val_secalgo.c revision 356345
1/*
2 * validator/val_secalgo.c - validator security algorithm functions.
3 *
4 * Copyright (c) 2012, NLnet Labs. All rights reserved.
5 *
6 * This software is open source.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * Redistributions of source code must retain the above copyright notice,
13 * this list of conditions and the following disclaimer.
14 *
15 * Redistributions in binary form must reproduce the above copyright notice,
16 * this list of conditions and the following disclaimer in the documentation
17 * and/or other materials provided with the distribution.
18 *
19 * Neither the name of the NLNET LABS nor the names of its contributors may
20 * be used to endorse or promote products derived from this software without
21 * specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
26 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
27 * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
28 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
29 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
30 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
31 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
32 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
33 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
34 */
35
36/**
37 * \file
38 *
39 * This file contains helper functions for the validator module.
40 * These functions take raw data buffers, formatted for crypto verification,
41 * and do the library calls (for the crypto library in use).
42 */
43#include "config.h"
44/* packed_rrset on top to define enum types (forced by c99 standard) */
45#include "util/data/packed_rrset.h"
46#include "validator/val_secalgo.h"
47#include "validator/val_nsec3.h"
48#include "util/log.h"
49#include "sldns/rrdef.h"
50#include "sldns/keyraw.h"
51#include "sldns/sbuffer.h"
52
53#if !defined(HAVE_SSL) && !defined(HAVE_NSS) && !defined(HAVE_NETTLE)
54#error "Need crypto library to do digital signature cryptography"
55#endif
56
57/* OpenSSL implementation */
58#ifdef HAVE_SSL
59#ifdef HAVE_OPENSSL_ERR_H
60#include <openssl/err.h>
61#endif
62
63#ifdef HAVE_OPENSSL_RAND_H
64#include <openssl/rand.h>
65#endif
66
67#ifdef HAVE_OPENSSL_CONF_H
68#include <openssl/conf.h>
69#endif
70
71#ifdef HAVE_OPENSSL_ENGINE_H
72#include <openssl/engine.h>
73#endif
74
75/** fake DSA support for unit tests */
76int fake_dsa = 0;
77/** fake SHA1 support for unit tests */
78int fake_sha1 = 0;
79
80/**
81 * Output a libcrypto openssl error to the logfile.
82 * @param str: string to add to it.
83 * @param e: the error to output, error number from ERR_get_error().
84 */
85static void
86log_crypto_error(const char* str, unsigned long e)
87{
88	char buf[128];
89	/* or use ERR_error_string if ERR_error_string_n is not avail TODO */
90	ERR_error_string_n(e, buf, sizeof(buf));
91	/* buf now contains */
92	/* error:[error code]:[library name]:[function name]:[reason string] */
93	log_err("%s crypto %s", str, buf);
94}
95
96/* return size of digest if supported, or 0 otherwise */
97size_t
98nsec3_hash_algo_size_supported(int id)
99{
100	switch(id) {
101	case NSEC3_HASH_SHA1:
102		return SHA_DIGEST_LENGTH;
103	default:
104		return 0;
105	}
106}
107
108/* perform nsec3 hash. return false on failure */
109int
110secalgo_nsec3_hash(int algo, unsigned char* buf, size_t len,
111        unsigned char* res)
112{
113	switch(algo) {
114	case NSEC3_HASH_SHA1:
115#ifdef OPENSSL_FIPS
116		if(!sldns_digest_evp(buf, len, res, EVP_sha1()))
117			log_crypto_error("could not digest with EVP_sha1",
118				ERR_get_error());
119#else
120		(void)SHA1(buf, len, res);
121#endif
122		return 1;
123	default:
124		return 0;
125	}
126}
127
128void
129secalgo_hash_sha256(unsigned char* buf, size_t len, unsigned char* res)
130{
131#ifdef OPENSSL_FIPS
132	if(!sldns_digest_evp(buf, len, res, EVP_sha256()))
133		log_crypto_error("could not digest with EVP_sha256",
134			ERR_get_error());
135#else
136	(void)SHA256(buf, len, res);
137#endif
138}
139
140/**
141 * Return size of DS digest according to its hash algorithm.
142 * @param algo: DS digest algo.
143 * @return size in bytes of digest, or 0 if not supported.
144 */
145size_t
146ds_digest_size_supported(int algo)
147{
148	switch(algo) {
149		case LDNS_SHA1:
150#if defined(HAVE_EVP_SHA1) && defined(USE_SHA1)
151			return SHA_DIGEST_LENGTH;
152#else
153			if(fake_sha1) return 20;
154			return 0;
155#endif
156#ifdef HAVE_EVP_SHA256
157		case LDNS_SHA256:
158			return SHA256_DIGEST_LENGTH;
159#endif
160#ifdef USE_GOST
161		case LDNS_HASH_GOST:
162			/* we support GOST if it can be loaded */
163			(void)sldns_key_EVP_load_gost_id();
164			if(EVP_get_digestbyname("md_gost94"))
165				return 32;
166			else	return 0;
167#endif
168#ifdef USE_ECDSA
169		case LDNS_SHA384:
170			return SHA384_DIGEST_LENGTH;
171#endif
172		default: break;
173	}
174	return 0;
175}
176
177#ifdef USE_GOST
178/** Perform GOST hash */
179static int
180do_gost94(unsigned char* data, size_t len, unsigned char* dest)
181{
182	const EVP_MD* md = EVP_get_digestbyname("md_gost94");
183	if(!md)
184		return 0;
185	return sldns_digest_evp(data, (unsigned int)len, dest, md);
186}
187#endif
188
189int
190secalgo_ds_digest(int algo, unsigned char* buf, size_t len,
191	unsigned char* res)
192{
193	switch(algo) {
194#if defined(HAVE_EVP_SHA1) && defined(USE_SHA1)
195		case LDNS_SHA1:
196#ifdef OPENSSL_FIPS
197			if(!sldns_digest_evp(buf, len, res, EVP_sha1()))
198				log_crypto_error("could not digest with EVP_sha1",
199					ERR_get_error());
200#else
201			(void)SHA1(buf, len, res);
202#endif
203			return 1;
204#endif
205#ifdef HAVE_EVP_SHA256
206		case LDNS_SHA256:
207#ifdef OPENSSL_FIPS
208			if(!sldns_digest_evp(buf, len, res, EVP_sha256()))
209				log_crypto_error("could not digest with EVP_sha256",
210					ERR_get_error());
211#else
212			(void)SHA256(buf, len, res);
213#endif
214			return 1;
215#endif
216#ifdef USE_GOST
217		case LDNS_HASH_GOST:
218			if(do_gost94(buf, len, res))
219				return 1;
220			break;
221#endif
222#ifdef USE_ECDSA
223		case LDNS_SHA384:
224#ifdef OPENSSL_FIPS
225			if(!sldns_digest_evp(buf, len, res, EVP_sha384()))
226				log_crypto_error("could not digest with EVP_sha384",
227					ERR_get_error());
228#else
229			(void)SHA384(buf, len, res);
230#endif
231			return 1;
232#endif
233		default:
234			verbose(VERB_QUERY, "unknown DS digest algorithm %d",
235				algo);
236			break;
237	}
238	return 0;
239}
240
241/** return true if DNSKEY algorithm id is supported */
242int
243dnskey_algo_id_is_supported(int id)
244{
245	switch(id) {
246	case LDNS_RSAMD5:
247		/* RFC 6725 deprecates RSAMD5 */
248		return 0;
249	case LDNS_DSA:
250	case LDNS_DSA_NSEC3:
251#if defined(USE_DSA) && defined(USE_SHA1)
252		return 1;
253#else
254		if(fake_dsa || fake_sha1) return 1;
255		return 0;
256#endif
257
258	case LDNS_RSASHA1:
259	case LDNS_RSASHA1_NSEC3:
260#ifdef USE_SHA1
261		return 1;
262#else
263		if(fake_sha1) return 1;
264		return 0;
265#endif
266
267#if defined(HAVE_EVP_SHA256) && defined(USE_SHA2)
268	case LDNS_RSASHA256:
269#endif
270#if defined(HAVE_EVP_SHA512) && defined(USE_SHA2)
271	case LDNS_RSASHA512:
272#endif
273#ifdef USE_ECDSA
274	case LDNS_ECDSAP256SHA256:
275	case LDNS_ECDSAP384SHA384:
276#endif
277#ifdef USE_ED25519
278	case LDNS_ED25519:
279#endif
280#ifdef USE_ED448
281	case LDNS_ED448:
282#endif
283#if (defined(HAVE_EVP_SHA256) && defined(USE_SHA2)) || (defined(HAVE_EVP_SHA512) && defined(USE_SHA2)) || defined(USE_ECDSA) || defined(USE_ED25519) || defined(USE_ED448)
284		return 1;
285#endif
286
287#ifdef USE_GOST
288	case LDNS_ECC_GOST:
289		/* we support GOST if it can be loaded */
290		return sldns_key_EVP_load_gost_id();
291#endif
292	default:
293		return 0;
294	}
295}
296
297#ifdef USE_DSA
298/**
299 * Setup DSA key digest in DER encoding ...
300 * @param sig: input is signature output alloced ptr (unless failure).
301 * 	caller must free alloced ptr if this routine returns true.
302 * @param len: input is initial siglen, output is output len.
303 * @return false on failure.
304 */
305static int
306setup_dsa_sig(unsigned char** sig, unsigned int* len)
307{
308	unsigned char* orig = *sig;
309	unsigned int origlen = *len;
310	int newlen;
311	BIGNUM *R, *S;
312	DSA_SIG *dsasig;
313
314	/* extract the R and S field from the sig buffer */
315	if(origlen < 1 + 2*SHA_DIGEST_LENGTH)
316		return 0;
317	R = BN_new();
318	if(!R) return 0;
319	(void) BN_bin2bn(orig + 1, SHA_DIGEST_LENGTH, R);
320	S = BN_new();
321	if(!S) return 0;
322	(void) BN_bin2bn(orig + 21, SHA_DIGEST_LENGTH, S);
323	dsasig = DSA_SIG_new();
324	if(!dsasig) return 0;
325
326#ifdef HAVE_DSA_SIG_SET0
327	if(!DSA_SIG_set0(dsasig, R, S)) return 0;
328#else
329#  ifndef S_SPLINT_S
330	dsasig->r = R;
331	dsasig->s = S;
332#  endif /* S_SPLINT_S */
333#endif
334	*sig = NULL;
335	newlen = i2d_DSA_SIG(dsasig, sig);
336	if(newlen < 0) {
337		DSA_SIG_free(dsasig);
338		free(*sig);
339		return 0;
340	}
341	*len = (unsigned int)newlen;
342	DSA_SIG_free(dsasig);
343	return 1;
344}
345#endif /* USE_DSA */
346
347#ifdef USE_ECDSA
348/**
349 * Setup the ECDSA signature in its encoding that the library wants.
350 * Converts from plain numbers to ASN formatted.
351 * @param sig: input is signature, output alloced ptr (unless failure).
352 * 	caller must free alloced ptr if this routine returns true.
353 * @param len: input is initial siglen, output is output len.
354 * @return false on failure.
355 */
356static int
357setup_ecdsa_sig(unsigned char** sig, unsigned int* len)
358{
359        /* convert from two BIGNUMs in the rdata buffer, to ASN notation.
360	 * ASN preamble: 30440220 <R 32bytefor256> 0220 <S 32bytefor256>
361	 * the '20' is the length of that field (=bnsize).
362i	 * the '44' is the total remaining length.
363	 * if negative, start with leading zero.
364	 * if starts with 00s, remove them from the number.
365	 */
366        uint8_t pre[] = {0x30, 0x44, 0x02, 0x20};
367        int pre_len = 4;
368        uint8_t mid[] = {0x02, 0x20};
369        int mid_len = 2;
370        int raw_sig_len, r_high, s_high, r_rem=0, s_rem=0;
371	int bnsize = (int)((*len)/2);
372        unsigned char* d = *sig;
373	uint8_t* p;
374	/* if too short or not even length, fails */
375	if(*len < 16 || bnsize*2 != (int)*len)
376		return 0;
377
378        /* strip leading zeroes from r (but not last one) */
379        while(r_rem < bnsize-1 && d[r_rem] == 0)
380                r_rem++;
381        /* strip leading zeroes from s (but not last one) */
382        while(s_rem < bnsize-1 && d[bnsize+s_rem] == 0)
383                s_rem++;
384
385        r_high = ((d[0+r_rem]&0x80)?1:0);
386        s_high = ((d[bnsize+s_rem]&0x80)?1:0);
387        raw_sig_len = pre_len + r_high + bnsize - r_rem + mid_len +
388                s_high + bnsize - s_rem;
389	*sig = (unsigned char*)malloc((size_t)raw_sig_len);
390	if(!*sig)
391		return 0;
392	p = (uint8_t*)*sig;
393	p[0] = pre[0];
394	p[1] = (uint8_t)(raw_sig_len-2);
395	p[2] = pre[2];
396	p[3] = (uint8_t)(bnsize + r_high - r_rem);
397	p += 4;
398	if(r_high) {
399		*p = 0;
400		p += 1;
401	}
402	memmove(p, d+r_rem, (size_t)bnsize-r_rem);
403	p += bnsize-r_rem;
404	memmove(p, mid, (size_t)mid_len-1);
405	p += mid_len-1;
406	*p = (uint8_t)(bnsize + s_high - s_rem);
407	p += 1;
408        if(s_high) {
409		*p = 0;
410		p += 1;
411	}
412	memmove(p, d+bnsize+s_rem, (size_t)bnsize-s_rem);
413	*len = (unsigned int)raw_sig_len;
414	return 1;
415}
416#endif /* USE_ECDSA */
417
418#ifdef USE_ECDSA_EVP_WORKAROUND
419static EVP_MD ecdsa_evp_256_md;
420static EVP_MD ecdsa_evp_384_md;
421void ecdsa_evp_workaround_init(void)
422{
423	/* openssl before 1.0.0 fixes RSA with the SHA256
424	 * hash in EVP.  We create one for ecdsa_sha256 */
425	ecdsa_evp_256_md = *EVP_sha256();
426	ecdsa_evp_256_md.required_pkey_type[0] = EVP_PKEY_EC;
427	ecdsa_evp_256_md.verify = (void*)ECDSA_verify;
428
429	ecdsa_evp_384_md = *EVP_sha384();
430	ecdsa_evp_384_md.required_pkey_type[0] = EVP_PKEY_EC;
431	ecdsa_evp_384_md.verify = (void*)ECDSA_verify;
432}
433#endif /* USE_ECDSA_EVP_WORKAROUND */
434
435/**
436 * Setup key and digest for verification. Adjust sig if necessary.
437 *
438 * @param algo: key algorithm
439 * @param evp_key: EVP PKEY public key to create.
440 * @param digest_type: digest type to use
441 * @param key: key to setup for.
442 * @param keylen: length of key.
443 * @return false on failure.
444 */
445static int
446setup_key_digest(int algo, EVP_PKEY** evp_key, const EVP_MD** digest_type,
447	unsigned char* key, size_t keylen)
448{
449#if defined(USE_DSA) && defined(USE_SHA1)
450	DSA* dsa;
451#endif
452	RSA* rsa;
453
454	switch(algo) {
455#if defined(USE_DSA) && defined(USE_SHA1)
456		case LDNS_DSA:
457		case LDNS_DSA_NSEC3:
458			*evp_key = EVP_PKEY_new();
459			if(!*evp_key) {
460				log_err("verify: malloc failure in crypto");
461				return 0;
462			}
463			dsa = sldns_key_buf2dsa_raw(key, keylen);
464			if(!dsa) {
465				verbose(VERB_QUERY, "verify: "
466					"sldns_key_buf2dsa_raw failed");
467				return 0;
468			}
469			if(EVP_PKEY_assign_DSA(*evp_key, dsa) == 0) {
470				verbose(VERB_QUERY, "verify: "
471					"EVP_PKEY_assign_DSA failed");
472				return 0;
473			}
474#ifdef HAVE_EVP_DSS1
475			*digest_type = EVP_dss1();
476#else
477			*digest_type = EVP_sha1();
478#endif
479
480			break;
481#endif /* USE_DSA && USE_SHA1 */
482
483#if defined(USE_SHA1) || (defined(HAVE_EVP_SHA256) && defined(USE_SHA2)) || (defined(HAVE_EVP_SHA512) && defined(USE_SHA2))
484#ifdef USE_SHA1
485		case LDNS_RSASHA1:
486		case LDNS_RSASHA1_NSEC3:
487#endif
488#if defined(HAVE_EVP_SHA256) && defined(USE_SHA2)
489		case LDNS_RSASHA256:
490#endif
491#if defined(HAVE_EVP_SHA512) && defined(USE_SHA2)
492		case LDNS_RSASHA512:
493#endif
494			*evp_key = EVP_PKEY_new();
495			if(!*evp_key) {
496				log_err("verify: malloc failure in crypto");
497				return 0;
498			}
499			rsa = sldns_key_buf2rsa_raw(key, keylen);
500			if(!rsa) {
501				verbose(VERB_QUERY, "verify: "
502					"sldns_key_buf2rsa_raw SHA failed");
503				return 0;
504			}
505			if(EVP_PKEY_assign_RSA(*evp_key, rsa) == 0) {
506				verbose(VERB_QUERY, "verify: "
507					"EVP_PKEY_assign_RSA SHA failed");
508				return 0;
509			}
510
511			/* select SHA version */
512#if defined(HAVE_EVP_SHA256) && defined(USE_SHA2)
513			if(algo == LDNS_RSASHA256)
514				*digest_type = EVP_sha256();
515			else
516#endif
517#if defined(HAVE_EVP_SHA512) && defined(USE_SHA2)
518				if(algo == LDNS_RSASHA512)
519				*digest_type = EVP_sha512();
520			else
521#endif
522#ifdef USE_SHA1
523				*digest_type = EVP_sha1();
524#else
525				{ verbose(VERB_QUERY, "no digest available"); return 0; }
526#endif
527			break;
528#endif /* defined(USE_SHA1) || (defined(HAVE_EVP_SHA256) && defined(USE_SHA2)) || (defined(HAVE_EVP_SHA512) && defined(USE_SHA2)) */
529
530		case LDNS_RSAMD5:
531			*evp_key = EVP_PKEY_new();
532			if(!*evp_key) {
533				log_err("verify: malloc failure in crypto");
534				return 0;
535			}
536			rsa = sldns_key_buf2rsa_raw(key, keylen);
537			if(!rsa) {
538				verbose(VERB_QUERY, "verify: "
539					"sldns_key_buf2rsa_raw MD5 failed");
540				return 0;
541			}
542			if(EVP_PKEY_assign_RSA(*evp_key, rsa) == 0) {
543				verbose(VERB_QUERY, "verify: "
544					"EVP_PKEY_assign_RSA MD5 failed");
545				return 0;
546			}
547			*digest_type = EVP_md5();
548
549			break;
550#ifdef USE_GOST
551		case LDNS_ECC_GOST:
552			*evp_key = sldns_gost2pkey_raw(key, keylen);
553			if(!*evp_key) {
554				verbose(VERB_QUERY, "verify: "
555					"sldns_gost2pkey_raw failed");
556				return 0;
557			}
558			*digest_type = EVP_get_digestbyname("md_gost94");
559			if(!*digest_type) {
560				verbose(VERB_QUERY, "verify: "
561					"EVP_getdigest md_gost94 failed");
562				return 0;
563			}
564			break;
565#endif
566#ifdef USE_ECDSA
567		case LDNS_ECDSAP256SHA256:
568			*evp_key = sldns_ecdsa2pkey_raw(key, keylen,
569				LDNS_ECDSAP256SHA256);
570			if(!*evp_key) {
571				verbose(VERB_QUERY, "verify: "
572					"sldns_ecdsa2pkey_raw failed");
573				return 0;
574			}
575#ifdef USE_ECDSA_EVP_WORKAROUND
576			*digest_type = &ecdsa_evp_256_md;
577#else
578			*digest_type = EVP_sha256();
579#endif
580			break;
581		case LDNS_ECDSAP384SHA384:
582			*evp_key = sldns_ecdsa2pkey_raw(key, keylen,
583				LDNS_ECDSAP384SHA384);
584			if(!*evp_key) {
585				verbose(VERB_QUERY, "verify: "
586					"sldns_ecdsa2pkey_raw failed");
587				return 0;
588			}
589#ifdef USE_ECDSA_EVP_WORKAROUND
590			*digest_type = &ecdsa_evp_384_md;
591#else
592			*digest_type = EVP_sha384();
593#endif
594			break;
595#endif /* USE_ECDSA */
596#ifdef USE_ED25519
597		case LDNS_ED25519:
598			*evp_key = sldns_ed255192pkey_raw(key, keylen);
599			if(!*evp_key) {
600				verbose(VERB_QUERY, "verify: "
601					"sldns_ed255192pkey_raw failed");
602				return 0;
603			}
604			*digest_type = NULL;
605			break;
606#endif /* USE_ED25519 */
607#ifdef USE_ED448
608		case LDNS_ED448:
609			*evp_key = sldns_ed4482pkey_raw(key, keylen);
610			if(!*evp_key) {
611				verbose(VERB_QUERY, "verify: "
612					"sldns_ed4482pkey_raw failed");
613				return 0;
614			}
615			*digest_type = NULL;
616			break;
617#endif /* USE_ED448 */
618		default:
619			verbose(VERB_QUERY, "verify: unknown algorithm %d",
620				algo);
621			return 0;
622	}
623	return 1;
624}
625
626/**
627 * Check a canonical sig+rrset and signature against a dnskey
628 * @param buf: buffer with data to verify, the first rrsig part and the
629 *	canonicalized rrset.
630 * @param algo: DNSKEY algorithm.
631 * @param sigblock: signature rdata field from RRSIG
632 * @param sigblock_len: length of sigblock data.
633 * @param key: public key data from DNSKEY RR.
634 * @param keylen: length of keydata.
635 * @param reason: bogus reason in more detail.
636 * @return secure if verification succeeded, bogus on crypto failure,
637 *	unchecked on format errors and alloc failures.
638 */
639enum sec_status
640verify_canonrrset(sldns_buffer* buf, int algo, unsigned char* sigblock,
641	unsigned int sigblock_len, unsigned char* key, unsigned int keylen,
642	char** reason)
643{
644	const EVP_MD *digest_type;
645	EVP_MD_CTX* ctx;
646	int res, dofree = 0, docrypto_free = 0;
647	EVP_PKEY *evp_key = NULL;
648
649#ifndef USE_DSA
650	if((algo == LDNS_DSA || algo == LDNS_DSA_NSEC3) &&(fake_dsa||fake_sha1))
651		return sec_status_secure;
652#endif
653#ifndef USE_SHA1
654	if(fake_sha1 && (algo == LDNS_DSA || algo == LDNS_DSA_NSEC3 || algo == LDNS_RSASHA1 || algo == LDNS_RSASHA1_NSEC3))
655		return sec_status_secure;
656#endif
657
658	if(!setup_key_digest(algo, &evp_key, &digest_type, key, keylen)) {
659		verbose(VERB_QUERY, "verify: failed to setup key");
660		*reason = "use of key for crypto failed";
661		EVP_PKEY_free(evp_key);
662		return sec_status_bogus;
663	}
664#ifdef USE_DSA
665	/* if it is a DSA signature in bind format, convert to DER format */
666	if((algo == LDNS_DSA || algo == LDNS_DSA_NSEC3) &&
667		sigblock_len == 1+2*SHA_DIGEST_LENGTH) {
668		if(!setup_dsa_sig(&sigblock, &sigblock_len)) {
669			verbose(VERB_QUERY, "verify: failed to setup DSA sig");
670			*reason = "use of key for DSA crypto failed";
671			EVP_PKEY_free(evp_key);
672			return sec_status_bogus;
673		}
674		docrypto_free = 1;
675	}
676#endif
677#if defined(USE_ECDSA) && defined(USE_DSA)
678	else
679#endif
680#ifdef USE_ECDSA
681	if(algo == LDNS_ECDSAP256SHA256 || algo == LDNS_ECDSAP384SHA384) {
682		/* EVP uses ASN prefix on sig, which is not in the wire data */
683		if(!setup_ecdsa_sig(&sigblock, &sigblock_len)) {
684			verbose(VERB_QUERY, "verify: failed to setup ECDSA sig");
685			*reason = "use of signature for ECDSA crypto failed";
686			EVP_PKEY_free(evp_key);
687			return sec_status_bogus;
688		}
689		dofree = 1;
690	}
691#endif /* USE_ECDSA */
692
693	/* do the signature cryptography work */
694#ifdef HAVE_EVP_MD_CTX_NEW
695	ctx = EVP_MD_CTX_new();
696#else
697	ctx = (EVP_MD_CTX*)malloc(sizeof(*ctx));
698	if(ctx) EVP_MD_CTX_init(ctx);
699#endif
700	if(!ctx) {
701		log_err("EVP_MD_CTX_new: malloc failure");
702		EVP_PKEY_free(evp_key);
703		if(dofree) free(sigblock);
704		else if(docrypto_free) OPENSSL_free(sigblock);
705		return sec_status_unchecked;
706	}
707#ifndef HAVE_EVP_DIGESTVERIFY
708	if(EVP_DigestInit(ctx, digest_type) == 0) {
709		verbose(VERB_QUERY, "verify: EVP_DigestInit failed");
710#ifdef HAVE_EVP_MD_CTX_NEW
711		EVP_MD_CTX_destroy(ctx);
712#else
713		EVP_MD_CTX_cleanup(ctx);
714		free(ctx);
715#endif
716		EVP_PKEY_free(evp_key);
717		if(dofree) free(sigblock);
718		else if(docrypto_free) OPENSSL_free(sigblock);
719		return sec_status_unchecked;
720	}
721	if(EVP_DigestUpdate(ctx, (unsigned char*)sldns_buffer_begin(buf),
722		(unsigned int)sldns_buffer_limit(buf)) == 0) {
723		verbose(VERB_QUERY, "verify: EVP_DigestUpdate failed");
724#ifdef HAVE_EVP_MD_CTX_NEW
725		EVP_MD_CTX_destroy(ctx);
726#else
727		EVP_MD_CTX_cleanup(ctx);
728		free(ctx);
729#endif
730		EVP_PKEY_free(evp_key);
731		if(dofree) free(sigblock);
732		else if(docrypto_free) OPENSSL_free(sigblock);
733		return sec_status_unchecked;
734	}
735
736	res = EVP_VerifyFinal(ctx, sigblock, sigblock_len, evp_key);
737#else /* HAVE_EVP_DIGESTVERIFY */
738	if(EVP_DigestVerifyInit(ctx, NULL, digest_type, NULL, evp_key) == 0) {
739		verbose(VERB_QUERY, "verify: EVP_DigestVerifyInit failed");
740#ifdef HAVE_EVP_MD_CTX_NEW
741		EVP_MD_CTX_destroy(ctx);
742#else
743		EVP_MD_CTX_cleanup(ctx);
744		free(ctx);
745#endif
746		EVP_PKEY_free(evp_key);
747		if(dofree) free(sigblock);
748		else if(docrypto_free) OPENSSL_free(sigblock);
749		return sec_status_unchecked;
750	}
751	res = EVP_DigestVerify(ctx, sigblock, sigblock_len,
752		(unsigned char*)sldns_buffer_begin(buf),
753		sldns_buffer_limit(buf));
754#endif
755#ifdef HAVE_EVP_MD_CTX_NEW
756	EVP_MD_CTX_destroy(ctx);
757#else
758	EVP_MD_CTX_cleanup(ctx);
759	free(ctx);
760#endif
761	EVP_PKEY_free(evp_key);
762
763	if(dofree) free(sigblock);
764	else if(docrypto_free) OPENSSL_free(sigblock);
765
766	if(res == 1) {
767		return sec_status_secure;
768	} else if(res == 0) {
769		verbose(VERB_QUERY, "verify: signature mismatch");
770		*reason = "signature crypto failed";
771		return sec_status_bogus;
772	}
773
774	log_crypto_error("verify:", ERR_get_error());
775	return sec_status_unchecked;
776}
777
778/**************************************************/
779#elif defined(HAVE_NSS)
780/* libnss implementation */
781/* nss3 */
782#include "sechash.h"
783#include "pk11pub.h"
784#include "keyhi.h"
785#include "secerr.h"
786#include "cryptohi.h"
787/* nspr4 */
788#include "prerror.h"
789
790/* return size of digest if supported, or 0 otherwise */
791size_t
792nsec3_hash_algo_size_supported(int id)
793{
794	switch(id) {
795	case NSEC3_HASH_SHA1:
796		return SHA1_LENGTH;
797	default:
798		return 0;
799	}
800}
801
802/* perform nsec3 hash. return false on failure */
803int
804secalgo_nsec3_hash(int algo, unsigned char* buf, size_t len,
805        unsigned char* res)
806{
807	switch(algo) {
808	case NSEC3_HASH_SHA1:
809		(void)HASH_HashBuf(HASH_AlgSHA1, res, buf, (unsigned long)len);
810		return 1;
811	default:
812		return 0;
813	}
814}
815
816void
817secalgo_hash_sha256(unsigned char* buf, size_t len, unsigned char* res)
818{
819	(void)HASH_HashBuf(HASH_AlgSHA256, res, buf, (unsigned long)len);
820}
821
822size_t
823ds_digest_size_supported(int algo)
824{
825	/* uses libNSS */
826	switch(algo) {
827#ifdef USE_SHA1
828		case LDNS_SHA1:
829			return SHA1_LENGTH;
830#endif
831#ifdef USE_SHA2
832		case LDNS_SHA256:
833			return SHA256_LENGTH;
834#endif
835#ifdef USE_ECDSA
836		case LDNS_SHA384:
837			return SHA384_LENGTH;
838#endif
839		/* GOST not supported in NSS */
840		case LDNS_HASH_GOST:
841		default: break;
842	}
843	return 0;
844}
845
846int
847secalgo_ds_digest(int algo, unsigned char* buf, size_t len,
848	unsigned char* res)
849{
850	/* uses libNSS */
851	switch(algo) {
852#ifdef USE_SHA1
853		case LDNS_SHA1:
854			return HASH_HashBuf(HASH_AlgSHA1, res, buf, len)
855				== SECSuccess;
856#endif
857#if defined(USE_SHA2)
858		case LDNS_SHA256:
859			return HASH_HashBuf(HASH_AlgSHA256, res, buf, len)
860				== SECSuccess;
861#endif
862#ifdef USE_ECDSA
863		case LDNS_SHA384:
864			return HASH_HashBuf(HASH_AlgSHA384, res, buf, len)
865				== SECSuccess;
866#endif
867		case LDNS_HASH_GOST:
868		default:
869			verbose(VERB_QUERY, "unknown DS digest algorithm %d",
870				algo);
871			break;
872	}
873	return 0;
874}
875
876int
877dnskey_algo_id_is_supported(int id)
878{
879	/* uses libNSS */
880	switch(id) {
881	case LDNS_RSAMD5:
882		/* RFC 6725 deprecates RSAMD5 */
883		return 0;
884#if defined(USE_SHA1) || defined(USE_SHA2)
885#if defined(USE_DSA) && defined(USE_SHA1)
886	case LDNS_DSA:
887	case LDNS_DSA_NSEC3:
888#endif
889#ifdef USE_SHA1
890	case LDNS_RSASHA1:
891	case LDNS_RSASHA1_NSEC3:
892#endif
893#ifdef USE_SHA2
894	case LDNS_RSASHA256:
895#endif
896#ifdef USE_SHA2
897	case LDNS_RSASHA512:
898#endif
899		return 1;
900#endif /* SHA1 or SHA2 */
901
902#ifdef USE_ECDSA
903	case LDNS_ECDSAP256SHA256:
904	case LDNS_ECDSAP384SHA384:
905		return PK11_TokenExists(CKM_ECDSA);
906#endif
907	case LDNS_ECC_GOST:
908	default:
909		return 0;
910	}
911}
912
913/* return a new public key for NSS */
914static SECKEYPublicKey* nss_key_create(KeyType ktype)
915{
916	SECKEYPublicKey* key;
917	PLArenaPool* arena = PORT_NewArena(DER_DEFAULT_CHUNKSIZE);
918	if(!arena) {
919		log_err("out of memory, PORT_NewArena failed");
920		return NULL;
921	}
922	key = PORT_ArenaZNew(arena, SECKEYPublicKey);
923	if(!key) {
924		log_err("out of memory, PORT_ArenaZNew failed");
925		PORT_FreeArena(arena, PR_FALSE);
926		return NULL;
927	}
928	key->arena = arena;
929	key->keyType = ktype;
930	key->pkcs11Slot = NULL;
931	key->pkcs11ID = CK_INVALID_HANDLE;
932	return key;
933}
934
935static SECKEYPublicKey* nss_buf2ecdsa(unsigned char* key, size_t len, int algo)
936{
937	SECKEYPublicKey* pk;
938	SECItem pub = {siBuffer, NULL, 0};
939	SECItem params = {siBuffer, NULL, 0};
940	static unsigned char param256[] = {
941		/* OBJECTIDENTIFIER 1.2.840.10045.3.1.7 (P-256)
942		 * {iso(1) member-body(2) us(840) ansi-x962(10045) curves(3) prime(1) prime256v1(7)} */
943		0x06, 0x08, 0x2a, 0x86, 0x48, 0xce, 0x3d, 0x03, 0x01, 0x07
944	};
945	static unsigned char param384[] = {
946		/* OBJECTIDENTIFIER 1.3.132.0.34 (P-384)
947		 * {iso(1) identified-organization(3) certicom(132) curve(0) ansip384r1(34)} */
948		0x06, 0x05, 0x2b, 0x81, 0x04, 0x00, 0x22
949	};
950	unsigned char buf[256+2]; /* sufficient for 2*384/8+1 */
951
952	/* check length, which uncompressed must be 2 bignums */
953	if(algo == LDNS_ECDSAP256SHA256) {
954		if(len != 2*256/8) return NULL;
955		/* ECCurve_X9_62_PRIME_256V1 */
956	} else if(algo == LDNS_ECDSAP384SHA384) {
957		if(len != 2*384/8) return NULL;
958		/* ECCurve_X9_62_PRIME_384R1 */
959	} else    return NULL;
960
961	buf[0] = 0x04; /* POINT_FORM_UNCOMPRESSED */
962	memmove(buf+1, key, len);
963	pub.data = buf;
964	pub.len = len+1;
965	if(algo == LDNS_ECDSAP256SHA256) {
966		params.data = param256;
967		params.len = sizeof(param256);
968	} else {
969		params.data = param384;
970		params.len = sizeof(param384);
971	}
972
973	pk = nss_key_create(ecKey);
974	if(!pk)
975		return NULL;
976	pk->u.ec.size = (len/2)*8;
977	if(SECITEM_CopyItem(pk->arena, &pk->u.ec.publicValue, &pub)) {
978		SECKEY_DestroyPublicKey(pk);
979		return NULL;
980	}
981	if(SECITEM_CopyItem(pk->arena, &pk->u.ec.DEREncodedParams, &params)) {
982		SECKEY_DestroyPublicKey(pk);
983		return NULL;
984	}
985
986	return pk;
987}
988
989static SECKEYPublicKey* nss_buf2dsa(unsigned char* key, size_t len)
990{
991	SECKEYPublicKey* pk;
992	uint8_t T;
993	uint16_t length;
994	uint16_t offset;
995	SECItem Q = {siBuffer, NULL, 0};
996	SECItem P = {siBuffer, NULL, 0};
997	SECItem G = {siBuffer, NULL, 0};
998	SECItem Y = {siBuffer, NULL, 0};
999
1000	if(len == 0)
1001		return NULL;
1002	T = (uint8_t)key[0];
1003	length = (64 + T * 8);
1004	offset = 1;
1005
1006	if (T > 8) {
1007		return NULL;
1008	}
1009	if(len < (size_t)1 + SHA1_LENGTH + 3*length)
1010		return NULL;
1011
1012	Q.data = key+offset;
1013	Q.len = SHA1_LENGTH;
1014	offset += SHA1_LENGTH;
1015
1016	P.data = key+offset;
1017	P.len = length;
1018	offset += length;
1019
1020	G.data = key+offset;
1021	G.len = length;
1022	offset += length;
1023
1024	Y.data = key+offset;
1025	Y.len = length;
1026	offset += length;
1027
1028	pk = nss_key_create(dsaKey);
1029	if(!pk)
1030		return NULL;
1031	if(SECITEM_CopyItem(pk->arena, &pk->u.dsa.params.prime, &P)) {
1032		SECKEY_DestroyPublicKey(pk);
1033		return NULL;
1034	}
1035	if(SECITEM_CopyItem(pk->arena, &pk->u.dsa.params.subPrime, &Q)) {
1036		SECKEY_DestroyPublicKey(pk);
1037		return NULL;
1038	}
1039	if(SECITEM_CopyItem(pk->arena, &pk->u.dsa.params.base, &G)) {
1040		SECKEY_DestroyPublicKey(pk);
1041		return NULL;
1042	}
1043	if(SECITEM_CopyItem(pk->arena, &pk->u.dsa.publicValue, &Y)) {
1044		SECKEY_DestroyPublicKey(pk);
1045		return NULL;
1046	}
1047	return pk;
1048}
1049
1050static SECKEYPublicKey* nss_buf2rsa(unsigned char* key, size_t len)
1051{
1052	SECKEYPublicKey* pk;
1053	uint16_t exp;
1054	uint16_t offset;
1055	uint16_t int16;
1056	SECItem modulus = {siBuffer, NULL, 0};
1057	SECItem exponent = {siBuffer, NULL, 0};
1058	if(len == 0)
1059		return NULL;
1060	if(key[0] == 0) {
1061		if(len < 3)
1062			return NULL;
1063		/* the exponent is too large so it's places further */
1064		memmove(&int16, key+1, 2);
1065		exp = ntohs(int16);
1066		offset = 3;
1067	} else {
1068		exp = key[0];
1069		offset = 1;
1070	}
1071
1072	/* key length at least one */
1073	if(len < (size_t)offset + exp + 1)
1074		return NULL;
1075
1076	exponent.data = key+offset;
1077	exponent.len = exp;
1078	offset += exp;
1079	modulus.data = key+offset;
1080	modulus.len = (len - offset);
1081
1082	pk = nss_key_create(rsaKey);
1083	if(!pk)
1084		return NULL;
1085	if(SECITEM_CopyItem(pk->arena, &pk->u.rsa.modulus, &modulus)) {
1086		SECKEY_DestroyPublicKey(pk);
1087		return NULL;
1088	}
1089	if(SECITEM_CopyItem(pk->arena, &pk->u.rsa.publicExponent, &exponent)) {
1090		SECKEY_DestroyPublicKey(pk);
1091		return NULL;
1092	}
1093	return pk;
1094}
1095
1096/**
1097 * Setup key and digest for verification. Adjust sig if necessary.
1098 *
1099 * @param algo: key algorithm
1100 * @param evp_key: EVP PKEY public key to create.
1101 * @param digest_type: digest type to use
1102 * @param key: key to setup for.
1103 * @param keylen: length of key.
1104 * @param prefix: if returned, the ASN prefix for the hashblob.
1105 * @param prefixlen: length of the prefix.
1106 * @return false on failure.
1107 */
1108static int
1109nss_setup_key_digest(int algo, SECKEYPublicKey** pubkey, HASH_HashType* htype,
1110	unsigned char* key, size_t keylen, unsigned char** prefix,
1111	size_t* prefixlen)
1112{
1113	/* uses libNSS */
1114
1115	/* hash prefix for md5, RFC2537 */
1116	static unsigned char p_md5[] = {0x30, 0x20, 0x30, 0x0c, 0x06, 0x08, 0x2a,
1117	0x86, 0x48, 0x86, 0xf7, 0x0d, 0x02, 0x05, 0x05, 0x00, 0x04, 0x10};
1118	/* hash prefix to prepend to hash output, from RFC3110 */
1119	static unsigned char p_sha1[] = {0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2B,
1120		0x0E, 0x03, 0x02, 0x1A, 0x05, 0x00, 0x04, 0x14};
1121	/* from RFC5702 */
1122	static unsigned char p_sha256[] = {0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 0x60,
1123	0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01, 0x05, 0x00, 0x04, 0x20};
1124	static unsigned char p_sha512[] = {0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 0x60,
1125	0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03, 0x05, 0x00, 0x04, 0x40};
1126	/* from RFC6234 */
1127	/* for future RSASHA384 ..
1128	static unsigned char p_sha384[] = {0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 0x60,
1129	0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x02, 0x05, 0x00, 0x04, 0x30};
1130	*/
1131
1132	switch(algo) {
1133
1134#if defined(USE_SHA1) || defined(USE_SHA2)
1135#if defined(USE_DSA) && defined(USE_SHA1)
1136		case LDNS_DSA:
1137		case LDNS_DSA_NSEC3:
1138			*pubkey = nss_buf2dsa(key, keylen);
1139			if(!*pubkey) {
1140				log_err("verify: malloc failure in crypto");
1141				return 0;
1142			}
1143			*htype = HASH_AlgSHA1;
1144			/* no prefix for DSA verification */
1145			break;
1146#endif
1147#ifdef USE_SHA1
1148		case LDNS_RSASHA1:
1149		case LDNS_RSASHA1_NSEC3:
1150#endif
1151#ifdef USE_SHA2
1152		case LDNS_RSASHA256:
1153#endif
1154#ifdef USE_SHA2
1155		case LDNS_RSASHA512:
1156#endif
1157			*pubkey = nss_buf2rsa(key, keylen);
1158			if(!*pubkey) {
1159				log_err("verify: malloc failure in crypto");
1160				return 0;
1161			}
1162			/* select SHA version */
1163#ifdef USE_SHA2
1164			if(algo == LDNS_RSASHA256) {
1165				*htype = HASH_AlgSHA256;
1166				*prefix = p_sha256;
1167				*prefixlen = sizeof(p_sha256);
1168			} else
1169#endif
1170#ifdef USE_SHA2
1171				if(algo == LDNS_RSASHA512) {
1172				*htype = HASH_AlgSHA512;
1173				*prefix = p_sha512;
1174				*prefixlen = sizeof(p_sha512);
1175			} else
1176#endif
1177#ifdef USE_SHA1
1178			{
1179				*htype = HASH_AlgSHA1;
1180				*prefix = p_sha1;
1181				*prefixlen = sizeof(p_sha1);
1182			}
1183#else
1184			{
1185				verbose(VERB_QUERY, "verify: no digest algo");
1186				return 0;
1187			}
1188#endif
1189
1190			break;
1191#endif /* SHA1 or SHA2 */
1192
1193		case LDNS_RSAMD5:
1194			*pubkey = nss_buf2rsa(key, keylen);
1195			if(!*pubkey) {
1196				log_err("verify: malloc failure in crypto");
1197				return 0;
1198			}
1199			*htype = HASH_AlgMD5;
1200			*prefix = p_md5;
1201			*prefixlen = sizeof(p_md5);
1202
1203			break;
1204#ifdef USE_ECDSA
1205		case LDNS_ECDSAP256SHA256:
1206			*pubkey = nss_buf2ecdsa(key, keylen,
1207				LDNS_ECDSAP256SHA256);
1208			if(!*pubkey) {
1209				log_err("verify: malloc failure in crypto");
1210				return 0;
1211			}
1212			*htype = HASH_AlgSHA256;
1213			/* no prefix for DSA verification */
1214			break;
1215		case LDNS_ECDSAP384SHA384:
1216			*pubkey = nss_buf2ecdsa(key, keylen,
1217				LDNS_ECDSAP384SHA384);
1218			if(!*pubkey) {
1219				log_err("verify: malloc failure in crypto");
1220				return 0;
1221			}
1222			*htype = HASH_AlgSHA384;
1223			/* no prefix for DSA verification */
1224			break;
1225#endif /* USE_ECDSA */
1226		case LDNS_ECC_GOST:
1227		default:
1228			verbose(VERB_QUERY, "verify: unknown algorithm %d",
1229				algo);
1230			return 0;
1231	}
1232	return 1;
1233}
1234
1235/**
1236 * Check a canonical sig+rrset and signature against a dnskey
1237 * @param buf: buffer with data to verify, the first rrsig part and the
1238 *	canonicalized rrset.
1239 * @param algo: DNSKEY algorithm.
1240 * @param sigblock: signature rdata field from RRSIG
1241 * @param sigblock_len: length of sigblock data.
1242 * @param key: public key data from DNSKEY RR.
1243 * @param keylen: length of keydata.
1244 * @param reason: bogus reason in more detail.
1245 * @return secure if verification succeeded, bogus on crypto failure,
1246 *	unchecked on format errors and alloc failures.
1247 */
1248enum sec_status
1249verify_canonrrset(sldns_buffer* buf, int algo, unsigned char* sigblock,
1250	unsigned int sigblock_len, unsigned char* key, unsigned int keylen,
1251	char** reason)
1252{
1253	/* uses libNSS */
1254	/* large enough for the different hashes */
1255	unsigned char hash[HASH_LENGTH_MAX];
1256	unsigned char hash2[HASH_LENGTH_MAX*2];
1257	HASH_HashType htype = 0;
1258	SECKEYPublicKey* pubkey = NULL;
1259	SECItem secsig = {siBuffer, sigblock, sigblock_len};
1260	SECItem sechash = {siBuffer, hash, 0};
1261	SECStatus res;
1262	unsigned char* prefix = NULL; /* prefix for hash, RFC3110, RFC5702 */
1263	size_t prefixlen = 0;
1264	int err;
1265
1266	if(!nss_setup_key_digest(algo, &pubkey, &htype, key, keylen,
1267		&prefix, &prefixlen)) {
1268		verbose(VERB_QUERY, "verify: failed to setup key");
1269		*reason = "use of key for crypto failed";
1270		SECKEY_DestroyPublicKey(pubkey);
1271		return sec_status_bogus;
1272	}
1273
1274#if defined(USE_DSA) && defined(USE_SHA1)
1275	/* need to convert DSA, ECDSA signatures? */
1276	if((algo == LDNS_DSA || algo == LDNS_DSA_NSEC3)) {
1277		if(sigblock_len == 1+2*SHA1_LENGTH) {
1278			secsig.data ++;
1279			secsig.len --;
1280		} else {
1281			SECItem* p = DSAU_DecodeDerSig(&secsig);
1282			if(!p) {
1283				verbose(VERB_QUERY, "verify: failed DER decode");
1284				*reason = "signature DER decode failed";
1285				SECKEY_DestroyPublicKey(pubkey);
1286				return sec_status_bogus;
1287			}
1288			if(SECITEM_CopyItem(pubkey->arena, &secsig, p)) {
1289				log_err("alloc failure in DER decode");
1290				SECKEY_DestroyPublicKey(pubkey);
1291				SECITEM_FreeItem(p, PR_TRUE);
1292				return sec_status_unchecked;
1293			}
1294			SECITEM_FreeItem(p, PR_TRUE);
1295		}
1296	}
1297#endif /* USE_DSA */
1298
1299	/* do the signature cryptography work */
1300	/* hash the data */
1301	sechash.len = HASH_ResultLen(htype);
1302	if(sechash.len > sizeof(hash)) {
1303		verbose(VERB_QUERY, "verify: hash too large for buffer");
1304		SECKEY_DestroyPublicKey(pubkey);
1305		return sec_status_unchecked;
1306	}
1307	if(HASH_HashBuf(htype, hash, (unsigned char*)sldns_buffer_begin(buf),
1308		(unsigned int)sldns_buffer_limit(buf)) != SECSuccess) {
1309		verbose(VERB_QUERY, "verify: HASH_HashBuf failed");
1310		SECKEY_DestroyPublicKey(pubkey);
1311		return sec_status_unchecked;
1312	}
1313	if(prefix) {
1314		int hashlen = sechash.len;
1315		if(prefixlen+hashlen > sizeof(hash2)) {
1316			verbose(VERB_QUERY, "verify: hashprefix too large");
1317			SECKEY_DestroyPublicKey(pubkey);
1318			return sec_status_unchecked;
1319		}
1320		sechash.data = hash2;
1321		sechash.len = prefixlen+hashlen;
1322		memcpy(sechash.data, prefix, prefixlen);
1323		memmove(sechash.data+prefixlen, hash, hashlen);
1324	}
1325
1326	/* verify the signature */
1327	res = PK11_Verify(pubkey, &secsig, &sechash, NULL /*wincx*/);
1328	SECKEY_DestroyPublicKey(pubkey);
1329
1330	if(res == SECSuccess) {
1331		return sec_status_secure;
1332	}
1333	err = PORT_GetError();
1334	if(err != SEC_ERROR_BAD_SIGNATURE) {
1335		/* failed to verify */
1336		verbose(VERB_QUERY, "verify: PK11_Verify failed: %s",
1337			PORT_ErrorToString(err));
1338		/* if it is not supported, like ECC is removed, we get,
1339		 * SEC_ERROR_NO_MODULE */
1340		if(err == SEC_ERROR_NO_MODULE)
1341			return sec_status_unchecked;
1342		/* but other errors are commonly returned
1343		 * for a bad signature from NSS.  Thus we return bogus,
1344		 * not unchecked */
1345		*reason = "signature crypto failed";
1346		return sec_status_bogus;
1347	}
1348	verbose(VERB_QUERY, "verify: signature mismatch: %s",
1349		PORT_ErrorToString(err));
1350	*reason = "signature crypto failed";
1351	return sec_status_bogus;
1352}
1353
1354#elif defined(HAVE_NETTLE)
1355
1356#include "sha.h"
1357#include "bignum.h"
1358#include "macros.h"
1359#include "rsa.h"
1360#include "dsa.h"
1361#ifdef HAVE_NETTLE_DSA_COMPAT_H
1362#include "dsa-compat.h"
1363#endif
1364#include "asn1.h"
1365#ifdef USE_ECDSA
1366#include "ecdsa.h"
1367#include "ecc-curve.h"
1368#endif
1369#ifdef HAVE_NETTLE_EDDSA_H
1370#include "eddsa.h"
1371#endif
1372
1373static int
1374_digest_nettle(int algo, uint8_t* buf, size_t len,
1375	unsigned char* res)
1376{
1377	switch(algo) {
1378		case SHA1_DIGEST_SIZE:
1379		{
1380			struct sha1_ctx ctx;
1381			sha1_init(&ctx);
1382			sha1_update(&ctx, len, buf);
1383			sha1_digest(&ctx, SHA1_DIGEST_SIZE, res);
1384			return 1;
1385		}
1386		case SHA256_DIGEST_SIZE:
1387		{
1388			struct sha256_ctx ctx;
1389			sha256_init(&ctx);
1390			sha256_update(&ctx, len, buf);
1391			sha256_digest(&ctx, SHA256_DIGEST_SIZE, res);
1392			return 1;
1393		}
1394		case SHA384_DIGEST_SIZE:
1395		{
1396			struct sha384_ctx ctx;
1397			sha384_init(&ctx);
1398			sha384_update(&ctx, len, buf);
1399			sha384_digest(&ctx, SHA384_DIGEST_SIZE, res);
1400			return 1;
1401		}
1402		case SHA512_DIGEST_SIZE:
1403		{
1404			struct sha512_ctx ctx;
1405			sha512_init(&ctx);
1406			sha512_update(&ctx, len, buf);
1407			sha512_digest(&ctx, SHA512_DIGEST_SIZE, res);
1408			return 1;
1409		}
1410		default:
1411			break;
1412	}
1413	return 0;
1414}
1415
1416/* return size of digest if supported, or 0 otherwise */
1417size_t
1418nsec3_hash_algo_size_supported(int id)
1419{
1420	switch(id) {
1421	case NSEC3_HASH_SHA1:
1422		return SHA1_DIGEST_SIZE;
1423	default:
1424		return 0;
1425	}
1426}
1427
1428/* perform nsec3 hash. return false on failure */
1429int
1430secalgo_nsec3_hash(int algo, unsigned char* buf, size_t len,
1431        unsigned char* res)
1432{
1433	switch(algo) {
1434	case NSEC3_HASH_SHA1:
1435		return _digest_nettle(SHA1_DIGEST_SIZE, (uint8_t*)buf, len,
1436			res);
1437	default:
1438		return 0;
1439	}
1440}
1441
1442void
1443secalgo_hash_sha256(unsigned char* buf, size_t len, unsigned char* res)
1444{
1445	_digest_nettle(SHA256_DIGEST_SIZE, (uint8_t*)buf, len, res);
1446}
1447
1448/**
1449 * Return size of DS digest according to its hash algorithm.
1450 * @param algo: DS digest algo.
1451 * @return size in bytes of digest, or 0 if not supported.
1452 */
1453size_t
1454ds_digest_size_supported(int algo)
1455{
1456	switch(algo) {
1457		case LDNS_SHA1:
1458#ifdef USE_SHA1
1459			return SHA1_DIGEST_SIZE;
1460#else
1461			if(fake_sha1) return 20;
1462			return 0;
1463#endif
1464#ifdef USE_SHA2
1465		case LDNS_SHA256:
1466			return SHA256_DIGEST_SIZE;
1467#endif
1468#ifdef USE_ECDSA
1469		case LDNS_SHA384:
1470			return SHA384_DIGEST_SIZE;
1471#endif
1472		/* GOST not supported */
1473		case LDNS_HASH_GOST:
1474		default:
1475			break;
1476	}
1477	return 0;
1478}
1479
1480int
1481secalgo_ds_digest(int algo, unsigned char* buf, size_t len,
1482	unsigned char* res)
1483{
1484	switch(algo) {
1485#ifdef USE_SHA1
1486		case LDNS_SHA1:
1487			return _digest_nettle(SHA1_DIGEST_SIZE, buf, len, res);
1488#endif
1489#if defined(USE_SHA2)
1490		case LDNS_SHA256:
1491			return _digest_nettle(SHA256_DIGEST_SIZE, buf, len, res);
1492#endif
1493#ifdef USE_ECDSA
1494		case LDNS_SHA384:
1495			return _digest_nettle(SHA384_DIGEST_SIZE, buf, len, res);
1496
1497#endif
1498		case LDNS_HASH_GOST:
1499		default:
1500			verbose(VERB_QUERY, "unknown DS digest algorithm %d",
1501				algo);
1502			break;
1503	}
1504	return 0;
1505}
1506
1507int
1508dnskey_algo_id_is_supported(int id)
1509{
1510	/* uses libnettle */
1511	switch(id) {
1512#if defined(USE_DSA) && defined(USE_SHA1)
1513	case LDNS_DSA:
1514	case LDNS_DSA_NSEC3:
1515#endif
1516#ifdef USE_SHA1
1517	case LDNS_RSASHA1:
1518	case LDNS_RSASHA1_NSEC3:
1519#endif
1520#ifdef USE_SHA2
1521	case LDNS_RSASHA256:
1522	case LDNS_RSASHA512:
1523#endif
1524#ifdef USE_ECDSA
1525	case LDNS_ECDSAP256SHA256:
1526	case LDNS_ECDSAP384SHA384:
1527#endif
1528		return 1;
1529#ifdef USE_ED25519
1530	case LDNS_ED25519:
1531		return 1;
1532#endif
1533	case LDNS_RSAMD5: /* RFC 6725 deprecates RSAMD5 */
1534	case LDNS_ECC_GOST:
1535	default:
1536		return 0;
1537	}
1538}
1539
1540#if defined(USE_DSA) && defined(USE_SHA1)
1541static char *
1542_verify_nettle_dsa(sldns_buffer* buf, unsigned char* sigblock,
1543	unsigned int sigblock_len, unsigned char* key, unsigned int keylen)
1544{
1545	uint8_t digest[SHA1_DIGEST_SIZE];
1546	uint8_t key_t_value;
1547	int res = 0;
1548	size_t offset;
1549	struct dsa_public_key pubkey;
1550	struct dsa_signature signature;
1551	unsigned int expected_len;
1552
1553	/* Extract DSA signature from the record */
1554	nettle_dsa_signature_init(&signature);
1555	/* Signature length: 41 bytes - RFC 2536 sec. 3 */
1556	if(sigblock_len == 41) {
1557		if(key[0] != sigblock[0])
1558			return "invalid T value in DSA signature or pubkey";
1559		nettle_mpz_set_str_256_u(signature.r, 20, sigblock+1);
1560		nettle_mpz_set_str_256_u(signature.s, 20, sigblock+1+20);
1561	} else {
1562		/* DER encoded, decode the ASN1 notated R and S bignums */
1563		/* SEQUENCE { r INTEGER, s INTEGER } */
1564		struct asn1_der_iterator i, seq;
1565		if(asn1_der_iterator_first(&i, sigblock_len,
1566			(uint8_t*)sigblock) != ASN1_ITERATOR_CONSTRUCTED
1567			|| i.type != ASN1_SEQUENCE)
1568			return "malformed DER encoded DSA signature";
1569		/* decode this element of i using the seq iterator */
1570		if(asn1_der_decode_constructed(&i, &seq) !=
1571			ASN1_ITERATOR_PRIMITIVE || seq.type != ASN1_INTEGER)
1572			return "malformed DER encoded DSA signature";
1573		if(!asn1_der_get_bignum(&seq, signature.r, 20*8))
1574			return "malformed DER encoded DSA signature";
1575		if(asn1_der_iterator_next(&seq) != ASN1_ITERATOR_PRIMITIVE
1576			|| seq.type != ASN1_INTEGER)
1577			return "malformed DER encoded DSA signature";
1578		if(!asn1_der_get_bignum(&seq, signature.s, 20*8))
1579			return "malformed DER encoded DSA signature";
1580		if(asn1_der_iterator_next(&i) != ASN1_ITERATOR_END)
1581			return "malformed DER encoded DSA signature";
1582	}
1583
1584	/* Validate T values constraints - RFC 2536 sec. 2 & sec. 3 */
1585	key_t_value = key[0];
1586	if (key_t_value > 8) {
1587		return "invalid T value in DSA pubkey";
1588	}
1589
1590	/* Pubkey minimum length: 21 bytes - RFC 2536 sec. 2 */
1591	if (keylen < 21) {
1592		return "DSA pubkey too short";
1593	}
1594
1595	expected_len =   1 +		/* T */
1596		        20 +		/* Q */
1597		       (64 + key_t_value*8) +	/* P */
1598		       (64 + key_t_value*8) +	/* G */
1599		       (64 + key_t_value*8);	/* Y */
1600	if (keylen != expected_len ) {
1601		return "invalid DSA pubkey length";
1602	}
1603
1604	/* Extract DSA pubkey from the record */
1605	nettle_dsa_public_key_init(&pubkey);
1606	offset = 1;
1607	nettle_mpz_set_str_256_u(pubkey.q, 20, key+offset);
1608	offset += 20;
1609	nettle_mpz_set_str_256_u(pubkey.p, (64 + key_t_value*8), key+offset);
1610	offset += (64 + key_t_value*8);
1611	nettle_mpz_set_str_256_u(pubkey.g, (64 + key_t_value*8), key+offset);
1612	offset += (64 + key_t_value*8);
1613	nettle_mpz_set_str_256_u(pubkey.y, (64 + key_t_value*8), key+offset);
1614
1615	/* Digest content of "buf" and verify its DSA signature in "sigblock"*/
1616	res = _digest_nettle(SHA1_DIGEST_SIZE, (unsigned char*)sldns_buffer_begin(buf),
1617						(unsigned int)sldns_buffer_limit(buf), (unsigned char*)digest);
1618	res &= dsa_sha1_verify_digest(&pubkey, digest, &signature);
1619
1620	/* Clear and return */
1621	nettle_dsa_signature_clear(&signature);
1622	nettle_dsa_public_key_clear(&pubkey);
1623	if (!res)
1624		return "DSA signature verification failed";
1625	else
1626		return NULL;
1627}
1628#endif /* USE_DSA */
1629
1630static char *
1631_verify_nettle_rsa(sldns_buffer* buf, unsigned int digest_size, char* sigblock,
1632	unsigned int sigblock_len, uint8_t* key, unsigned int keylen)
1633{
1634	uint16_t exp_len = 0;
1635	size_t exp_offset = 0, mod_offset = 0;
1636	struct rsa_public_key pubkey;
1637	mpz_t signature;
1638	int res = 0;
1639
1640	/* RSA pubkey parsing as per RFC 3110 sec. 2 */
1641	if( keylen <= 1) {
1642		return "null RSA key";
1643	}
1644	if (key[0] != 0) {
1645		/* 1-byte length */
1646		exp_len = key[0];
1647		exp_offset = 1;
1648	} else {
1649		/* 1-byte NUL + 2-bytes exponent length */
1650		if (keylen < 3) {
1651			return "incorrect RSA key length";
1652		}
1653		exp_len = READ_UINT16(key+1);
1654		if (exp_len == 0)
1655			return "null RSA exponent length";
1656		exp_offset = 3;
1657	}
1658	/* Check that we are not over-running input length */
1659	if (keylen < exp_offset + exp_len + 1) {
1660		return "RSA key content shorter than expected";
1661	}
1662	mod_offset = exp_offset + exp_len;
1663	nettle_rsa_public_key_init(&pubkey);
1664	pubkey.size = keylen - mod_offset;
1665	nettle_mpz_set_str_256_u(pubkey.e, exp_len, &key[exp_offset]);
1666	nettle_mpz_set_str_256_u(pubkey.n, pubkey.size, &key[mod_offset]);
1667
1668	/* Digest content of "buf" and verify its RSA signature in "sigblock"*/
1669	nettle_mpz_init_set_str_256_u(signature, sigblock_len, (uint8_t*)sigblock);
1670	switch (digest_size) {
1671		case SHA1_DIGEST_SIZE:
1672		{
1673			uint8_t digest[SHA1_DIGEST_SIZE];
1674			res = _digest_nettle(SHA1_DIGEST_SIZE, (unsigned char*)sldns_buffer_begin(buf),
1675						(unsigned int)sldns_buffer_limit(buf), (unsigned char*)digest);
1676			res &= rsa_sha1_verify_digest(&pubkey, digest, signature);
1677			break;
1678		}
1679		case SHA256_DIGEST_SIZE:
1680		{
1681			uint8_t digest[SHA256_DIGEST_SIZE];
1682			res = _digest_nettle(SHA256_DIGEST_SIZE, (unsigned char*)sldns_buffer_begin(buf),
1683						(unsigned int)sldns_buffer_limit(buf), (unsigned char*)digest);
1684			res &= rsa_sha256_verify_digest(&pubkey, digest, signature);
1685			break;
1686		}
1687		case SHA512_DIGEST_SIZE:
1688		{
1689			uint8_t digest[SHA512_DIGEST_SIZE];
1690			res = _digest_nettle(SHA512_DIGEST_SIZE, (unsigned char*)sldns_buffer_begin(buf),
1691						(unsigned int)sldns_buffer_limit(buf), (unsigned char*)digest);
1692			res &= rsa_sha512_verify_digest(&pubkey, digest, signature);
1693			break;
1694		}
1695		default:
1696			break;
1697	}
1698
1699	/* Clear and return */
1700	nettle_rsa_public_key_clear(&pubkey);
1701	mpz_clear(signature);
1702	if (!res) {
1703		return "RSA signature verification failed";
1704	} else {
1705		return NULL;
1706	}
1707}
1708
1709#ifdef USE_ECDSA
1710static char *
1711_verify_nettle_ecdsa(sldns_buffer* buf, unsigned int digest_size, unsigned char* sigblock,
1712	unsigned int sigblock_len, unsigned char* key, unsigned int keylen)
1713{
1714	int res = 0;
1715	struct ecc_point pubkey;
1716	struct dsa_signature signature;
1717
1718	/* Always matched strength, as per RFC 6605 sec. 1 */
1719	if (sigblock_len != 2*digest_size || keylen != 2*digest_size) {
1720		return "wrong ECDSA signature length";
1721	}
1722
1723	/* Parse ECDSA signature as per RFC 6605 sec. 4 */
1724	nettle_dsa_signature_init(&signature);
1725	switch (digest_size) {
1726		case SHA256_DIGEST_SIZE:
1727		{
1728			uint8_t digest[SHA256_DIGEST_SIZE];
1729			mpz_t x, y;
1730			nettle_ecc_point_init(&pubkey, nettle_get_secp_256r1());
1731			nettle_mpz_init_set_str_256_u(x, SHA256_DIGEST_SIZE, key);
1732			nettle_mpz_init_set_str_256_u(y, SHA256_DIGEST_SIZE, key+SHA256_DIGEST_SIZE);
1733			nettle_mpz_set_str_256_u(signature.r, SHA256_DIGEST_SIZE, sigblock);
1734			nettle_mpz_set_str_256_u(signature.s, SHA256_DIGEST_SIZE, sigblock+SHA256_DIGEST_SIZE);
1735			res = _digest_nettle(SHA256_DIGEST_SIZE, (unsigned char*)sldns_buffer_begin(buf),
1736						(unsigned int)sldns_buffer_limit(buf), (unsigned char*)digest);
1737			res &= nettle_ecc_point_set(&pubkey, x, y);
1738			res &= nettle_ecdsa_verify (&pubkey, SHA256_DIGEST_SIZE, digest, &signature);
1739			mpz_clear(x);
1740			mpz_clear(y);
1741			break;
1742		}
1743		case SHA384_DIGEST_SIZE:
1744		{
1745			uint8_t digest[SHA384_DIGEST_SIZE];
1746			mpz_t x, y;
1747			nettle_ecc_point_init(&pubkey, nettle_get_secp_384r1());
1748			nettle_mpz_init_set_str_256_u(x, SHA384_DIGEST_SIZE, key);
1749			nettle_mpz_init_set_str_256_u(y, SHA384_DIGEST_SIZE, key+SHA384_DIGEST_SIZE);
1750			nettle_mpz_set_str_256_u(signature.r, SHA384_DIGEST_SIZE, sigblock);
1751			nettle_mpz_set_str_256_u(signature.s, SHA384_DIGEST_SIZE, sigblock+SHA384_DIGEST_SIZE);
1752			res = _digest_nettle(SHA384_DIGEST_SIZE, (unsigned char*)sldns_buffer_begin(buf),
1753						(unsigned int)sldns_buffer_limit(buf), (unsigned char*)digest);
1754			res &= nettle_ecc_point_set(&pubkey, x, y);
1755			res &= nettle_ecdsa_verify (&pubkey, SHA384_DIGEST_SIZE, digest, &signature);
1756			mpz_clear(x);
1757			mpz_clear(y);
1758			nettle_ecc_point_clear(&pubkey);
1759			break;
1760		}
1761		default:
1762			return "unknown ECDSA algorithm";
1763	}
1764
1765	/* Clear and return */
1766	nettle_dsa_signature_clear(&signature);
1767	if (!res)
1768		return "ECDSA signature verification failed";
1769	else
1770		return NULL;
1771}
1772#endif
1773
1774#ifdef USE_ED25519
1775static char *
1776_verify_nettle_ed25519(sldns_buffer* buf, unsigned char* sigblock,
1777	unsigned int sigblock_len, unsigned char* key, unsigned int keylen)
1778{
1779	int res = 0;
1780
1781	if(sigblock_len != ED25519_SIGNATURE_SIZE) {
1782		return "wrong ED25519 signature length";
1783	}
1784	if(keylen != ED25519_KEY_SIZE) {
1785		return "wrong ED25519 key length";
1786	}
1787
1788	res = ed25519_sha512_verify((uint8_t*)key, sldns_buffer_limit(buf),
1789		sldns_buffer_begin(buf), (uint8_t*)sigblock);
1790
1791	if (!res)
1792		return "ED25519 signature verification failed";
1793	else
1794		return NULL;
1795}
1796#endif
1797
1798/**
1799 * Check a canonical sig+rrset and signature against a dnskey
1800 * @param buf: buffer with data to verify, the first rrsig part and the
1801 *	canonicalized rrset.
1802 * @param algo: DNSKEY algorithm.
1803 * @param sigblock: signature rdata field from RRSIG
1804 * @param sigblock_len: length of sigblock data.
1805 * @param key: public key data from DNSKEY RR.
1806 * @param keylen: length of keydata.
1807 * @param reason: bogus reason in more detail.
1808 * @return secure if verification succeeded, bogus on crypto failure,
1809 *	unchecked on format errors and alloc failures.
1810 */
1811enum sec_status
1812verify_canonrrset(sldns_buffer* buf, int algo, unsigned char* sigblock,
1813	unsigned int sigblock_len, unsigned char* key, unsigned int keylen,
1814	char** reason)
1815{
1816	unsigned int digest_size = 0;
1817
1818	if (sigblock_len == 0 || keylen == 0) {
1819		*reason = "null signature";
1820		return sec_status_bogus;
1821	}
1822
1823	switch(algo) {
1824#if defined(USE_DSA) && defined(USE_SHA1)
1825	case LDNS_DSA:
1826	case LDNS_DSA_NSEC3:
1827		*reason = _verify_nettle_dsa(buf, sigblock, sigblock_len, key, keylen);
1828		if (*reason != NULL)
1829			return sec_status_bogus;
1830		else
1831			return sec_status_secure;
1832#endif /* USE_DSA */
1833
1834#ifdef USE_SHA1
1835	case LDNS_RSASHA1:
1836	case LDNS_RSASHA1_NSEC3:
1837		digest_size = (digest_size ? digest_size : SHA1_DIGEST_SIZE);
1838#endif
1839		/* double fallthrough annotation to please gcc parser */
1840		/* fallthrough */
1841#ifdef USE_SHA2
1842		/* fallthrough */
1843	case LDNS_RSASHA256:
1844		digest_size = (digest_size ? digest_size : SHA256_DIGEST_SIZE);
1845		/* fallthrough */
1846	case LDNS_RSASHA512:
1847		digest_size = (digest_size ? digest_size : SHA512_DIGEST_SIZE);
1848
1849#endif
1850		*reason = _verify_nettle_rsa(buf, digest_size, (char*)sigblock,
1851						sigblock_len, key, keylen);
1852		if (*reason != NULL)
1853			return sec_status_bogus;
1854		else
1855			return sec_status_secure;
1856
1857#ifdef USE_ECDSA
1858	case LDNS_ECDSAP256SHA256:
1859		digest_size = (digest_size ? digest_size : SHA256_DIGEST_SIZE);
1860		/* fallthrough */
1861	case LDNS_ECDSAP384SHA384:
1862		digest_size = (digest_size ? digest_size : SHA384_DIGEST_SIZE);
1863		*reason = _verify_nettle_ecdsa(buf, digest_size, sigblock,
1864						sigblock_len, key, keylen);
1865		if (*reason != NULL)
1866			return sec_status_bogus;
1867		else
1868			return sec_status_secure;
1869#endif
1870#ifdef USE_ED25519
1871	case LDNS_ED25519:
1872		*reason = _verify_nettle_ed25519(buf, sigblock, sigblock_len,
1873			key, keylen);
1874		if (*reason != NULL)
1875			return sec_status_bogus;
1876		else
1877			return sec_status_secure;
1878#endif
1879	case LDNS_RSAMD5:
1880	case LDNS_ECC_GOST:
1881	default:
1882		*reason = "unable to verify signature, unknown algorithm";
1883		return sec_status_bogus;
1884	}
1885}
1886
1887#endif /* HAVE_SSL or HAVE_NSS or HAVE_NETTLE */
1888