val_neg.c revision 296415
1/*
2 * validator/val_neg.c - validator aggressive negative caching functions.
3 *
4 * Copyright (c) 2008, NLnet Labs. All rights reserved.
5 *
6 * This software is open source.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * Redistributions of source code must retain the above copyright notice,
13 * this list of conditions and the following disclaimer.
14 *
15 * Redistributions in binary form must reproduce the above copyright notice,
16 * this list of conditions and the following disclaimer in the documentation
17 * and/or other materials provided with the distribution.
18 *
19 * Neither the name of the NLNET LABS nor the names of its contributors may
20 * be used to endorse or promote products derived from this software without
21 * specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
26 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
27 * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
28 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
29 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
30 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
31 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
32 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
33 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
34 */
35
36/**
37 * \file
38 *
39 * This file contains helper functions for the validator module.
40 * The functions help with aggressive negative caching.
41 * This creates new denials of existence, and proofs for absence of types
42 * from cached NSEC records.
43 */
44#include "config.h"
45#ifdef HAVE_OPENSSL_SSL_H
46#include "openssl/ssl.h"
47#define NSEC3_SHA_LEN SHA_DIGEST_LENGTH
48#else
49#define NSEC3_SHA_LEN 20
50#endif
51#include "validator/val_neg.h"
52#include "validator/val_nsec.h"
53#include "validator/val_nsec3.h"
54#include "validator/val_utils.h"
55#include "util/data/dname.h"
56#include "util/data/msgreply.h"
57#include "util/log.h"
58#include "util/net_help.h"
59#include "util/config_file.h"
60#include "services/cache/rrset.h"
61#include "services/cache/dns.h"
62#include "sldns/rrdef.h"
63#include "sldns/sbuffer.h"
64
65int val_neg_data_compare(const void* a, const void* b)
66{
67	struct val_neg_data* x = (struct val_neg_data*)a;
68	struct val_neg_data* y = (struct val_neg_data*)b;
69	int m;
70	return dname_canon_lab_cmp(x->name, x->labs, y->name, y->labs, &m);
71}
72
73int val_neg_zone_compare(const void* a, const void* b)
74{
75	struct val_neg_zone* x = (struct val_neg_zone*)a;
76	struct val_neg_zone* y = (struct val_neg_zone*)b;
77	int m;
78	if(x->dclass != y->dclass) {
79		if(x->dclass < y->dclass)
80			return -1;
81		return 1;
82	}
83	return dname_canon_lab_cmp(x->name, x->labs, y->name, y->labs, &m);
84}
85
86struct val_neg_cache* val_neg_create(struct config_file* cfg, size_t maxiter)
87{
88	struct val_neg_cache* neg = (struct val_neg_cache*)calloc(1,
89		sizeof(*neg));
90	if(!neg) {
91		log_err("Could not create neg cache: out of memory");
92		return NULL;
93	}
94	neg->nsec3_max_iter = maxiter;
95	neg->max = 1024*1024; /* 1 M is thousands of entries */
96	if(cfg) neg->max = cfg->neg_cache_size;
97	rbtree_init(&neg->tree, &val_neg_zone_compare);
98	lock_basic_init(&neg->lock);
99	lock_protect(&neg->lock, neg, sizeof(*neg));
100	return neg;
101}
102
103size_t val_neg_get_mem(struct val_neg_cache* neg)
104{
105	size_t result;
106	lock_basic_lock(&neg->lock);
107	result = sizeof(*neg) + neg->use;
108	lock_basic_unlock(&neg->lock);
109	return result;
110}
111
112/** clear datas on cache deletion */
113static void
114neg_clear_datas(rbnode_t* n, void* ATTR_UNUSED(arg))
115{
116	struct val_neg_data* d = (struct val_neg_data*)n;
117	free(d->name);
118	free(d);
119}
120
121/** clear zones on cache deletion */
122static void
123neg_clear_zones(rbnode_t* n, void* ATTR_UNUSED(arg))
124{
125	struct val_neg_zone* z = (struct val_neg_zone*)n;
126	/* delete all the rrset entries in the tree */
127	traverse_postorder(&z->tree, &neg_clear_datas, NULL);
128	free(z->nsec3_salt);
129	free(z->name);
130	free(z);
131}
132
133void neg_cache_delete(struct val_neg_cache* neg)
134{
135	if(!neg) return;
136	lock_basic_destroy(&neg->lock);
137	/* delete all the zones in the tree */
138	traverse_postorder(&neg->tree, &neg_clear_zones, NULL);
139	free(neg);
140}
141
142/**
143 * Put data element at the front of the LRU list.
144 * @param neg: negative cache with LRU start and end.
145 * @param data: this data is fronted.
146 */
147static void neg_lru_front(struct val_neg_cache* neg,
148	struct val_neg_data* data)
149{
150	data->prev = NULL;
151	data->next = neg->first;
152	if(!neg->first)
153		neg->last = data;
154	else	neg->first->prev = data;
155	neg->first = data;
156}
157
158/**
159 * Remove data element from LRU list.
160 * @param neg: negative cache with LRU start and end.
161 * @param data: this data is removed from the list.
162 */
163static void neg_lru_remove(struct val_neg_cache* neg,
164	struct val_neg_data* data)
165{
166	if(data->prev)
167		data->prev->next = data->next;
168	else	neg->first = data->next;
169	if(data->next)
170		data->next->prev = data->prev;
171	else	neg->last = data->prev;
172}
173
174/**
175 * Touch LRU for data element, put it at the start of the LRU list.
176 * @param neg: negative cache with LRU start and end.
177 * @param data: this data is used.
178 */
179static void neg_lru_touch(struct val_neg_cache* neg,
180	struct val_neg_data* data)
181{
182	if(data == neg->first)
183		return; /* nothing to do */
184	/* remove from current lru position */
185	neg_lru_remove(neg, data);
186	/* add at front */
187	neg_lru_front(neg, data);
188}
189
190/**
191 * Delete a zone element from the negative cache.
192 * May delete other zone elements to keep tree coherent, or
193 * only mark the element as 'not in use'.
194 * @param neg: negative cache.
195 * @param z: zone element to delete.
196 */
197static void neg_delete_zone(struct val_neg_cache* neg, struct val_neg_zone* z)
198{
199	struct val_neg_zone* p, *np;
200	if(!z) return;
201	log_assert(z->in_use);
202	log_assert(z->count > 0);
203	z->in_use = 0;
204
205	/* go up the tree and reduce counts */
206	p = z;
207	while(p) {
208		log_assert(p->count > 0);
209		p->count --;
210		p = p->parent;
211	}
212
213	/* remove zones with zero count */
214	p = z;
215	while(p && p->count == 0) {
216		np = p->parent;
217		(void)rbtree_delete(&neg->tree, &p->node);
218		neg->use -= p->len + sizeof(*p);
219		free(p->nsec3_salt);
220		free(p->name);
221		free(p);
222		p = np;
223	}
224}
225
226void neg_delete_data(struct val_neg_cache* neg, struct val_neg_data* el)
227{
228	struct val_neg_zone* z;
229	struct val_neg_data* p, *np;
230	if(!el) return;
231	z = el->zone;
232	log_assert(el->in_use);
233	log_assert(el->count > 0);
234	el->in_use = 0;
235
236	/* remove it from the lru list */
237	neg_lru_remove(neg, el);
238
239	/* go up the tree and reduce counts */
240	p = el;
241	while(p) {
242		log_assert(p->count > 0);
243		p->count --;
244		p = p->parent;
245	}
246
247	/* delete 0 count items from tree */
248	p = el;
249	while(p && p->count == 0) {
250		np = p->parent;
251		(void)rbtree_delete(&z->tree, &p->node);
252		neg->use -= p->len + sizeof(*p);
253		free(p->name);
254		free(p);
255		p = np;
256	}
257
258	/* check if the zone is now unused */
259	if(z->tree.count == 0) {
260		neg_delete_zone(neg, z);
261	}
262}
263
264/**
265 * Create more space in negative cache
266 * The oldest elements are deleted until enough space is present.
267 * Empty zones are deleted.
268 * @param neg: negative cache.
269 * @param need: how many bytes are needed.
270 */
271static void neg_make_space(struct val_neg_cache* neg, size_t need)
272{
273	/* delete elements until enough space or its empty */
274	while(neg->last && neg->max < neg->use + need) {
275		neg_delete_data(neg, neg->last);
276	}
277}
278
279struct val_neg_zone* neg_find_zone(struct val_neg_cache* neg,
280	uint8_t* nm, size_t len, uint16_t dclass)
281{
282	struct val_neg_zone lookfor;
283	struct val_neg_zone* result;
284	lookfor.node.key = &lookfor;
285	lookfor.name = nm;
286	lookfor.len = len;
287	lookfor.labs = dname_count_labels(lookfor.name);
288	lookfor.dclass = dclass;
289
290	result = (struct val_neg_zone*)
291		rbtree_search(&neg->tree, lookfor.node.key);
292	return result;
293}
294
295/**
296 * Find the given data
297 * @param zone: negative zone
298 * @param nm: what to look for.
299 * @param len: length of nm
300 * @param labs: labels in nm
301 * @return data or NULL if not found.
302 */
303static struct val_neg_data* neg_find_data(struct val_neg_zone* zone,
304	uint8_t* nm, size_t len, int labs)
305{
306	struct val_neg_data lookfor;
307	struct val_neg_data* result;
308	lookfor.node.key = &lookfor;
309	lookfor.name = nm;
310	lookfor.len = len;
311	lookfor.labs = labs;
312
313	result = (struct val_neg_data*)
314		rbtree_search(&zone->tree, lookfor.node.key);
315	return result;
316}
317
318/**
319 * Calculate space needed for the data and all its parents
320 * @param rep: NSEC entries.
321 * @return size.
322 */
323static size_t calc_data_need(struct reply_info* rep)
324{
325	uint8_t* d;
326	size_t i, len, res = 0;
327
328	for(i=rep->an_numrrsets; i<rep->an_numrrsets+rep->ns_numrrsets; i++) {
329		if(ntohs(rep->rrsets[i]->rk.type) == LDNS_RR_TYPE_NSEC) {
330			d = rep->rrsets[i]->rk.dname;
331			len = rep->rrsets[i]->rk.dname_len;
332			res = sizeof(struct val_neg_data) + len;
333			while(!dname_is_root(d)) {
334				log_assert(len > 1); /* not root label */
335				dname_remove_label(&d, &len);
336				res += sizeof(struct val_neg_data) + len;
337			}
338		}
339	}
340	return res;
341}
342
343/**
344 * Calculate space needed for zone and all its parents
345 * @param d: name of zone
346 * @param len: length of name
347 * @return size.
348 */
349static size_t calc_zone_need(uint8_t* d, size_t len)
350{
351	size_t res = sizeof(struct val_neg_zone) + len;
352	while(!dname_is_root(d)) {
353		log_assert(len > 1); /* not root label */
354		dname_remove_label(&d, &len);
355		res += sizeof(struct val_neg_zone) + len;
356	}
357	return res;
358}
359
360/**
361 * Find closest existing parent zone of the given name.
362 * @param neg: negative cache.
363 * @param nm: name to look for
364 * @param nm_len: length of nm
365 * @param labs: labelcount of nm.
366 * @param qclass: class.
367 * @return the zone or NULL if none found.
368 */
369static struct val_neg_zone* neg_closest_zone_parent(struct val_neg_cache* neg,
370	uint8_t* nm, size_t nm_len, int labs, uint16_t qclass)
371{
372	struct val_neg_zone key;
373	struct val_neg_zone* result;
374	rbnode_t* res = NULL;
375	key.node.key = &key;
376	key.name = nm;
377	key.len = nm_len;
378	key.labs = labs;
379	key.dclass = qclass;
380	if(rbtree_find_less_equal(&neg->tree, &key, &res)) {
381		/* exact match */
382		result = (struct val_neg_zone*)res;
383	} else {
384		/* smaller element (or no element) */
385		int m;
386		result = (struct val_neg_zone*)res;
387		if(!result || result->dclass != qclass)
388			return NULL;
389		/* count number of labels matched */
390		(void)dname_lab_cmp(result->name, result->labs, key.name,
391			key.labs, &m);
392		while(result) { /* go up until qname is subdomain of stub */
393			if(result->labs <= m)
394				break;
395			result = result->parent;
396		}
397	}
398	return result;
399}
400
401/**
402 * Find closest existing parent data for the given name.
403 * @param zone: to look in.
404 * @param nm: name to look for
405 * @param nm_len: length of nm
406 * @param labs: labelcount of nm.
407 * @return the data or NULL if none found.
408 */
409static struct val_neg_data* neg_closest_data_parent(
410	struct val_neg_zone* zone, uint8_t* nm, size_t nm_len, int labs)
411{
412	struct val_neg_data key;
413	struct val_neg_data* result;
414	rbnode_t* res = NULL;
415	key.node.key = &key;
416	key.name = nm;
417	key.len = nm_len;
418	key.labs = labs;
419	if(rbtree_find_less_equal(&zone->tree, &key, &res)) {
420		/* exact match */
421		result = (struct val_neg_data*)res;
422	} else {
423		/* smaller element (or no element) */
424		int m;
425		result = (struct val_neg_data*)res;
426		if(!result)
427			return NULL;
428		/* count number of labels matched */
429		(void)dname_lab_cmp(result->name, result->labs, key.name,
430			key.labs, &m);
431		while(result) { /* go up until qname is subdomain of stub */
432			if(result->labs <= m)
433				break;
434			result = result->parent;
435		}
436	}
437	return result;
438}
439
440/**
441 * Create a single zone node
442 * @param nm: name for zone (copied)
443 * @param nm_len: length of name
444 * @param labs: labels in name.
445 * @param dclass: class of zone, host order.
446 * @return new zone or NULL on failure
447 */
448static struct val_neg_zone* neg_setup_zone_node(
449	uint8_t* nm, size_t nm_len, int labs, uint16_t dclass)
450{
451	struct val_neg_zone* zone =
452		(struct val_neg_zone*)calloc(1, sizeof(*zone));
453	if(!zone) {
454		return NULL;
455	}
456	zone->node.key = zone;
457	zone->name = memdup(nm, nm_len);
458	if(!zone->name) {
459		free(zone);
460		return NULL;
461	}
462	zone->len = nm_len;
463	zone->labs = labs;
464	zone->dclass = dclass;
465
466	rbtree_init(&zone->tree, &val_neg_data_compare);
467	return zone;
468}
469
470/**
471 * Create a linked list of parent zones, starting at longname ending on
472 * the parent (can be NULL, creates to the root).
473 * @param nm: name for lowest in chain
474 * @param nm_len: length of name
475 * @param labs: labels in name.
476 * @param dclass: class of zone.
477 * @param parent: NULL for to root, else so it fits under here.
478 * @return zone; a chain of zones and their parents up to the parent.
479 *  	or NULL on malloc failure
480 */
481static struct val_neg_zone* neg_zone_chain(
482	uint8_t* nm, size_t nm_len, int labs, uint16_t dclass,
483	struct val_neg_zone* parent)
484{
485	int i;
486	int tolabs = parent?parent->labs:0;
487	struct val_neg_zone* zone, *prev = NULL, *first = NULL;
488
489	/* create the new subtree, i is labelcount of current creation */
490	/* this creates a 'first' to z->parent=NULL list of zones */
491	for(i=labs; i!=tolabs; i--) {
492		/* create new item */
493		zone = neg_setup_zone_node(nm, nm_len, i, dclass);
494		if(!zone) {
495			/* need to delete other allocations in this routine!*/
496			struct val_neg_zone* p=first, *np;
497			while(p) {
498				np = p->parent;
499				free(p->name);
500				free(p);
501				p = np;
502			}
503			return NULL;
504		}
505		if(i == labs) {
506			first = zone;
507		} else {
508			prev->parent = zone;
509		}
510		/* prepare for next name */
511		prev = zone;
512		dname_remove_label(&nm, &nm_len);
513	}
514	return first;
515}
516
517void val_neg_zone_take_inuse(struct val_neg_zone* zone)
518{
519	if(!zone->in_use) {
520		struct val_neg_zone* p;
521		zone->in_use = 1;
522		/* increase usage count of all parents */
523		for(p=zone; p; p = p->parent) {
524			p->count++;
525		}
526	}
527}
528
529struct val_neg_zone* neg_create_zone(struct val_neg_cache* neg,
530	uint8_t* nm, size_t nm_len, uint16_t dclass)
531{
532	struct val_neg_zone* zone;
533	struct val_neg_zone* parent;
534	struct val_neg_zone* p, *np;
535	int labs = dname_count_labels(nm);
536
537	/* find closest enclosing parent zone that (still) exists */
538	parent = neg_closest_zone_parent(neg, nm, nm_len, labs, dclass);
539	if(parent && query_dname_compare(parent->name, nm) == 0)
540		return parent; /* already exists, weird */
541	/* if parent exists, it is in use */
542	log_assert(!parent || parent->count > 0);
543	zone = neg_zone_chain(nm, nm_len, labs, dclass, parent);
544	if(!zone) {
545		return NULL;
546	}
547
548	/* insert the list of zones into the tree */
549	p = zone;
550	while(p) {
551		np = p->parent;
552		/* mem use */
553		neg->use += sizeof(struct val_neg_zone) + p->len;
554		/* insert in tree */
555		(void)rbtree_insert(&neg->tree, &p->node);
556		/* last one needs proper parent pointer */
557		if(np == NULL)
558			p->parent = parent;
559		p = np;
560	}
561	return zone;
562}
563
564/** find zone name of message, returns the SOA record */
565static struct ub_packed_rrset_key* reply_find_soa(struct reply_info* rep)
566{
567	size_t i;
568	for(i=rep->an_numrrsets; i< rep->an_numrrsets+rep->ns_numrrsets; i++){
569		if(ntohs(rep->rrsets[i]->rk.type) == LDNS_RR_TYPE_SOA)
570			return rep->rrsets[i];
571	}
572	return NULL;
573}
574
575/** see if the reply has NSEC records worthy of caching */
576static int reply_has_nsec(struct reply_info* rep)
577{
578	size_t i;
579	struct packed_rrset_data* d;
580	if(rep->security != sec_status_secure)
581		return 0;
582	for(i=rep->an_numrrsets; i< rep->an_numrrsets+rep->ns_numrrsets; i++){
583		if(ntohs(rep->rrsets[i]->rk.type) == LDNS_RR_TYPE_NSEC) {
584			d = (struct packed_rrset_data*)rep->rrsets[i]->
585				entry.data;
586			if(d->security == sec_status_secure)
587				return 1;
588		}
589	}
590	return 0;
591}
592
593
594/**
595 * Create single node of data element.
596 * @param nm: name (copied)
597 * @param nm_len: length of name
598 * @param labs: labels in name.
599 * @return element with name nm, or NULL malloc failure.
600 */
601static struct val_neg_data* neg_setup_data_node(
602	uint8_t* nm, size_t nm_len, int labs)
603{
604	struct val_neg_data* el;
605	el = (struct val_neg_data*)calloc(1, sizeof(*el));
606	if(!el) {
607		return NULL;
608	}
609	el->node.key = el;
610	el->name = memdup(nm, nm_len);
611	if(!el->name) {
612		free(el);
613		return NULL;
614	}
615	el->len = nm_len;
616	el->labs = labs;
617	return el;
618}
619
620/**
621 * Create chain of data element and parents
622 * @param nm: name
623 * @param nm_len: length of name
624 * @param labs: labels in name.
625 * @param parent: up to where to make, if NULL up to root label.
626 * @return lowest element with name nm, or NULL malloc failure.
627 */
628static struct val_neg_data* neg_data_chain(
629	uint8_t* nm, size_t nm_len, int labs, struct val_neg_data* parent)
630{
631	int i;
632	int tolabs = parent?parent->labs:0;
633	struct val_neg_data* el, *first = NULL, *prev = NULL;
634
635	/* create the new subtree, i is labelcount of current creation */
636	/* this creates a 'first' to z->parent=NULL list of zones */
637	for(i=labs; i!=tolabs; i--) {
638		/* create new item */
639		el = neg_setup_data_node(nm, nm_len, i);
640		if(!el) {
641			/* need to delete other allocations in this routine!*/
642			struct val_neg_data* p = first, *np;
643			while(p) {
644				np = p->parent;
645				free(p->name);
646				free(p);
647				p = np;
648			}
649			return NULL;
650		}
651		if(i == labs) {
652			first = el;
653		} else {
654			prev->parent = el;
655		}
656
657		/* prepare for next name */
658		prev = el;
659		dname_remove_label(&nm, &nm_len);
660	}
661	return first;
662}
663
664/**
665 * Remove NSEC records between start and end points.
666 * By walking the tree, the tree is sorted canonically.
667 * @param neg: negative cache.
668 * @param zone: the zone
669 * @param el: element to start walking at.
670 * @param nsec: the nsec record with the end point
671 */
672static void wipeout(struct val_neg_cache* neg, struct val_neg_zone* zone,
673	struct val_neg_data* el, struct ub_packed_rrset_key* nsec)
674{
675	struct packed_rrset_data* d = (struct packed_rrset_data*)nsec->
676		entry.data;
677	uint8_t* end;
678	size_t end_len;
679	int end_labs, m;
680	rbnode_t* walk, *next;
681	struct val_neg_data* cur;
682	uint8_t buf[257];
683	/* get endpoint */
684	if(!d || d->count == 0 || d->rr_len[0] < 2+1)
685		return;
686	if(ntohs(nsec->rk.type) == LDNS_RR_TYPE_NSEC) {
687		end = d->rr_data[0]+2;
688		end_len = dname_valid(end, d->rr_len[0]-2);
689		end_labs = dname_count_labels(end);
690	} else {
691		/* NSEC3 */
692		if(!nsec3_get_nextowner_b32(nsec, 0, buf, sizeof(buf)))
693			return;
694		end = buf;
695		end_labs = dname_count_size_labels(end, &end_len);
696	}
697
698	/* sanity check, both owner and end must be below the zone apex */
699	if(!dname_subdomain_c(el->name, zone->name) ||
700		!dname_subdomain_c(end, zone->name))
701		return;
702
703	/* detect end of zone NSEC ; wipe until the end of zone */
704	if(query_dname_compare(end, zone->name) == 0) {
705		end = NULL;
706	}
707
708	walk = rbtree_next(&el->node);
709	while(walk && walk != RBTREE_NULL) {
710		cur = (struct val_neg_data*)walk;
711		/* sanity check: must be larger than start */
712		if(dname_canon_lab_cmp(cur->name, cur->labs,
713			el->name, el->labs, &m) <= 0) {
714			/* r == 0 skip original record. */
715			/* r < 0  too small! */
716			walk = rbtree_next(walk);
717			continue;
718		}
719		/* stop at endpoint, also data at empty nonterminals must be
720		 * removed (no NSECs there) so everything between
721		 * start and end */
722		if(end && dname_canon_lab_cmp(cur->name, cur->labs,
723			end, end_labs, &m) >= 0) {
724			break;
725		}
726		/* this element has to be deleted, but we cannot do it
727		 * now, because we are walking the tree still ... */
728		/* get the next element: */
729		next = rbtree_next(walk);
730		/* now delete the original element, this may trigger
731		 * rbtree rebalances, but really, the next element is
732		 * the one we need.
733		 * But it may trigger delete of other data and the
734		 * entire zone. However, if that happens, this is done
735		 * by deleting the *parents* of the element for deletion,
736		 * and maybe also the entire zone if it is empty.
737		 * But parents are smaller in canonical compare, thus,
738		 * if a larger element exists, then it is not a parent,
739		 * it cannot get deleted, the zone cannot get empty.
740		 * If the next==NULL, then zone can be empty. */
741		if(cur->in_use)
742			neg_delete_data(neg, cur);
743		walk = next;
744	}
745}
746
747void neg_insert_data(struct val_neg_cache* neg,
748	struct val_neg_zone* zone, struct ub_packed_rrset_key* nsec)
749{
750	struct packed_rrset_data* d;
751	struct val_neg_data* parent;
752	struct val_neg_data* el;
753	uint8_t* nm = nsec->rk.dname;
754	size_t nm_len = nsec->rk.dname_len;
755	int labs = dname_count_labels(nsec->rk.dname);
756
757	d = (struct packed_rrset_data*)nsec->entry.data;
758	if( !(d->security == sec_status_secure ||
759		(d->security == sec_status_unchecked && d->rrsig_count > 0)))
760		return;
761	log_nametypeclass(VERB_ALGO, "negcache rr",
762		nsec->rk.dname, ntohs(nsec->rk.type),
763		ntohs(nsec->rk.rrset_class));
764
765	/* find closest enclosing parent data that (still) exists */
766	parent = neg_closest_data_parent(zone, nm, nm_len, labs);
767	if(parent && query_dname_compare(parent->name, nm) == 0) {
768		/* perfect match already exists */
769		log_assert(parent->count > 0);
770		el = parent;
771	} else {
772		struct val_neg_data* p, *np;
773
774		/* create subtree for perfect match */
775		/* if parent exists, it is in use */
776		log_assert(!parent || parent->count > 0);
777
778		el = neg_data_chain(nm, nm_len, labs, parent);
779		if(!el) {
780			log_err("out of memory inserting NSEC negative cache");
781			return;
782		}
783		el->in_use = 0; /* set on below */
784
785		/* insert the list of zones into the tree */
786		p = el;
787		while(p) {
788			np = p->parent;
789			/* mem use */
790			neg->use += sizeof(struct val_neg_data) + p->len;
791			/* insert in tree */
792			p->zone = zone;
793			(void)rbtree_insert(&zone->tree, &p->node);
794			/* last one needs proper parent pointer */
795			if(np == NULL)
796				p->parent = parent;
797			p = np;
798		}
799	}
800
801	if(!el->in_use) {
802		struct val_neg_data* p;
803
804		el->in_use = 1;
805		/* increase usage count of all parents */
806		for(p=el; p; p = p->parent) {
807			p->count++;
808		}
809
810		neg_lru_front(neg, el);
811	} else {
812		/* in use, bring to front, lru */
813		neg_lru_touch(neg, el);
814	}
815
816	/* if nsec3 store last used parameters */
817	if(ntohs(nsec->rk.type) == LDNS_RR_TYPE_NSEC3) {
818		int h;
819		uint8_t* s;
820		size_t slen, it;
821		if(nsec3_get_params(nsec, 0, &h, &it, &s, &slen) &&
822			it <= neg->nsec3_max_iter &&
823			(h != zone->nsec3_hash || it != zone->nsec3_iter ||
824			slen != zone->nsec3_saltlen ||
825			memcmp(zone->nsec3_salt, s, slen) != 0)) {
826
827			if(slen > 0) {
828				uint8_t* sa = memdup(s, slen);
829				if(sa) {
830					free(zone->nsec3_salt);
831					zone->nsec3_salt = sa;
832					zone->nsec3_saltlen = slen;
833					zone->nsec3_iter = it;
834					zone->nsec3_hash = h;
835				}
836			} else {
837				free(zone->nsec3_salt);
838				zone->nsec3_salt = NULL;
839				zone->nsec3_saltlen = 0;
840				zone->nsec3_iter = it;
841				zone->nsec3_hash = h;
842			}
843		}
844	}
845
846	/* wipe out the cache items between NSEC start and end */
847	wipeout(neg, zone, el, nsec);
848}
849
850void val_neg_addreply(struct val_neg_cache* neg, struct reply_info* rep)
851{
852	size_t i, need;
853	struct ub_packed_rrset_key* soa;
854	struct val_neg_zone* zone;
855	/* see if secure nsecs inside */
856	if(!reply_has_nsec(rep))
857		return;
858	/* find the zone name in message */
859	soa = reply_find_soa(rep);
860	if(!soa)
861		return;
862
863	log_nametypeclass(VERB_ALGO, "negcache insert for zone",
864		soa->rk.dname, LDNS_RR_TYPE_SOA, ntohs(soa->rk.rrset_class));
865
866	/* ask for enough space to store all of it */
867	need = calc_data_need(rep) +
868		calc_zone_need(soa->rk.dname, soa->rk.dname_len);
869	lock_basic_lock(&neg->lock);
870	neg_make_space(neg, need);
871
872	/* find or create the zone entry */
873	zone = neg_find_zone(neg, soa->rk.dname, soa->rk.dname_len,
874		ntohs(soa->rk.rrset_class));
875	if(!zone) {
876		if(!(zone = neg_create_zone(neg, soa->rk.dname,
877			soa->rk.dname_len, ntohs(soa->rk.rrset_class)))) {
878			lock_basic_unlock(&neg->lock);
879			log_err("out of memory adding negative zone");
880			return;
881		}
882	}
883	val_neg_zone_take_inuse(zone);
884
885	/* insert the NSECs */
886	for(i=rep->an_numrrsets; i< rep->an_numrrsets+rep->ns_numrrsets; i++){
887		if(ntohs(rep->rrsets[i]->rk.type) != LDNS_RR_TYPE_NSEC)
888			continue;
889		if(!dname_subdomain_c(rep->rrsets[i]->rk.dname,
890			zone->name)) continue;
891		/* insert NSEC into this zone's tree */
892		neg_insert_data(neg, zone, rep->rrsets[i]);
893	}
894	if(zone->tree.count == 0) {
895		/* remove empty zone if inserts failed */
896		neg_delete_zone(neg, zone);
897	}
898	lock_basic_unlock(&neg->lock);
899}
900
901/**
902 * Lookup closest data record. For NSEC denial.
903 * @param zone: zone to look in
904 * @param qname: name to look for.
905 * @param len: length of name
906 * @param labs: labels in name
907 * @param data: data element, exact or smaller or NULL
908 * @return true if exact match.
909 */
910static int neg_closest_data(struct val_neg_zone* zone,
911	uint8_t* qname, size_t len, int labs, struct val_neg_data** data)
912{
913	struct val_neg_data key;
914	rbnode_t* r;
915	key.node.key = &key;
916	key.name = qname;
917	key.len = len;
918	key.labs = labs;
919	if(rbtree_find_less_equal(&zone->tree, &key, &r)) {
920		/* exact match */
921		*data = (struct val_neg_data*)r;
922		return 1;
923	} else {
924		/* smaller match */
925		*data = (struct val_neg_data*)r;
926		return 0;
927	}
928}
929
930int val_neg_dlvlookup(struct val_neg_cache* neg, uint8_t* qname, size_t len,
931        uint16_t qclass, struct rrset_cache* rrset_cache, time_t now)
932{
933	/* lookup closest zone */
934	struct val_neg_zone* zone;
935	struct val_neg_data* data;
936	int labs;
937	struct ub_packed_rrset_key* nsec;
938	struct packed_rrset_data* d;
939	uint32_t flags;
940	uint8_t* wc;
941	struct query_info qinfo;
942	if(!neg) return 0;
943
944	log_nametypeclass(VERB_ALGO, "negcache dlvlookup", qname,
945		LDNS_RR_TYPE_DLV, qclass);
946
947	labs = dname_count_labels(qname);
948	lock_basic_lock(&neg->lock);
949	zone = neg_closest_zone_parent(neg, qname, len, labs, qclass);
950	while(zone && !zone->in_use)
951		zone = zone->parent;
952	if(!zone) {
953		lock_basic_unlock(&neg->lock);
954		return 0;
955	}
956	log_nametypeclass(VERB_ALGO, "negcache zone", zone->name, 0,
957		zone->dclass);
958
959	/* DLV is defined to use NSEC only */
960	if(zone->nsec3_hash) {
961		lock_basic_unlock(&neg->lock);
962		return 0;
963	}
964
965	/* lookup closest data record */
966	(void)neg_closest_data(zone, qname, len, labs, &data);
967	while(data && !data->in_use)
968		data = data->parent;
969	if(!data) {
970		lock_basic_unlock(&neg->lock);
971		return 0;
972	}
973	log_nametypeclass(VERB_ALGO, "negcache rr", data->name,
974		LDNS_RR_TYPE_NSEC, zone->dclass);
975
976	/* lookup rrset in rrset cache */
977	flags = 0;
978	if(query_dname_compare(data->name, zone->name) == 0)
979		flags = PACKED_RRSET_NSEC_AT_APEX;
980	nsec = rrset_cache_lookup(rrset_cache, data->name, data->len,
981		LDNS_RR_TYPE_NSEC, zone->dclass, flags, now, 0);
982
983	/* check if secure and TTL ok */
984	if(!nsec) {
985		lock_basic_unlock(&neg->lock);
986		return 0;
987	}
988	d = (struct packed_rrset_data*)nsec->entry.data;
989	if(!d || now > d->ttl) {
990		lock_rw_unlock(&nsec->entry.lock);
991		/* delete data record if expired */
992		neg_delete_data(neg, data);
993		lock_basic_unlock(&neg->lock);
994		return 0;
995	}
996	if(d->security != sec_status_secure) {
997		lock_rw_unlock(&nsec->entry.lock);
998		neg_delete_data(neg, data);
999		lock_basic_unlock(&neg->lock);
1000		return 0;
1001	}
1002	verbose(VERB_ALGO, "negcache got secure rrset");
1003
1004	/* check NSEC security */
1005	/* check if NSEC proves no DLV type exists */
1006	/* check if NSEC proves NXDOMAIN for qname */
1007	qinfo.qname = qname;
1008	qinfo.qtype = LDNS_RR_TYPE_DLV;
1009	qinfo.qclass = qclass;
1010	if(!nsec_proves_nodata(nsec, &qinfo, &wc) &&
1011		!val_nsec_proves_name_error(nsec, qname)) {
1012		/* the NSEC is not a denial for the DLV */
1013		lock_rw_unlock(&nsec->entry.lock);
1014		lock_basic_unlock(&neg->lock);
1015		verbose(VERB_ALGO, "negcache not proven");
1016		return 0;
1017	}
1018	/* so the NSEC was a NODATA proof, or NXDOMAIN proof. */
1019
1020	/* no need to check for wildcard NSEC; no wildcards in DLV repos */
1021	/* no need to lookup SOA record for client; no response message */
1022
1023	lock_rw_unlock(&nsec->entry.lock);
1024	/* if OK touch the LRU for neg_data element */
1025	neg_lru_touch(neg, data);
1026	lock_basic_unlock(&neg->lock);
1027	verbose(VERB_ALGO, "negcache DLV denial proven");
1028	return 1;
1029}
1030
1031/** see if the reply has signed NSEC records and return the signer */
1032static uint8_t* reply_nsec_signer(struct reply_info* rep, size_t* signer_len,
1033	uint16_t* dclass)
1034{
1035	size_t i;
1036	struct packed_rrset_data* d;
1037	uint8_t* s;
1038	for(i=rep->an_numrrsets; i< rep->an_numrrsets+rep->ns_numrrsets; i++){
1039		if(ntohs(rep->rrsets[i]->rk.type) == LDNS_RR_TYPE_NSEC ||
1040			ntohs(rep->rrsets[i]->rk.type) == LDNS_RR_TYPE_NSEC3) {
1041			d = (struct packed_rrset_data*)rep->rrsets[i]->
1042				entry.data;
1043			/* return first signer name of first NSEC */
1044			if(d->rrsig_count != 0) {
1045				val_find_rrset_signer(rep->rrsets[i],
1046					&s, signer_len);
1047				if(s && *signer_len) {
1048					*dclass = ntohs(rep->rrsets[i]->
1049						rk.rrset_class);
1050					return s;
1051				}
1052			}
1053		}
1054	}
1055	return 0;
1056}
1057
1058void val_neg_addreferral(struct val_neg_cache* neg, struct reply_info* rep,
1059	uint8_t* zone_name)
1060{
1061	size_t i, need;
1062	uint8_t* signer;
1063	size_t signer_len;
1064	uint16_t dclass;
1065	struct val_neg_zone* zone;
1066	/* no SOA in this message, find RRSIG over NSEC's signer name.
1067	 * note the NSEC records are maybe not validated yet */
1068	signer = reply_nsec_signer(rep, &signer_len, &dclass);
1069	if(!signer)
1070		return;
1071	if(!dname_subdomain_c(signer, zone_name)) {
1072		/* the signer is not in the bailiwick, throw it out */
1073		return;
1074	}
1075
1076	log_nametypeclass(VERB_ALGO, "negcache insert referral ",
1077		signer, LDNS_RR_TYPE_NS, dclass);
1078
1079	/* ask for enough space to store all of it */
1080	need = calc_data_need(rep) + calc_zone_need(signer, signer_len);
1081	lock_basic_lock(&neg->lock);
1082	neg_make_space(neg, need);
1083
1084	/* find or create the zone entry */
1085	zone = neg_find_zone(neg, signer, signer_len, dclass);
1086	if(!zone) {
1087		if(!(zone = neg_create_zone(neg, signer, signer_len,
1088			dclass))) {
1089			lock_basic_unlock(&neg->lock);
1090			log_err("out of memory adding negative zone");
1091			return;
1092		}
1093	}
1094	val_neg_zone_take_inuse(zone);
1095
1096	/* insert the NSECs */
1097	for(i=rep->an_numrrsets; i< rep->an_numrrsets+rep->ns_numrrsets; i++){
1098		if(ntohs(rep->rrsets[i]->rk.type) != LDNS_RR_TYPE_NSEC &&
1099			ntohs(rep->rrsets[i]->rk.type) != LDNS_RR_TYPE_NSEC3)
1100			continue;
1101		if(!dname_subdomain_c(rep->rrsets[i]->rk.dname,
1102			zone->name)) continue;
1103		/* insert NSEC into this zone's tree */
1104		neg_insert_data(neg, zone, rep->rrsets[i]);
1105	}
1106	if(zone->tree.count == 0) {
1107		/* remove empty zone if inserts failed */
1108		neg_delete_zone(neg, zone);
1109	}
1110	lock_basic_unlock(&neg->lock);
1111}
1112
1113/**
1114 * Check that an NSEC3 rrset does not have a type set.
1115 * None of the nsec3s in a hash-collision are allowed to have the type.
1116 * (since we do not know which one is the nsec3 looked at, flags, ..., we
1117 * ignore the cached item and let it bypass negative caching).
1118 * @param k: the nsec3 rrset to check.
1119 * @param t: type to check
1120 * @return true if no RRs have the type.
1121 */
1122static int nsec3_no_type(struct ub_packed_rrset_key* k, uint16_t t)
1123{
1124	int count = (int)((struct packed_rrset_data*)k->entry.data)->count;
1125	int i;
1126	for(i=0; i<count; i++)
1127		if(nsec3_has_type(k, i, t))
1128			return 0;
1129	return 1;
1130}
1131
1132/**
1133 * See if rrset exists in rrset cache.
1134 * If it does, the bit is checked, and if not expired, it is returned
1135 * allocated in region.
1136 * @param rrset_cache: rrset cache
1137 * @param qname: to lookup rrset name
1138 * @param qname_len: length of qname.
1139 * @param qtype: type of rrset to lookup, host order
1140 * @param qclass: class of rrset to lookup, host order
1141 * @param flags: flags for rrset to lookup
1142 * @param region: where to alloc result
1143 * @param checkbit: if true, a bit in the nsec typemap is checked for absence.
1144 * @param checktype: which bit to check
1145 * @param now: to check ttl against
1146 * @return rrset or NULL
1147 */
1148static struct ub_packed_rrset_key*
1149grab_nsec(struct rrset_cache* rrset_cache, uint8_t* qname, size_t qname_len,
1150	uint16_t qtype, uint16_t qclass, uint32_t flags,
1151	struct regional* region, int checkbit, uint16_t checktype,
1152	time_t now)
1153{
1154	struct ub_packed_rrset_key* r, *k = rrset_cache_lookup(rrset_cache,
1155		qname, qname_len, qtype, qclass, flags, now, 0);
1156	struct packed_rrset_data* d;
1157	if(!k) return NULL;
1158	d = (struct packed_rrset_data*)k->entry.data;
1159	if(d->ttl < now) {
1160		lock_rw_unlock(&k->entry.lock);
1161		return NULL;
1162	}
1163	/* only secure or unchecked records that have signatures. */
1164	if( ! ( d->security == sec_status_secure ||
1165		(d->security == sec_status_unchecked &&
1166		d->rrsig_count > 0) ) ) {
1167		lock_rw_unlock(&k->entry.lock);
1168		return NULL;
1169	}
1170	/* check if checktype is absent */
1171	if(checkbit && (
1172		(qtype == LDNS_RR_TYPE_NSEC && nsec_has_type(k, checktype)) ||
1173		(qtype == LDNS_RR_TYPE_NSEC3 && !nsec3_no_type(k, checktype))
1174		)) {
1175		lock_rw_unlock(&k->entry.lock);
1176		return NULL;
1177	}
1178	/* looks OK! copy to region and return it */
1179	r = packed_rrset_copy_region(k, region, now);
1180	/* if it failed, we return the NULL */
1181	lock_rw_unlock(&k->entry.lock);
1182	return r;
1183}
1184
1185/** find nsec3 closest encloser in neg cache */
1186static struct val_neg_data*
1187neg_find_nsec3_ce(struct val_neg_zone* zone, uint8_t* qname, size_t qname_len,
1188		int qlabs, sldns_buffer* buf, uint8_t* hashnc, size_t* nclen)
1189{
1190	struct val_neg_data* data;
1191	uint8_t hashce[NSEC3_SHA_LEN];
1192	uint8_t b32[257];
1193	size_t celen, b32len;
1194
1195	*nclen = 0;
1196	while(qlabs > 0) {
1197		/* hash */
1198		if(!(celen=nsec3_get_hashed(buf, qname, qname_len,
1199			zone->nsec3_hash, zone->nsec3_iter, zone->nsec3_salt,
1200			zone->nsec3_saltlen, hashce, sizeof(hashce))))
1201			return NULL;
1202		if(!(b32len=nsec3_hash_to_b32(hashce, celen, zone->name,
1203			zone->len, b32, sizeof(b32))))
1204			return NULL;
1205
1206		/* lookup (exact match only) */
1207		data = neg_find_data(zone, b32, b32len, zone->labs+1);
1208		if(data && data->in_use) {
1209			/* found ce match! */
1210			return data;
1211		}
1212
1213		*nclen = celen;
1214		memmove(hashnc, hashce, celen);
1215		dname_remove_label(&qname, &qname_len);
1216		qlabs --;
1217	}
1218	return NULL;
1219}
1220
1221/** check nsec3 parameters on nsec3 rrset with current zone values */
1222static int
1223neg_params_ok(struct val_neg_zone* zone, struct ub_packed_rrset_key* rrset)
1224{
1225	int h;
1226	uint8_t* s;
1227	size_t slen, it;
1228	if(!nsec3_get_params(rrset, 0, &h, &it, &s, &slen))
1229		return 0;
1230	return (h == zone->nsec3_hash && it == zone->nsec3_iter &&
1231		slen == zone->nsec3_saltlen &&
1232		memcmp(zone->nsec3_salt, s, slen) == 0);
1233}
1234
1235/** get next closer for nsec3 proof */
1236static struct ub_packed_rrset_key*
1237neg_nsec3_getnc(struct val_neg_zone* zone, uint8_t* hashnc, size_t nclen,
1238	struct rrset_cache* rrset_cache, struct regional* region,
1239	time_t now, uint8_t* b32, size_t maxb32)
1240{
1241	struct ub_packed_rrset_key* nc_rrset;
1242	struct val_neg_data* data;
1243	size_t b32len;
1244
1245	if(!(b32len=nsec3_hash_to_b32(hashnc, nclen, zone->name,
1246		zone->len, b32, maxb32)))
1247		return NULL;
1248	(void)neg_closest_data(zone, b32, b32len, zone->labs+1, &data);
1249	if(!data && zone->tree.count != 0) {
1250		/* could be before the first entry ; return the last
1251		 * entry (possibly the rollover nsec3 at end) */
1252		data = (struct val_neg_data*)rbtree_last(&zone->tree);
1253	}
1254	while(data && !data->in_use)
1255		data = data->parent;
1256	if(!data)
1257		return NULL;
1258	/* got a data element in tree, grab it */
1259	nc_rrset = grab_nsec(rrset_cache, data->name, data->len,
1260		LDNS_RR_TYPE_NSEC3, zone->dclass, 0, region, 0, 0, now);
1261	if(!nc_rrset)
1262		return NULL;
1263	if(!neg_params_ok(zone, nc_rrset))
1264		return NULL;
1265	return nc_rrset;
1266}
1267
1268/** neg cache nsec3 proof procedure*/
1269static struct dns_msg*
1270neg_nsec3_proof_ds(struct val_neg_zone* zone, uint8_t* qname, size_t qname_len,
1271		int qlabs, sldns_buffer* buf, struct rrset_cache* rrset_cache,
1272		struct regional* region, time_t now, uint8_t* topname)
1273{
1274	struct dns_msg* msg;
1275	struct val_neg_data* data;
1276	uint8_t hashnc[NSEC3_SHA_LEN];
1277	size_t nclen;
1278	struct ub_packed_rrset_key* ce_rrset, *nc_rrset;
1279	struct nsec3_cached_hash c;
1280	uint8_t nc_b32[257];
1281
1282	/* for NSEC3 ; determine the closest encloser for which we
1283	 * can find an exact match. Remember the hashed lower name,
1284	 * since that is the one we need a closest match for.
1285	 * If we find a match straight away, then it becomes NODATA.
1286	 * Otherwise, NXDOMAIN or if OPTOUT, an insecure delegation.
1287	 * Also check that parameters are the same on closest encloser
1288	 * and on closest match.
1289	 */
1290	if(!zone->nsec3_hash)
1291		return NULL; /* not nsec3 zone */
1292
1293	if(!(data=neg_find_nsec3_ce(zone, qname, qname_len, qlabs, buf,
1294		hashnc, &nclen))) {
1295		return NULL;
1296	}
1297
1298	/* grab the ce rrset */
1299	ce_rrset = grab_nsec(rrset_cache, data->name, data->len,
1300		LDNS_RR_TYPE_NSEC3, zone->dclass, 0, region, 1,
1301		LDNS_RR_TYPE_DS, now);
1302	if(!ce_rrset)
1303		return NULL;
1304	if(!neg_params_ok(zone, ce_rrset))
1305		return NULL;
1306
1307	if(nclen == 0) {
1308		/* exact match, just check the type bits */
1309		/* need: -SOA, -DS, +NS */
1310		if(nsec3_has_type(ce_rrset, 0, LDNS_RR_TYPE_SOA) ||
1311			nsec3_has_type(ce_rrset, 0, LDNS_RR_TYPE_DS) ||
1312			!nsec3_has_type(ce_rrset, 0, LDNS_RR_TYPE_NS))
1313			return NULL;
1314		if(!(msg = dns_msg_create(qname, qname_len,
1315			LDNS_RR_TYPE_DS, zone->dclass, region, 1)))
1316			return NULL;
1317		/* TTL reduced in grab_nsec */
1318		if(!dns_msg_authadd(msg, region, ce_rrset, 0))
1319			return NULL;
1320		return msg;
1321	}
1322
1323	/* optout is not allowed without knowing the trust-anchor in use,
1324	 * otherwise the optout could spoof away that anchor */
1325	if(!topname)
1326		return NULL;
1327
1328	/* if there is no exact match, it must be in an optout span
1329	 * (an existing DS implies an NSEC3 must exist) */
1330	nc_rrset = neg_nsec3_getnc(zone, hashnc, nclen, rrset_cache,
1331		region, now, nc_b32, sizeof(nc_b32));
1332	if(!nc_rrset)
1333		return NULL;
1334	if(!neg_params_ok(zone, nc_rrset))
1335		return NULL;
1336	if(!nsec3_has_optout(nc_rrset, 0))
1337		return NULL;
1338	c.hash = hashnc;
1339	c.hash_len = nclen;
1340	c.b32 = nc_b32+1;
1341	c.b32_len = (size_t)nc_b32[0];
1342	if(nsec3_covers(zone->name, &c, nc_rrset, 0, buf)) {
1343		/* nc_rrset covers the next closer name.
1344		 * ce_rrset equals a closer encloser.
1345		 * nc_rrset is optout.
1346		 * No need to check wildcard for type DS */
1347		/* capacity=3: ce + nc + soa(if needed) */
1348		if(!(msg = dns_msg_create(qname, qname_len,
1349			LDNS_RR_TYPE_DS, zone->dclass, region, 3)))
1350			return NULL;
1351		/* now=0 because TTL was reduced in grab_nsec */
1352		if(!dns_msg_authadd(msg, region, ce_rrset, 0))
1353			return NULL;
1354		if(!dns_msg_authadd(msg, region, nc_rrset, 0))
1355			return NULL;
1356		return msg;
1357	}
1358	return NULL;
1359}
1360
1361/**
1362 * Add SOA record for external responses.
1363 * @param rrset_cache: to look into.
1364 * @param now: current time.
1365 * @param region: where to perform the allocation
1366 * @param msg: current msg with NSEC.
1367 * @param zone: val_neg_zone if we have one.
1368 * @return false on lookup or alloc failure.
1369 */
1370static int add_soa(struct rrset_cache* rrset_cache, time_t now,
1371	struct regional* region, struct dns_msg* msg, struct val_neg_zone* zone)
1372{
1373	struct ub_packed_rrset_key* soa;
1374	uint8_t* nm;
1375	size_t nmlen;
1376	uint16_t dclass;
1377	if(zone) {
1378		nm = zone->name;
1379		nmlen = zone->len;
1380		dclass = zone->dclass;
1381	} else {
1382		/* Assumes the signer is the zone SOA to add */
1383		nm = reply_nsec_signer(msg->rep, &nmlen, &dclass);
1384		if(!nm)
1385			return 0;
1386	}
1387	soa = rrset_cache_lookup(rrset_cache, nm, nmlen, LDNS_RR_TYPE_SOA,
1388		dclass, PACKED_RRSET_SOA_NEG, now, 0);
1389	if(!soa)
1390		return 0;
1391	if(!dns_msg_authadd(msg, region, soa, now)) {
1392		lock_rw_unlock(&soa->entry.lock);
1393		return 0;
1394	}
1395	lock_rw_unlock(&soa->entry.lock);
1396	return 1;
1397}
1398
1399struct dns_msg*
1400val_neg_getmsg(struct val_neg_cache* neg, struct query_info* qinfo,
1401	struct regional* region, struct rrset_cache* rrset_cache,
1402	sldns_buffer* buf, time_t now, int addsoa, uint8_t* topname)
1403{
1404	struct dns_msg* msg;
1405	struct ub_packed_rrset_key* rrset;
1406	uint8_t* zname;
1407	size_t zname_len;
1408	int zname_labs;
1409	struct val_neg_zone* zone;
1410
1411	/* only for DS queries */
1412	if(qinfo->qtype != LDNS_RR_TYPE_DS)
1413		return NULL;
1414	log_assert(!topname || dname_subdomain_c(qinfo->qname, topname));
1415
1416	/* see if info from neg cache is available
1417	 * For NSECs, because there is no optout; a DS next to a delegation
1418	 * always has exactly an NSEC for it itself; check its DS bit.
1419	 * flags=0 (not the zone apex).
1420	 */
1421	rrset = grab_nsec(rrset_cache, qinfo->qname, qinfo->qname_len,
1422		LDNS_RR_TYPE_NSEC, qinfo->qclass, 0, region, 1,
1423		qinfo->qtype, now);
1424	if(rrset) {
1425		/* return msg with that rrset */
1426		if(!(msg = dns_msg_create(qinfo->qname, qinfo->qname_len,
1427			qinfo->qtype, qinfo->qclass, region, 2)))
1428			return NULL;
1429		/* TTL already subtracted in grab_nsec */
1430		if(!dns_msg_authadd(msg, region, rrset, 0))
1431			return NULL;
1432		if(addsoa && !add_soa(rrset_cache, now, region, msg, NULL))
1433			return NULL;
1434		return msg;
1435	}
1436
1437	/* check NSEC3 neg cache for type DS */
1438	/* need to look one zone higher for DS type */
1439	zname = qinfo->qname;
1440	zname_len = qinfo->qname_len;
1441	dname_remove_label(&zname, &zname_len);
1442	zname_labs = dname_count_labels(zname);
1443
1444	/* lookup closest zone */
1445	lock_basic_lock(&neg->lock);
1446	zone = neg_closest_zone_parent(neg, zname, zname_len, zname_labs,
1447		qinfo->qclass);
1448	while(zone && !zone->in_use)
1449		zone = zone->parent;
1450	/* check that the zone is not too high up so that we do not pick data
1451	 * out of a zone that is above the last-seen key (or trust-anchor). */
1452	if(zone && topname) {
1453		if(!dname_subdomain_c(zone->name, topname))
1454			zone = NULL;
1455	}
1456	if(!zone) {
1457		lock_basic_unlock(&neg->lock);
1458		return NULL;
1459	}
1460
1461	msg = neg_nsec3_proof_ds(zone, qinfo->qname, qinfo->qname_len,
1462		zname_labs+1, buf, rrset_cache, region, now, topname);
1463	if(msg && addsoa && !add_soa(rrset_cache, now, region, msg, zone)) {
1464		lock_basic_unlock(&neg->lock);
1465		return NULL;
1466	}
1467	lock_basic_unlock(&neg->lock);
1468	return msg;
1469}
1470