index.c revision 207753
1///////////////////////////////////////////////////////////////////////////////
2//
3/// \file       index.c
4/// \brief      Handling of .xz Indexes and some other Stream information
5//
6//  Author:     Lasse Collin
7//
8//  This file has been put into the public domain.
9//  You can do whatever you want with this file.
10//
11///////////////////////////////////////////////////////////////////////////////
12
13#include "index.h"
14#include "stream_flags_common.h"
15
16
17/// \brief      How many Records to allocate at once
18///
19/// This should be big enough to avoid making lots of tiny allocations
20/// but small enough to avoid too much unused memory at once.
21#define INDEX_GROUP_SIZE 500
22
23
24/// \brief      How many Records can be allocated at once at maximum
25#define PREALLOC_MAX ((SIZE_MAX - sizeof(index_group)) / sizeof(index_record))
26
27
28/// \brief      Base structure for index_stream and index_group structures
29typedef struct index_tree_node_s index_tree_node;
30struct index_tree_node_s {
31	/// Uncompressed start offset of this Stream (relative to the
32	/// beginning of the file) or Block (relative to the beginning
33	/// of the Stream)
34	lzma_vli uncompressed_base;
35
36	/// Compressed start offset of this Stream or Block
37	lzma_vli compressed_base;
38
39	index_tree_node *parent;
40	index_tree_node *left;
41	index_tree_node *right;
42};
43
44
45/// \brief      AVL tree to hold index_stream or index_group structures
46typedef struct {
47	/// Root node
48	index_tree_node *root;
49
50	/// Leftmost node. Since the tree will be filled sequentially,
51	/// this won't change after the first node has been added to
52	/// the tree.
53	index_tree_node *leftmost;
54
55	/// The rightmost node in the tree. Since the tree is filled
56	/// sequentially, this is always the node where to add the new data.
57	index_tree_node *rightmost;
58
59	/// Number of nodes in the tree
60	uint32_t count;
61
62} index_tree;
63
64
65typedef struct {
66	lzma_vli uncompressed_sum;
67	lzma_vli unpadded_sum;
68} index_record;
69
70
71typedef struct {
72	/// Every Record group is part of index_stream.groups tree.
73	index_tree_node node;
74
75	/// Number of Blocks in this Stream before this group.
76	lzma_vli number_base;
77
78	/// Number of Records that can be put in records[].
79	size_t allocated;
80
81	/// Index of the last Record in use.
82	size_t last;
83
84	/// The sizes in this array are stored as cumulative sums relative
85	/// to the beginning of the Stream. This makes it possible to
86	/// use binary search in lzma_index_locate().
87	///
88	/// Note that the cumulative summing is done specially for
89	/// unpadded_sum: The previous value is rounded up to the next
90	/// multiple of four before adding the Unpadded Size of the new
91	/// Block. The total encoded size of the Blocks in the Stream
92	/// is records[last].unpadded_sum in the last Record group of
93	/// the Stream.
94	///
95	/// For example, if the Unpadded Sizes are 39, 57, and 81, the
96	/// stored values are 39, 97 (40 + 57), and 181 (100 + 181).
97	/// The total encoded size of these Blocks is 184.
98	///
99	/// This is a flexible array, because it makes easy to optimize
100	/// memory usage in case someone concatenates many Streams that
101	/// have only one or few Blocks.
102	index_record records[];
103
104} index_group;
105
106
107typedef struct {
108	/// Every index_stream is a node in the tree of Sreams.
109	index_tree_node node;
110
111	/// Number of this Stream (first one is 1)
112	uint32_t number;
113
114	/// Total number of Blocks before this Stream
115	lzma_vli block_number_base;
116
117	/// Record groups of this Stream are stored in a tree.
118	/// It's a T-tree with AVL-tree balancing. There are
119	/// INDEX_GROUP_SIZE Records per node by default.
120	/// This keeps the number of memory allocations reasonable
121	/// and finding a Record is fast.
122	index_tree groups;
123
124	/// Number of Records in this Stream
125	lzma_vli record_count;
126
127	/// Size of the List of Records field in this Stream. This is used
128	/// together with record_count to calculate the size of the Index
129	/// field and thus the total size of the Stream.
130	lzma_vli index_list_size;
131
132	/// Stream Flags of this Stream. This is meaningful only if
133	/// the Stream Flags have been told us with lzma_index_stream_flags().
134	/// Initially stream_flags.version is set to UINT32_MAX to indicate
135	/// that the Stream Flags are unknown.
136	lzma_stream_flags stream_flags;
137
138	/// Amount of Stream Padding after this Stream. This defaults to
139	/// zero and can be set with lzma_index_stream_padding().
140	lzma_vli stream_padding;
141
142} index_stream;
143
144
145struct lzma_index_s {
146	/// AVL-tree containing the Stream(s). Often there is just one
147	/// Stream, but using a tree keeps lookups fast even when there
148	/// are many concatenated Streams.
149	index_tree streams;
150
151	/// Uncompressed size of all the Blocks in the Stream(s)
152	lzma_vli uncompressed_size;
153
154	/// Total size of all the Blocks in the Stream(s)
155	lzma_vli total_size;
156
157	/// Total number of Records in all Streams in this lzma_index
158	lzma_vli record_count;
159
160	/// Size of the List of Records field if all the Streams in this
161	/// lzma_index were packed into a single Stream (makes it simpler to
162	/// take many .xz files and combine them into a single Stream).
163	///
164	/// This value together with record_count is needed to calculate
165	/// Backward Size that is stored into Stream Footer.
166	lzma_vli index_list_size;
167
168	/// How many Records to allocate at once in lzma_index_append().
169	/// This defaults to INDEX_GROUP_SIZE but can be overriden with
170	/// lzma_index_prealloc().
171	size_t prealloc;
172
173	/// Bitmask indicating what integrity check types have been used
174	/// as set by lzma_index_stream_flags(). The bit of the last Stream
175	/// is not included here, since it is possible to change it by
176	/// calling lzma_index_stream_flags() again.
177	uint32_t checks;
178};
179
180
181static void
182index_tree_init(index_tree *tree)
183{
184	tree->root = NULL;
185	tree->leftmost = NULL;
186	tree->rightmost = NULL;
187	tree->count = 0;
188	return;
189}
190
191
192/// Helper for index_tree_end()
193static void
194index_tree_node_end(index_tree_node *node, lzma_allocator *allocator,
195		void (*free_func)(void *node, lzma_allocator *allocator))
196{
197	// The tree won't ever be very huge, so recursion should be fine.
198	// 20 levels in the tree is likely quite a lot already in practice.
199	if (node->left != NULL)
200		index_tree_node_end(node->left, allocator, free_func);
201
202	if (node->right != NULL)
203		index_tree_node_end(node->right, allocator, free_func);
204
205	if (free_func != NULL)
206		free_func(node, allocator);
207
208	lzma_free(node, allocator);
209	return;
210}
211
212
213/// Free the meory allocated for a tree. If free_func is not NULL,
214/// it is called on each node before freeing the node. This is used
215/// to free the Record groups from each index_stream before freeing
216/// the index_stream itself.
217static void
218index_tree_end(index_tree *tree, lzma_allocator *allocator,
219		void (*free_func)(void *node, lzma_allocator *allocator))
220{
221	if (tree->root != NULL)
222		index_tree_node_end(tree->root, allocator, free_func);
223
224	return;
225}
226
227
228/// Add a new node to the tree. node->uncompressed_base and
229/// node->compressed_base must have been set by the caller already.
230static void
231index_tree_append(index_tree *tree, index_tree_node *node)
232{
233	node->parent = tree->rightmost;
234	node->left = NULL;
235	node->right = NULL;
236
237	++tree->count;
238
239	// Handle the special case of adding the first node.
240	if (tree->root == NULL) {
241		tree->root = node;
242		tree->leftmost = node;
243		tree->rightmost = node;
244		return;
245	}
246
247	// The tree is always filled sequentially.
248	assert(tree->rightmost->uncompressed_base <= node->uncompressed_base);
249	assert(tree->rightmost->compressed_base < node->compressed_base);
250
251	// Add the new node after the rightmost node. It's the correct
252	// place due to the reason above.
253	tree->rightmost->right = node;
254	tree->rightmost = node;
255
256	// Balance the AVL-tree if needed. We don't need to keep the balance
257	// factors in nodes, because we always fill the tree sequentially,
258	// and thus know the state of the tree just by looking at the node
259	// count. From the node count we can calculate how many steps to go
260	// up in the tree to find the rotation root.
261	uint32_t up = tree->count ^ (UINT32_C(1) << bsr32(tree->count));
262	if (up != 0) {
263		// Locate the root node for the rotation.
264		up = ctz32(tree->count) + 2;
265		do {
266			node = node->parent;
267		} while (--up > 0);
268
269		// Rotate left using node as the rotation root.
270		index_tree_node *pivot = node->right;
271
272		if (node->parent == NULL) {
273			tree->root = pivot;
274		} else {
275			assert(node->parent->right == node);
276			node->parent->right = pivot;
277		}
278
279		pivot->parent = node->parent;
280
281		node->right = pivot->left;
282		if (node->right != NULL)
283			node->right->parent = node;
284
285		pivot->left = node;
286		node->parent = pivot;
287	}
288
289	return;
290}
291
292
293/// Get the next node in the tree. Return NULL if there are no more nodes.
294static void *
295index_tree_next(const index_tree_node *node)
296{
297	if (node->right != NULL) {
298		node = node->right;
299		while (node->left != NULL)
300			node = node->left;
301
302		return (void *)(node);
303	}
304
305	while (node->parent != NULL && node->parent->right == node)
306		node = node->parent;
307
308	return (void *)(node->parent);
309}
310
311
312/// Locate a node that contains the given uncompressed offset. It is
313/// caller's job to check that target is not bigger than the uncompressed
314/// size of the tree (the last node would be returned in that case still).
315static void *
316index_tree_locate(const index_tree *tree, lzma_vli target)
317{
318	const index_tree_node *result = NULL;
319	const index_tree_node *node = tree->root;
320
321	assert(tree->leftmost == NULL
322			|| tree->leftmost->uncompressed_base == 0);
323
324	// Consecutive nodes may have the same uncompressed_base.
325	// We must pick the rightmost one.
326	while (node != NULL) {
327		if (node->uncompressed_base > target) {
328			node = node->left;
329		} else {
330			result = node;
331			node = node->right;
332		}
333	}
334
335	return (void *)(result);
336}
337
338
339/// Allocate and initialize a new Stream using the given base offsets.
340static index_stream *
341index_stream_init(lzma_vli compressed_base, lzma_vli uncompressed_base,
342		lzma_vli stream_number, lzma_vli block_number_base,
343		lzma_allocator *allocator)
344{
345	index_stream *s = lzma_alloc(sizeof(index_stream), allocator);
346	if (s == NULL)
347		return NULL;
348
349	s->node.uncompressed_base = uncompressed_base;
350	s->node.compressed_base = compressed_base;
351	s->node.parent = NULL;
352	s->node.left = NULL;
353	s->node.right = NULL;
354
355	s->number = stream_number;
356	s->block_number_base = block_number_base;
357
358	index_tree_init(&s->groups);
359
360	s->record_count = 0;
361	s->index_list_size = 0;
362	s->stream_flags.version = UINT32_MAX;
363	s->stream_padding = 0;
364
365	return s;
366}
367
368
369/// Free the memory allocated for a Stream and its Record groups.
370static void
371index_stream_end(void *node, lzma_allocator *allocator)
372{
373	index_stream *s = node;
374	index_tree_end(&s->groups, allocator, NULL);
375	return;
376}
377
378
379static lzma_index *
380index_init_plain(lzma_allocator *allocator)
381{
382	lzma_index *i = lzma_alloc(sizeof(lzma_index), allocator);
383	if (i != NULL) {
384		index_tree_init(&i->streams);
385		i->uncompressed_size = 0;
386		i->total_size = 0;
387		i->record_count = 0;
388		i->index_list_size = 0;
389		i->prealloc = INDEX_GROUP_SIZE;
390		i->checks = 0;
391	}
392
393	return i;
394}
395
396
397extern LZMA_API(lzma_index *)
398lzma_index_init(lzma_allocator *allocator)
399{
400	lzma_index *i = index_init_plain(allocator);
401	index_stream *s = index_stream_init(0, 0, 1, 0, allocator);
402	if (i == NULL || s == NULL) {
403		index_stream_end(s, allocator);
404		lzma_free(i, allocator);
405	}
406
407	index_tree_append(&i->streams, &s->node);
408
409	return i;
410}
411
412
413extern LZMA_API(void)
414lzma_index_end(lzma_index *i, lzma_allocator *allocator)
415{
416	// NOTE: If you modify this function, check also the bottom
417	// of lzma_index_cat().
418	if (i != NULL) {
419		index_tree_end(&i->streams, allocator, &index_stream_end);
420		lzma_free(i, allocator);
421	}
422
423	return;
424}
425
426
427extern void
428lzma_index_prealloc(lzma_index *i, lzma_vli records)
429{
430	if (records > PREALLOC_MAX)
431		records = PREALLOC_MAX;
432
433	i->prealloc = (size_t)(records);
434	return;
435}
436
437
438extern LZMA_API(uint64_t)
439lzma_index_memusage(lzma_vli streams, lzma_vli blocks)
440{
441	// This calculates an upper bound that is only a little bit
442	// bigger than the exact maximum memory usage with the given
443	// parameters.
444
445	// Typical malloc() overhead is 2 * sizeof(void *) but we take
446	// a little bit extra just in case. Using LZMA_MEMUSAGE_BASE
447	// instead would give too inaccurate estimate.
448	const size_t alloc_overhead = 4 * sizeof(void *);
449
450	// Amount of memory needed for each Stream base structures.
451	// We assume that every Stream has at least one Block and
452	// thus at least one group.
453	const size_t stream_base = sizeof(index_stream)
454			+ sizeof(index_group) + 2 * alloc_overhead;
455
456	// Amount of memory needed per group.
457	const size_t group_base = sizeof(index_group)
458			+ INDEX_GROUP_SIZE * sizeof(index_record)
459			+ alloc_overhead;
460
461	// Number of groups. There may actually be more, but that overhead
462	// has been taken into account in stream_base already.
463	const lzma_vli groups
464			= (blocks + INDEX_GROUP_SIZE - 1) / INDEX_GROUP_SIZE;
465
466	// Memory used by index_stream and index_group structures.
467	const uint64_t streams_mem = streams * stream_base;
468	const uint64_t groups_mem = groups * group_base;
469
470	// Memory used by the base structure.
471	const uint64_t index_base = sizeof(lzma_index) + alloc_overhead;
472
473	// Validate the arguments and catch integer overflows.
474	// Maximum number of Streams is "only" UINT32_MAX, because
475	// that limit is used by the tree containing the Streams.
476	const uint64_t limit = UINT64_MAX - index_base;
477	if (streams == 0 || streams > UINT32_MAX || blocks > LZMA_VLI_MAX
478			|| streams > limit / stream_base
479			|| groups > limit / group_base
480			|| limit - streams_mem < groups_mem)
481		return UINT64_MAX;
482
483	return index_base + streams_mem + groups_mem;
484}
485
486
487extern LZMA_API(uint64_t)
488lzma_index_memused(const lzma_index *i)
489{
490	return lzma_index_memusage(i->streams.count, i->record_count);
491}
492
493
494extern LZMA_API(lzma_vli)
495lzma_index_block_count(const lzma_index *i)
496{
497	return i->record_count;
498}
499
500
501extern LZMA_API(lzma_vli)
502lzma_index_stream_count(const lzma_index *i)
503{
504	return i->streams.count;
505}
506
507
508extern LZMA_API(lzma_vli)
509lzma_index_size(const lzma_index *i)
510{
511	return index_size(i->record_count, i->index_list_size);
512}
513
514
515extern LZMA_API(lzma_vli)
516lzma_index_total_size(const lzma_index *i)
517{
518	return i->total_size;
519}
520
521
522extern LZMA_API(lzma_vli)
523lzma_index_stream_size(const lzma_index *i)
524{
525	// Stream Header + Blocks + Index + Stream Footer
526	return LZMA_STREAM_HEADER_SIZE + i->total_size
527			+ index_size(i->record_count, i->index_list_size)
528			+ LZMA_STREAM_HEADER_SIZE;
529}
530
531
532static lzma_vli
533index_file_size(lzma_vli compressed_base, lzma_vli unpadded_sum,
534		lzma_vli record_count, lzma_vli index_list_size,
535		lzma_vli stream_padding)
536{
537	// Earlier Streams and Stream Paddings + Stream Header
538	// + Blocks + Index + Stream Footer + Stream Padding
539	//
540	// This might go over LZMA_VLI_MAX due to too big unpadded_sum
541	// when this function is used in lzma_index_append().
542	lzma_vli file_size = compressed_base + 2 * LZMA_STREAM_HEADER_SIZE
543			+ stream_padding + vli_ceil4(unpadded_sum);
544	if (file_size > LZMA_VLI_MAX)
545		return LZMA_VLI_UNKNOWN;
546
547	// The same applies here.
548	file_size += index_size(record_count, index_list_size);
549	if (file_size > LZMA_VLI_MAX)
550		return LZMA_VLI_UNKNOWN;
551
552	return file_size;
553}
554
555
556extern LZMA_API(lzma_vli)
557lzma_index_file_size(const lzma_index *i)
558{
559	const index_stream *s = (const index_stream *)(i->streams.rightmost);
560	const index_group *g = (const index_group *)(s->groups.rightmost);
561	return index_file_size(s->node.compressed_base,
562			g == NULL ? 0 : g->records[g->last].unpadded_sum,
563			s->record_count, s->index_list_size,
564			s->stream_padding);
565}
566
567
568extern LZMA_API(lzma_vli)
569lzma_index_uncompressed_size(const lzma_index *i)
570{
571	return i->uncompressed_size;
572}
573
574
575extern LZMA_API(uint32_t)
576lzma_index_checks(const lzma_index *i)
577{
578	uint32_t checks = i->checks;
579
580	// Get the type of the Check of the last Stream too.
581	const index_stream *s = (const index_stream *)(i->streams.rightmost);
582	if (s->stream_flags.version != UINT32_MAX)
583		checks |= UINT32_C(1) << s->stream_flags.check;
584
585	return checks;
586}
587
588
589extern uint32_t
590lzma_index_padding_size(const lzma_index *i)
591{
592	return (LZMA_VLI_C(4) - index_size_unpadded(
593			i->record_count, i->index_list_size)) & 3;
594}
595
596
597extern LZMA_API(lzma_ret)
598lzma_index_stream_flags(lzma_index *i, const lzma_stream_flags *stream_flags)
599{
600	if (i == NULL || stream_flags == NULL)
601		return LZMA_PROG_ERROR;
602
603	// Validate the Stream Flags.
604	return_if_error(lzma_stream_flags_compare(
605			stream_flags, stream_flags));
606
607	index_stream *s = (index_stream *)(i->streams.rightmost);
608	s->stream_flags = *stream_flags;
609
610	return LZMA_OK;
611}
612
613
614extern LZMA_API(lzma_ret)
615lzma_index_stream_padding(lzma_index *i, lzma_vli stream_padding)
616{
617	if (i == NULL || stream_padding > LZMA_VLI_MAX
618			|| (stream_padding & 3) != 0)
619		return LZMA_PROG_ERROR;
620
621	index_stream *s = (index_stream *)(i->streams.rightmost);
622
623	// Check that the new value won't make the file grow too big.
624	const lzma_vli old_stream_padding = s->stream_padding;
625	s->stream_padding = 0;
626	if (lzma_index_file_size(i) + stream_padding > LZMA_VLI_MAX) {
627		s->stream_padding = old_stream_padding;
628		return LZMA_DATA_ERROR;
629	}
630
631	s->stream_padding = stream_padding;
632	return LZMA_OK;
633}
634
635
636extern LZMA_API(lzma_ret)
637lzma_index_append(lzma_index *i, lzma_allocator *allocator,
638		lzma_vli unpadded_size, lzma_vli uncompressed_size)
639{
640	// Validate.
641	if (i == NULL || unpadded_size < UNPADDED_SIZE_MIN
642			|| unpadded_size > UNPADDED_SIZE_MAX
643			|| uncompressed_size > LZMA_VLI_MAX)
644		return LZMA_PROG_ERROR;
645
646	index_stream *s = (index_stream *)(i->streams.rightmost);
647	index_group *g = (index_group *)(s->groups.rightmost);
648
649	const lzma_vli compressed_base = g == NULL ? 0
650			: vli_ceil4(g->records[g->last].unpadded_sum);
651	const lzma_vli uncompressed_base = g == NULL ? 0
652			: g->records[g->last].uncompressed_sum;
653	const uint32_t index_list_size_add = lzma_vli_size(unpadded_size)
654			+ lzma_vli_size(uncompressed_size);
655
656	// Check that the file size will stay within limits.
657	if (index_file_size(s->node.compressed_base,
658			compressed_base + unpadded_size, s->record_count + 1,
659			s->index_list_size + index_list_size_add,
660			s->stream_padding) == LZMA_VLI_UNKNOWN)
661		return LZMA_DATA_ERROR;
662
663	// The size of the Index field must not exceed the maximum value
664	// that can be stored in the Backward Size field.
665	if (index_size(i->record_count + 1,
666			i->index_list_size + index_list_size_add)
667			> LZMA_BACKWARD_SIZE_MAX)
668		return LZMA_DATA_ERROR;
669
670	if (g != NULL && g->last + 1 < g->allocated) {
671		// There is space in the last group at least for one Record.
672		++g->last;
673	} else {
674		// We need to allocate a new group.
675		g = lzma_alloc(sizeof(index_group)
676				+ i->prealloc * sizeof(index_record),
677				allocator);
678		if (g == NULL)
679			return LZMA_MEM_ERROR;
680
681		g->last = 0;
682		g->allocated = i->prealloc;
683
684		// Reset prealloc so that if the application happens to
685		// add new Records, the allocation size will be sane.
686		i->prealloc = INDEX_GROUP_SIZE;
687
688		// Set the start offsets of this group.
689		g->node.uncompressed_base = uncompressed_base;
690		g->node.compressed_base = compressed_base;
691		g->number_base = s->record_count + 1;
692
693		// Add the new group to the Stream.
694		index_tree_append(&s->groups, &g->node);
695	}
696
697	// Add the new Record to the group.
698	g->records[g->last].uncompressed_sum
699			= uncompressed_base + uncompressed_size;
700	g->records[g->last].unpadded_sum
701			= compressed_base + unpadded_size;
702
703	// Update the totals.
704	++s->record_count;
705	s->index_list_size += index_list_size_add;
706
707	i->total_size += vli_ceil4(unpadded_size);
708	i->uncompressed_size += uncompressed_size;
709	++i->record_count;
710	i->index_list_size += index_list_size_add;
711
712	return LZMA_OK;
713}
714
715
716/// Structure to pass info to index_cat_helper()
717typedef struct {
718	/// Uncompressed size of the destination
719	lzma_vli uncompressed_size;
720
721	/// Compressed file size of the destination
722	lzma_vli file_size;
723
724	/// Same as above but for Block numbers
725	lzma_vli block_number_add;
726
727	/// Number of Streams that were in the destination index before we
728	/// started appending new Streams from the source index. This is
729	/// used to fix the Stream numbering.
730	uint32_t stream_number_add;
731
732	/// Destination index' Stream tree
733	index_tree *streams;
734
735} index_cat_info;
736
737
738/// Add the Stream nodes from the source index to dest using recursion.
739/// Simplest iterative traversal of the source tree wouldn't work, because
740/// we update the pointers in nodes when moving them to the destination tree.
741static void
742index_cat_helper(const index_cat_info *info, index_stream *this)
743{
744	index_stream *left = (index_stream *)(this->node.left);
745	index_stream *right = (index_stream *)(this->node.right);
746
747	if (left != NULL)
748		index_cat_helper(info, left);
749
750	this->node.uncompressed_base += info->uncompressed_size;
751	this->node.compressed_base += info->file_size;
752	this->number += info->stream_number_add;
753	this->block_number_base += info->block_number_add;
754	index_tree_append(info->streams, &this->node);
755
756	if (right != NULL)
757		index_cat_helper(info, right);
758
759	return;
760}
761
762
763extern LZMA_API(lzma_ret)
764lzma_index_cat(lzma_index *restrict dest, lzma_index *restrict src,
765		lzma_allocator *allocator)
766{
767	const lzma_vli dest_file_size = lzma_index_file_size(dest);
768
769	// Check that we don't exceed the file size limits.
770	if (dest_file_size + lzma_index_file_size(src) > LZMA_VLI_MAX
771			|| dest->uncompressed_size + src->uncompressed_size
772				> LZMA_VLI_MAX)
773		return LZMA_DATA_ERROR;
774
775	// Check that the encoded size of the combined lzma_indexes stays
776	// within limits. In theory, this should be done only if we know
777	// that the user plans to actually combine the Streams and thus
778	// construct a single Index (probably rare). However, exceeding
779	// this limit is quite theoretical, so we do this check always
780	// to simplify things elsewhere.
781	{
782		const lzma_vli dest_size = index_size_unpadded(
783				dest->record_count, dest->index_list_size);
784		const lzma_vli src_size = index_size_unpadded(
785				src->record_count, src->index_list_size);
786		if (vli_ceil4(dest_size + src_size) > LZMA_BACKWARD_SIZE_MAX)
787			return LZMA_DATA_ERROR;
788	}
789
790	// Optimize the last group to minimize memory usage. Allocation has
791	// to be done before modifying dest or src.
792	{
793		index_stream *s = (index_stream *)(dest->streams.rightmost);
794		index_group *g = (index_group *)(s->groups.rightmost);
795		if (g != NULL && g->last + 1 < g->allocated) {
796			assert(g->node.left == NULL);
797			assert(g->node.right == NULL);
798
799			index_group *newg = lzma_alloc(sizeof(index_group)
800					+ (g->last + 1)
801					* sizeof(index_record),
802					allocator);
803			if (newg == NULL)
804				return LZMA_MEM_ERROR;
805
806			newg->node = g->node;
807			newg->allocated = g->last + 1;
808			newg->last = g->last;
809			newg->number_base = g->number_base;
810
811			memcpy(newg->records, g->records, newg->allocated
812					* sizeof(index_record));
813
814			if (g->node.parent != NULL) {
815				assert(g->node.parent->right == &g->node);
816				g->node.parent->right = &newg->node;
817			}
818
819			if (s->groups.leftmost == &g->node) {
820				assert(s->groups.root == &g->node);
821				s->groups.leftmost = &newg->node;
822				s->groups.root = &newg->node;
823			}
824
825			if (s->groups.rightmost == &g->node)
826				s->groups.rightmost = &newg->node;
827
828			lzma_free(g, allocator);
829		}
830	}
831
832	// Add all the Streams from src to dest. Update the base offsets
833	// of each Stream from src.
834	const index_cat_info info = {
835		.uncompressed_size = dest->uncompressed_size,
836		.file_size = dest_file_size,
837		.stream_number_add = dest->streams.count,
838		.block_number_add = dest->record_count,
839		.streams = &dest->streams,
840	};
841	index_cat_helper(&info, (index_stream *)(src->streams.root));
842
843	// Update info about all the combined Streams.
844	dest->uncompressed_size += src->uncompressed_size;
845	dest->total_size += src->total_size;
846	dest->record_count += src->record_count;
847	dest->index_list_size += src->index_list_size;
848	dest->checks = lzma_index_checks(dest) | src->checks;
849
850	// There's nothing else left in src than the base structure.
851	lzma_free(src, allocator);
852
853	return LZMA_OK;
854}
855
856
857/// Duplicate an index_stream.
858static index_stream *
859index_dup_stream(const index_stream *src, lzma_allocator *allocator)
860{
861	// Catch a somewhat theoretical integer overflow.
862	if (src->record_count > PREALLOC_MAX)
863		return NULL;
864
865	// Allocate and initialize a new Stream.
866	index_stream *dest = index_stream_init(src->node.compressed_base,
867			src->node.uncompressed_base, src->number,
868			src->block_number_base, allocator);
869
870	// Return immediately if allocation failed or if there are
871	// no groups to duplicate.
872	if (dest == NULL || src->groups.leftmost == NULL)
873		return dest;
874
875	// Copy the overall information.
876	dest->record_count = src->record_count;
877	dest->index_list_size = src->index_list_size;
878	dest->stream_flags = src->stream_flags;
879	dest->stream_padding = src->stream_padding;
880
881	// Allocate memory for the Records. We put all the Records into
882	// a single group. It's simplest and also tends to make
883	// lzma_index_locate() a little bit faster with very big Indexes.
884	index_group *destg = lzma_alloc(sizeof(index_group)
885			+ src->record_count * sizeof(index_record),
886			allocator);
887	if (destg == NULL) {
888		index_stream_end(dest, allocator);
889		return NULL;
890	}
891
892	// Initialize destg.
893	destg->node.uncompressed_base = 0;
894	destg->node.compressed_base = 0;
895	destg->number_base = 1;
896	destg->allocated = src->record_count;
897	destg->last = src->record_count - 1;
898
899	// Go through all the groups in src and copy the Records into destg.
900	const index_group *srcg = (const index_group *)(src->groups.leftmost);
901	size_t i = 0;
902	do {
903		memcpy(destg->records + i, srcg->records,
904				(srcg->last + 1) * sizeof(index_record));
905		i += srcg->last + 1;
906		srcg = index_tree_next(&srcg->node);
907	} while (srcg != NULL);
908
909	assert(i == destg->allocated);
910
911	// Add the group to the new Stream.
912	index_tree_append(&dest->groups, &destg->node);
913
914	return dest;
915}
916
917
918extern LZMA_API(lzma_index *)
919lzma_index_dup(const lzma_index *src, lzma_allocator *allocator)
920{
921	// Allocate the base structure (no initial Stream).
922	lzma_index *dest = index_init_plain(allocator);
923	if (dest == NULL)
924		return NULL;
925
926	// Copy the totals.
927	dest->uncompressed_size = src->uncompressed_size;
928	dest->total_size = src->total_size;
929	dest->record_count = src->record_count;
930	dest->index_list_size = src->index_list_size;
931
932	// Copy the Streams and the groups in them.
933	const index_stream *srcstream
934			= (const index_stream *)(src->streams.leftmost);
935	do {
936		index_stream *deststream = index_dup_stream(
937				srcstream, allocator);
938		if (deststream == NULL) {
939			lzma_index_end(dest, allocator);
940			return NULL;
941		}
942
943		index_tree_append(&dest->streams, &deststream->node);
944
945		srcstream = index_tree_next(&srcstream->node);
946	} while (srcstream != NULL);
947
948	return dest;
949}
950
951
952/// Indexing for lzma_index_iter.internal[]
953enum {
954	ITER_INDEX,
955	ITER_STREAM,
956	ITER_GROUP,
957	ITER_RECORD,
958	ITER_METHOD,
959};
960
961
962/// Values for lzma_index_iter.internal[ITER_METHOD].s
963enum {
964	ITER_METHOD_NORMAL,
965	ITER_METHOD_NEXT,
966	ITER_METHOD_LEFTMOST,
967};
968
969
970static void
971iter_set_info(lzma_index_iter *iter)
972{
973	const lzma_index *i = iter->internal[ITER_INDEX].p;
974	const index_stream *stream = iter->internal[ITER_STREAM].p;
975	const index_group *group = iter->internal[ITER_GROUP].p;
976	const size_t record = iter->internal[ITER_RECORD].s;
977
978	// lzma_index_iter.internal must not contain a pointer to the last
979	// group in the index, because that may be reallocated by
980	// lzma_index_cat().
981	if (group == NULL) {
982		// There are no groups.
983		assert(stream->groups.root == NULL);
984		iter->internal[ITER_METHOD].s = ITER_METHOD_LEFTMOST;
985
986	} else if (i->streams.rightmost != &stream->node
987			|| stream->groups.rightmost != &group->node) {
988		// The group is not not the last group in the index.
989		iter->internal[ITER_METHOD].s = ITER_METHOD_NORMAL;
990
991	} else if (stream->groups.leftmost != &group->node) {
992		// The group isn't the only group in the Stream, thus we
993		// know that it must have a parent group i.e. it's not
994		// the root node.
995		assert(stream->groups.root != &group->node);
996		assert(group->node.parent->right == &group->node);
997		iter->internal[ITER_METHOD].s = ITER_METHOD_NEXT;
998		iter->internal[ITER_GROUP].p = group->node.parent;
999
1000	} else {
1001		// The Stream has only one group.
1002		assert(stream->groups.root == &group->node);
1003		assert(group->node.parent == NULL);
1004		iter->internal[ITER_METHOD].s = ITER_METHOD_LEFTMOST;
1005		iter->internal[ITER_GROUP].p = NULL;
1006	}
1007
1008	iter->stream.number = stream->number;
1009	iter->stream.block_count = stream->record_count;
1010	iter->stream.compressed_offset = stream->node.compressed_base;
1011	iter->stream.uncompressed_offset = stream->node.uncompressed_base;
1012
1013	// iter->stream.flags will be NULL if the Stream Flags haven't been
1014	// set with lzma_index_stream_flags().
1015	iter->stream.flags = stream->stream_flags.version == UINT32_MAX
1016			? NULL : &stream->stream_flags;
1017	iter->stream.padding = stream->stream_padding;
1018
1019	if (stream->groups.rightmost == NULL) {
1020		// Stream has no Blocks.
1021		iter->stream.compressed_size = index_size(0, 0)
1022				+ 2 * LZMA_STREAM_HEADER_SIZE;
1023		iter->stream.uncompressed_size = 0;
1024	} else {
1025		const index_group *g = (const index_group *)(
1026				stream->groups.rightmost);
1027
1028		// Stream Header + Stream Footer + Index + Blocks
1029		iter->stream.compressed_size = 2 * LZMA_STREAM_HEADER_SIZE
1030				+ index_size(stream->record_count,
1031					stream->index_list_size)
1032				+ vli_ceil4(g->records[g->last].unpadded_sum);
1033		iter->stream.uncompressed_size
1034				= g->records[g->last].uncompressed_sum;
1035	}
1036
1037	if (group != NULL) {
1038		iter->block.number_in_stream = group->number_base + record;
1039		iter->block.number_in_file = iter->block.number_in_stream
1040				+ stream->block_number_base;
1041
1042		iter->block.compressed_stream_offset
1043				= record == 0 ? group->node.compressed_base
1044				: vli_ceil4(group->records[
1045					record - 1].unpadded_sum);
1046		iter->block.uncompressed_stream_offset
1047				= record == 0 ? group->node.uncompressed_base
1048				: group->records[record - 1].uncompressed_sum;
1049
1050		iter->block.uncompressed_size
1051				= group->records[record].uncompressed_sum
1052				- iter->block.uncompressed_stream_offset;
1053		iter->block.unpadded_size
1054				= group->records[record].unpadded_sum
1055				- iter->block.compressed_stream_offset;
1056		iter->block.total_size = vli_ceil4(iter->block.unpadded_size);
1057
1058		iter->block.compressed_stream_offset
1059				+= LZMA_STREAM_HEADER_SIZE;
1060
1061		iter->block.compressed_file_offset
1062				= iter->block.compressed_stream_offset
1063				+ iter->stream.compressed_offset;
1064		iter->block.uncompressed_file_offset
1065				= iter->block.uncompressed_stream_offset
1066				+ iter->stream.uncompressed_offset;
1067	}
1068
1069	return;
1070}
1071
1072
1073extern LZMA_API(void)
1074lzma_index_iter_init(lzma_index_iter *iter, const lzma_index *i)
1075{
1076	iter->internal[ITER_INDEX].p = i;
1077	lzma_index_iter_rewind(iter);
1078	return;
1079}
1080
1081
1082extern LZMA_API(void)
1083lzma_index_iter_rewind(lzma_index_iter *iter)
1084{
1085	iter->internal[ITER_STREAM].p = NULL;
1086	iter->internal[ITER_GROUP].p = NULL;
1087	iter->internal[ITER_RECORD].s = 0;
1088	iter->internal[ITER_METHOD].s = ITER_METHOD_NORMAL;
1089	return;
1090}
1091
1092
1093extern LZMA_API(lzma_bool)
1094lzma_index_iter_next(lzma_index_iter *iter, lzma_index_iter_mode mode)
1095{
1096	// Catch unsupported mode values.
1097	if ((unsigned int)(mode) > LZMA_INDEX_ITER_NONEMPTY_BLOCK)
1098		return true;
1099
1100	const lzma_index *i = iter->internal[ITER_INDEX].p;
1101	const index_stream *stream = iter->internal[ITER_STREAM].p;
1102	const index_group *group = NULL;
1103	size_t record = iter->internal[ITER_RECORD].s;
1104
1105	// If we are being asked for the next Stream, leave group to NULL
1106	// so that the rest of the this function thinks that this Stream
1107	// has no groups and will thus go to the next Stream.
1108	if (mode != LZMA_INDEX_ITER_STREAM) {
1109		// Get the pointer to the current group. See iter_set_inf()
1110		// for explanation.
1111		switch (iter->internal[ITER_METHOD].s) {
1112		case ITER_METHOD_NORMAL:
1113			group = iter->internal[ITER_GROUP].p;
1114			break;
1115
1116		case ITER_METHOD_NEXT:
1117			group = index_tree_next(iter->internal[ITER_GROUP].p);
1118			break;
1119
1120		case ITER_METHOD_LEFTMOST:
1121			group = (const index_group *)(
1122					stream->groups.leftmost);
1123			break;
1124		}
1125	}
1126
1127again:
1128	if (stream == NULL) {
1129		// We at the beginning of the lzma_index.
1130		// Locate the first Stream.
1131		stream = (const index_stream *)(i->streams.leftmost);
1132		if (mode >= LZMA_INDEX_ITER_BLOCK) {
1133			// Since we are being asked to return information
1134			// about the first a Block, skip Streams that have
1135			// no Blocks.
1136			while (stream->groups.leftmost == NULL) {
1137				stream = index_tree_next(&stream->node);
1138				if (stream == NULL)
1139					return true;
1140			}
1141		}
1142
1143		// Start from the first Record in the Stream.
1144		group = (const index_group *)(stream->groups.leftmost);
1145		record = 0;
1146
1147	} else if (group != NULL && record < group->last) {
1148		// The next Record is in the same group.
1149		++record;
1150
1151	} else {
1152		// This group has no more Records or this Stream has
1153		// no Blocks at all.
1154		record = 0;
1155
1156		// If group is not NULL, this Stream has at least one Block
1157		// and thus at least one group. Find the next group.
1158		if (group != NULL)
1159			group = index_tree_next(&group->node);
1160
1161		if (group == NULL) {
1162			// This Stream has no more Records. Find the next
1163			// Stream. If we are being asked to return information
1164			// about a Block, we skip empty Streams.
1165			do {
1166				stream = index_tree_next(&stream->node);
1167				if (stream == NULL)
1168					return true;
1169			} while (mode >= LZMA_INDEX_ITER_BLOCK
1170					&& stream->groups.leftmost == NULL);
1171
1172			group = (const index_group *)(
1173					stream->groups.leftmost);
1174		}
1175	}
1176
1177	if (mode == LZMA_INDEX_ITER_NONEMPTY_BLOCK) {
1178		// We need to look for the next Block again if this Block
1179		// is empty.
1180		if (record == 0) {
1181			if (group->node.uncompressed_base
1182					== group->records[0].uncompressed_sum)
1183				goto again;
1184		} else if (group->records[record - 1].uncompressed_sum
1185				== group->records[record].uncompressed_sum) {
1186			goto again;
1187		}
1188	}
1189
1190	iter->internal[ITER_STREAM].p = stream;
1191	iter->internal[ITER_GROUP].p = group;
1192	iter->internal[ITER_RECORD].s = record;
1193
1194	iter_set_info(iter);
1195
1196	return false;
1197}
1198
1199
1200extern LZMA_API(lzma_bool)
1201lzma_index_iter_locate(lzma_index_iter *iter, lzma_vli target)
1202{
1203	const lzma_index *i = iter->internal[ITER_INDEX].p;
1204
1205	// If the target is past the end of the file, return immediately.
1206	if (i->uncompressed_size <= target)
1207		return true;
1208
1209	// Locate the Stream containing the target offset.
1210	const index_stream *stream = index_tree_locate(&i->streams, target);
1211	assert(stream != NULL);
1212	target -= stream->node.uncompressed_base;
1213
1214	// Locate the group containing the target offset.
1215	const index_group *group = index_tree_locate(&stream->groups, target);
1216	assert(group != NULL);
1217
1218	// Use binary search to locate the exact Record. It is the first
1219	// Record whose uncompressed_sum is greater than target.
1220	// This is because we want the rightmost Record that fullfills the
1221	// search criterion. It is possible that there are empty Blocks;
1222	// we don't want to return them.
1223	size_t left = 0;
1224	size_t right = group->last;
1225
1226	while (left < right) {
1227		const size_t pos = left + (right - left) / 2;
1228		if (group->records[pos].uncompressed_sum <= target)
1229			left = pos + 1;
1230		else
1231			right = pos;
1232	}
1233
1234	iter->internal[ITER_STREAM].p = stream;
1235	iter->internal[ITER_GROUP].p = group;
1236	iter->internal[ITER_RECORD].s = left;
1237
1238	iter_set_info(iter);
1239
1240	return false;
1241}
1242