val_nsec3.c revision 276605
1/*
2 * validator/val_nsec3.c - validator NSEC3 denial of existance functions.
3 *
4 * Copyright (c) 2007, NLnet Labs. All rights reserved.
5 *
6 * This software is open source.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * Redistributions of source code must retain the above copyright notice,
13 * this list of conditions and the following disclaimer.
14 *
15 * Redistributions in binary form must reproduce the above copyright notice,
16 * this list of conditions and the following disclaimer in the documentation
17 * and/or other materials provided with the distribution.
18 *
19 * Neither the name of the NLNET LABS nor the names of its contributors may
20 * be used to endorse or promote products derived from this software without
21 * specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
26 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
27 * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
28 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
29 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
30 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
31 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
32 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
33 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
34 */
35
36/**
37 * \file
38 *
39 * This file contains helper functions for the validator module.
40 * The functions help with NSEC3 checking, the different NSEC3 proofs
41 * for denial of existance, and proofs for presence of types.
42 */
43#include "config.h"
44#include <ctype.h>
45#ifdef HAVE_OPENSSL_SSL_H
46#include "openssl/ssl.h"
47#endif
48#ifdef HAVE_NSS
49/* nss3 */
50#include "sechash.h"
51#endif
52#include "validator/val_nsec3.h"
53#include "validator/validator.h"
54#include "validator/val_kentry.h"
55#include "services/cache/rrset.h"
56#include "util/regional.h"
57#include "util/rbtree.h"
58#include "util/module.h"
59#include "util/net_help.h"
60#include "util/data/packed_rrset.h"
61#include "util/data/dname.h"
62#include "util/data/msgreply.h"
63/* we include nsec.h for the bitmap_has_type function */
64#include "validator/val_nsec.h"
65#include "ldns/sbuffer.h"
66
67/**
68 * This function we get from ldns-compat or from base system
69 * it returns the number of data bytes stored at the target, or <0 on error.
70 */
71int sldns_b32_ntop_extended_hex(uint8_t const *src, size_t srclength,
72	char *target, size_t targsize);
73/**
74 * This function we get from ldns-compat or from base system
75 * it returns the number of data bytes stored at the target, or <0 on error.
76 */
77int sldns_b32_pton_extended_hex(char const *src, size_t hashed_owner_str_len,
78	uint8_t *target, size_t targsize);
79
80/**
81 * Closest encloser (ce) proof results
82 * Contains the ce and the next-closer (nc) proof.
83 */
84struct ce_response {
85	/** the closest encloser name */
86	uint8_t* ce;
87	/** length of ce */
88	size_t ce_len;
89	/** NSEC3 record that proved ce. rrset */
90	struct ub_packed_rrset_key* ce_rrset;
91	/** NSEC3 record that proved ce. rr number */
92	int ce_rr;
93	/** NSEC3 record that proved nc. rrset */
94	struct ub_packed_rrset_key* nc_rrset;
95	/** NSEC3 record that proved nc. rr*/
96	int nc_rr;
97};
98
99/**
100 * Filter conditions for NSEC3 proof
101 * Used to iterate over the applicable NSEC3 RRs.
102 */
103struct nsec3_filter {
104	/** Zone name, only NSEC3 records for this zone are considered */
105	uint8_t* zone;
106	/** length of the zonename */
107	size_t zone_len;
108	/** the list of NSEC3s to filter; array */
109	struct ub_packed_rrset_key** list;
110	/** number of rrsets in list */
111	size_t num;
112	/** class of records for the NSEC3, only this class applies */
113	uint16_t fclass;
114};
115
116/** return number of rrs in an rrset */
117static size_t
118rrset_get_count(struct ub_packed_rrset_key* rrset)
119{
120        struct packed_rrset_data* d = (struct packed_rrset_data*)
121	        rrset->entry.data;
122        if(!d) return 0;
123        return d->count;
124}
125
126/** return if nsec3 RR has unknown flags */
127static int
128nsec3_unknown_flags(struct ub_packed_rrset_key* rrset, int r)
129{
130        struct packed_rrset_data* d = (struct packed_rrset_data*)
131	        rrset->entry.data;
132	log_assert(d && r < (int)d->count);
133	if(d->rr_len[r] < 2+2)
134		return 0; /* malformed */
135	return (int)(d->rr_data[r][2+1] & NSEC3_UNKNOWN_FLAGS);
136}
137
138int
139nsec3_has_optout(struct ub_packed_rrset_key* rrset, int r)
140{
141        struct packed_rrset_data* d = (struct packed_rrset_data*)
142	        rrset->entry.data;
143	log_assert(d && r < (int)d->count);
144	if(d->rr_len[r] < 2+2)
145		return 0; /* malformed */
146	return (int)(d->rr_data[r][2+1] & NSEC3_OPTOUT);
147}
148
149/** return nsec3 RR algorithm */
150static int
151nsec3_get_algo(struct ub_packed_rrset_key* rrset, int r)
152{
153        struct packed_rrset_data* d = (struct packed_rrset_data*)
154	        rrset->entry.data;
155	log_assert(d && r < (int)d->count);
156	if(d->rr_len[r] < 2+1)
157		return 0; /* malformed */
158	return (int)(d->rr_data[r][2+0]);
159}
160
161/** return if nsec3 RR has known algorithm */
162static int
163nsec3_known_algo(struct ub_packed_rrset_key* rrset, int r)
164{
165        struct packed_rrset_data* d = (struct packed_rrset_data*)
166	        rrset->entry.data;
167	log_assert(d && r < (int)d->count);
168	if(d->rr_len[r] < 2+1)
169		return 0; /* malformed */
170	switch(d->rr_data[r][2+0]) {
171		case NSEC3_HASH_SHA1:
172			return 1;
173	}
174	return 0;
175}
176
177/** return nsec3 RR iteration count */
178static size_t
179nsec3_get_iter(struct ub_packed_rrset_key* rrset, int r)
180{
181	uint16_t i;
182        struct packed_rrset_data* d = (struct packed_rrset_data*)
183	        rrset->entry.data;
184	log_assert(d && r < (int)d->count);
185	if(d->rr_len[r] < 2+4)
186		return 0; /* malformed */
187	memmove(&i, d->rr_data[r]+2+2, sizeof(i));
188	i = ntohs(i);
189	return (size_t)i;
190}
191
192/** return nsec3 RR salt */
193static int
194nsec3_get_salt(struct ub_packed_rrset_key* rrset, int r,
195	uint8_t** salt, size_t* saltlen)
196{
197        struct packed_rrset_data* d = (struct packed_rrset_data*)
198	        rrset->entry.data;
199	log_assert(d && r < (int)d->count);
200	if(d->rr_len[r] < 2+5) {
201		*salt = 0;
202		*saltlen = 0;
203		return 0; /* malformed */
204	}
205	*saltlen = (size_t)d->rr_data[r][2+4];
206	if(d->rr_len[r] < 2+5+(size_t)*saltlen) {
207		*salt = 0;
208		*saltlen = 0;
209		return 0; /* malformed */
210	}
211	*salt = d->rr_data[r]+2+5;
212	return 1;
213}
214
215int nsec3_get_params(struct ub_packed_rrset_key* rrset, int r,
216	int* algo, size_t* iter, uint8_t** salt, size_t* saltlen)
217{
218	if(!nsec3_known_algo(rrset, r) || nsec3_unknown_flags(rrset, r))
219		return 0;
220	if(!nsec3_get_salt(rrset, r, salt, saltlen))
221		return 0;
222	*algo = nsec3_get_algo(rrset, r);
223	*iter = nsec3_get_iter(rrset, r);
224	return 1;
225}
226
227int
228nsec3_get_nextowner(struct ub_packed_rrset_key* rrset, int r,
229	uint8_t** next, size_t* nextlen)
230{
231	size_t saltlen;
232        struct packed_rrset_data* d = (struct packed_rrset_data*)
233	        rrset->entry.data;
234	log_assert(d && r < (int)d->count);
235	if(d->rr_len[r] < 2+5) {
236		*next = 0;
237		*nextlen = 0;
238		return 0; /* malformed */
239	}
240	saltlen = (size_t)d->rr_data[r][2+4];
241	if(d->rr_len[r] < 2+5+saltlen+1) {
242		*next = 0;
243		*nextlen = 0;
244		return 0; /* malformed */
245	}
246	*nextlen = (size_t)d->rr_data[r][2+5+saltlen];
247	if(d->rr_len[r] < 2+5+saltlen+1+*nextlen) {
248		*next = 0;
249		*nextlen = 0;
250		return 0; /* malformed */
251	}
252	*next = d->rr_data[r]+2+5+saltlen+1;
253	return 1;
254}
255
256size_t nsec3_hash_to_b32(uint8_t* hash, size_t hashlen, uint8_t* zone,
257	size_t zonelen, uint8_t* buf, size_t max)
258{
259	/* write b32 of name, leave one for length */
260	int ret;
261	if(max < hashlen*2+1) /* quick approx of b32, as if hexb16 */
262		return 0;
263	ret = sldns_b32_ntop_extended_hex(hash, hashlen, (char*)buf+1, max-1);
264	if(ret < 1)
265		return 0;
266	buf[0] = (uint8_t)ret; /* length of b32 label */
267	ret++;
268	if(max - ret < zonelen)
269		return 0;
270	memmove(buf+ret, zone, zonelen);
271	return zonelen+(size_t)ret;
272}
273
274size_t nsec3_get_nextowner_b32(struct ub_packed_rrset_key* rrset, int r,
275	uint8_t* buf, size_t max)
276{
277	uint8_t* nm, *zone;
278	size_t nmlen, zonelen;
279	if(!nsec3_get_nextowner(rrset, r, &nm, &nmlen))
280		return 0;
281	/* append zone name; the owner name must be <b32>.zone */
282	zone = rrset->rk.dname;
283	zonelen = rrset->rk.dname_len;
284	dname_remove_label(&zone, &zonelen);
285	return nsec3_hash_to_b32(nm, nmlen, zone, zonelen, buf, max);
286}
287
288int
289nsec3_has_type(struct ub_packed_rrset_key* rrset, int r, uint16_t type)
290{
291	uint8_t* bitmap;
292	size_t bitlen, skiplen;
293        struct packed_rrset_data* d = (struct packed_rrset_data*)
294	        rrset->entry.data;
295	log_assert(d && r < (int)d->count);
296	skiplen = 2+4;
297	/* skip salt */
298	if(d->rr_len[r] < skiplen+1)
299		return 0; /* malformed, too short */
300	skiplen += 1+(size_t)d->rr_data[r][skiplen];
301	/* skip next hashed owner */
302	if(d->rr_len[r] < skiplen+1)
303		return 0; /* malformed, too short */
304	skiplen += 1+(size_t)d->rr_data[r][skiplen];
305	if(d->rr_len[r] < skiplen)
306		return 0; /* malformed, too short */
307	bitlen = d->rr_len[r] - skiplen;
308	bitmap = d->rr_data[r]+skiplen;
309	return nsecbitmap_has_type_rdata(bitmap, bitlen, type);
310}
311
312/**
313 * Iterate through NSEC3 list, per RR
314 * This routine gives the next RR in the list (or sets rrset null).
315 * Usage:
316 *
317 * size_t rrsetnum;
318 * int rrnum;
319 * struct ub_packed_rrset_key* rrset;
320 * for(rrset=filter_first(filter, &rrsetnum, &rrnum); rrset;
321 *	rrset=filter_next(filter, &rrsetnum, &rrnum))
322 *		do_stuff;
323 *
324 * Also filters out
325 * 	o unknown flag NSEC3s
326 * 	o unknown algorithm NSEC3s.
327 * @param filter: nsec3 filter structure.
328 * @param rrsetnum: in/out rrset number to look at.
329 * @param rrnum: in/out rr number in rrset to look at.
330 * @returns ptr to the next rrset (or NULL at end).
331 */
332static struct ub_packed_rrset_key*
333filter_next(struct nsec3_filter* filter, size_t* rrsetnum, int* rrnum)
334{
335	size_t i;
336	int r;
337	uint8_t* nm;
338	size_t nmlen;
339	if(!filter->zone) /* empty list */
340		return NULL;
341	for(i=*rrsetnum; i<filter->num; i++) {
342		/* see if RRset qualifies */
343		if(ntohs(filter->list[i]->rk.type) != LDNS_RR_TYPE_NSEC3 ||
344			ntohs(filter->list[i]->rk.rrset_class) !=
345			filter->fclass)
346			continue;
347		/* check RRset zone */
348		nm = filter->list[i]->rk.dname;
349		nmlen = filter->list[i]->rk.dname_len;
350		dname_remove_label(&nm, &nmlen);
351		if(query_dname_compare(nm, filter->zone) != 0)
352			continue;
353		if(i == *rrsetnum)
354			r = (*rrnum) + 1; /* continue at next RR */
355		else	r = 0;		/* new RRset start at first RR */
356		for(; r < (int)rrset_get_count(filter->list[i]); r++) {
357			/* skip unknown flags, algo */
358			if(nsec3_unknown_flags(filter->list[i], r) ||
359				!nsec3_known_algo(filter->list[i], r))
360				continue;
361			/* this one is a good target */
362			*rrsetnum = i;
363			*rrnum = r;
364			return filter->list[i];
365		}
366	}
367	return NULL;
368}
369
370/**
371 * Start iterating over NSEC3 records.
372 * @param filter: the filter structure, must have been filter_init-ed.
373 * @param rrsetnum: can be undefined on call, inited.
374 * @param rrnum: can be undefined on call, inited.
375 * @return first rrset of an NSEC3, together with rrnum this points to
376 *	the first RR to examine. Is NULL on empty list.
377 */
378static struct ub_packed_rrset_key*
379filter_first(struct nsec3_filter* filter, size_t* rrsetnum, int* rrnum)
380{
381	*rrsetnum = 0;
382	*rrnum = -1;
383	return filter_next(filter, rrsetnum, rrnum);
384}
385
386/** see if at least one RR is known (flags, algo) */
387static int
388nsec3_rrset_has_known(struct ub_packed_rrset_key* s)
389{
390	int r;
391	for(r=0; r < (int)rrset_get_count(s); r++) {
392		if(!nsec3_unknown_flags(s, r) && nsec3_known_algo(s, r))
393			return 1;
394	}
395	return 0;
396}
397
398/**
399 * Initialize the filter structure.
400 * Finds the zone by looking at available NSEC3 records and best match.
401 * 	(skips the unknown flag and unknown algo NSEC3s).
402 *
403 * @param filter: nsec3 filter structure.
404 * @param list: list of rrsets, an array of them.
405 * @param num: number of rrsets in list.
406 * @param qinfo:
407 *	query name to match a zone for.
408 *	query type (if DS a higher zone must be chosen)
409 *	qclass, to filter NSEC3s with.
410 */
411static void
412filter_init(struct nsec3_filter* filter, struct ub_packed_rrset_key** list,
413	size_t num, struct query_info* qinfo)
414{
415	size_t i;
416	uint8_t* nm;
417	size_t nmlen;
418	filter->zone = NULL;
419	filter->zone_len = 0;
420	filter->list = list;
421	filter->num = num;
422	filter->fclass = qinfo->qclass;
423	for(i=0; i<num; i++) {
424		/* ignore other stuff in the list */
425		if(ntohs(list[i]->rk.type) != LDNS_RR_TYPE_NSEC3 ||
426			ntohs(list[i]->rk.rrset_class) != qinfo->qclass)
427			continue;
428		/* skip unknown flags, algo */
429		if(!nsec3_rrset_has_known(list[i]))
430			continue;
431
432		/* since NSEC3s are base32.zonename, we can find the zone
433		 * name by stripping off the first label of the record */
434		nm = list[i]->rk.dname;
435		nmlen = list[i]->rk.dname_len;
436		dname_remove_label(&nm, &nmlen);
437		/* if we find a domain that can prove about the qname,
438		 * and if this domain is closer to the qname */
439		if(dname_subdomain_c(qinfo->qname, nm) && (!filter->zone ||
440			dname_subdomain_c(nm, filter->zone))) {
441			/* for a type DS do not accept a zone equal to qname*/
442			if(qinfo->qtype == LDNS_RR_TYPE_DS &&
443				query_dname_compare(qinfo->qname, nm) == 0 &&
444				!dname_is_root(qinfo->qname))
445				continue;
446			filter->zone = nm;
447			filter->zone_len = nmlen;
448		}
449	}
450}
451
452/**
453 * Find max iteration count using config settings and key size
454 * @param ve: validator environment with iteration count config settings.
455 * @param bits: key size
456 * @return max iteration count
457 */
458static size_t
459get_max_iter(struct val_env* ve, size_t bits)
460{
461	int i;
462	log_assert(ve->nsec3_keyiter_count > 0);
463	/* round up to nearest config keysize, linear search, keep it small */
464	for(i=0; i<ve->nsec3_keyiter_count; i++) {
465		if(bits <= ve->nsec3_keysize[i])
466			return ve->nsec3_maxiter[i];
467	}
468	/* else, use value for biggest key */
469	return ve->nsec3_maxiter[ve->nsec3_keyiter_count-1];
470}
471
472/**
473 * Determine if any of the NSEC3 rrs iteration count is too high, from key.
474 * @param ve: validator environment with iteration count config settings.
475 * @param filter: what NSEC3s to loop over.
476 * @param kkey: key entry used for verification; used for iteration counts.
477 * @return 1 if some nsec3s are above the max iteration count.
478 */
479static int
480nsec3_iteration_count_high(struct val_env* ve, struct nsec3_filter* filter,
481	struct key_entry_key* kkey)
482{
483	size_t rrsetnum;
484	int rrnum;
485	struct ub_packed_rrset_key* rrset;
486	/* first determine the max number of iterations */
487	size_t bits = key_entry_keysize(kkey);
488	size_t max_iter = get_max_iter(ve, bits);
489	verbose(VERB_ALGO, "nsec3: keysize %d bits, max iterations %d",
490		(int)bits, (int)max_iter);
491
492	for(rrset=filter_first(filter, &rrsetnum, &rrnum); rrset;
493		rrset=filter_next(filter, &rrsetnum, &rrnum)) {
494		if(nsec3_get_iter(rrset, rrnum) > max_iter)
495			return 1;
496	}
497	return 0;
498}
499
500/* nsec3_cache_compare for rbtree */
501int
502nsec3_hash_cmp(const void* c1, const void* c2)
503{
504	struct nsec3_cached_hash* h1 = (struct nsec3_cached_hash*)c1;
505	struct nsec3_cached_hash* h2 = (struct nsec3_cached_hash*)c2;
506	uint8_t* s1, *s2;
507	size_t s1len, s2len;
508	int c = query_dname_compare(h1->dname, h2->dname);
509	if(c != 0)
510		return c;
511	/* compare parameters */
512	/* if both malformed, its equal, robustness */
513	if(nsec3_get_algo(h1->nsec3, h1->rr) !=
514		nsec3_get_algo(h2->nsec3, h2->rr)) {
515		if(nsec3_get_algo(h1->nsec3, h1->rr) <
516			nsec3_get_algo(h2->nsec3, h2->rr))
517			return -1;
518		return 1;
519	}
520	if(nsec3_get_iter(h1->nsec3, h1->rr) !=
521		nsec3_get_iter(h2->nsec3, h2->rr)) {
522		if(nsec3_get_iter(h1->nsec3, h1->rr) <
523			nsec3_get_iter(h2->nsec3, h2->rr))
524			return -1;
525		return 1;
526	}
527	(void)nsec3_get_salt(h1->nsec3, h1->rr, &s1, &s1len);
528	(void)nsec3_get_salt(h2->nsec3, h2->rr, &s2, &s2len);
529	if(s1len != s2len) {
530		if(s1len < s2len)
531			return -1;
532		return 1;
533	}
534	return memcmp(s1, s2, s1len);
535}
536
537size_t
538nsec3_get_hashed(sldns_buffer* buf, uint8_t* nm, size_t nmlen, int algo,
539	size_t iter, uint8_t* salt, size_t saltlen, uint8_t* res, size_t max)
540{
541	size_t i, hash_len;
542	/* prepare buffer for first iteration */
543	sldns_buffer_clear(buf);
544	sldns_buffer_write(buf, nm, nmlen);
545	query_dname_tolower(sldns_buffer_begin(buf));
546	sldns_buffer_write(buf, salt, saltlen);
547	sldns_buffer_flip(buf);
548	switch(algo) {
549#if defined(HAVE_EVP_SHA1) || defined(HAVE_NSS)
550		case NSEC3_HASH_SHA1:
551#ifdef HAVE_SSL
552			hash_len = SHA_DIGEST_LENGTH;
553#else
554			hash_len = SHA1_LENGTH;
555#endif
556			if(hash_len > max)
557				return 0;
558#  ifdef HAVE_SSL
559			(void)SHA1((unsigned char*)sldns_buffer_begin(buf),
560				(unsigned long)sldns_buffer_limit(buf),
561				(unsigned char*)res);
562#  else
563			(void)HASH_HashBuf(HASH_AlgSHA1, (unsigned char*)res,
564				(unsigned char*)sldns_buffer_begin(buf),
565				(unsigned long)sldns_buffer_limit(buf));
566#  endif
567			for(i=0; i<iter; i++) {
568				sldns_buffer_clear(buf);
569				sldns_buffer_write(buf, res, hash_len);
570				sldns_buffer_write(buf, salt, saltlen);
571				sldns_buffer_flip(buf);
572#  ifdef HAVE_SSL
573				(void)SHA1(
574					(unsigned char*)sldns_buffer_begin(buf),
575					(unsigned long)sldns_buffer_limit(buf),
576					(unsigned char*)res);
577#  else
578				(void)HASH_HashBuf(HASH_AlgSHA1,
579					(unsigned char*)res,
580					(unsigned char*)sldns_buffer_begin(buf),
581					(unsigned long)sldns_buffer_limit(buf));
582#  endif
583			}
584			break;
585#endif /* HAVE_EVP_SHA1 or NSS */
586		default:
587			log_err("nsec3 hash of unknown algo %d", algo);
588			return 0;
589	}
590	return hash_len;
591}
592
593/** perform hash of name */
594static int
595nsec3_calc_hash(struct regional* region, sldns_buffer* buf,
596	struct nsec3_cached_hash* c)
597{
598	int algo = nsec3_get_algo(c->nsec3, c->rr);
599	size_t iter = nsec3_get_iter(c->nsec3, c->rr);
600	uint8_t* salt;
601	size_t saltlen, i;
602	if(!nsec3_get_salt(c->nsec3, c->rr, &salt, &saltlen))
603		return -1;
604	/* prepare buffer for first iteration */
605	sldns_buffer_clear(buf);
606	sldns_buffer_write(buf, c->dname, c->dname_len);
607	query_dname_tolower(sldns_buffer_begin(buf));
608	sldns_buffer_write(buf, salt, saltlen);
609	sldns_buffer_flip(buf);
610	switch(algo) {
611#if defined(HAVE_EVP_SHA1) || defined(HAVE_NSS)
612		case NSEC3_HASH_SHA1:
613#ifdef HAVE_SSL
614			c->hash_len = SHA_DIGEST_LENGTH;
615#else
616			c->hash_len = SHA1_LENGTH;
617#endif
618			c->hash = (uint8_t*)regional_alloc(region,
619				c->hash_len);
620			if(!c->hash)
621				return 0;
622#  ifdef HAVE_SSL
623			(void)SHA1((unsigned char*)sldns_buffer_begin(buf),
624				(unsigned long)sldns_buffer_limit(buf),
625				(unsigned char*)c->hash);
626#  else
627			(void)HASH_HashBuf(HASH_AlgSHA1,
628				(unsigned char*)c->hash,
629				(unsigned char*)sldns_buffer_begin(buf),
630				(unsigned long)sldns_buffer_limit(buf));
631#  endif
632			for(i=0; i<iter; i++) {
633				sldns_buffer_clear(buf);
634				sldns_buffer_write(buf, c->hash, c->hash_len);
635				sldns_buffer_write(buf, salt, saltlen);
636				sldns_buffer_flip(buf);
637#  ifdef HAVE_SSL
638				(void)SHA1(
639					(unsigned char*)sldns_buffer_begin(buf),
640					(unsigned long)sldns_buffer_limit(buf),
641					(unsigned char*)c->hash);
642#  else
643				(void)HASH_HashBuf(HASH_AlgSHA1,
644					(unsigned char*)c->hash,
645					(unsigned char*)sldns_buffer_begin(buf),
646					(unsigned long)sldns_buffer_limit(buf));
647#  endif
648			}
649			break;
650#endif /* HAVE_EVP_SHA1 or NSS */
651		default:
652			log_err("nsec3 hash of unknown algo %d", algo);
653			return -1;
654	}
655	return 1;
656}
657
658/** perform b32 encoding of hash */
659static int
660nsec3_calc_b32(struct regional* region, sldns_buffer* buf,
661	struct nsec3_cached_hash* c)
662{
663	int r;
664	sldns_buffer_clear(buf);
665	r = sldns_b32_ntop_extended_hex(c->hash, c->hash_len,
666		(char*)sldns_buffer_begin(buf), sldns_buffer_limit(buf));
667	if(r < 1) {
668		log_err("b32_ntop_extended_hex: error in encoding: %d", r);
669		return 0;
670	}
671	c->b32_len = (size_t)r;
672	c->b32 = regional_alloc_init(region, sldns_buffer_begin(buf),
673		c->b32_len);
674	if(!c->b32)
675		return 0;
676	return 1;
677}
678
679int
680nsec3_hash_name(rbtree_t* table, struct regional* region, sldns_buffer* buf,
681	struct ub_packed_rrset_key* nsec3, int rr, uint8_t* dname,
682	size_t dname_len, struct nsec3_cached_hash** hash)
683{
684	struct nsec3_cached_hash* c;
685	struct nsec3_cached_hash looki;
686#ifdef UNBOUND_DEBUG
687	rbnode_t* n;
688#endif
689	int r;
690	looki.node.key = &looki;
691	looki.nsec3 = nsec3;
692	looki.rr = rr;
693	looki.dname = dname;
694	looki.dname_len = dname_len;
695	/* lookup first in cache */
696	c = (struct nsec3_cached_hash*)rbtree_search(table, &looki);
697	if(c) {
698		*hash = c;
699		return 1;
700	}
701	/* create a new entry */
702	c = (struct nsec3_cached_hash*)regional_alloc(region, sizeof(*c));
703	if(!c) return 0;
704	c->node.key = c;
705	c->nsec3 = nsec3;
706	c->rr = rr;
707	c->dname = dname;
708	c->dname_len = dname_len;
709	r = nsec3_calc_hash(region, buf, c);
710	if(r != 1)
711		return r;
712	r = nsec3_calc_b32(region, buf, c);
713	if(r != 1)
714		return r;
715#ifdef UNBOUND_DEBUG
716	n =
717#else
718	(void)
719#endif
720	rbtree_insert(table, &c->node);
721	log_assert(n); /* cannot be duplicate, just did lookup */
722	*hash = c;
723	return 1;
724}
725
726/**
727 * compare a label lowercased
728 */
729static int
730label_compare_lower(uint8_t* lab1, uint8_t* lab2, size_t lablen)
731{
732	size_t i;
733	for(i=0; i<lablen; i++) {
734		if(tolower((unsigned char)*lab1) != tolower((unsigned char)*lab2)) {
735			if(tolower((unsigned char)*lab1) < tolower((unsigned char)*lab2))
736				return -1;
737			return 1;
738		}
739		lab1++;
740		lab2++;
741	}
742	return 0;
743}
744
745/**
746 * Compare a hashed name with the owner name of an NSEC3 RRset.
747 * @param flt: filter with zone name.
748 * @param hash: the hashed name.
749 * @param s: rrset with owner name.
750 * @return true if matches exactly, false if not.
751 */
752static int
753nsec3_hash_matches_owner(struct nsec3_filter* flt,
754	struct nsec3_cached_hash* hash, struct ub_packed_rrset_key* s)
755{
756	uint8_t* nm = s->rk.dname;
757	/* compare, does hash of name based on params in this NSEC3
758	 * match the owner name of this NSEC3?
759	 * name must be: <hashlength>base32 . zone name
760	 * so; first label must not be root label (not zero length),
761	 * and match the b32 encoded hash length,
762	 * and the label content match the b32 encoded hash
763	 * and the rest must be the zone name.
764	 */
765	if(hash->b32_len != 0 && (size_t)nm[0] == hash->b32_len &&
766		label_compare_lower(nm+1, hash->b32, hash->b32_len) == 0 &&
767		query_dname_compare(nm+(size_t)nm[0]+1, flt->zone) == 0) {
768		return 1;
769	}
770	return 0;
771}
772
773/**
774 * Find matching NSEC3
775 * Find the NSEC3Record that matches a hash of a name.
776 * @param env: module environment with temporary region and buffer.
777 * @param flt: the NSEC3 RR filter, contains zone name and RRs.
778 * @param ct: cached hashes table.
779 * @param nm: name to look for.
780 * @param nmlen: length of name.
781 * @param rrset: nsec3 that matches is returned here.
782 * @param rr: rr number in nsec3 rrset that matches.
783 * @return true if a matching NSEC3 is found, false if not.
784 */
785static int
786find_matching_nsec3(struct module_env* env, struct nsec3_filter* flt,
787	rbtree_t* ct, uint8_t* nm, size_t nmlen,
788	struct ub_packed_rrset_key** rrset, int* rr)
789{
790	size_t i_rs;
791	int i_rr;
792	struct ub_packed_rrset_key* s;
793	struct nsec3_cached_hash* hash;
794	int r;
795
796	/* this loop skips other-zone and unknown NSEC3s, also non-NSEC3 RRs */
797	for(s=filter_first(flt, &i_rs, &i_rr); s;
798		s=filter_next(flt, &i_rs, &i_rr)) {
799		/* get name hashed for this NSEC3 RR */
800		r = nsec3_hash_name(ct, env->scratch, env->scratch_buffer,
801			s, i_rr, nm, nmlen, &hash);
802		if(r == 0) {
803			log_err("nsec3: malloc failure");
804			break; /* alloc failure */
805		} else if(r < 0)
806			continue; /* malformed NSEC3 */
807		else if(nsec3_hash_matches_owner(flt, hash, s)) {
808			*rrset = s; /* rrset with this name */
809			*rr = i_rr; /* matches hash with these parameters */
810			return 1;
811		}
812	}
813	*rrset = NULL;
814	*rr = 0;
815	return 0;
816}
817
818int
819nsec3_covers(uint8_t* zone, struct nsec3_cached_hash* hash,
820	struct ub_packed_rrset_key* rrset, int rr, sldns_buffer* buf)
821{
822	uint8_t* next, *owner;
823	size_t nextlen;
824	int len;
825	if(!nsec3_get_nextowner(rrset, rr, &next, &nextlen))
826		return 0; /* malformed RR proves nothing */
827
828	/* check the owner name is a hashed value . apex
829	 * base32 encoded values must have equal length.
830	 * hash_value and next hash value must have equal length. */
831	if(nextlen != hash->hash_len || hash->hash_len==0||hash->b32_len==0||
832		(size_t)*rrset->rk.dname != hash->b32_len ||
833		query_dname_compare(rrset->rk.dname+1+
834			(size_t)*rrset->rk.dname, zone) != 0)
835		return 0; /* bad lengths or owner name */
836
837	/* This is the "normal case: owner < next and owner < hash < next */
838	if(label_compare_lower(rrset->rk.dname+1, hash->b32,
839		hash->b32_len) < 0 &&
840		memcmp(hash->hash, next, nextlen) < 0)
841		return 1;
842
843	/* convert owner name from text to binary */
844	sldns_buffer_clear(buf);
845	owner = sldns_buffer_begin(buf);
846	len = sldns_b32_pton_extended_hex((char*)rrset->rk.dname+1,
847		hash->b32_len, owner, sldns_buffer_limit(buf));
848	if(len<1)
849		return 0; /* bad owner name in some way */
850	if((size_t)len != hash->hash_len || (size_t)len != nextlen)
851		return 0; /* wrong length */
852
853	/* this is the end of zone case: next <= owner &&
854	 * 	(hash > owner || hash < next)
855	 * this also covers the only-apex case of next==owner.
856	 */
857	if(memcmp(next, owner, nextlen) <= 0 &&
858		( memcmp(hash->hash, owner, nextlen) > 0 ||
859		  memcmp(hash->hash, next, nextlen) < 0)) {
860		return 1;
861	}
862	return 0;
863}
864
865/**
866 * findCoveringNSEC3
867 * Given a name, find a covering NSEC3 from among a list of NSEC3s.
868 *
869 * @param env: module environment with temporary region and buffer.
870 * @param flt: the NSEC3 RR filter, contains zone name and RRs.
871 * @param ct: cached hashes table.
872 * @param nm: name to check if covered.
873 * @param nmlen: length of name.
874 * @param rrset: covering NSEC3 rrset is returned here.
875 * @param rr: rr of cover is returned here.
876 * @return true if a covering NSEC3 is found, false if not.
877 */
878static int
879find_covering_nsec3(struct module_env* env, struct nsec3_filter* flt,
880        rbtree_t* ct, uint8_t* nm, size_t nmlen,
881	struct ub_packed_rrset_key** rrset, int* rr)
882{
883	size_t i_rs;
884	int i_rr;
885	struct ub_packed_rrset_key* s;
886	struct nsec3_cached_hash* hash;
887	int r;
888
889	/* this loop skips other-zone and unknown NSEC3s, also non-NSEC3 RRs */
890	for(s=filter_first(flt, &i_rs, &i_rr); s;
891		s=filter_next(flt, &i_rs, &i_rr)) {
892		/* get name hashed for this NSEC3 RR */
893		r = nsec3_hash_name(ct, env->scratch, env->scratch_buffer,
894			s, i_rr, nm, nmlen, &hash);
895		if(r == 0) {
896			log_err("nsec3: malloc failure");
897			break; /* alloc failure */
898		} else if(r < 0)
899			continue; /* malformed NSEC3 */
900		else if(nsec3_covers(flt->zone, hash, s, i_rr,
901			env->scratch_buffer)) {
902			*rrset = s; /* rrset with this name */
903			*rr = i_rr; /* covers hash with these parameters */
904			return 1;
905		}
906	}
907	*rrset = NULL;
908	*rr = 0;
909	return 0;
910}
911
912/**
913 * findClosestEncloser
914 * Given a name and a list of NSEC3s, find the candidate closest encloser.
915 * This will be the first ancestor of 'name' (including itself) to have a
916 * matching NSEC3 RR.
917 * @param env: module environment with temporary region and buffer.
918 * @param flt: the NSEC3 RR filter, contains zone name and RRs.
919 * @param ct: cached hashes table.
920 * @param qinfo: query that is verified for.
921 * @param ce: closest encloser information is returned in here.
922 * @return true if a closest encloser candidate is found, false if not.
923 */
924static int
925nsec3_find_closest_encloser(struct module_env* env, struct nsec3_filter* flt,
926	rbtree_t* ct, struct query_info* qinfo, struct ce_response* ce)
927{
928	uint8_t* nm = qinfo->qname;
929	size_t nmlen = qinfo->qname_len;
930
931	/* This scans from longest name to shortest, so the first match
932	 * we find is the only viable candidate. */
933
934	/* (David:) FIXME: modify so that the NSEC3 matching the zone apex need
935	 * not be present. (Mark Andrews idea).
936	 * (Wouter:) But make sure you check for DNAME bit in zone apex,
937	 * if the NSEC3 you find is the only NSEC3 in the zone, then this
938	 * may be the case. */
939
940	while(dname_subdomain_c(nm, flt->zone)) {
941		if(find_matching_nsec3(env, flt, ct, nm, nmlen,
942			&ce->ce_rrset, &ce->ce_rr)) {
943			ce->ce = nm;
944			ce->ce_len = nmlen;
945			return 1;
946		}
947		dname_remove_label(&nm, &nmlen);
948	}
949	return 0;
950}
951
952/**
953 * Given a qname and its proven closest encloser, calculate the "next
954 * closest" name. Basically, this is the name that is one label longer than
955 * the closest encloser that is still a subdomain of qname.
956 *
957 * @param qname: query name.
958 * @param qnamelen: length of qname.
959 * @param ce: closest encloser
960 * @param nm: result name.
961 * @param nmlen: length of nm.
962 */
963static void
964next_closer(uint8_t* qname, size_t qnamelen, uint8_t* ce,
965	uint8_t** nm, size_t* nmlen)
966{
967	int strip = dname_count_labels(qname) - dname_count_labels(ce) -1;
968	*nm = qname;
969	*nmlen = qnamelen;
970	if(strip>0)
971		dname_remove_labels(nm, nmlen, strip);
972}
973
974/**
975 * proveClosestEncloser
976 * Given a List of nsec3 RRs, find and prove the closest encloser to qname.
977 * @param env: module environment with temporary region and buffer.
978 * @param flt: the NSEC3 RR filter, contains zone name and RRs.
979 * @param ct: cached hashes table.
980 * @param qinfo: query that is verified for.
981 * @param prove_does_not_exist: If true, then if the closest encloser
982 * 	turns out to be qname, then null is returned.
983 * 	If set true, and the return value is true, then you can be
984 * 	certain that the ce.nc_rrset and ce.nc_rr are set properly.
985 * @param ce: closest encloser information is returned in here.
986 * @return bogus if no closest encloser could be proven.
987 * 	secure if a closest encloser could be proven, ce is set.
988 * 	insecure if the closest-encloser candidate turns out to prove
989 * 		that an insecure delegation exists above the qname.
990 */
991static enum sec_status
992nsec3_prove_closest_encloser(struct module_env* env, struct nsec3_filter* flt,
993	rbtree_t* ct, struct query_info* qinfo, int prove_does_not_exist,
994	struct ce_response* ce)
995{
996	uint8_t* nc;
997	size_t nc_len;
998	/* robust: clean out ce, in case it gets abused later */
999	memset(ce, 0, sizeof(*ce));
1000
1001	if(!nsec3_find_closest_encloser(env, flt, ct, qinfo, ce)) {
1002		verbose(VERB_ALGO, "nsec3 proveClosestEncloser: could "
1003			"not find a candidate for the closest encloser.");
1004		return sec_status_bogus;
1005	}
1006	log_nametypeclass(VERB_ALGO, "ce candidate", ce->ce, 0, 0);
1007
1008	if(query_dname_compare(ce->ce, qinfo->qname) == 0) {
1009		if(prove_does_not_exist) {
1010			verbose(VERB_ALGO, "nsec3 proveClosestEncloser: "
1011				"proved that qname existed, bad");
1012			return sec_status_bogus;
1013		}
1014		/* otherwise, we need to nothing else to prove that qname
1015		 * is its own closest encloser. */
1016		return sec_status_secure;
1017	}
1018
1019	/* If the closest encloser is actually a delegation, then the
1020	 * response should have been a referral. If it is a DNAME, then
1021	 * it should have been a DNAME response. */
1022	if(nsec3_has_type(ce->ce_rrset, ce->ce_rr, LDNS_RR_TYPE_NS) &&
1023		!nsec3_has_type(ce->ce_rrset, ce->ce_rr, LDNS_RR_TYPE_SOA)) {
1024		if(!nsec3_has_type(ce->ce_rrset, ce->ce_rr, LDNS_RR_TYPE_DS)) {
1025			verbose(VERB_ALGO, "nsec3 proveClosestEncloser: "
1026				"closest encloser is insecure delegation");
1027			return sec_status_insecure;
1028		}
1029		verbose(VERB_ALGO, "nsec3 proveClosestEncloser: closest "
1030			"encloser was a delegation, bad");
1031		return sec_status_bogus;
1032	}
1033	if(nsec3_has_type(ce->ce_rrset, ce->ce_rr, LDNS_RR_TYPE_DNAME)) {
1034		verbose(VERB_ALGO, "nsec3 proveClosestEncloser: closest "
1035			"encloser was a DNAME, bad");
1036		return sec_status_bogus;
1037	}
1038
1039	/* Otherwise, we need to show that the next closer name is covered. */
1040	next_closer(qinfo->qname, qinfo->qname_len, ce->ce, &nc, &nc_len);
1041	if(!find_covering_nsec3(env, flt, ct, nc, nc_len,
1042		&ce->nc_rrset, &ce->nc_rr)) {
1043		verbose(VERB_ALGO, "nsec3: Could not find proof that the "
1044		          "candidate encloser was the closest encloser");
1045		return sec_status_bogus;
1046	}
1047	return sec_status_secure;
1048}
1049
1050/** allocate a wildcard for the closest encloser */
1051static uint8_t*
1052nsec3_ce_wildcard(struct regional* region, uint8_t* ce, size_t celen,
1053	size_t* len)
1054{
1055	uint8_t* nm;
1056	if(celen > LDNS_MAX_DOMAINLEN - 2)
1057		return 0; /* too long */
1058	nm = (uint8_t*)regional_alloc(region, celen+2);
1059	if(!nm) {
1060		log_err("nsec3 wildcard: out of memory");
1061		return 0; /* alloc failure */
1062	}
1063	nm[0] = 1;
1064	nm[1] = (uint8_t)'*'; /* wildcard label */
1065	memmove(nm+2, ce, celen);
1066	*len = celen+2;
1067	return nm;
1068}
1069
1070/** Do the name error proof */
1071static enum sec_status
1072nsec3_do_prove_nameerror(struct module_env* env, struct nsec3_filter* flt,
1073	rbtree_t* ct, struct query_info* qinfo)
1074{
1075	struct ce_response ce;
1076	uint8_t* wc;
1077	size_t wclen;
1078	struct ub_packed_rrset_key* wc_rrset;
1079	int wc_rr;
1080	enum sec_status sec;
1081
1082	/* First locate and prove the closest encloser to qname. We will
1083	 * use the variant that fails if the closest encloser turns out
1084	 * to be qname. */
1085	sec = nsec3_prove_closest_encloser(env, flt, ct, qinfo, 1, &ce);
1086	if(sec != sec_status_secure) {
1087		if(sec == sec_status_bogus)
1088			verbose(VERB_ALGO, "nsec3 nameerror proof: failed "
1089				"to prove a closest encloser");
1090		else 	verbose(VERB_ALGO, "nsec3 nameerror proof: closest "
1091				"nsec3 is an insecure delegation");
1092		return sec;
1093	}
1094	log_nametypeclass(VERB_ALGO, "nsec3 namerror: proven ce=", ce.ce,0,0);
1095
1096	/* At this point, we know that qname does not exist. Now we need
1097	 * to prove that the wildcard does not exist. */
1098	log_assert(ce.ce);
1099	wc = nsec3_ce_wildcard(env->scratch, ce.ce, ce.ce_len, &wclen);
1100	if(!wc || !find_covering_nsec3(env, flt, ct, wc, wclen,
1101		&wc_rrset, &wc_rr)) {
1102		verbose(VERB_ALGO, "nsec3 nameerror proof: could not prove "
1103			"that the applicable wildcard did not exist.");
1104		return sec_status_bogus;
1105	}
1106
1107	if(ce.nc_rrset && nsec3_has_optout(ce.nc_rrset, ce.nc_rr)) {
1108		verbose(VERB_ALGO, "nsec3 nameerror proof: nc has optout");
1109		return sec_status_insecure;
1110	}
1111	return sec_status_secure;
1112}
1113
1114enum sec_status
1115nsec3_prove_nameerror(struct module_env* env, struct val_env* ve,
1116	struct ub_packed_rrset_key** list, size_t num,
1117	struct query_info* qinfo, struct key_entry_key* kkey)
1118{
1119	rbtree_t ct;
1120	struct nsec3_filter flt;
1121
1122	if(!list || num == 0 || !kkey || !key_entry_isgood(kkey))
1123		return sec_status_bogus; /* no valid NSEC3s, bogus */
1124	rbtree_init(&ct, &nsec3_hash_cmp); /* init names-to-hash cache */
1125	filter_init(&flt, list, num, qinfo); /* init RR iterator */
1126	if(!flt.zone)
1127		return sec_status_bogus; /* no RRs */
1128	if(nsec3_iteration_count_high(ve, &flt, kkey))
1129		return sec_status_insecure; /* iteration count too high */
1130	log_nametypeclass(VERB_ALGO, "start nsec3 nameerror proof, zone",
1131		flt.zone, 0, 0);
1132	return nsec3_do_prove_nameerror(env, &flt, &ct, qinfo);
1133}
1134
1135/*
1136 * No code to handle qtype=NSEC3 specially.
1137 * This existed in early drafts, but was later (-05) removed.
1138 */
1139
1140/** Do the nodata proof */
1141static enum sec_status
1142nsec3_do_prove_nodata(struct module_env* env, struct nsec3_filter* flt,
1143	rbtree_t* ct, struct query_info* qinfo)
1144{
1145	struct ce_response ce;
1146	uint8_t* wc;
1147	size_t wclen;
1148	struct ub_packed_rrset_key* rrset;
1149	int rr;
1150	enum sec_status sec;
1151
1152	if(find_matching_nsec3(env, flt, ct, qinfo->qname, qinfo->qname_len,
1153		&rrset, &rr)) {
1154		/* cases 1 and 2 */
1155		if(nsec3_has_type(rrset, rr, qinfo->qtype)) {
1156			verbose(VERB_ALGO, "proveNodata: Matching NSEC3 "
1157				"proved that type existed, bogus");
1158			return sec_status_bogus;
1159		} else if(nsec3_has_type(rrset, rr, LDNS_RR_TYPE_CNAME)) {
1160			verbose(VERB_ALGO, "proveNodata: Matching NSEC3 "
1161				"proved that a CNAME existed, bogus");
1162			return sec_status_bogus;
1163		}
1164
1165		/*
1166		 * If type DS: filter_init zone find already found a parent
1167		 *   zone, so this nsec3 is from a parent zone.
1168		 *   o can be not a delegation (unusual query for normal name,
1169		 *   	no DS anyway, but we can verify that).
1170		 *   o can be a delegation (which is the usual DS check).
1171		 *   o may not have the SOA bit set (only the top of the
1172		 *   	zone, which must have been above the name, has that).
1173		 *   	Except for the root; which is checked by itself.
1174		 *
1175		 * If not type DS: matching nsec3 must not be a delegation.
1176		 */
1177		if(qinfo->qtype == LDNS_RR_TYPE_DS && qinfo->qname_len != 1
1178			&& nsec3_has_type(rrset, rr, LDNS_RR_TYPE_SOA) &&
1179			!dname_is_root(qinfo->qname)) {
1180			verbose(VERB_ALGO, "proveNodata: apex NSEC3 "
1181				"abused for no DS proof, bogus");
1182			return sec_status_bogus;
1183		} else if(qinfo->qtype != LDNS_RR_TYPE_DS &&
1184			nsec3_has_type(rrset, rr, LDNS_RR_TYPE_NS) &&
1185			!nsec3_has_type(rrset, rr, LDNS_RR_TYPE_SOA)) {
1186			if(!nsec3_has_type(rrset, rr, LDNS_RR_TYPE_DS)) {
1187				verbose(VERB_ALGO, "proveNodata: matching "
1188					"NSEC3 is insecure delegation");
1189				return sec_status_insecure;
1190			}
1191			verbose(VERB_ALGO, "proveNodata: matching "
1192				"NSEC3 is a delegation, bogus");
1193			return sec_status_bogus;
1194		}
1195		return sec_status_secure;
1196	}
1197
1198	/* For cases 3 - 5, we need the proven closest encloser, and it
1199	 * can't match qname. Although, at this point, we know that it
1200	 * won't since we just checked that. */
1201	sec = nsec3_prove_closest_encloser(env, flt, ct, qinfo, 1, &ce);
1202	if(sec == sec_status_bogus) {
1203		verbose(VERB_ALGO, "proveNodata: did not match qname, "
1204		          "nor found a proven closest encloser.");
1205		return sec_status_bogus;
1206	} else if(sec==sec_status_insecure && qinfo->qtype!=LDNS_RR_TYPE_DS){
1207		verbose(VERB_ALGO, "proveNodata: closest nsec3 is insecure "
1208		          "delegation.");
1209		return sec_status_insecure;
1210	}
1211
1212	/* Case 3: removed */
1213
1214	/* Case 4: */
1215	log_assert(ce.ce);
1216	wc = nsec3_ce_wildcard(env->scratch, ce.ce, ce.ce_len, &wclen);
1217	if(wc && find_matching_nsec3(env, flt, ct, wc, wclen, &rrset, &rr)) {
1218		/* found wildcard */
1219		if(nsec3_has_type(rrset, rr, qinfo->qtype)) {
1220			verbose(VERB_ALGO, "nsec3 nodata proof: matching "
1221				"wildcard had qtype, bogus");
1222			return sec_status_bogus;
1223		} else if(nsec3_has_type(rrset, rr, LDNS_RR_TYPE_CNAME)) {
1224			verbose(VERB_ALGO, "nsec3 nodata proof: matching "
1225				"wildcard had a CNAME, bogus");
1226			return sec_status_bogus;
1227		}
1228		if(qinfo->qtype == LDNS_RR_TYPE_DS && qinfo->qname_len != 1
1229			&& nsec3_has_type(rrset, rr, LDNS_RR_TYPE_SOA)) {
1230			verbose(VERB_ALGO, "nsec3 nodata proof: matching "
1231				"wildcard for no DS proof has a SOA, bogus");
1232			return sec_status_bogus;
1233		} else if(qinfo->qtype != LDNS_RR_TYPE_DS &&
1234			nsec3_has_type(rrset, rr, LDNS_RR_TYPE_NS) &&
1235			!nsec3_has_type(rrset, rr, LDNS_RR_TYPE_SOA)) {
1236			verbose(VERB_ALGO, "nsec3 nodata proof: matching "
1237				"wilcard is a delegation, bogus");
1238			return sec_status_bogus;
1239		}
1240		/* everything is peachy keen, except for optout spans */
1241		if(ce.nc_rrset && nsec3_has_optout(ce.nc_rrset, ce.nc_rr)) {
1242			verbose(VERB_ALGO, "nsec3 nodata proof: matching "
1243				"wildcard is in optout range, insecure");
1244			return sec_status_insecure;
1245		}
1246		return sec_status_secure;
1247	}
1248
1249	/* Case 5: */
1250	/* Due to forwarders, cnames, and other collating effects, we
1251	 * can see the ordinary unsigned data from a zone beneath an
1252	 * insecure delegation under an optout here */
1253	if(!ce.nc_rrset) {
1254		verbose(VERB_ALGO, "nsec3 nodata proof: no next closer nsec3");
1255		return sec_status_bogus;
1256	}
1257
1258	/* We need to make sure that the covering NSEC3 is opt-out. */
1259	log_assert(ce.nc_rrset);
1260	if(!nsec3_has_optout(ce.nc_rrset, ce.nc_rr)) {
1261		if(qinfo->qtype == LDNS_RR_TYPE_DS)
1262		  verbose(VERB_ALGO, "proveNodata: covering NSEC3 was not "
1263			"opt-out in an opt-out DS NOERROR/NODATA case.");
1264		else verbose(VERB_ALGO, "proveNodata: could not find matching "
1265			"NSEC3, nor matching wildcard, nor optout NSEC3 "
1266			"-- no more options, bogus.");
1267		return sec_status_bogus;
1268	}
1269	/* RFC5155 section 9.2: if nc has optout then no AD flag set */
1270	return sec_status_insecure;
1271}
1272
1273enum sec_status
1274nsec3_prove_nodata(struct module_env* env, struct val_env* ve,
1275	struct ub_packed_rrset_key** list, size_t num,
1276	struct query_info* qinfo, struct key_entry_key* kkey)
1277{
1278	rbtree_t ct;
1279	struct nsec3_filter flt;
1280
1281	if(!list || num == 0 || !kkey || !key_entry_isgood(kkey))
1282		return sec_status_bogus; /* no valid NSEC3s, bogus */
1283	rbtree_init(&ct, &nsec3_hash_cmp); /* init names-to-hash cache */
1284	filter_init(&flt, list, num, qinfo); /* init RR iterator */
1285	if(!flt.zone)
1286		return sec_status_bogus; /* no RRs */
1287	if(nsec3_iteration_count_high(ve, &flt, kkey))
1288		return sec_status_insecure; /* iteration count too high */
1289	return nsec3_do_prove_nodata(env, &flt, &ct, qinfo);
1290}
1291
1292enum sec_status
1293nsec3_prove_wildcard(struct module_env* env, struct val_env* ve,
1294        struct ub_packed_rrset_key** list, size_t num,
1295	struct query_info* qinfo, struct key_entry_key* kkey, uint8_t* wc)
1296{
1297	rbtree_t ct;
1298	struct nsec3_filter flt;
1299	struct ce_response ce;
1300	uint8_t* nc;
1301	size_t nc_len;
1302	size_t wclen;
1303	(void)dname_count_size_labels(wc, &wclen);
1304
1305	if(!list || num == 0 || !kkey || !key_entry_isgood(kkey))
1306		return sec_status_bogus; /* no valid NSEC3s, bogus */
1307	rbtree_init(&ct, &nsec3_hash_cmp); /* init names-to-hash cache */
1308	filter_init(&flt, list, num, qinfo); /* init RR iterator */
1309	if(!flt.zone)
1310		return sec_status_bogus; /* no RRs */
1311	if(nsec3_iteration_count_high(ve, &flt, kkey))
1312		return sec_status_insecure; /* iteration count too high */
1313
1314	/* We know what the (purported) closest encloser is by just
1315	 * looking at the supposed generating wildcard.
1316	 * The *. has already been removed from the wc name.
1317	 */
1318	memset(&ce, 0, sizeof(ce));
1319	ce.ce = wc;
1320	ce.ce_len = wclen;
1321
1322	/* Now we still need to prove that the original data did not exist.
1323	 * Otherwise, we need to show that the next closer name is covered. */
1324	next_closer(qinfo->qname, qinfo->qname_len, ce.ce, &nc, &nc_len);
1325	if(!find_covering_nsec3(env, &flt, &ct, nc, nc_len,
1326		&ce.nc_rrset, &ce.nc_rr)) {
1327		verbose(VERB_ALGO, "proveWildcard: did not find a covering "
1328			"NSEC3 that covered the next closer name.");
1329		return sec_status_bogus;
1330	}
1331	if(ce.nc_rrset && nsec3_has_optout(ce.nc_rrset, ce.nc_rr)) {
1332		verbose(VERB_ALGO, "proveWildcard: NSEC3 optout");
1333		return sec_status_insecure;
1334	}
1335	return sec_status_secure;
1336}
1337
1338/** test if list is all secure */
1339static int
1340list_is_secure(struct module_env* env, struct val_env* ve,
1341	struct ub_packed_rrset_key** list, size_t num,
1342	struct key_entry_key* kkey, char** reason)
1343{
1344	struct packed_rrset_data* d;
1345	size_t i;
1346	for(i=0; i<num; i++) {
1347		d = (struct packed_rrset_data*)list[i]->entry.data;
1348		if(list[i]->rk.type != htons(LDNS_RR_TYPE_NSEC3))
1349			continue;
1350		if(d->security == sec_status_secure)
1351			continue;
1352		rrset_check_sec_status(env->rrset_cache, list[i], *env->now);
1353		if(d->security == sec_status_secure)
1354			continue;
1355		d->security = val_verify_rrset_entry(env, ve, list[i], kkey,
1356			reason);
1357		if(d->security != sec_status_secure) {
1358			verbose(VERB_ALGO, "NSEC3 did not verify");
1359			return 0;
1360		}
1361		rrset_update_sec_status(env->rrset_cache, list[i], *env->now);
1362	}
1363	return 1;
1364}
1365
1366enum sec_status
1367nsec3_prove_nods(struct module_env* env, struct val_env* ve,
1368	struct ub_packed_rrset_key** list, size_t num,
1369	struct query_info* qinfo, struct key_entry_key* kkey, char** reason)
1370{
1371	rbtree_t ct;
1372	struct nsec3_filter flt;
1373	struct ce_response ce;
1374	struct ub_packed_rrset_key* rrset;
1375	int rr;
1376	log_assert(qinfo->qtype == LDNS_RR_TYPE_DS);
1377
1378	if(!list || num == 0 || !kkey || !key_entry_isgood(kkey)) {
1379		*reason = "no valid NSEC3s";
1380		return sec_status_bogus; /* no valid NSEC3s, bogus */
1381	}
1382	if(!list_is_secure(env, ve, list, num, kkey, reason))
1383		return sec_status_bogus; /* not all NSEC3 records secure */
1384	rbtree_init(&ct, &nsec3_hash_cmp); /* init names-to-hash cache */
1385	filter_init(&flt, list, num, qinfo); /* init RR iterator */
1386	if(!flt.zone) {
1387		*reason = "no NSEC3 records";
1388		return sec_status_bogus; /* no RRs */
1389	}
1390	if(nsec3_iteration_count_high(ve, &flt, kkey))
1391		return sec_status_insecure; /* iteration count too high */
1392
1393	/* Look for a matching NSEC3 to qname -- this is the normal
1394	 * NODATA case. */
1395	if(find_matching_nsec3(env, &flt, &ct, qinfo->qname, qinfo->qname_len,
1396		&rrset, &rr)) {
1397		/* If the matching NSEC3 has the SOA bit set, it is from
1398		 * the wrong zone (the child instead of the parent). If
1399		 * it has the DS bit set, then we were lied to. */
1400		if(nsec3_has_type(rrset, rr, LDNS_RR_TYPE_SOA) &&
1401			qinfo->qname_len != 1) {
1402			verbose(VERB_ALGO, "nsec3 provenods: NSEC3 is from"
1403				" child zone, bogus");
1404			*reason = "NSEC3 from child zone";
1405			return sec_status_bogus;
1406		} else if(nsec3_has_type(rrset, rr, LDNS_RR_TYPE_DS)) {
1407			verbose(VERB_ALGO, "nsec3 provenods: NSEC3 has qtype"
1408				" DS, bogus");
1409			*reason = "NSEC3 has DS in bitmap";
1410			return sec_status_bogus;
1411		}
1412		/* If the NSEC3 RR doesn't have the NS bit set, then
1413		 * this wasn't a delegation point. */
1414		if(!nsec3_has_type(rrset, rr, LDNS_RR_TYPE_NS))
1415			return sec_status_indeterminate;
1416		/* Otherwise, this proves no DS. */
1417		return sec_status_secure;
1418	}
1419
1420	/* Otherwise, we are probably in the opt-out case. */
1421	if(nsec3_prove_closest_encloser(env, &flt, &ct, qinfo, 1, &ce)
1422		!= sec_status_secure) {
1423		/* an insecure delegation *above* the qname does not prove
1424		 * anything about this qname exactly, and bogus is bogus */
1425		verbose(VERB_ALGO, "nsec3 provenods: did not match qname, "
1426		          "nor found a proven closest encloser.");
1427		*reason = "no NSEC3 closest encloser";
1428		return sec_status_bogus;
1429	}
1430
1431	/* robust extra check */
1432	if(!ce.nc_rrset) {
1433		verbose(VERB_ALGO, "nsec3 nods proof: no next closer nsec3");
1434		*reason = "no NSEC3 next closer";
1435		return sec_status_bogus;
1436	}
1437
1438	/* we had the closest encloser proof, then we need to check that the
1439	 * covering NSEC3 was opt-out -- the proveClosestEncloser step already
1440	 * checked to see if the closest encloser was a delegation or DNAME.
1441	 */
1442	log_assert(ce.nc_rrset);
1443	if(!nsec3_has_optout(ce.nc_rrset, ce.nc_rr)) {
1444		verbose(VERB_ALGO, "nsec3 provenods: covering NSEC3 was not "
1445			"opt-out in an opt-out DS NOERROR/NODATA case.");
1446		*reason = "covering NSEC3 was not opt-out in an opt-out "
1447			"DS NOERROR/NODATA case";
1448		return sec_status_bogus;
1449	}
1450	/* RFC5155 section 9.2: if nc has optout then no AD flag set */
1451	return sec_status_insecure;
1452}
1453
1454enum sec_status
1455nsec3_prove_nxornodata(struct module_env* env, struct val_env* ve,
1456	struct ub_packed_rrset_key** list, size_t num,
1457	struct query_info* qinfo, struct key_entry_key* kkey, int* nodata)
1458{
1459	enum sec_status sec, secnx;
1460	rbtree_t ct;
1461	struct nsec3_filter flt;
1462	*nodata = 0;
1463
1464	if(!list || num == 0 || !kkey || !key_entry_isgood(kkey))
1465		return sec_status_bogus; /* no valid NSEC3s, bogus */
1466	rbtree_init(&ct, &nsec3_hash_cmp); /* init names-to-hash cache */
1467	filter_init(&flt, list, num, qinfo); /* init RR iterator */
1468	if(!flt.zone)
1469		return sec_status_bogus; /* no RRs */
1470	if(nsec3_iteration_count_high(ve, &flt, kkey))
1471		return sec_status_insecure; /* iteration count too high */
1472
1473	/* try nxdomain and nodata after another, while keeping the
1474	 * hash cache intact */
1475
1476	secnx = nsec3_do_prove_nameerror(env, &flt, &ct, qinfo);
1477	if(secnx==sec_status_secure)
1478		return sec_status_secure;
1479	sec = nsec3_do_prove_nodata(env, &flt, &ct, qinfo);
1480	if(sec==sec_status_secure) {
1481		*nodata = 1;
1482	} else if(sec == sec_status_insecure) {
1483		*nodata = 1;
1484	} else if(secnx == sec_status_insecure) {
1485		sec = sec_status_insecure;
1486	}
1487	return sec;
1488}
1489