LargeSieve, u);
210	}
211
212	/* r = p mod s */
213	r = (2 * r + 1) % s;
214	if (r == 0)
215		u = 0; /* s divides p exactly */
216	else
217		u = s - r; /* p+u is first entry divisible by s */
218
219	if (u < largebits * 4) {
220		/*
221		 * The sieve omits p's divisible by 4, so ensure that
222		 * largebase+u is not. Then, step through the sieve in
223		 * increments of 4*s
224		 */
225		while (u & 0x3) {
226			if (SMALL_MAXIMUM - u < s)
227				return;
228			u += s;
229		}
230
231		/* Mark all multiples of 4*s */
232		for (u /= 4; u < largebits; u += s)
233			BIT_SET(LargeSieve, u);
234	}
235}
236
237/*
238 * list candidates for Sophie-Germain primes (where q = (p-1)/2)
239 * to standard output.
240 * The list is checked against small known primes (less than 2**30).
241 */
242int
243gen_candidates(FILE *out, u_int32_t memory, u_int32_t power, BIGNUM *start)
244{
245	BIGNUM *q;
246	u_int32_t j, r, s, t;
247	u_int32_t smallwords = TINY_NUMBER >> 6;
248	u_int32_t tinywords = TINY_NUMBER >> 6;
249	time_t time_start, time_stop;
250	u_int32_t i;
251	int ret = 0;
252
253	largememory = memory;
254
255	if (memory != 0 &&
256	    (memory < LARGE_MINIMUM || memory > LARGE_MAXIMUM)) {
257		error("Invalid memory amount (min %ld, max %ld)",
258		    LARGE_MINIMUM, LARGE_MAXIMUM);
259		return (-1);
260	}
261
262	/*
263	 * Set power to the length in bits of the prime to be generated.
264	 * This is changed to 1 less than the desired safe prime moduli p.
265	 */
266	if (power > TEST_MAXIMUM) {
267		error("Too many bits: %u > %lu", power, TEST_MAXIMUM);
268		return (-1);
269	} else if (power < TEST_MINIMUM) {
270		error("Too few bits: %u < %u", power, TEST_MINIMUM);
271		return (-1);
272	}
273	power--; /* decrement before squaring */
274
275	/*
276	 * The density of ordinary primes is on the order of 1/bits, so the
277	 * density of safe primes should be about (1/bits)**2. Set test range
278	 * to something well above bits**2 to be reasonably sure (but not
279	 * guaranteed) of catching at least one safe prime.
280	 */
281	largewords = ((power * power) >> (SHIFT_WORD - TEST_POWER));
282
283	/*
284	 * Need idea of how much memory is available. We don't have to use all
285	 * of it.
286	 */
287	if (largememory > LARGE_MAXIMUM) {
288		logit("Limited memory: %u MB; limit %lu MB",
289		    largememory, LARGE_MAXIMUM);
290		largememory = LARGE_MAXIMUM;
291	}
292
293	if (largewords <= (largememory << SHIFT_MEGAWORD)) {
294		logit("Increased memory: %u MB; need %u bytes",
295		    largememory, (largewords << SHIFT_BYTE));
296		largewords = (largememory << SHIFT_MEGAWORD);
297	} else if (largememory > 0) {
298		logit("Decreased memory: %u MB; want %u bytes",
299		    largememory, (largewords << SHIFT_BYTE));
300		largewords = (largememory << SHIFT_MEGAWORD);
301	}
302
303	TinySieve = xcalloc(tinywords, sizeof(u_int32_t));
304	tinybits = tinywords << SHIFT_WORD;
305
306	SmallSieve = xcalloc(smallwords, sizeof(u_int32_t));
307	smallbits = smallwords << SHIFT_WORD;
308
309	/*
310	 * dynamically determine available memory
311	 */
312	while ((LargeSieve = calloc(largewords, sizeof(u_int32_t))) == NULL)
313		largewords -= (1L << (SHIFT_MEGAWORD - 2)); /* 1/4 MB chunks */
314
315	largebits = largewords << SHIFT_WORD;
316	largenumbers = largebits * 2;	/* even numbers excluded */
317
318	/* validation check: count the number of primes tried */
319	largetries = 0;
320	if ((q = BN_new()) == NULL)
321		fatal("BN_new failed");
322
323	/*
324	 * Generate random starting point for subprime search, or use
325	 * specified parameter.
326	 */
327	if ((largebase = BN_new()) == NULL)
328		fatal("BN_new failed");
329	if (start == NULL) {
330		if (BN_rand(largebase, power, 1, 1) == 0)
331			fatal("BN_rand failed");
332	} else {
333		if (BN_copy(largebase, start) == NULL)
334			fatal("BN_copy: failed");
335	}
336
337	/* ensure odd */
338	if (BN_set_bit(largebase, 0) == 0)
339		fatal("BN_set_bit: failed");
340
341	time(&time_start);
342
343	logit("%.24s Sieve next %u plus %u-bit", ctime(&time_start),
344	    largenumbers, power);
345	debug2("start point: 0x%s", BN_bn2hex(largebase));
346
347	/*
348	 * TinySieve
349	 */
350	for (i = 0; i < tinybits; i++) {
351		if (BIT_TEST(TinySieve, i))
352			continue; /* 2*i+3 is composite */
353
354		/* The next tiny prime */
355		t = 2 * i + 3;
356
357		/* Mark all multiples of t */
358		for (j = i + t; j < tinybits; j += t)
359			BIT_SET(TinySieve, j);
360
361		sieve_large(t);
362	}
363
364	/*
365	 * Start the small block search at the next possible prime. To avoid
366	 * fencepost errors, the last pass is skipped.
367	 */
368	for (smallbase = TINY_NUMBER + 3;
369	    smallbase < (SMALL_MAXIMUM - TINY_NUMBER);
370	    smallbase += TINY_NUMBER) {
371		for (i = 0; i < tinybits; i++) {
372			if (BIT_TEST(TinySieve, i))
373				continue; /* 2*i+3 is composite */
374
375			/* The next tiny prime */
376			t = 2 * i + 3;
377			r = smallbase % t;
378
379			if (r == 0) {
380				s = 0; /* t divides into smallbase exactly */
381			} else {
382				/* smallbase+s is first entry divisible by t */
383				s = t - r;
384			}
385
386			/*
387			 * The sieve omits even numbers, so ensure that
388			 * smallbase+s is odd. Then, step through the sieve
389			 * in increments of 2*t
390			 */
391			if (s & 1)
392				s += t; /* Make smallbase+s odd, and s even */
393
394			/* Mark all multiples of 2*t */
395			for (s /= 2; s < smallbits; s += t)
396				BIT_SET(SmallSieve, s);
397		}
398
399		/*
400		 * SmallSieve
401		 */
402		for (i = 0; i < smallbits; i++) {
403			if (BIT_TEST(SmallSieve, i))
404				continue; /* 2*i+smallbase is composite */
405
406			/* The next small prime */
407			sieve_large((2 * i) + smallbase);
408		}
409
410		memset(SmallSieve, 0, smallwords << SHIFT_BYTE);
411	}
412
413	time(&time_stop);
414
415	logit("%.24s Sieved with %u small primes in %ld seconds",
416	    ctime(&time_stop), largetries, (long) (time_stop - time_start));
417
418	for (j = r = 0; j < largebits; j++) {
419		if (BIT_TEST(LargeSieve, j))
420			continue; /* Definitely composite, skip */
421
422		debug2("test q = largebase+%u", 2 * j);
423		if (BN_set_word(q, 2 * j) == 0)
424			fatal("BN_set_word failed");
425		if (BN_add(q, q, largebase) == 0)
426			fatal("BN_add failed");
427		if (qfileout(out, MODULI_TYPE_SOPHIE_GERMAIN,
428		    MODULI_TESTS_SIEVE, largetries,
429		    (power - 1) /* MSB */, (0), q) == -1) {
430			ret = -1;
431			break;
432		}
433
434		r++; /* count q */
435	}
436
437	time(&time_stop);
438
439	free(LargeSieve);
440	free(SmallSieve);
441	free(TinySieve);
442
443	logit("%.24s Found %u candidates", ctime(&time_stop), r);
444
445	return (ret);
446}
447
448static void
449write_checkpoint(char *cpfile, u_int32_t lineno)
450{
451	FILE *fp;
452	char tmp[PATH_MAX];
453	int r;
454
455	r = snprintf(tmp, sizeof(tmp), "%s.XXXXXXXXXX", cpfile);
456	if (r == -1 || r >= PATH_MAX) {
457		logit("write_checkpoint: temp pathname too long");
458		return;
459	}
460	if ((r = mkstemp(tmp)) == -1) {
461		logit("mkstemp(%s): %s", tmp, strerror(errno));
462		return;
463	}
464	if ((fp = fdopen(r, "w")) == NULL) {
465		logit("write_checkpoint: fdopen: %s", strerror(errno));
466		unlink(tmp);
467		close(r);
468		return;
469	}
470	if (fprintf(fp, "%lu\n", (unsigned long)lineno) > 0 && fclose(fp) == 0
471	    && rename(tmp, cpfile) == 0)
472		debug3("wrote checkpoint line %lu to '%s'",
473		    (unsigned long)lineno, cpfile);
474	else
475		logit("failed to write to checkpoint file '%s': %s", cpfile,
476		    strerror(errno));
477}
478
479static unsigned long
480read_checkpoint(char *cpfile)
481{
482	FILE *fp;
483	unsigned long lineno = 0;
484
485	if ((fp = fopen(cpfile, "r")) == NULL)
486		return 0;
487	if (fscanf(fp, "%lu\n", &lineno) < 1)
488		logit("Failed to load checkpoint from '%s'", cpfile);
489	else
490		logit("Loaded checkpoint from '%s' line %lu", cpfile, lineno);
491	fclose(fp);
492	return lineno;
493}
494
495static unsigned long
496count_lines(FILE *f)
497{
498	unsigned long count = 0;
499	char lp[QLINESIZE + 1];
500
501	if (fseek(f, 0, SEEK_SET) != 0) {
502		debug("input file is not seekable");
503		return ULONG_MAX;
504	}
505	while (fgets(lp, QLINESIZE + 1, f) != NULL)
506		count++;
507	rewind(f);
508	debug("input file has %lu lines", count);
509	return count;
510}
511
512static char *
513fmt_time(time_t seconds)
514{
515	int day, hr, min;
516	static char buf[128];
517
518	min = (seconds / 60) % 60;
519	hr = (seconds / 60 / 60) % 24;
520	day = seconds / 60 / 60 / 24;
521	if (day > 0)
522		snprintf(buf, sizeof buf, "%dd %d:%02d", day, hr, min);
523	else
524		snprintf(buf, sizeof buf, "%d:%02d", hr, min);
525	return buf;
526}
527
528static void
529print_progress(unsigned long start_lineno, unsigned long current_lineno,
530    unsigned long end_lineno)
531{
532	static time_t time_start, time_prev;
533	time_t time_now, elapsed;
534	unsigned long num_to_process, processed, remaining, percent, eta;
535	double time_per_line;
536	char *eta_str;
537
538	time_now = monotime();
539	if (time_start == 0) {
540		time_start = time_prev = time_now;
541		return;
542	}
543	/* print progress after 1m then once per 5m */
544	if (time_now - time_prev < 5 * 60)
545		return;
546	time_prev = time_now;
547	elapsed = time_now - time_start;
548	processed = current_lineno - start_lineno;
549	remaining = end_lineno - current_lineno;
550	num_to_process = end_lineno - start_lineno;
551	time_per_line = (double)elapsed / processed;
552	/* if we don't know how many we're processing just report count+time */
553	time(&time_now);
554	if (end_lineno == ULONG_MAX) {
555		logit("%.24s processed %lu in %s", ctime(&time_now),
556		    processed, fmt_time(elapsed));
557		return;
558	}
559	percent = 100 * processed / num_to_process;
560	eta = time_per_line * remaining;
561	eta_str = xstrdup(fmt_time(eta));
562	logit("%.24s processed %lu of %lu (%lu%%) in %s, ETA %s",
563	    ctime(&time_now), processed, num_to_process, percent,
564	    fmt_time(elapsed), eta_str);
565	free(eta_str);
566}
567
568/*
569 * perform a Miller-Rabin primality test
570 * on the list of candidates
571 * (checking both q and p)
572 * The result is a list of so-call "safe" primes
573 */
574int
575prime_test(FILE *in, FILE *out, u_int32_t trials, u_int32_t generator_wanted,
576    char *checkpoint_file, unsigned long start_lineno, unsigned long num_lines)
577{
578	BIGNUM *q, *p, *a;
579	BN_CTX *ctx;
580	char *cp, *lp;
581	u_int32_t count_in = 0, count_out = 0, count_possible = 0;
582	u_int32_t generator_known, in_tests, in_tries, in_type, in_size;
583	unsigned long last_processed = 0, end_lineno;
584	time_t time_start, time_stop;
585	int res;
586
587	if (trials < TRIAL_MINIMUM) {
588		error("Minimum primality trials is %d", TRIAL_MINIMUM);
589		return (-1);
590	}
591
592	if (num_lines == 0)
593		end_lineno = count_lines(in);
594	else
595		end_lineno = start_lineno + num_lines;
596
597	time(&time_start);
598
599	if ((p = BN_new()) == NULL)
600		fatal("BN_new failed");
601	if ((q = BN_new()) == NULL)
602		fatal("BN_new failed");
603	if ((ctx = BN_CTX_new()) == NULL)
604		fatal("BN_CTX_new failed");
605
606	debug2("%.24s Final %u Miller-Rabin trials (%x generator)",
607	    ctime(&time_start), trials, generator_wanted);
608
609	if (checkpoint_file != NULL)
610		last_processed = read_checkpoint(checkpoint_file);
611	last_processed = start_lineno = MAXIMUM(last_processed, start_lineno);
612	if (end_lineno == ULONG_MAX)
613		debug("process from line %lu from pipe", last_processed);
614	else
615		debug("process from line %lu to line %lu", last_processed,
616		    end_lineno);
617
618	res = 0;
619	lp = xmalloc(QLINESIZE + 1);
620	while (fgets(lp, QLINESIZE + 1, in) != NULL && count_in < end_lineno) {
621		count_in++;
622		if (count_in <= last_processed) {
623			debug3("skipping line %u, before checkpoint or "
624			    "specified start line", count_in);
625			continue;
626		}
627		if (checkpoint_file != NULL)
628			write_checkpoint(checkpoint_file, count_in);
629		print_progress(start_lineno, count_in, end_lineno);
630		if (strlen(lp) < 14 || *lp == '!' || *lp == '#') {
631			debug2("%10u: comment or short line", count_in);
632			continue;
633		}
634
635		/* XXX - fragile parser */
636		/* time */
637		cp = &lp[14];	/* (skip) */
638
639		/* type */
640		in_type = strtoul(cp, &cp, 10);
641
642		/* tests */
643		in_tests = strtoul(cp, &cp, 10);
644
645		if (in_tests & MODULI_TESTS_COMPOSITE) {
646			debug2("%10u: known composite", count_in);
647			continue;
648		}
649
650		/* tries */
651		in_tries = strtoul(cp, &cp, 10);
652
653		/* size (most significant bit) */
654		in_size = strtoul(cp, &cp, 10);
655
656		/* generator (hex) */
657		generator_known = strtoul(cp, &cp, 16);
658
659		/* Skip white space */
660		cp += strspn(cp, " ");
661
662		/* modulus (hex) */
663		switch (in_type) {
664		case MODULI_TYPE_SOPHIE_GERMAIN:
665			debug2("%10u: (%u) Sophie-Germain", count_in, in_type);
666			a = q;
667			if (BN_hex2bn(&a, cp) == 0)
668				fatal("BN_hex2bn failed");
669			/* p = 2*q + 1 */
670			if (BN_lshift(p, q, 1) == 0)
671				fatal("BN_lshift failed");
672			if (BN_add_word(p, 1) == 0)
673				fatal("BN_add_word failed");
674			in_size += 1;
675			generator_known = 0;
676			break;
677		case MODULI_TYPE_UNSTRUCTURED:
678		case MODULI_TYPE_SAFE:
679		case MODULI_TYPE_SCHNORR:
680		case MODULI_TYPE_STRONG:
681		case MODULI_TYPE_UNKNOWN:
682			debug2("%10u: (%u)", count_in, in_type);
683			a = p;
684			if (BN_hex2bn(&a, cp) == 0)
685				fatal("BN_hex2bn failed");
686			/* q = (p-1) / 2 */
687			if (BN_rshift(q, p, 1) == 0)
688				fatal("BN_rshift failed");
689			break;
690		default:
691			debug2("Unknown prime type");
692			break;
693		}
694
695		/*
696		 * due to earlier inconsistencies in interpretation, check
697		 * the proposed bit size.
698		 */
699		if ((u_int32_t)BN_num_bits(p) != (in_size + 1)) {
700			debug2("%10u: bit size %u mismatch", count_in, in_size);
701			continue;
702		}
703		if (in_size < QSIZE_MINIMUM) {
704			debug2("%10u: bit size %u too short", count_in, in_size);
705			continue;
706		}
707
708		if (in_tests & MODULI_TESTS_MILLER_RABIN)
709			in_tries += trials;
710		else
711			in_tries = trials;
712
713		/*
714		 * guess unknown generator
715		 */
716		if (generator_known == 0) {
717			if (BN_mod_word(p, 24) == 11)
718				generator_known = 2;
719			else if (BN_mod_word(p, 12) == 5)
720				generator_known = 3;
721			else {
722				u_int32_t r = BN_mod_word(p, 10);
723
724				if (r == 3 || r == 7)
725					generator_known = 5;
726			}
727		}
728		/*
729		 * skip tests when desired generator doesn't match
730		 */
731		if (generator_wanted > 0 &&
732		    generator_wanted != generator_known) {
733			debug2("%10u: generator %d != %d",
734			    count_in, generator_known, generator_wanted);
735			continue;
736		}
737
738		/*
739		 * Primes with no known generator are useless for DH, so
740		 * skip those.
741		 */
742		if (generator_known == 0) {
743			debug2("%10u: no known generator", count_in);
744			continue;
745		}
746
747		count_possible++;
748
749		/*
750		 * The (1/4)^N performance bound on Miller-Rabin is
751		 * extremely pessimistic, so don't spend a lot of time
752		 * really verifying that q is prime until after we know
753		 * that p is also prime. A single pass will weed out the
754		 * vast majority of composite q's.
755		 */
756		if (BN_is_prime_ex(q, 1, ctx, NULL) <= 0) {
757			debug("%10u: q failed first possible prime test",
758			    count_in);
759			continue;
760		}
761
762		/*
763		 * q is possibly prime, so go ahead and really make sure
764		 * that p is prime. If it is, then we can go back and do
765		 * the same for q. If p is composite, chances are that
766		 * will show up on the first Rabin-Miller iteration so it
767		 * doesn't hurt to specify a high iteration count.
768		 */
769		if (!BN_is_prime_ex(p, trials, ctx, NULL)) {
770			debug("%10u: p is not prime", count_in);
771			continue;
772		}
773		debug("%10u: p is almost certainly prime", count_in);
774
775		/* recheck q more rigorously */
776		if (!BN_is_prime_ex(q, trials - 1, ctx, NULL)) {
777			debug("%10u: q is not prime", count_in);
778			continue;
779		}
780		debug("%10u: q is almost certainly prime", count_in);
781
782		if (qfileout(out, MODULI_TYPE_SAFE,
783		    in_tests | MODULI_TESTS_MILLER_RABIN,
784		    in_tries, in_size, generator_known, p)) {
785			res = -1;
786			break;
787		}
788
789		count_out++;
790	}
791
792	time(&time_stop);
793	free(lp);
794	BN_free(p);
795	BN_free(q);
796	BN_CTX_free(ctx);
797
798	if (checkpoint_file != NULL)
799		unlink(checkpoint_file);
800
801	logit("%.24s Found %u safe primes of %u candidates in %ld seconds",
802	    ctime(&time_stop), count_out, count_possible,
803	    (long) (time_stop - time_start));
804
805	return (res);
806}
807
808#endif /* WITH_OPENSSL */
809