iter_utils.c revision 292206
1/*
2 * iterator/iter_utils.c - iterative resolver module utility functions.
3 *
4 * Copyright (c) 2007, NLnet Labs. All rights reserved.
5 *
6 * This software is open source.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * Redistributions of source code must retain the above copyright notice,
13 * this list of conditions and the following disclaimer.
14 *
15 * Redistributions in binary form must reproduce the above copyright notice,
16 * this list of conditions and the following disclaimer in the documentation
17 * and/or other materials provided with the distribution.
18 *
19 * Neither the name of the NLNET LABS nor the names of its contributors may
20 * be used to endorse or promote products derived from this software without
21 * specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
26 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
27 * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
28 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
29 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
30 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
31 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
32 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
33 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
34 */
35
36/**
37 * \file
38 *
39 * This file contains functions to assist the iterator module.
40 * Configuration options. Forward zones.
41 */
42#include "config.h"
43#include "iterator/iter_utils.h"
44#include "iterator/iterator.h"
45#include "iterator/iter_hints.h"
46#include "iterator/iter_fwd.h"
47#include "iterator/iter_donotq.h"
48#include "iterator/iter_delegpt.h"
49#include "iterator/iter_priv.h"
50#include "services/cache/infra.h"
51#include "services/cache/dns.h"
52#include "services/cache/rrset.h"
53#include "util/net_help.h"
54#include "util/module.h"
55#include "util/log.h"
56#include "util/config_file.h"
57#include "util/regional.h"
58#include "util/data/msgparse.h"
59#include "util/data/dname.h"
60#include "util/random.h"
61#include "util/fptr_wlist.h"
62#include "validator/val_anchor.h"
63#include "validator/val_kcache.h"
64#include "validator/val_kentry.h"
65#include "validator/val_utils.h"
66#include "validator/val_sigcrypt.h"
67#include "sldns/sbuffer.h"
68#include "sldns/str2wire.h"
69
70/** time when nameserver glue is said to be 'recent' */
71#define SUSPICION_RECENT_EXPIRY 86400
72/** penalty to validation failed blacklisted IPs */
73#define BLACKLIST_PENALTY (USEFUL_SERVER_TOP_TIMEOUT*4)
74
75/** fillup fetch policy array */
76static void
77fetch_fill(struct iter_env* ie, const char* str)
78{
79	char* s = (char*)str, *e;
80	int i;
81	for(i=0; i<ie->max_dependency_depth+1; i++) {
82		ie->target_fetch_policy[i] = strtol(s, &e, 10);
83		if(s == e)
84			fatal_exit("cannot parse fetch policy number %s", s);
85		s = e;
86	}
87}
88
89/** Read config string that represents the target fetch policy */
90static int
91read_fetch_policy(struct iter_env* ie, const char* str)
92{
93	int count = cfg_count_numbers(str);
94	if(count < 1) {
95		log_err("Cannot parse target fetch policy: \"%s\"", str);
96		return 0;
97	}
98	ie->max_dependency_depth = count - 1;
99	ie->target_fetch_policy = (int*)calloc(
100		(size_t)ie->max_dependency_depth+1, sizeof(int));
101	if(!ie->target_fetch_policy) {
102		log_err("alloc fetch policy: out of memory");
103		return 0;
104	}
105	fetch_fill(ie, str);
106	return 1;
107}
108
109/** apply config caps whitelist items to name tree */
110static int
111caps_white_apply_cfg(rbtree_t* ntree, struct config_file* cfg)
112{
113	struct config_strlist* p;
114	for(p=cfg->caps_whitelist; p; p=p->next) {
115		struct name_tree_node* n;
116		size_t len;
117		uint8_t* nm = sldns_str2wire_dname(p->str, &len);
118		if(!nm) {
119			log_err("could not parse %s", p->str);
120			return 0;
121		}
122		n = (struct name_tree_node*)calloc(1, sizeof(*n));
123		if(!n) {
124			log_err("out of memory");
125			free(nm);
126			return 0;
127		}
128		n->node.key = n;
129		n->name = nm;
130		n->len = len;
131		n->labs = dname_count_labels(nm);
132		n->dclass = LDNS_RR_CLASS_IN;
133		if(!name_tree_insert(ntree, n, nm, len, n->labs, n->dclass)) {
134			/* duplicate element ignored, idempotent */
135			free(n->name);
136			free(n);
137		}
138	}
139	name_tree_init_parents(ntree);
140	return 1;
141}
142
143int
144iter_apply_cfg(struct iter_env* iter_env, struct config_file* cfg)
145{
146	int i;
147	/* target fetch policy */
148	if(!read_fetch_policy(iter_env, cfg->target_fetch_policy))
149		return 0;
150	for(i=0; i<iter_env->max_dependency_depth+1; i++)
151		verbose(VERB_QUERY, "target fetch policy for level %d is %d",
152			i, iter_env->target_fetch_policy[i]);
153
154	if(!iter_env->donotq)
155		iter_env->donotq = donotq_create();
156	if(!iter_env->donotq || !donotq_apply_cfg(iter_env->donotq, cfg)) {
157		log_err("Could not set donotqueryaddresses");
158		return 0;
159	}
160	if(!iter_env->priv)
161		iter_env->priv = priv_create();
162	if(!iter_env->priv || !priv_apply_cfg(iter_env->priv, cfg)) {
163		log_err("Could not set private addresses");
164		return 0;
165	}
166	if(cfg->caps_whitelist) {
167		if(!iter_env->caps_white)
168			iter_env->caps_white = rbtree_create(name_tree_compare);
169		if(!iter_env->caps_white || !caps_white_apply_cfg(
170			iter_env->caps_white, cfg)) {
171			log_err("Could not set capsforid whitelist");
172			return 0;
173		}
174
175	}
176	iter_env->supports_ipv6 = cfg->do_ip6;
177	iter_env->supports_ipv4 = cfg->do_ip4;
178	return 1;
179}
180
181/** filter out unsuitable targets
182 * @param iter_env: iterator environment with ipv6-support flag.
183 * @param env: module environment with infra cache.
184 * @param name: zone name
185 * @param namelen: length of name
186 * @param qtype: query type (host order).
187 * @param now: current time
188 * @param a: address in delegation point we are examining.
189 * @return an integer that signals the target suitability.
190 *	as follows:
191 *	-1: The address should be omitted from the list.
192 *	    Because:
193 *		o The address is bogus (DNSSEC validation failure).
194 *		o Listed as donotquery
195 *		o is ipv6 but no ipv6 support (in operating system).
196 *		o is ipv4 but no ipv4 support (in operating system).
197 *		o is lame
198 *	Otherwise, an rtt in milliseconds.
199 *	0 .. USEFUL_SERVER_TOP_TIMEOUT-1
200 *		The roundtrip time timeout estimate. less than 2 minutes.
201 *		Note that util/rtt.c has a MIN_TIMEOUT of 50 msec, thus
202 *		values 0 .. 49 are not used, unless that is changed.
203 *	USEFUL_SERVER_TOP_TIMEOUT
204 *		This value exactly is given for unresponsive blacklisted.
205 *	USEFUL_SERVER_TOP_TIMEOUT+1
206 *		For non-blacklisted servers: huge timeout, but has traffic.
207 *	USEFUL_SERVER_TOP_TIMEOUT*1 ..
208 *		parent-side lame servers get this penalty. A dispreferential
209 *		server. (lame in delegpt).
210 *	USEFUL_SERVER_TOP_TIMEOUT*2 ..
211 *		dnsseclame servers get penalty
212 *	USEFUL_SERVER_TOP_TIMEOUT*3 ..
213 *		recursion lame servers get penalty
214 *	UNKNOWN_SERVER_NICENESS
215 *		If no information is known about the server, this is
216 *		returned. 376 msec or so.
217 *	+BLACKLIST_PENALTY (of USEFUL_TOP_TIMEOUT*4) for dnssec failed IPs.
218 *
219 * When a final value is chosen that is dnsseclame ; dnsseclameness checking
220 * is turned off (so we do not discard the reply).
221 * When a final value is chosen that is recursionlame; RD bit is set on query.
222 * Because of the numbers this means recursionlame also have dnssec lameness
223 * checking turned off.
224 */
225static int
226iter_filter_unsuitable(struct iter_env* iter_env, struct module_env* env,
227	uint8_t* name, size_t namelen, uint16_t qtype, time_t now,
228	struct delegpt_addr* a)
229{
230	int rtt, lame, reclame, dnsseclame;
231	if(a->bogus)
232		return -1; /* address of server is bogus */
233	if(donotq_lookup(iter_env->donotq, &a->addr, a->addrlen)) {
234		log_addr(VERB_ALGO, "skip addr on the donotquery list",
235			&a->addr, a->addrlen);
236		return -1; /* server is on the donotquery list */
237	}
238	if(!iter_env->supports_ipv6 && addr_is_ip6(&a->addr, a->addrlen)) {
239		return -1; /* there is no ip6 available */
240	}
241	if(!iter_env->supports_ipv4 && !addr_is_ip6(&a->addr, a->addrlen)) {
242		return -1; /* there is no ip4 available */
243	}
244	/* check lameness - need zone , class info */
245	if(infra_get_lame_rtt(env->infra_cache, &a->addr, a->addrlen,
246		name, namelen, qtype, &lame, &dnsseclame, &reclame,
247		&rtt, now)) {
248		log_addr(VERB_ALGO, "servselect", &a->addr, a->addrlen);
249		verbose(VERB_ALGO, "   rtt=%d%s%s%s%s", rtt,
250			lame?" LAME":"",
251			dnsseclame?" DNSSEC_LAME":"",
252			reclame?" REC_LAME":"",
253			a->lame?" ADDR_LAME":"");
254		if(lame)
255			return -1; /* server is lame */
256		else if(rtt >= USEFUL_SERVER_TOP_TIMEOUT)
257			/* server is unresponsive,
258			 * we used to return TOP_TIMEOUT, but fairly useless,
259			 * because if == TOP_TIMEOUT is dropped because
260			 * blacklisted later, instead, remove it here, so
261			 * other choices (that are not blacklisted) can be
262			 * tried */
263			return -1;
264		/* select remainder from worst to best */
265		else if(reclame)
266			return rtt+USEFUL_SERVER_TOP_TIMEOUT*3; /* nonpref */
267		else if(dnsseclame || a->dnsseclame)
268			return rtt+USEFUL_SERVER_TOP_TIMEOUT*2; /* nonpref */
269		else if(a->lame)
270			return rtt+USEFUL_SERVER_TOP_TIMEOUT+1; /* nonpref */
271		else	return rtt;
272	}
273	/* no server information present */
274	if(a->dnsseclame)
275		return UNKNOWN_SERVER_NICENESS+USEFUL_SERVER_TOP_TIMEOUT*2; /* nonpref */
276	else if(a->lame)
277		return USEFUL_SERVER_TOP_TIMEOUT+1+UNKNOWN_SERVER_NICENESS; /* nonpref */
278	return UNKNOWN_SERVER_NICENESS;
279}
280
281/** lookup RTT information, and also store fastest rtt (if any) */
282static int
283iter_fill_rtt(struct iter_env* iter_env, struct module_env* env,
284	uint8_t* name, size_t namelen, uint16_t qtype, time_t now,
285	struct delegpt* dp, int* best_rtt, struct sock_list* blacklist)
286{
287	int got_it = 0;
288	struct delegpt_addr* a;
289	if(dp->bogus)
290		return 0; /* NS bogus, all bogus, nothing found */
291	for(a=dp->result_list; a; a = a->next_result) {
292		a->sel_rtt = iter_filter_unsuitable(iter_env, env,
293			name, namelen, qtype, now, a);
294		if(a->sel_rtt != -1) {
295			if(sock_list_find(blacklist, &a->addr, a->addrlen))
296				a->sel_rtt += BLACKLIST_PENALTY;
297
298			if(!got_it) {
299				*best_rtt = a->sel_rtt;
300				got_it = 1;
301			} else if(a->sel_rtt < *best_rtt) {
302				*best_rtt = a->sel_rtt;
303			}
304		}
305	}
306	return got_it;
307}
308
309/** filter the address list, putting best targets at front,
310 * returns number of best targets (or 0, no suitable targets) */
311static int
312iter_filter_order(struct iter_env* iter_env, struct module_env* env,
313	uint8_t* name, size_t namelen, uint16_t qtype, time_t now,
314	struct delegpt* dp, int* selected_rtt, int open_target,
315	struct sock_list* blacklist)
316{
317	int got_num = 0, low_rtt = 0, swap_to_front;
318	struct delegpt_addr* a, *n, *prev=NULL;
319
320	/* fillup sel_rtt and find best rtt in the bunch */
321	got_num = iter_fill_rtt(iter_env, env, name, namelen, qtype, now, dp,
322		&low_rtt, blacklist);
323	if(got_num == 0)
324		return 0;
325	if(low_rtt >= USEFUL_SERVER_TOP_TIMEOUT &&
326		(delegpt_count_missing_targets(dp) > 0 || open_target > 0)) {
327		verbose(VERB_ALGO, "Bad choices, trying to get more choice");
328		return 0; /* we want more choice. The best choice is a bad one.
329			     return 0 to force the caller to fetch more */
330	}
331
332	got_num = 0;
333	a = dp->result_list;
334	while(a) {
335		/* skip unsuitable targets */
336		if(a->sel_rtt == -1) {
337			prev = a;
338			a = a->next_result;
339			continue;
340		}
341		/* classify the server address and determine what to do */
342		swap_to_front = 0;
343		if(a->sel_rtt >= low_rtt && a->sel_rtt - low_rtt <= RTT_BAND) {
344			got_num++;
345			swap_to_front = 1;
346		} else if(a->sel_rtt<low_rtt && low_rtt-a->sel_rtt<=RTT_BAND) {
347			got_num++;
348			swap_to_front = 1;
349		}
350		/* swap to front if necessary, or move to next result */
351		if(swap_to_front && prev) {
352			n = a->next_result;
353			prev->next_result = n;
354			a->next_result = dp->result_list;
355			dp->result_list = a;
356			a = n;
357		} else {
358			prev = a;
359			a = a->next_result;
360		}
361	}
362	*selected_rtt = low_rtt;
363	return got_num;
364}
365
366struct delegpt_addr*
367iter_server_selection(struct iter_env* iter_env,
368	struct module_env* env, struct delegpt* dp,
369	uint8_t* name, size_t namelen, uint16_t qtype, int* dnssec_lame,
370	int* chase_to_rd, int open_target, struct sock_list* blacklist)
371{
372	int sel;
373	int selrtt;
374	struct delegpt_addr* a, *prev;
375	int num = iter_filter_order(iter_env, env, name, namelen, qtype,
376		*env->now, dp, &selrtt, open_target, blacklist);
377
378	if(num == 0)
379		return NULL;
380	verbose(VERB_ALGO, "selrtt %d", selrtt);
381	if(selrtt > BLACKLIST_PENALTY) {
382		if(selrtt-BLACKLIST_PENALTY > USEFUL_SERVER_TOP_TIMEOUT*3) {
383			verbose(VERB_ALGO, "chase to "
384				"blacklisted recursion lame server");
385			*chase_to_rd = 1;
386		}
387		if(selrtt-BLACKLIST_PENALTY > USEFUL_SERVER_TOP_TIMEOUT*2) {
388			verbose(VERB_ALGO, "chase to "
389				"blacklisted dnssec lame server");
390			*dnssec_lame = 1;
391		}
392	} else {
393		if(selrtt > USEFUL_SERVER_TOP_TIMEOUT*3) {
394			verbose(VERB_ALGO, "chase to recursion lame server");
395			*chase_to_rd = 1;
396		}
397		if(selrtt > USEFUL_SERVER_TOP_TIMEOUT*2) {
398			verbose(VERB_ALGO, "chase to dnssec lame server");
399			*dnssec_lame = 1;
400		}
401		if(selrtt == USEFUL_SERVER_TOP_TIMEOUT) {
402			verbose(VERB_ALGO, "chase to blacklisted lame server");
403			return NULL;
404		}
405	}
406
407	if(num == 1) {
408		a = dp->result_list;
409		if(++a->attempts < OUTBOUND_MSG_RETRY)
410			return a;
411		dp->result_list = a->next_result;
412		return a;
413	}
414
415	/* randomly select a target from the list */
416	log_assert(num > 1);
417	/* grab secure random number, to pick unexpected server.
418	 * also we need it to be threadsafe. */
419	sel = ub_random_max(env->rnd, num);
420	a = dp->result_list;
421	prev = NULL;
422	while(sel > 0 && a) {
423		prev = a;
424		a = a->next_result;
425		sel--;
426	}
427	if(!a)  /* robustness */
428		return NULL;
429	if(++a->attempts < OUTBOUND_MSG_RETRY)
430		return a;
431	/* remove it from the delegation point result list */
432	if(prev)
433		prev->next_result = a->next_result;
434	else	dp->result_list = a->next_result;
435	return a;
436}
437
438struct dns_msg*
439dns_alloc_msg(sldns_buffer* pkt, struct msg_parse* msg,
440	struct regional* region)
441{
442	struct dns_msg* m = (struct dns_msg*)regional_alloc(region,
443		sizeof(struct dns_msg));
444	if(!m)
445		return NULL;
446	memset(m, 0, sizeof(*m));
447	if(!parse_create_msg(pkt, msg, NULL, &m->qinfo, &m->rep, region)) {
448		log_err("malloc failure: allocating incoming dns_msg");
449		return NULL;
450	}
451	return m;
452}
453
454struct dns_msg*
455dns_copy_msg(struct dns_msg* from, struct regional* region)
456{
457	struct dns_msg* m = (struct dns_msg*)regional_alloc(region,
458		sizeof(struct dns_msg));
459	if(!m)
460		return NULL;
461	m->qinfo = from->qinfo;
462	if(!(m->qinfo.qname = regional_alloc_init(region, from->qinfo.qname,
463		from->qinfo.qname_len)))
464		return NULL;
465	if(!(m->rep = reply_info_copy(from->rep, NULL, region)))
466		return NULL;
467	return m;
468}
469
470void
471iter_dns_store(struct module_env* env, struct query_info* msgqinf,
472	struct reply_info* msgrep, int is_referral, time_t leeway, int pside,
473	struct regional* region, uint16_t flags)
474{
475	if(!dns_cache_store(env, msgqinf, msgrep, is_referral, leeway,
476		pside, region, flags))
477		log_err("out of memory: cannot store data in cache");
478}
479
480int
481iter_ns_probability(struct ub_randstate* rnd, int n, int m)
482{
483	int sel;
484	if(n == m) /* 100% chance */
485		return 1;
486	/* we do not need secure random numbers here, but
487	 * we do need it to be threadsafe, so we use this */
488	sel = ub_random_max(rnd, m);
489	return (sel < n);
490}
491
492/** detect dependency cycle for query and target */
493static int
494causes_cycle(struct module_qstate* qstate, uint8_t* name, size_t namelen,
495	uint16_t t, uint16_t c)
496{
497	struct query_info qinf;
498	qinf.qname = name;
499	qinf.qname_len = namelen;
500	qinf.qtype = t;
501	qinf.qclass = c;
502	fptr_ok(fptr_whitelist_modenv_detect_cycle(
503		qstate->env->detect_cycle));
504	return (*qstate->env->detect_cycle)(qstate, &qinf,
505		(uint16_t)(BIT_RD|BIT_CD), qstate->is_priming,
506		qstate->is_valrec);
507}
508
509void
510iter_mark_cycle_targets(struct module_qstate* qstate, struct delegpt* dp)
511{
512	struct delegpt_ns* ns;
513	for(ns = dp->nslist; ns; ns = ns->next) {
514		if(ns->resolved)
515			continue;
516		/* see if this ns as target causes dependency cycle */
517		if(causes_cycle(qstate, ns->name, ns->namelen,
518			LDNS_RR_TYPE_AAAA, qstate->qinfo.qclass) ||
519		   causes_cycle(qstate, ns->name, ns->namelen,
520			LDNS_RR_TYPE_A, qstate->qinfo.qclass)) {
521			log_nametypeclass(VERB_QUERY, "skipping target due "
522			 	"to dependency cycle (harden-glue: no may "
523				"fix some of the cycles)",
524				ns->name, LDNS_RR_TYPE_A,
525				qstate->qinfo.qclass);
526			ns->resolved = 1;
527		}
528	}
529}
530
531void
532iter_mark_pside_cycle_targets(struct module_qstate* qstate, struct delegpt* dp)
533{
534	struct delegpt_ns* ns;
535	for(ns = dp->nslist; ns; ns = ns->next) {
536		if(ns->done_pside4 && ns->done_pside6)
537			continue;
538		/* see if this ns as target causes dependency cycle */
539		if(causes_cycle(qstate, ns->name, ns->namelen,
540			LDNS_RR_TYPE_A, qstate->qinfo.qclass)) {
541			log_nametypeclass(VERB_QUERY, "skipping target due "
542			 	"to dependency cycle", ns->name,
543				LDNS_RR_TYPE_A, qstate->qinfo.qclass);
544			ns->done_pside4 = 1;
545		}
546		if(causes_cycle(qstate, ns->name, ns->namelen,
547			LDNS_RR_TYPE_AAAA, qstate->qinfo.qclass)) {
548			log_nametypeclass(VERB_QUERY, "skipping target due "
549			 	"to dependency cycle", ns->name,
550				LDNS_RR_TYPE_AAAA, qstate->qinfo.qclass);
551			ns->done_pside6 = 1;
552		}
553	}
554}
555
556int
557iter_dp_is_useless(struct query_info* qinfo, uint16_t qflags,
558	struct delegpt* dp)
559{
560	struct delegpt_ns* ns;
561	/* check:
562	 *      o RD qflag is on.
563	 *      o no addresses are provided.
564	 *      o all NS items are required glue.
565	 * OR
566	 *      o RD qflag is on.
567	 *      o no addresses are provided.
568	 *      o the query is for one of the nameservers in dp,
569	 *        and that nameserver is a glue-name for this dp.
570	 */
571	if(!(qflags&BIT_RD))
572		return 0;
573	/* either available or unused targets */
574	if(dp->usable_list || dp->result_list)
575		return 0;
576
577	/* see if query is for one of the nameservers, which is glue */
578	if( (qinfo->qtype == LDNS_RR_TYPE_A ||
579		qinfo->qtype == LDNS_RR_TYPE_AAAA) &&
580		dname_subdomain_c(qinfo->qname, dp->name) &&
581		delegpt_find_ns(dp, qinfo->qname, qinfo->qname_len))
582		return 1;
583
584	for(ns = dp->nslist; ns; ns = ns->next) {
585		if(ns->resolved) /* skip failed targets */
586			continue;
587		if(!dname_subdomain_c(ns->name, dp->name))
588			return 0; /* one address is not required glue */
589	}
590	return 1;
591}
592
593int
594iter_indicates_dnssec(struct module_env* env, struct delegpt* dp,
595        struct dns_msg* msg, uint16_t dclass)
596{
597	struct trust_anchor* a;
598	/* information not available, !env->anchors can be common */
599	if(!env || !env->anchors || !dp || !dp->name)
600		return 0;
601	/* a trust anchor exists with this name, RRSIGs expected */
602	if((a=anchor_find(env->anchors, dp->name, dp->namelabs, dp->namelen,
603		dclass))) {
604		lock_basic_unlock(&a->lock);
605		return 1;
606	}
607	/* see if DS rrset was given, in AUTH section */
608	if(msg && msg->rep &&
609		reply_find_rrset_section_ns(msg->rep, dp->name, dp->namelen,
610		LDNS_RR_TYPE_DS, dclass))
611		return 1;
612	/* look in key cache */
613	if(env->key_cache) {
614		struct key_entry_key* kk = key_cache_obtain(env->key_cache,
615			dp->name, dp->namelen, dclass, env->scratch, *env->now);
616		if(kk) {
617			if(query_dname_compare(kk->name, dp->name) == 0) {
618			  if(key_entry_isgood(kk) || key_entry_isbad(kk)) {
619				regional_free_all(env->scratch);
620				return 1;
621			  } else if(key_entry_isnull(kk)) {
622				regional_free_all(env->scratch);
623				return 0;
624			  }
625			}
626			regional_free_all(env->scratch);
627		}
628	}
629	return 0;
630}
631
632int
633iter_msg_has_dnssec(struct dns_msg* msg)
634{
635	size_t i;
636	if(!msg || !msg->rep)
637		return 0;
638	for(i=0; i<msg->rep->an_numrrsets + msg->rep->ns_numrrsets; i++) {
639		if(((struct packed_rrset_data*)msg->rep->rrsets[i]->
640			entry.data)->rrsig_count > 0)
641			return 1;
642	}
643	/* empty message has no DNSSEC info, with DNSSEC the reply is
644	 * not empty (NSEC) */
645	return 0;
646}
647
648int iter_msg_from_zone(struct dns_msg* msg, struct delegpt* dp,
649        enum response_type type, uint16_t dclass)
650{
651	if(!msg || !dp || !msg->rep || !dp->name)
652		return 0;
653	/* SOA RRset - always from reply zone */
654	if(reply_find_rrset_section_an(msg->rep, dp->name, dp->namelen,
655		LDNS_RR_TYPE_SOA, dclass) ||
656	   reply_find_rrset_section_ns(msg->rep, dp->name, dp->namelen,
657		LDNS_RR_TYPE_SOA, dclass))
658		return 1;
659	if(type == RESPONSE_TYPE_REFERRAL) {
660		size_t i;
661		/* if it adds a single label, i.e. we expect .com,
662		 * and referral to example.com. NS ... , then origin zone
663		 * is .com. For a referral to sub.example.com. NS ... then
664		 * we do not know, since example.com. may be in between. */
665		for(i=0; i<msg->rep->an_numrrsets+msg->rep->ns_numrrsets;
666			i++) {
667			struct ub_packed_rrset_key* s = msg->rep->rrsets[i];
668			if(ntohs(s->rk.type) == LDNS_RR_TYPE_NS &&
669				ntohs(s->rk.rrset_class) == dclass) {
670				int l = dname_count_labels(s->rk.dname);
671				if(l == dp->namelabs + 1 &&
672					dname_strict_subdomain(s->rk.dname,
673					l, dp->name, dp->namelabs))
674					return 1;
675			}
676		}
677		return 0;
678	}
679	log_assert(type==RESPONSE_TYPE_ANSWER || type==RESPONSE_TYPE_CNAME);
680	/* not a referral, and not lame delegation (upwards), so,
681	 * any NS rrset must be from the zone itself */
682	if(reply_find_rrset_section_an(msg->rep, dp->name, dp->namelen,
683		LDNS_RR_TYPE_NS, dclass) ||
684	   reply_find_rrset_section_ns(msg->rep, dp->name, dp->namelen,
685		LDNS_RR_TYPE_NS, dclass))
686		return 1;
687	/* a DNSKEY set is expected at the zone apex as well */
688	/* this is for 'minimal responses' for DNSKEYs */
689	if(reply_find_rrset_section_an(msg->rep, dp->name, dp->namelen,
690		LDNS_RR_TYPE_DNSKEY, dclass))
691		return 1;
692	return 0;
693}
694
695/**
696 * check equality of two rrsets
697 * @param k1: rrset
698 * @param k2: rrset
699 * @return true if equal
700 */
701static int
702rrset_equal(struct ub_packed_rrset_key* k1, struct ub_packed_rrset_key* k2)
703{
704	struct packed_rrset_data* d1 = (struct packed_rrset_data*)
705		k1->entry.data;
706	struct packed_rrset_data* d2 = (struct packed_rrset_data*)
707		k2->entry.data;
708	size_t i, t;
709	if(k1->rk.dname_len != k2->rk.dname_len ||
710		k1->rk.flags != k2->rk.flags ||
711		k1->rk.type != k2->rk.type ||
712		k1->rk.rrset_class != k2->rk.rrset_class ||
713		query_dname_compare(k1->rk.dname, k2->rk.dname) != 0)
714		return 0;
715	if(	/* do not check ttl: d1->ttl != d2->ttl || */
716		d1->count != d2->count ||
717		d1->rrsig_count != d2->rrsig_count ||
718		d1->trust != d2->trust ||
719		d1->security != d2->security)
720		return 0;
721	t = d1->count + d1->rrsig_count;
722	for(i=0; i<t; i++) {
723		if(d1->rr_len[i] != d2->rr_len[i] ||
724			/* no ttl check: d1->rr_ttl[i] != d2->rr_ttl[i] ||*/
725			memcmp(d1->rr_data[i], d2->rr_data[i],
726				d1->rr_len[i]) != 0)
727			return 0;
728	}
729	return 1;
730}
731
732int
733reply_equal(struct reply_info* p, struct reply_info* q, struct regional* region)
734{
735	size_t i;
736	if(p->flags != q->flags ||
737		p->qdcount != q->qdcount ||
738		/* do not check TTL, this may differ */
739		/*
740		p->ttl != q->ttl ||
741		p->prefetch_ttl != q->prefetch_ttl ||
742		*/
743		p->security != q->security ||
744		p->an_numrrsets != q->an_numrrsets ||
745		p->ns_numrrsets != q->ns_numrrsets ||
746		p->ar_numrrsets != q->ar_numrrsets ||
747		p->rrset_count != q->rrset_count)
748		return 0;
749	for(i=0; i<p->rrset_count; i++) {
750		if(!rrset_equal(p->rrsets[i], q->rrsets[i])) {
751			if(!rrset_canonical_equal(region, p->rrsets[i],
752				q->rrsets[i])) {
753				regional_free_all(region);
754				return 0;
755			}
756			regional_free_all(region);
757		}
758	}
759	return 1;
760}
761
762void
763caps_strip_reply(struct reply_info* rep)
764{
765	size_t i;
766	if(!rep) return;
767	/* see if message is a referral, in which case the additional and
768	 * NS record cannot be removed */
769	/* referrals have the AA flag unset (strict check, not elsewhere in
770	 * unbound, but for 0x20 this is very convenient). */
771	if(!(rep->flags&BIT_AA))
772		return;
773	/* remove the additional section from the reply */
774	if(rep->ar_numrrsets != 0) {
775		verbose(VERB_ALGO, "caps fallback: removing additional section");
776		rep->rrset_count -= rep->ar_numrrsets;
777		rep->ar_numrrsets = 0;
778	}
779	/* is there an NS set in the authority section to remove? */
780	/* the failure case (Cisco firewalls) only has one rrset in authsec */
781	for(i=rep->an_numrrsets; i<rep->an_numrrsets+rep->ns_numrrsets; i++) {
782		struct ub_packed_rrset_key* s = rep->rrsets[i];
783		if(ntohs(s->rk.type) == LDNS_RR_TYPE_NS) {
784			/* remove NS rrset and break from loop (loop limits
785			 * have changed) */
786			/* move last rrset into this position (there is no
787			 * additional section any more) */
788			verbose(VERB_ALGO, "caps fallback: removing NS rrset");
789			if(i < rep->rrset_count-1)
790				rep->rrsets[i]=rep->rrsets[rep->rrset_count-1];
791			rep->rrset_count --;
792			rep->ns_numrrsets --;
793			break;
794		}
795	}
796}
797
798int caps_failed_rcode(struct reply_info* rep)
799{
800	return !(FLAGS_GET_RCODE(rep->flags) == LDNS_RCODE_NOERROR ||
801		FLAGS_GET_RCODE(rep->flags) == LDNS_RCODE_NXDOMAIN);
802}
803
804void
805iter_store_parentside_rrset(struct module_env* env,
806	struct ub_packed_rrset_key* rrset)
807{
808	struct rrset_ref ref;
809	rrset = packed_rrset_copy_alloc(rrset, env->alloc, *env->now);
810	if(!rrset) {
811		log_err("malloc failure in store_parentside_rrset");
812		return;
813	}
814	rrset->rk.flags |= PACKED_RRSET_PARENT_SIDE;
815	rrset->entry.hash = rrset_key_hash(&rrset->rk);
816	ref.key = rrset;
817	ref.id = rrset->id;
818	/* ignore ret: if it was in the cache, ref updated */
819	(void)rrset_cache_update(env->rrset_cache, &ref, env->alloc, *env->now);
820}
821
822/** fetch NS record from reply, if any */
823static struct ub_packed_rrset_key*
824reply_get_NS_rrset(struct reply_info* rep)
825{
826	size_t i;
827	for(i=0; i<rep->rrset_count; i++) {
828		if(rep->rrsets[i]->rk.type == htons(LDNS_RR_TYPE_NS)) {
829			return rep->rrsets[i];
830		}
831	}
832	return NULL;
833}
834
835void
836iter_store_parentside_NS(struct module_env* env, struct reply_info* rep)
837{
838	struct ub_packed_rrset_key* rrset = reply_get_NS_rrset(rep);
839	if(rrset) {
840		log_rrset_key(VERB_ALGO, "store parent-side NS", rrset);
841		iter_store_parentside_rrset(env, rrset);
842	}
843}
844
845void iter_store_parentside_neg(struct module_env* env,
846        struct query_info* qinfo, struct reply_info* rep)
847{
848	/* TTL: NS from referral in iq->deleg_msg,
849	 *      or first RR from iq->response,
850	 *      or servfail5secs if !iq->response */
851	time_t ttl = NORR_TTL;
852	struct ub_packed_rrset_key* neg;
853	struct packed_rrset_data* newd;
854	if(rep) {
855		struct ub_packed_rrset_key* rrset = reply_get_NS_rrset(rep);
856		if(!rrset && rep->rrset_count != 0) rrset = rep->rrsets[0];
857		if(rrset) ttl = ub_packed_rrset_ttl(rrset);
858	}
859	/* create empty rrset to store */
860	neg = (struct ub_packed_rrset_key*)regional_alloc(env->scratch,
861	                sizeof(struct ub_packed_rrset_key));
862	if(!neg) {
863		log_err("out of memory in store_parentside_neg");
864		return;
865	}
866	memset(&neg->entry, 0, sizeof(neg->entry));
867	neg->entry.key = neg;
868	neg->rk.type = htons(qinfo->qtype);
869	neg->rk.rrset_class = htons(qinfo->qclass);
870	neg->rk.flags = 0;
871	neg->rk.dname = regional_alloc_init(env->scratch, qinfo->qname,
872		qinfo->qname_len);
873	if(!neg->rk.dname) {
874		log_err("out of memory in store_parentside_neg");
875		return;
876	}
877	neg->rk.dname_len = qinfo->qname_len;
878	neg->entry.hash = rrset_key_hash(&neg->rk);
879	newd = (struct packed_rrset_data*)regional_alloc_zero(env->scratch,
880		sizeof(struct packed_rrset_data) + sizeof(size_t) +
881		sizeof(uint8_t*) + sizeof(time_t) + sizeof(uint16_t));
882	if(!newd) {
883		log_err("out of memory in store_parentside_neg");
884		return;
885	}
886	neg->entry.data = newd;
887	newd->ttl = ttl;
888	/* entry must have one RR, otherwise not valid in cache.
889	 * put in one RR with empty rdata: those are ignored as nameserver */
890	newd->count = 1;
891	newd->rrsig_count = 0;
892	newd->trust = rrset_trust_ans_noAA;
893	newd->rr_len = (size_t*)((uint8_t*)newd +
894		sizeof(struct packed_rrset_data));
895	newd->rr_len[0] = 0 /* zero len rdata */ + sizeof(uint16_t);
896	packed_rrset_ptr_fixup(newd);
897	newd->rr_ttl[0] = newd->ttl;
898	sldns_write_uint16(newd->rr_data[0], 0 /* zero len rdata */);
899	/* store it */
900	log_rrset_key(VERB_ALGO, "store parent-side negative", neg);
901	iter_store_parentside_rrset(env, neg);
902}
903
904int
905iter_lookup_parent_NS_from_cache(struct module_env* env, struct delegpt* dp,
906	struct regional* region, struct query_info* qinfo)
907{
908	struct ub_packed_rrset_key* akey;
909	akey = rrset_cache_lookup(env->rrset_cache, dp->name,
910		dp->namelen, LDNS_RR_TYPE_NS, qinfo->qclass,
911		PACKED_RRSET_PARENT_SIDE, *env->now, 0);
912	if(akey) {
913		log_rrset_key(VERB_ALGO, "found parent-side NS in cache", akey);
914		dp->has_parent_side_NS = 1;
915		/* and mark the new names as lame */
916		if(!delegpt_rrset_add_ns(dp, region, akey, 1)) {
917			lock_rw_unlock(&akey->entry.lock);
918			return 0;
919		}
920		lock_rw_unlock(&akey->entry.lock);
921	}
922	return 1;
923}
924
925int iter_lookup_parent_glue_from_cache(struct module_env* env,
926        struct delegpt* dp, struct regional* region, struct query_info* qinfo)
927{
928	struct ub_packed_rrset_key* akey;
929	struct delegpt_ns* ns;
930	size_t num = delegpt_count_targets(dp);
931	for(ns = dp->nslist; ns; ns = ns->next) {
932		/* get cached parentside A */
933		akey = rrset_cache_lookup(env->rrset_cache, ns->name,
934			ns->namelen, LDNS_RR_TYPE_A, qinfo->qclass,
935			PACKED_RRSET_PARENT_SIDE, *env->now, 0);
936		if(akey) {
937			log_rrset_key(VERB_ALGO, "found parent-side", akey);
938			ns->done_pside4 = 1;
939			/* a negative-cache-element has no addresses it adds */
940			if(!delegpt_add_rrset_A(dp, region, akey, 1))
941				log_err("malloc failure in lookup_parent_glue");
942			lock_rw_unlock(&akey->entry.lock);
943		}
944		/* get cached parentside AAAA */
945		akey = rrset_cache_lookup(env->rrset_cache, ns->name,
946			ns->namelen, LDNS_RR_TYPE_AAAA, qinfo->qclass,
947			PACKED_RRSET_PARENT_SIDE, *env->now, 0);
948		if(akey) {
949			log_rrset_key(VERB_ALGO, "found parent-side", akey);
950			ns->done_pside6 = 1;
951			/* a negative-cache-element has no addresses it adds */
952			if(!delegpt_add_rrset_AAAA(dp, region, akey, 1))
953				log_err("malloc failure in lookup_parent_glue");
954			lock_rw_unlock(&akey->entry.lock);
955		}
956	}
957	/* see if new (but lame) addresses have become available */
958	return delegpt_count_targets(dp) != num;
959}
960
961int
962iter_get_next_root(struct iter_hints* hints, struct iter_forwards* fwd,
963	uint16_t* c)
964{
965	uint16_t c1 = *c, c2 = *c;
966	int r1 = hints_next_root(hints, &c1);
967	int r2 = forwards_next_root(fwd, &c2);
968	if(!r1 && !r2) /* got none, end of list */
969		return 0;
970	else if(!r1) /* got one, return that */
971		*c = c2;
972	else if(!r2)
973		*c = c1;
974	else if(c1 < c2) /* got both take smallest */
975		*c = c1;
976	else	*c = c2;
977	return 1;
978}
979
980void
981iter_scrub_ds(struct dns_msg* msg, struct ub_packed_rrset_key* ns, uint8_t* z)
982{
983	/* Only the DS record for the delegation itself is expected.
984	 * We allow DS for everything between the bailiwick and the
985	 * zonecut, thus DS records must be at or above the zonecut.
986	 * And the DS records must be below the server authority zone.
987	 * The answer section is already scrubbed. */
988	size_t i = msg->rep->an_numrrsets;
989	while(i < (msg->rep->an_numrrsets + msg->rep->ns_numrrsets)) {
990		struct ub_packed_rrset_key* s = msg->rep->rrsets[i];
991		if(ntohs(s->rk.type) == LDNS_RR_TYPE_DS &&
992			(!ns || !dname_subdomain_c(ns->rk.dname, s->rk.dname)
993			|| query_dname_compare(z, s->rk.dname) == 0)) {
994			log_nametypeclass(VERB_ALGO, "removing irrelevant DS",
995				s->rk.dname, ntohs(s->rk.type),
996				ntohs(s->rk.rrset_class));
997			memmove(msg->rep->rrsets+i, msg->rep->rrsets+i+1,
998				sizeof(struct ub_packed_rrset_key*) *
999				(msg->rep->rrset_count-i-1));
1000			msg->rep->ns_numrrsets--;
1001			msg->rep->rrset_count--;
1002			/* stay at same i, but new record */
1003			continue;
1004		}
1005		i++;
1006	}
1007}
1008
1009void iter_dec_attempts(struct delegpt* dp, int d)
1010{
1011	struct delegpt_addr* a;
1012	for(a=dp->target_list; a; a = a->next_target) {
1013		if(a->attempts >= OUTBOUND_MSG_RETRY) {
1014			/* add back to result list */
1015			a->next_result = dp->result_list;
1016			dp->result_list = a;
1017		}
1018		if(a->attempts > d)
1019			a->attempts -= d;
1020		else a->attempts = 0;
1021	}
1022}
1023
1024void iter_merge_retry_counts(struct delegpt* dp, struct delegpt* old)
1025{
1026	struct delegpt_addr* a, *o, *prev;
1027	for(a=dp->target_list; a; a = a->next_target) {
1028		o = delegpt_find_addr(old, &a->addr, a->addrlen);
1029		if(o) {
1030			log_addr(VERB_ALGO, "copy attempt count previous dp",
1031				&a->addr, a->addrlen);
1032			a->attempts = o->attempts;
1033		}
1034	}
1035	prev = NULL;
1036	a = dp->usable_list;
1037	while(a) {
1038		if(a->attempts >= OUTBOUND_MSG_RETRY) {
1039			log_addr(VERB_ALGO, "remove from usable list dp",
1040				&a->addr, a->addrlen);
1041			/* remove from result list */
1042			if(prev)
1043				prev->next_usable = a->next_usable;
1044			else	dp->usable_list = a->next_usable;
1045			/* prev stays the same */
1046			a = a->next_usable;
1047			continue;
1048		}
1049		prev = a;
1050		a = a->next_usable;
1051	}
1052}
1053
1054int
1055iter_ds_toolow(struct dns_msg* msg, struct delegpt* dp)
1056{
1057	/* if for query example.com, there is example.com SOA or a subdomain
1058	 * of example.com, then we are too low and need to fetch NS. */
1059	size_t i;
1060	/* if we have a DNAME or CNAME we are probably wrong */
1061	/* if we have a qtype DS in the answer section, its fine */
1062	for(i=0; i < msg->rep->an_numrrsets; i++) {
1063		struct ub_packed_rrset_key* s = msg->rep->rrsets[i];
1064		if(ntohs(s->rk.type) == LDNS_RR_TYPE_DNAME ||
1065			ntohs(s->rk.type) == LDNS_RR_TYPE_CNAME) {
1066			/* not the right answer, maybe too low, check the
1067			 * RRSIG signer name (if there is any) for a hint
1068			 * that it is from the dp zone anyway */
1069			uint8_t* sname;
1070			size_t slen;
1071			val_find_rrset_signer(s, &sname, &slen);
1072			if(sname && query_dname_compare(dp->name, sname)==0)
1073				return 0; /* it is fine, from the right dp */
1074			return 1;
1075		}
1076		if(ntohs(s->rk.type) == LDNS_RR_TYPE_DS)
1077			return 0; /* fine, we have a DS record */
1078	}
1079	for(i=msg->rep->an_numrrsets;
1080		i < msg->rep->an_numrrsets + msg->rep->ns_numrrsets; i++) {
1081		struct ub_packed_rrset_key* s = msg->rep->rrsets[i];
1082		if(ntohs(s->rk.type) == LDNS_RR_TYPE_SOA) {
1083			if(dname_subdomain_c(s->rk.dname, msg->qinfo.qname))
1084				return 1; /* point is too low */
1085			if(query_dname_compare(s->rk.dname, dp->name)==0)
1086				return 0; /* right dp */
1087		}
1088		if(ntohs(s->rk.type) == LDNS_RR_TYPE_NSEC ||
1089			ntohs(s->rk.type) == LDNS_RR_TYPE_NSEC3) {
1090			uint8_t* sname;
1091			size_t slen;
1092			val_find_rrset_signer(s, &sname, &slen);
1093			if(sname && query_dname_compare(dp->name, sname)==0)
1094				return 0; /* it is fine, from the right dp */
1095			return 1;
1096		}
1097	}
1098	/* we do not know */
1099	return 1;
1100}
1101
1102int iter_dp_cangodown(struct query_info* qinfo, struct delegpt* dp)
1103{
1104	/* no delegation point, do not see how we can go down,
1105	 * robust check, it should really exist */
1106	if(!dp) return 0;
1107
1108	/* see if dp equals the qname, then we cannot go down further */
1109	if(query_dname_compare(qinfo->qname, dp->name) == 0)
1110		return 0;
1111	/* if dp is one label above the name we also cannot go down further */
1112	if(dname_count_labels(qinfo->qname) == dp->namelabs+1)
1113		return 0;
1114	return 1;
1115}
1116