crypto.h revision 346981
1/*
2 * Wrapper functions for crypto libraries
3 * Copyright (c) 2004-2017, Jouni Malinen <j@w1.fi>
4 *
5 * This software may be distributed under the terms of the BSD license.
6 * See README for more details.
7 *
8 * This file defines the cryptographic functions that need to be implemented
9 * for wpa_supplicant and hostapd. When TLS is not used, internal
10 * implementation of MD5, SHA1, and AES is used and no external libraries are
11 * required. When TLS is enabled (e.g., by enabling EAP-TLS or EAP-PEAP), the
12 * crypto library used by the TLS implementation is expected to be used for
13 * non-TLS needs, too, in order to save space by not implementing these
14 * functions twice.
15 *
16 * Wrapper code for using each crypto library is in its own file (crypto*.c)
17 * and one of these files is build and linked in to provide the functions
18 * defined here.
19 */
20
21#ifndef CRYPTO_H
22#define CRYPTO_H
23
24/**
25 * md4_vector - MD4 hash for data vector
26 * @num_elem: Number of elements in the data vector
27 * @addr: Pointers to the data areas
28 * @len: Lengths of the data blocks
29 * @mac: Buffer for the hash
30 * Returns: 0 on success, -1 on failure
31 */
32int md4_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac);
33
34/**
35 * md5_vector - MD5 hash for data vector
36 * @num_elem: Number of elements in the data vector
37 * @addr: Pointers to the data areas
38 * @len: Lengths of the data blocks
39 * @mac: Buffer for the hash
40 * Returns: 0 on success, -1 on failure
41 */
42int md5_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac);
43
44
45/**
46 * sha1_vector - SHA-1 hash for data vector
47 * @num_elem: Number of elements in the data vector
48 * @addr: Pointers to the data areas
49 * @len: Lengths of the data blocks
50 * @mac: Buffer for the hash
51 * Returns: 0 on success, -1 on failure
52 */
53int sha1_vector(size_t num_elem, const u8 *addr[], const size_t *len,
54		u8 *mac);
55
56/**
57 * fips186_2-prf - NIST FIPS Publication 186-2 change notice 1 PRF
58 * @seed: Seed/key for the PRF
59 * @seed_len: Seed length in bytes
60 * @x: Buffer for PRF output
61 * @xlen: Output length in bytes
62 * Returns: 0 on success, -1 on failure
63 *
64 * This function implements random number generation specified in NIST FIPS
65 * Publication 186-2 for EAP-SIM. This PRF uses a function that is similar to
66 * SHA-1, but has different message padding.
67 */
68int __must_check fips186_2_prf(const u8 *seed, size_t seed_len, u8 *x,
69			       size_t xlen);
70
71/**
72 * sha256_vector - SHA256 hash for data vector
73 * @num_elem: Number of elements in the data vector
74 * @addr: Pointers to the data areas
75 * @len: Lengths of the data blocks
76 * @mac: Buffer for the hash
77 * Returns: 0 on success, -1 on failure
78 */
79int sha256_vector(size_t num_elem, const u8 *addr[], const size_t *len,
80		  u8 *mac);
81
82/**
83 * sha384_vector - SHA384 hash for data vector
84 * @num_elem: Number of elements in the data vector
85 * @addr: Pointers to the data areas
86 * @len: Lengths of the data blocks
87 * @mac: Buffer for the hash
88 * Returns: 0 on success, -1 on failure
89 */
90int sha384_vector(size_t num_elem, const u8 *addr[], const size_t *len,
91		  u8 *mac);
92
93/**
94 * sha512_vector - SHA512 hash for data vector
95 * @num_elem: Number of elements in the data vector
96 * @addr: Pointers to the data areas
97 * @len: Lengths of the data blocks
98 * @mac: Buffer for the hash
99 * Returns: 0 on success, -1 on failure
100 */
101int sha512_vector(size_t num_elem, const u8 *addr[], const size_t *len,
102		  u8 *mac);
103
104/**
105 * des_encrypt - Encrypt one block with DES
106 * @clear: 8 octets (in)
107 * @key: 7 octets (in) (no parity bits included)
108 * @cypher: 8 octets (out)
109 * Returns: 0 on success, -1 on failure
110 */
111int des_encrypt(const u8 *clear, const u8 *key, u8 *cypher);
112
113/**
114 * aes_encrypt_init - Initialize AES for encryption
115 * @key: Encryption key
116 * @len: Key length in bytes (usually 16, i.e., 128 bits)
117 * Returns: Pointer to context data or %NULL on failure
118 */
119void * aes_encrypt_init(const u8 *key, size_t len);
120
121/**
122 * aes_encrypt - Encrypt one AES block
123 * @ctx: Context pointer from aes_encrypt_init()
124 * @plain: Plaintext data to be encrypted (16 bytes)
125 * @crypt: Buffer for the encrypted data (16 bytes)
126 * Returns: 0 on success, -1 on failure
127 */
128int aes_encrypt(void *ctx, const u8 *plain, u8 *crypt);
129
130/**
131 * aes_encrypt_deinit - Deinitialize AES encryption
132 * @ctx: Context pointer from aes_encrypt_init()
133 */
134void aes_encrypt_deinit(void *ctx);
135
136/**
137 * aes_decrypt_init - Initialize AES for decryption
138 * @key: Decryption key
139 * @len: Key length in bytes (usually 16, i.e., 128 bits)
140 * Returns: Pointer to context data or %NULL on failure
141 */
142void * aes_decrypt_init(const u8 *key, size_t len);
143
144/**
145 * aes_decrypt - Decrypt one AES block
146 * @ctx: Context pointer from aes_encrypt_init()
147 * @crypt: Encrypted data (16 bytes)
148 * @plain: Buffer for the decrypted data (16 bytes)
149 * Returns: 0 on success, -1 on failure
150 */
151int aes_decrypt(void *ctx, const u8 *crypt, u8 *plain);
152
153/**
154 * aes_decrypt_deinit - Deinitialize AES decryption
155 * @ctx: Context pointer from aes_encrypt_init()
156 */
157void aes_decrypt_deinit(void *ctx);
158
159
160enum crypto_hash_alg {
161	CRYPTO_HASH_ALG_MD5, CRYPTO_HASH_ALG_SHA1,
162	CRYPTO_HASH_ALG_HMAC_MD5, CRYPTO_HASH_ALG_HMAC_SHA1,
163	CRYPTO_HASH_ALG_SHA256, CRYPTO_HASH_ALG_HMAC_SHA256,
164	CRYPTO_HASH_ALG_SHA384, CRYPTO_HASH_ALG_SHA512
165};
166
167struct crypto_hash;
168
169/**
170 * crypto_hash_init - Initialize hash/HMAC function
171 * @alg: Hash algorithm
172 * @key: Key for keyed hash (e.g., HMAC) or %NULL if not needed
173 * @key_len: Length of the key in bytes
174 * Returns: Pointer to hash context to use with other hash functions or %NULL
175 * on failure
176 *
177 * This function is only used with internal TLSv1 implementation
178 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
179 * to implement this.
180 */
181struct crypto_hash * crypto_hash_init(enum crypto_hash_alg alg, const u8 *key,
182				      size_t key_len);
183
184/**
185 * crypto_hash_update - Add data to hash calculation
186 * @ctx: Context pointer from crypto_hash_init()
187 * @data: Data buffer to add
188 * @len: Length of the buffer
189 *
190 * This function is only used with internal TLSv1 implementation
191 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
192 * to implement this.
193 */
194void crypto_hash_update(struct crypto_hash *ctx, const u8 *data, size_t len);
195
196/**
197 * crypto_hash_finish - Complete hash calculation
198 * @ctx: Context pointer from crypto_hash_init()
199 * @hash: Buffer for hash value or %NULL if caller is just freeing the hash
200 * context
201 * @len: Pointer to length of the buffer or %NULL if caller is just freeing the
202 * hash context; on return, this is set to the actual length of the hash value
203 * Returns: 0 on success, -1 if buffer is too small (len set to needed length),
204 * or -2 on other failures (including failed crypto_hash_update() operations)
205 *
206 * This function calculates the hash value and frees the context buffer that
207 * was used for hash calculation.
208 *
209 * This function is only used with internal TLSv1 implementation
210 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
211 * to implement this.
212 */
213int crypto_hash_finish(struct crypto_hash *ctx, u8 *hash, size_t *len);
214
215
216enum crypto_cipher_alg {
217	CRYPTO_CIPHER_NULL = 0, CRYPTO_CIPHER_ALG_AES, CRYPTO_CIPHER_ALG_3DES,
218	CRYPTO_CIPHER_ALG_DES, CRYPTO_CIPHER_ALG_RC2, CRYPTO_CIPHER_ALG_RC4
219};
220
221struct crypto_cipher;
222
223/**
224 * crypto_cipher_init - Initialize block/stream cipher function
225 * @alg: Cipher algorithm
226 * @iv: Initialization vector for block ciphers or %NULL for stream ciphers
227 * @key: Cipher key
228 * @key_len: Length of key in bytes
229 * Returns: Pointer to cipher context to use with other cipher functions or
230 * %NULL on failure
231 *
232 * This function is only used with internal TLSv1 implementation
233 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
234 * to implement this.
235 */
236struct crypto_cipher * crypto_cipher_init(enum crypto_cipher_alg alg,
237					  const u8 *iv, const u8 *key,
238					  size_t key_len);
239
240/**
241 * crypto_cipher_encrypt - Cipher encrypt
242 * @ctx: Context pointer from crypto_cipher_init()
243 * @plain: Plaintext to cipher
244 * @crypt: Resulting ciphertext
245 * @len: Length of the plaintext
246 * Returns: 0 on success, -1 on failure
247 *
248 * This function is only used with internal TLSv1 implementation
249 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
250 * to implement this.
251 */
252int __must_check crypto_cipher_encrypt(struct crypto_cipher *ctx,
253				       const u8 *plain, u8 *crypt, size_t len);
254
255/**
256 * crypto_cipher_decrypt - Cipher decrypt
257 * @ctx: Context pointer from crypto_cipher_init()
258 * @crypt: Ciphertext to decrypt
259 * @plain: Resulting plaintext
260 * @len: Length of the cipher text
261 * Returns: 0 on success, -1 on failure
262 *
263 * This function is only used with internal TLSv1 implementation
264 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
265 * to implement this.
266 */
267int __must_check crypto_cipher_decrypt(struct crypto_cipher *ctx,
268				       const u8 *crypt, u8 *plain, size_t len);
269
270/**
271 * crypto_cipher_decrypt - Free cipher context
272 * @ctx: Context pointer from crypto_cipher_init()
273 *
274 * This function is only used with internal TLSv1 implementation
275 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
276 * to implement this.
277 */
278void crypto_cipher_deinit(struct crypto_cipher *ctx);
279
280
281struct crypto_public_key;
282struct crypto_private_key;
283
284/**
285 * crypto_public_key_import - Import an RSA public key
286 * @key: Key buffer (DER encoded RSA public key)
287 * @len: Key buffer length in bytes
288 * Returns: Pointer to the public key or %NULL on failure
289 *
290 * This function can just return %NULL if the crypto library supports X.509
291 * parsing. In that case, crypto_public_key_from_cert() is used to import the
292 * public key from a certificate.
293 *
294 * This function is only used with internal TLSv1 implementation
295 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
296 * to implement this.
297 */
298struct crypto_public_key * crypto_public_key_import(const u8 *key, size_t len);
299
300struct crypto_public_key *
301crypto_public_key_import_parts(const u8 *n, size_t n_len,
302			       const u8 *e, size_t e_len);
303
304/**
305 * crypto_private_key_import - Import an RSA private key
306 * @key: Key buffer (DER encoded RSA private key)
307 * @len: Key buffer length in bytes
308 * @passwd: Key encryption password or %NULL if key is not encrypted
309 * Returns: Pointer to the private key or %NULL on failure
310 *
311 * This function is only used with internal TLSv1 implementation
312 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
313 * to implement this.
314 */
315struct crypto_private_key * crypto_private_key_import(const u8 *key,
316						      size_t len,
317						      const char *passwd);
318
319/**
320 * crypto_public_key_from_cert - Import an RSA public key from a certificate
321 * @buf: DER encoded X.509 certificate
322 * @len: Certificate buffer length in bytes
323 * Returns: Pointer to public key or %NULL on failure
324 *
325 * This function can just return %NULL if the crypto library does not support
326 * X.509 parsing. In that case, internal code will be used to parse the
327 * certificate and public key is imported using crypto_public_key_import().
328 *
329 * This function is only used with internal TLSv1 implementation
330 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
331 * to implement this.
332 */
333struct crypto_public_key * crypto_public_key_from_cert(const u8 *buf,
334						       size_t len);
335
336/**
337 * crypto_public_key_encrypt_pkcs1_v15 - Public key encryption (PKCS #1 v1.5)
338 * @key: Public key
339 * @in: Plaintext buffer
340 * @inlen: Length of plaintext buffer in bytes
341 * @out: Output buffer for encrypted data
342 * @outlen: Length of output buffer in bytes; set to used length on success
343 * Returns: 0 on success, -1 on failure
344 *
345 * This function is only used with internal TLSv1 implementation
346 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
347 * to implement this.
348 */
349int __must_check crypto_public_key_encrypt_pkcs1_v15(
350	struct crypto_public_key *key, const u8 *in, size_t inlen,
351	u8 *out, size_t *outlen);
352
353/**
354 * crypto_private_key_decrypt_pkcs1_v15 - Private key decryption (PKCS #1 v1.5)
355 * @key: Private key
356 * @in: Encrypted buffer
357 * @inlen: Length of encrypted buffer in bytes
358 * @out: Output buffer for encrypted data
359 * @outlen: Length of output buffer in bytes; set to used length on success
360 * Returns: 0 on success, -1 on failure
361 *
362 * This function is only used with internal TLSv1 implementation
363 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
364 * to implement this.
365 */
366int __must_check crypto_private_key_decrypt_pkcs1_v15(
367	struct crypto_private_key *key, const u8 *in, size_t inlen,
368	u8 *out, size_t *outlen);
369
370/**
371 * crypto_private_key_sign_pkcs1 - Sign with private key (PKCS #1)
372 * @key: Private key from crypto_private_key_import()
373 * @in: Plaintext buffer
374 * @inlen: Length of plaintext buffer in bytes
375 * @out: Output buffer for encrypted (signed) data
376 * @outlen: Length of output buffer in bytes; set to used length on success
377 * Returns: 0 on success, -1 on failure
378 *
379 * This function is only used with internal TLSv1 implementation
380 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
381 * to implement this.
382 */
383int __must_check crypto_private_key_sign_pkcs1(struct crypto_private_key *key,
384					       const u8 *in, size_t inlen,
385					       u8 *out, size_t *outlen);
386
387/**
388 * crypto_public_key_free - Free public key
389 * @key: Public key
390 *
391 * This function is only used with internal TLSv1 implementation
392 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
393 * to implement this.
394 */
395void crypto_public_key_free(struct crypto_public_key *key);
396
397/**
398 * crypto_private_key_free - Free private key
399 * @key: Private key from crypto_private_key_import()
400 *
401 * This function is only used with internal TLSv1 implementation
402 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
403 * to implement this.
404 */
405void crypto_private_key_free(struct crypto_private_key *key);
406
407/**
408 * crypto_public_key_decrypt_pkcs1 - Decrypt PKCS #1 signature
409 * @key: Public key
410 * @crypt: Encrypted signature data (using the private key)
411 * @crypt_len: Encrypted signature data length
412 * @plain: Buffer for plaintext (at least crypt_len bytes)
413 * @plain_len: Plaintext length (max buffer size on input, real len on output);
414 * Returns: 0 on success, -1 on failure
415 */
416int __must_check crypto_public_key_decrypt_pkcs1(
417	struct crypto_public_key *key, const u8 *crypt, size_t crypt_len,
418	u8 *plain, size_t *plain_len);
419
420int crypto_dh_init(u8 generator, const u8 *prime, size_t prime_len, u8 *privkey,
421		   u8 *pubkey);
422int crypto_dh_derive_secret(u8 generator, const u8 *prime, size_t prime_len,
423			    const u8 *order, size_t order_len,
424			    const u8 *privkey, size_t privkey_len,
425			    const u8 *pubkey, size_t pubkey_len,
426			    u8 *secret, size_t *len);
427
428/**
429 * crypto_global_init - Initialize crypto wrapper
430 *
431 * This function is only used with internal TLSv1 implementation
432 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
433 * to implement this.
434 */
435int __must_check crypto_global_init(void);
436
437/**
438 * crypto_global_deinit - Deinitialize crypto wrapper
439 *
440 * This function is only used with internal TLSv1 implementation
441 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
442 * to implement this.
443 */
444void crypto_global_deinit(void);
445
446/**
447 * crypto_mod_exp - Modular exponentiation of large integers
448 * @base: Base integer (big endian byte array)
449 * @base_len: Length of base integer in bytes
450 * @power: Power integer (big endian byte array)
451 * @power_len: Length of power integer in bytes
452 * @modulus: Modulus integer (big endian byte array)
453 * @modulus_len: Length of modulus integer in bytes
454 * @result: Buffer for the result
455 * @result_len: Result length (max buffer size on input, real len on output)
456 * Returns: 0 on success, -1 on failure
457 *
458 * This function calculates result = base ^ power mod modulus. modules_len is
459 * used as the maximum size of modulus buffer. It is set to the used size on
460 * success.
461 *
462 * This function is only used with internal TLSv1 implementation
463 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
464 * to implement this.
465 */
466int __must_check crypto_mod_exp(const u8 *base, size_t base_len,
467				const u8 *power, size_t power_len,
468				const u8 *modulus, size_t modulus_len,
469				u8 *result, size_t *result_len);
470
471/**
472 * rc4_skip - XOR RC4 stream to given data with skip-stream-start
473 * @key: RC4 key
474 * @keylen: RC4 key length
475 * @skip: number of bytes to skip from the beginning of the RC4 stream
476 * @data: data to be XOR'ed with RC4 stream
477 * @data_len: buf length
478 * Returns: 0 on success, -1 on failure
479 *
480 * Generate RC4 pseudo random stream for the given key, skip beginning of the
481 * stream, and XOR the end result with the data buffer to perform RC4
482 * encryption/decryption.
483 */
484int rc4_skip(const u8 *key, size_t keylen, size_t skip,
485	     u8 *data, size_t data_len);
486
487/**
488 * crypto_get_random - Generate cryptographically strong pseudy-random bytes
489 * @buf: Buffer for data
490 * @len: Number of bytes to generate
491 * Returns: 0 on success, -1 on failure
492 *
493 * If the PRNG does not have enough entropy to ensure unpredictable byte
494 * sequence, this functions must return -1.
495 */
496int crypto_get_random(void *buf, size_t len);
497
498
499/**
500 * struct crypto_bignum - bignum
501 *
502 * Internal data structure for bignum implementation. The contents is specific
503 * to the used crypto library.
504 */
505struct crypto_bignum;
506
507/**
508 * crypto_bignum_init - Allocate memory for bignum
509 * Returns: Pointer to allocated bignum or %NULL on failure
510 */
511struct crypto_bignum * crypto_bignum_init(void);
512
513/**
514 * crypto_bignum_init_set - Allocate memory for bignum and set the value
515 * @buf: Buffer with unsigned binary value
516 * @len: Length of buf in octets
517 * Returns: Pointer to allocated bignum or %NULL on failure
518 */
519struct crypto_bignum * crypto_bignum_init_set(const u8 *buf, size_t len);
520
521/**
522 * crypto_bignum_deinit - Free bignum
523 * @n: Bignum from crypto_bignum_init() or crypto_bignum_init_set()
524 * @clear: Whether to clear the value from memory
525 */
526void crypto_bignum_deinit(struct crypto_bignum *n, int clear);
527
528/**
529 * crypto_bignum_to_bin - Set binary buffer to unsigned bignum
530 * @a: Bignum
531 * @buf: Buffer for the binary number
532 * @len: Length of @buf in octets
533 * @padlen: Length in octets to pad the result to or 0 to indicate no padding
534 * Returns: Number of octets written on success, -1 on failure
535 */
536int crypto_bignum_to_bin(const struct crypto_bignum *a,
537			 u8 *buf, size_t buflen, size_t padlen);
538
539/**
540 * crypto_bignum_rand - Create a random number in range of modulus
541 * @r: Bignum; set to a random value
542 * @m: Bignum; modulus
543 * Returns: 0 on success, -1 on failure
544 */
545int crypto_bignum_rand(struct crypto_bignum *r, const struct crypto_bignum *m);
546
547/**
548 * crypto_bignum_add - c = a + b
549 * @a: Bignum
550 * @b: Bignum
551 * @c: Bignum; used to store the result of a + b
552 * Returns: 0 on success, -1 on failure
553 */
554int crypto_bignum_add(const struct crypto_bignum *a,
555		      const struct crypto_bignum *b,
556		      struct crypto_bignum *c);
557
558/**
559 * crypto_bignum_mod - c = a % b
560 * @a: Bignum
561 * @b: Bignum
562 * @c: Bignum; used to store the result of a % b
563 * Returns: 0 on success, -1 on failure
564 */
565int crypto_bignum_mod(const struct crypto_bignum *a,
566		      const struct crypto_bignum *b,
567		      struct crypto_bignum *c);
568
569/**
570 * crypto_bignum_exptmod - Modular exponentiation: d = a^b (mod c)
571 * @a: Bignum; base
572 * @b: Bignum; exponent
573 * @c: Bignum; modulus
574 * @d: Bignum; used to store the result of a^b (mod c)
575 * Returns: 0 on success, -1 on failure
576 */
577int crypto_bignum_exptmod(const struct crypto_bignum *a,
578			  const struct crypto_bignum *b,
579			  const struct crypto_bignum *c,
580			  struct crypto_bignum *d);
581
582/**
583 * crypto_bignum_inverse - Inverse a bignum so that a * c = 1 (mod b)
584 * @a: Bignum
585 * @b: Bignum
586 * @c: Bignum; used to store the result
587 * Returns: 0 on success, -1 on failure
588 */
589int crypto_bignum_inverse(const struct crypto_bignum *a,
590			  const struct crypto_bignum *b,
591			  struct crypto_bignum *c);
592
593/**
594 * crypto_bignum_sub - c = a - b
595 * @a: Bignum
596 * @b: Bignum
597 * @c: Bignum; used to store the result of a - b
598 * Returns: 0 on success, -1 on failure
599 */
600int crypto_bignum_sub(const struct crypto_bignum *a,
601		      const struct crypto_bignum *b,
602		      struct crypto_bignum *c);
603
604/**
605 * crypto_bignum_div - c = a / b
606 * @a: Bignum
607 * @b: Bignum
608 * @c: Bignum; used to store the result of a / b
609 * Returns: 0 on success, -1 on failure
610 */
611int crypto_bignum_div(const struct crypto_bignum *a,
612		      const struct crypto_bignum *b,
613		      struct crypto_bignum *c);
614
615/**
616 * crypto_bignum_mulmod - d = a * b (mod c)
617 * @a: Bignum
618 * @b: Bignum
619 * @c: Bignum
620 * @d: Bignum; used to store the result of (a * b) % c
621 * Returns: 0 on success, -1 on failure
622 */
623int crypto_bignum_mulmod(const struct crypto_bignum *a,
624			 const struct crypto_bignum *b,
625			 const struct crypto_bignum *c,
626			 struct crypto_bignum *d);
627
628/**
629 * crypto_bignum_rshift - r = a >> n
630 * @a: Bignum
631 * @n: Number of bits
632 * @r: Bignum; used to store the result of a >> n
633 * Returns: 0 on success, -1 on failure
634 */
635int crypto_bignum_rshift(const struct crypto_bignum *a, int n,
636			 struct crypto_bignum *r);
637
638/**
639 * crypto_bignum_cmp - Compare two bignums
640 * @a: Bignum
641 * @b: Bignum
642 * Returns: -1 if a < b, 0 if a == b, or 1 if a > b
643 */
644int crypto_bignum_cmp(const struct crypto_bignum *a,
645		      const struct crypto_bignum *b);
646
647/**
648 * crypto_bignum_bits - Get size of a bignum in bits
649 * @a: Bignum
650 * Returns: Number of bits in the bignum
651 */
652int crypto_bignum_bits(const struct crypto_bignum *a);
653
654/**
655 * crypto_bignum_is_zero - Is the given bignum zero
656 * @a: Bignum
657 * Returns: 1 if @a is zero or 0 if not
658 */
659int crypto_bignum_is_zero(const struct crypto_bignum *a);
660
661/**
662 * crypto_bignum_is_one - Is the given bignum one
663 * @a: Bignum
664 * Returns: 1 if @a is one or 0 if not
665 */
666int crypto_bignum_is_one(const struct crypto_bignum *a);
667
668/**
669 * crypto_bignum_is_odd - Is the given bignum odd
670 * @a: Bignum
671 * Returns: 1 if @a is odd or 0 if not
672 */
673int crypto_bignum_is_odd(const struct crypto_bignum *a);
674
675/**
676 * crypto_bignum_legendre - Compute the Legendre symbol (a/p)
677 * @a: Bignum
678 * @p: Bignum
679 * Returns: Legendre symbol -1,0,1 on success; -2 on calculation failure
680 */
681int crypto_bignum_legendre(const struct crypto_bignum *a,
682			   const struct crypto_bignum *p);
683
684/**
685 * struct crypto_ec - Elliptic curve context
686 *
687 * Internal data structure for EC implementation. The contents is specific
688 * to the used crypto library.
689 */
690struct crypto_ec;
691
692/**
693 * crypto_ec_init - Initialize elliptic curve context
694 * @group: Identifying number for the ECC group (IANA "Group Description"
695 *	attribute registrty for RFC 2409)
696 * Returns: Pointer to EC context or %NULL on failure
697 */
698struct crypto_ec * crypto_ec_init(int group);
699
700/**
701 * crypto_ec_deinit - Deinitialize elliptic curve context
702 * @e: EC context from crypto_ec_init()
703 */
704void crypto_ec_deinit(struct crypto_ec *e);
705
706/**
707 * crypto_ec_prime_len - Get length of the prime in octets
708 * @e: EC context from crypto_ec_init()
709 * Returns: Length of the prime defining the group
710 */
711size_t crypto_ec_prime_len(struct crypto_ec *e);
712
713/**
714 * crypto_ec_prime_len_bits - Get length of the prime in bits
715 * @e: EC context from crypto_ec_init()
716 * Returns: Length of the prime defining the group in bits
717 */
718size_t crypto_ec_prime_len_bits(struct crypto_ec *e);
719
720/**
721 * crypto_ec_order_len - Get length of the order in octets
722 * @e: EC context from crypto_ec_init()
723 * Returns: Length of the order defining the group
724 */
725size_t crypto_ec_order_len(struct crypto_ec *e);
726
727/**
728 * crypto_ec_get_prime - Get prime defining an EC group
729 * @e: EC context from crypto_ec_init()
730 * Returns: Prime (bignum) defining the group
731 */
732const struct crypto_bignum * crypto_ec_get_prime(struct crypto_ec *e);
733
734/**
735 * crypto_ec_get_order - Get order of an EC group
736 * @e: EC context from crypto_ec_init()
737 * Returns: Order (bignum) of the group
738 */
739const struct crypto_bignum * crypto_ec_get_order(struct crypto_ec *e);
740
741/**
742 * struct crypto_ec_point - Elliptic curve point
743 *
744 * Internal data structure for EC implementation to represent a point. The
745 * contents is specific to the used crypto library.
746 */
747struct crypto_ec_point;
748
749/**
750 * crypto_ec_point_init - Initialize data for an EC point
751 * @e: EC context from crypto_ec_init()
752 * Returns: Pointer to EC point data or %NULL on failure
753 */
754struct crypto_ec_point * crypto_ec_point_init(struct crypto_ec *e);
755
756/**
757 * crypto_ec_point_deinit - Deinitialize EC point data
758 * @p: EC point data from crypto_ec_point_init()
759 * @clear: Whether to clear the EC point value from memory
760 */
761void crypto_ec_point_deinit(struct crypto_ec_point *p, int clear);
762
763/**
764 * crypto_ec_point_x - Copies the x-ordinate point into big number
765 * @e: EC context from crypto_ec_init()
766 * @p: EC point data
767 * @x: Big number to set to the copy of x-ordinate
768 * Returns: 0 on success, -1 on failure
769 */
770int crypto_ec_point_x(struct crypto_ec *e, const struct crypto_ec_point *p,
771		      struct crypto_bignum *x);
772
773/**
774 * crypto_ec_point_to_bin - Write EC point value as binary data
775 * @e: EC context from crypto_ec_init()
776 * @p: EC point data from crypto_ec_point_init()
777 * @x: Buffer for writing the binary data for x coordinate or %NULL if not used
778 * @y: Buffer for writing the binary data for y coordinate or %NULL if not used
779 * Returns: 0 on success, -1 on failure
780 *
781 * This function can be used to write an EC point as binary data in a format
782 * that has the x and y coordinates in big endian byte order fields padded to
783 * the length of the prime defining the group.
784 */
785int crypto_ec_point_to_bin(struct crypto_ec *e,
786			   const struct crypto_ec_point *point, u8 *x, u8 *y);
787
788/**
789 * crypto_ec_point_from_bin - Create EC point from binary data
790 * @e: EC context from crypto_ec_init()
791 * @val: Binary data to read the EC point from
792 * Returns: Pointer to EC point data or %NULL on failure
793 *
794 * This function readers x and y coordinates of the EC point from the provided
795 * buffer assuming the values are in big endian byte order with fields padded to
796 * the length of the prime defining the group.
797 */
798struct crypto_ec_point * crypto_ec_point_from_bin(struct crypto_ec *e,
799						  const u8 *val);
800
801/**
802 * crypto_ec_point_add - c = a + b
803 * @e: EC context from crypto_ec_init()
804 * @a: Bignum
805 * @b: Bignum
806 * @c: Bignum; used to store the result of a + b
807 * Returns: 0 on success, -1 on failure
808 */
809int crypto_ec_point_add(struct crypto_ec *e, const struct crypto_ec_point *a,
810			const struct crypto_ec_point *b,
811			struct crypto_ec_point *c);
812
813/**
814 * crypto_ec_point_mul - res = b * p
815 * @e: EC context from crypto_ec_init()
816 * @p: EC point
817 * @b: Bignum
818 * @res: EC point; used to store the result of b * p
819 * Returns: 0 on success, -1 on failure
820 */
821int crypto_ec_point_mul(struct crypto_ec *e, const struct crypto_ec_point *p,
822			const struct crypto_bignum *b,
823			struct crypto_ec_point *res);
824
825/**
826 * crypto_ec_point_invert - Compute inverse of an EC point
827 * @e: EC context from crypto_ec_init()
828 * @p: EC point to invert (and result of the operation)
829 * Returns: 0 on success, -1 on failure
830 */
831int crypto_ec_point_invert(struct crypto_ec *e, struct crypto_ec_point *p);
832
833/**
834 * crypto_ec_point_solve_y_coord - Solve y coordinate for an x coordinate
835 * @e: EC context from crypto_ec_init()
836 * @p: EC point to use for the returning the result
837 * @x: x coordinate
838 * @y_bit: y-bit (0 or 1) for selecting the y value to use
839 * Returns: 0 on success, -1 on failure
840 */
841int crypto_ec_point_solve_y_coord(struct crypto_ec *e,
842				  struct crypto_ec_point *p,
843				  const struct crypto_bignum *x, int y_bit);
844
845/**
846 * crypto_ec_point_compute_y_sqr - Compute y^2 = x^3 + ax + b
847 * @e: EC context from crypto_ec_init()
848 * @x: x coordinate
849 * Returns: y^2 on success, %NULL failure
850 */
851struct crypto_bignum *
852crypto_ec_point_compute_y_sqr(struct crypto_ec *e,
853			      const struct crypto_bignum *x);
854
855/**
856 * crypto_ec_point_is_at_infinity - Check whether EC point is neutral element
857 * @e: EC context from crypto_ec_init()
858 * @p: EC point
859 * Returns: 1 if the specified EC point is the neutral element of the group or
860 *	0 if not
861 */
862int crypto_ec_point_is_at_infinity(struct crypto_ec *e,
863				   const struct crypto_ec_point *p);
864
865/**
866 * crypto_ec_point_is_on_curve - Check whether EC point is on curve
867 * @e: EC context from crypto_ec_init()
868 * @p: EC point
869 * Returns: 1 if the specified EC point is on the curve or 0 if not
870 */
871int crypto_ec_point_is_on_curve(struct crypto_ec *e,
872				const struct crypto_ec_point *p);
873
874/**
875 * crypto_ec_point_cmp - Compare two EC points
876 * @e: EC context from crypto_ec_init()
877 * @a: EC point
878 * @b: EC point
879 * Returns: 0 on equal, non-zero otherwise
880 */
881int crypto_ec_point_cmp(const struct crypto_ec *e,
882			const struct crypto_ec_point *a,
883			const struct crypto_ec_point *b);
884
885struct crypto_ecdh;
886
887struct crypto_ecdh * crypto_ecdh_init(int group);
888struct wpabuf * crypto_ecdh_get_pubkey(struct crypto_ecdh *ecdh, int inc_y);
889struct wpabuf * crypto_ecdh_set_peerkey(struct crypto_ecdh *ecdh, int inc_y,
890					const u8 *key, size_t len);
891void crypto_ecdh_deinit(struct crypto_ecdh *ecdh);
892
893#endif /* CRYPTO_H */
894