1/*
2 * iterator/iter_utils.c - iterative resolver module utility functions.
3 *
4 * Copyright (c) 2007, NLnet Labs. All rights reserved.
5 *
6 * This software is open source.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * Redistributions of source code must retain the above copyright notice,
13 * this list of conditions and the following disclaimer.
14 *
15 * Redistributions in binary form must reproduce the above copyright notice,
16 * this list of conditions and the following disclaimer in the documentation
17 * and/or other materials provided with the distribution.
18 *
19 * Neither the name of the NLNET LABS nor the names of its contributors may
20 * be used to endorse or promote products derived from this software without
21 * specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
26 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
27 * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
28 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
29 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
30 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
31 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
32 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
33 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
34 */
35
36/**
37 * \file
38 *
39 * This file contains functions to assist the iterator module.
40 * Configuration options. Forward zones.
41 */
42#include "config.h"
43#include "iterator/iter_utils.h"
44#include "iterator/iterator.h"
45#include "iterator/iter_hints.h"
46#include "iterator/iter_fwd.h"
47#include "iterator/iter_donotq.h"
48#include "iterator/iter_delegpt.h"
49#include "iterator/iter_priv.h"
50#include "services/cache/infra.h"
51#include "services/cache/dns.h"
52#include "services/cache/rrset.h"
53#include "util/net_help.h"
54#include "util/module.h"
55#include "util/log.h"
56#include "util/config_file.h"
57#include "util/regional.h"
58#include "util/data/msgparse.h"
59#include "util/data/dname.h"
60#include "util/random.h"
61#include "util/fptr_wlist.h"
62#include "validator/val_anchor.h"
63#include "validator/val_kcache.h"
64#include "validator/val_kentry.h"
65#include "validator/val_utils.h"
66#include "validator/val_sigcrypt.h"
67#include "sldns/sbuffer.h"
68#include "sldns/str2wire.h"
69
70/** time when nameserver glue is said to be 'recent' */
71#define SUSPICION_RECENT_EXPIRY 86400
72/** penalty to validation failed blacklisted IPs */
73#define BLACKLIST_PENALTY (USEFUL_SERVER_TOP_TIMEOUT*4)
74
75/** fillup fetch policy array */
76static void
77fetch_fill(struct iter_env* ie, const char* str)
78{
79	char* s = (char*)str, *e;
80	int i;
81	for(i=0; i<ie->max_dependency_depth+1; i++) {
82		ie->target_fetch_policy[i] = strtol(s, &e, 10);
83		if(s == e)
84			fatal_exit("cannot parse fetch policy number %s", s);
85		s = e;
86	}
87}
88
89/** Read config string that represents the target fetch policy */
90static int
91read_fetch_policy(struct iter_env* ie, const char* str)
92{
93	int count = cfg_count_numbers(str);
94	if(count < 1) {
95		log_err("Cannot parse target fetch policy: \"%s\"", str);
96		return 0;
97	}
98	ie->max_dependency_depth = count - 1;
99	ie->target_fetch_policy = (int*)calloc(
100		(size_t)ie->max_dependency_depth+1, sizeof(int));
101	if(!ie->target_fetch_policy) {
102		log_err("alloc fetch policy: out of memory");
103		return 0;
104	}
105	fetch_fill(ie, str);
106	return 1;
107}
108
109/** apply config caps whitelist items to name tree */
110static int
111caps_white_apply_cfg(rbtree_type* ntree, struct config_file* cfg)
112{
113	struct config_strlist* p;
114	for(p=cfg->caps_whitelist; p; p=p->next) {
115		struct name_tree_node* n;
116		size_t len;
117		uint8_t* nm = sldns_str2wire_dname(p->str, &len);
118		if(!nm) {
119			log_err("could not parse %s", p->str);
120			return 0;
121		}
122		n = (struct name_tree_node*)calloc(1, sizeof(*n));
123		if(!n) {
124			log_err("out of memory");
125			free(nm);
126			return 0;
127		}
128		n->node.key = n;
129		n->name = nm;
130		n->len = len;
131		n->labs = dname_count_labels(nm);
132		n->dclass = LDNS_RR_CLASS_IN;
133		if(!name_tree_insert(ntree, n, nm, len, n->labs, n->dclass)) {
134			/* duplicate element ignored, idempotent */
135			free(n->name);
136			free(n);
137		}
138	}
139	name_tree_init_parents(ntree);
140	return 1;
141}
142
143int
144iter_apply_cfg(struct iter_env* iter_env, struct config_file* cfg)
145{
146	int i;
147	/* target fetch policy */
148	if(!read_fetch_policy(iter_env, cfg->target_fetch_policy))
149		return 0;
150	for(i=0; i<iter_env->max_dependency_depth+1; i++)
151		verbose(VERB_QUERY, "target fetch policy for level %d is %d",
152			i, iter_env->target_fetch_policy[i]);
153
154	if(!iter_env->donotq)
155		iter_env->donotq = donotq_create();
156	if(!iter_env->donotq || !donotq_apply_cfg(iter_env->donotq, cfg)) {
157		log_err("Could not set donotqueryaddresses");
158		return 0;
159	}
160	if(!iter_env->priv)
161		iter_env->priv = priv_create();
162	if(!iter_env->priv || !priv_apply_cfg(iter_env->priv, cfg)) {
163		log_err("Could not set private addresses");
164		return 0;
165	}
166	if(cfg->caps_whitelist) {
167		if(!iter_env->caps_white)
168			iter_env->caps_white = rbtree_create(name_tree_compare);
169		if(!iter_env->caps_white || !caps_white_apply_cfg(
170			iter_env->caps_white, cfg)) {
171			log_err("Could not set capsforid whitelist");
172			return 0;
173		}
174
175	}
176	iter_env->supports_ipv6 = cfg->do_ip6;
177	iter_env->supports_ipv4 = cfg->do_ip4;
178	return 1;
179}
180
181/** filter out unsuitable targets
182 * @param iter_env: iterator environment with ipv6-support flag.
183 * @param env: module environment with infra cache.
184 * @param name: zone name
185 * @param namelen: length of name
186 * @param qtype: query type (host order).
187 * @param now: current time
188 * @param a: address in delegation point we are examining.
189 * @return an integer that signals the target suitability.
190 *	as follows:
191 *	-1: The address should be omitted from the list.
192 *	    Because:
193 *		o The address is bogus (DNSSEC validation failure).
194 *		o Listed as donotquery
195 *		o is ipv6 but no ipv6 support (in operating system).
196 *		o is ipv4 but no ipv4 support (in operating system).
197 *		o is lame
198 *	Otherwise, an rtt in milliseconds.
199 *	0 .. USEFUL_SERVER_TOP_TIMEOUT-1
200 *		The roundtrip time timeout estimate. less than 2 minutes.
201 *		Note that util/rtt.c has a MIN_TIMEOUT of 50 msec, thus
202 *		values 0 .. 49 are not used, unless that is changed.
203 *	USEFUL_SERVER_TOP_TIMEOUT
204 *		This value exactly is given for unresponsive blacklisted.
205 *	USEFUL_SERVER_TOP_TIMEOUT+1
206 *		For non-blacklisted servers: huge timeout, but has traffic.
207 *	USEFUL_SERVER_TOP_TIMEOUT*1 ..
208 *		parent-side lame servers get this penalty. A dispreferential
209 *		server. (lame in delegpt).
210 *	USEFUL_SERVER_TOP_TIMEOUT*2 ..
211 *		dnsseclame servers get penalty
212 *	USEFUL_SERVER_TOP_TIMEOUT*3 ..
213 *		recursion lame servers get penalty
214 *	UNKNOWN_SERVER_NICENESS
215 *		If no information is known about the server, this is
216 *		returned. 376 msec or so.
217 *	+BLACKLIST_PENALTY (of USEFUL_TOP_TIMEOUT*4) for dnssec failed IPs.
218 *
219 * When a final value is chosen that is dnsseclame ; dnsseclameness checking
220 * is turned off (so we do not discard the reply).
221 * When a final value is chosen that is recursionlame; RD bit is set on query.
222 * Because of the numbers this means recursionlame also have dnssec lameness
223 * checking turned off.
224 */
225static int
226iter_filter_unsuitable(struct iter_env* iter_env, struct module_env* env,
227	uint8_t* name, size_t namelen, uint16_t qtype, time_t now,
228	struct delegpt_addr* a)
229{
230	int rtt, lame, reclame, dnsseclame;
231	if(a->bogus)
232		return -1; /* address of server is bogus */
233	if(donotq_lookup(iter_env->donotq, &a->addr, a->addrlen)) {
234		log_addr(VERB_ALGO, "skip addr on the donotquery list",
235			&a->addr, a->addrlen);
236		return -1; /* server is on the donotquery list */
237	}
238	if(!iter_env->supports_ipv6 && addr_is_ip6(&a->addr, a->addrlen)) {
239		return -1; /* there is no ip6 available */
240	}
241	if(!iter_env->supports_ipv4 && !addr_is_ip6(&a->addr, a->addrlen)) {
242		return -1; /* there is no ip4 available */
243	}
244	/* check lameness - need zone , class info */
245	if(infra_get_lame_rtt(env->infra_cache, &a->addr, a->addrlen,
246		name, namelen, qtype, &lame, &dnsseclame, &reclame,
247		&rtt, now)) {
248		log_addr(VERB_ALGO, "servselect", &a->addr, a->addrlen);
249		verbose(VERB_ALGO, "   rtt=%d%s%s%s%s", rtt,
250			lame?" LAME":"",
251			dnsseclame?" DNSSEC_LAME":"",
252			reclame?" REC_LAME":"",
253			a->lame?" ADDR_LAME":"");
254		if(lame)
255			return -1; /* server is lame */
256		else if(rtt >= USEFUL_SERVER_TOP_TIMEOUT)
257			/* server is unresponsive,
258			 * we used to return TOP_TIMEOUT, but fairly useless,
259			 * because if == TOP_TIMEOUT is dropped because
260			 * blacklisted later, instead, remove it here, so
261			 * other choices (that are not blacklisted) can be
262			 * tried */
263			return -1;
264		/* select remainder from worst to best */
265		else if(reclame)
266			return rtt+USEFUL_SERVER_TOP_TIMEOUT*3; /* nonpref */
267		else if(dnsseclame || a->dnsseclame)
268			return rtt+USEFUL_SERVER_TOP_TIMEOUT*2; /* nonpref */
269		else if(a->lame)
270			return rtt+USEFUL_SERVER_TOP_TIMEOUT+1; /* nonpref */
271		else	return rtt;
272	}
273	/* no server information present */
274	if(a->dnsseclame)
275		return UNKNOWN_SERVER_NICENESS+USEFUL_SERVER_TOP_TIMEOUT*2; /* nonpref */
276	else if(a->lame)
277		return USEFUL_SERVER_TOP_TIMEOUT+1+UNKNOWN_SERVER_NICENESS; /* nonpref */
278	return UNKNOWN_SERVER_NICENESS;
279}
280
281/** lookup RTT information, and also store fastest rtt (if any) */
282static int
283iter_fill_rtt(struct iter_env* iter_env, struct module_env* env,
284	uint8_t* name, size_t namelen, uint16_t qtype, time_t now,
285	struct delegpt* dp, int* best_rtt, struct sock_list* blacklist,
286	size_t* num_suitable_results)
287{
288	int got_it = 0;
289	struct delegpt_addr* a;
290	*num_suitable_results = 0;
291
292	if(dp->bogus)
293		return 0; /* NS bogus, all bogus, nothing found */
294	for(a=dp->result_list; a; a = a->next_result) {
295		a->sel_rtt = iter_filter_unsuitable(iter_env, env,
296			name, namelen, qtype, now, a);
297		if(a->sel_rtt != -1) {
298			if(sock_list_find(blacklist, &a->addr, a->addrlen))
299				a->sel_rtt += BLACKLIST_PENALTY;
300
301			if(!got_it) {
302				*best_rtt = a->sel_rtt;
303				got_it = 1;
304			} else if(a->sel_rtt < *best_rtt) {
305				*best_rtt = a->sel_rtt;
306			}
307			(*num_suitable_results)++;
308		}
309	}
310	return got_it;
311}
312
313/** compare two rtts, return -1, 0 or 1 */
314static int
315rtt_compare(const void* x, const void* y)
316{
317	if(*(int*)x == *(int*)y)
318		return 0;
319	if(*(int*)x > *(int*)y)
320		return 1;
321	return -1;
322}
323
324/** get RTT for the Nth fastest server */
325static int
326nth_rtt(struct delegpt_addr* result_list, size_t num_results, size_t n)
327{
328	int rtt_band;
329	size_t i;
330	int* rtt_list, *rtt_index;
331
332	if(num_results < 1 || n >= num_results) {
333		return -1;
334	}
335
336	rtt_list = calloc(num_results, sizeof(int));
337	if(!rtt_list) {
338		log_err("malloc failure: allocating rtt_list");
339		return -1;
340	}
341	rtt_index = rtt_list;
342
343	for(i=0; i<num_results && result_list; i++) {
344		if(result_list->sel_rtt != -1) {
345			*rtt_index = result_list->sel_rtt;
346			rtt_index++;
347		}
348		result_list=result_list->next_result;
349	}
350	qsort(rtt_list, num_results, sizeof(*rtt_list), rtt_compare);
351
352	log_assert(n > 0);
353	rtt_band = rtt_list[n-1];
354	free(rtt_list);
355
356	return rtt_band;
357}
358
359/** filter the address list, putting best targets at front,
360 * returns number of best targets (or 0, no suitable targets) */
361static int
362iter_filter_order(struct iter_env* iter_env, struct module_env* env,
363	uint8_t* name, size_t namelen, uint16_t qtype, time_t now,
364	struct delegpt* dp, int* selected_rtt, int open_target,
365	struct sock_list* blacklist, time_t prefetch)
366{
367	int got_num = 0, low_rtt = 0, swap_to_front, rtt_band = RTT_BAND, nth;
368	size_t num_results;
369	struct delegpt_addr* a, *n, *prev=NULL;
370
371	/* fillup sel_rtt and find best rtt in the bunch */
372	got_num = iter_fill_rtt(iter_env, env, name, namelen, qtype, now, dp,
373		&low_rtt, blacklist, &num_results);
374	if(got_num == 0)
375		return 0;
376	if(low_rtt >= USEFUL_SERVER_TOP_TIMEOUT &&
377		(delegpt_count_missing_targets(dp) > 0 || open_target > 0)) {
378		verbose(VERB_ALGO, "Bad choices, trying to get more choice");
379		return 0; /* we want more choice. The best choice is a bad one.
380			     return 0 to force the caller to fetch more */
381	}
382
383	if(env->cfg->fast_server_permil != 0 && prefetch == 0 &&
384		num_results > env->cfg->fast_server_num &&
385		ub_random_max(env->rnd, 1000) < env->cfg->fast_server_permil) {
386		/* the query is not prefetch, but for a downstream client,
387		 * there are more servers available then the fastest N we want
388		 * to choose from. Limit our choice to the fastest servers. */
389		nth = nth_rtt(dp->result_list, num_results,
390			env->cfg->fast_server_num);
391		if(nth > 0) {
392			rtt_band = nth - low_rtt;
393			if(rtt_band > RTT_BAND)
394				rtt_band = RTT_BAND;
395		}
396	}
397
398	got_num = 0;
399	a = dp->result_list;
400	while(a) {
401		/* skip unsuitable targets */
402		if(a->sel_rtt == -1) {
403			prev = a;
404			a = a->next_result;
405			continue;
406		}
407		/* classify the server address and determine what to do */
408		swap_to_front = 0;
409		if(a->sel_rtt >= low_rtt && a->sel_rtt - low_rtt <= rtt_band) {
410			got_num++;
411			swap_to_front = 1;
412		} else if(a->sel_rtt<low_rtt && low_rtt-a->sel_rtt<=rtt_band) {
413			got_num++;
414			swap_to_front = 1;
415		}
416		/* swap to front if necessary, or move to next result */
417		if(swap_to_front && prev) {
418			n = a->next_result;
419			prev->next_result = n;
420			a->next_result = dp->result_list;
421			dp->result_list = a;
422			a = n;
423		} else {
424			prev = a;
425			a = a->next_result;
426		}
427	}
428	*selected_rtt = low_rtt;
429
430	if (env->cfg->prefer_ip6) {
431		int got_num6 = 0;
432		int low_rtt6 = 0;
433		int i;
434		int attempt = -1; /* filter to make sure addresses have
435		  less attempts on them than the first, to force round
436		  robin when all the IPv6 addresses fail */
437		int num4ok = 0; /* number ip4 at low attempt count */
438		int num4_lowrtt = 0;
439		prev = NULL;
440		a = dp->result_list;
441		for(i = 0; i < got_num; i++) {
442			swap_to_front = 0;
443			if(a->addr.ss_family != AF_INET6 && attempt == -1) {
444				/* if we only have ip4 at low attempt count,
445				 * then ip6 is failing, and we need to
446				 * select one of the remaining IPv4 addrs */
447				attempt = a->attempts;
448				num4ok++;
449				num4_lowrtt = a->sel_rtt;
450			} else if(a->addr.ss_family != AF_INET6 && attempt == a->attempts) {
451				num4ok++;
452				if(num4_lowrtt == 0 || a->sel_rtt < num4_lowrtt) {
453					num4_lowrtt = a->sel_rtt;
454				}
455			}
456			if(a->addr.ss_family == AF_INET6) {
457				if(attempt == -1) {
458					attempt = a->attempts;
459				} else if(a->attempts > attempt) {
460					break;
461				}
462				got_num6++;
463				swap_to_front = 1;
464				if(low_rtt6 == 0 || a->sel_rtt < low_rtt6) {
465					low_rtt6 = a->sel_rtt;
466				}
467			}
468			/* swap to front if IPv6, or move to next result */
469			if(swap_to_front && prev) {
470				n = a->next_result;
471				prev->next_result = n;
472				a->next_result = dp->result_list;
473				dp->result_list = a;
474				a = n;
475			} else {
476				prev = a;
477				a = a->next_result;
478			}
479		}
480		if(got_num6 > 0) {
481			got_num = got_num6;
482			*selected_rtt = low_rtt6;
483		} else if(num4ok > 0) {
484			got_num = num4ok;
485			*selected_rtt = num4_lowrtt;
486		}
487	} else if (env->cfg->prefer_ip4) {
488		int got_num4 = 0;
489		int low_rtt4 = 0;
490		int i;
491		int attempt = -1; /* filter to make sure addresses have
492		  less attempts on them than the first, to force round
493		  robin when all the IPv4 addresses fail */
494		int num6ok = 0; /* number ip6 at low attempt count */
495		int num6_lowrtt = 0;
496		prev = NULL;
497		a = dp->result_list;
498		for(i = 0; i < got_num; i++) {
499			swap_to_front = 0;
500			if(a->addr.ss_family != AF_INET && attempt == -1) {
501				/* if we only have ip6 at low attempt count,
502				 * then ip4 is failing, and we need to
503				 * select one of the remaining IPv6 addrs */
504				attempt = a->attempts;
505				num6ok++;
506				num6_lowrtt = a->sel_rtt;
507			} else if(a->addr.ss_family != AF_INET && attempt == a->attempts) {
508				num6ok++;
509				if(num6_lowrtt == 0 || a->sel_rtt < num6_lowrtt) {
510					num6_lowrtt = a->sel_rtt;
511				}
512			}
513			if(a->addr.ss_family == AF_INET) {
514				if(attempt == -1) {
515					attempt = a->attempts;
516				} else if(a->attempts > attempt) {
517					break;
518				}
519				got_num4++;
520				swap_to_front = 1;
521				if(low_rtt4 == 0 || a->sel_rtt < low_rtt4) {
522					low_rtt4 = a->sel_rtt;
523				}
524			}
525			/* swap to front if IPv4, or move to next result */
526			if(swap_to_front && prev) {
527				n = a->next_result;
528				prev->next_result = n;
529				a->next_result = dp->result_list;
530				dp->result_list = a;
531				a = n;
532			} else {
533				prev = a;
534				a = a->next_result;
535			}
536		}
537		if(got_num4 > 0) {
538			got_num = got_num4;
539			*selected_rtt = low_rtt4;
540		} else if(num6ok > 0) {
541			got_num = num6ok;
542			*selected_rtt = num6_lowrtt;
543		}
544	}
545	return got_num;
546}
547
548struct delegpt_addr*
549iter_server_selection(struct iter_env* iter_env,
550	struct module_env* env, struct delegpt* dp,
551	uint8_t* name, size_t namelen, uint16_t qtype, int* dnssec_lame,
552	int* chase_to_rd, int open_target, struct sock_list* blacklist,
553	time_t prefetch)
554{
555	int sel;
556	int selrtt;
557	struct delegpt_addr* a, *prev;
558	int num = iter_filter_order(iter_env, env, name, namelen, qtype,
559		*env->now, dp, &selrtt, open_target, blacklist, prefetch);
560
561	if(num == 0)
562		return NULL;
563	verbose(VERB_ALGO, "selrtt %d", selrtt);
564	if(selrtt > BLACKLIST_PENALTY) {
565		if(selrtt-BLACKLIST_PENALTY > USEFUL_SERVER_TOP_TIMEOUT*3) {
566			verbose(VERB_ALGO, "chase to "
567				"blacklisted recursion lame server");
568			*chase_to_rd = 1;
569		}
570		if(selrtt-BLACKLIST_PENALTY > USEFUL_SERVER_TOP_TIMEOUT*2) {
571			verbose(VERB_ALGO, "chase to "
572				"blacklisted dnssec lame server");
573			*dnssec_lame = 1;
574		}
575	} else {
576		if(selrtt > USEFUL_SERVER_TOP_TIMEOUT*3) {
577			verbose(VERB_ALGO, "chase to recursion lame server");
578			*chase_to_rd = 1;
579		}
580		if(selrtt > USEFUL_SERVER_TOP_TIMEOUT*2) {
581			verbose(VERB_ALGO, "chase to dnssec lame server");
582			*dnssec_lame = 1;
583		}
584		if(selrtt == USEFUL_SERVER_TOP_TIMEOUT) {
585			verbose(VERB_ALGO, "chase to blacklisted lame server");
586			return NULL;
587		}
588	}
589
590	if(num == 1) {
591		a = dp->result_list;
592		if(++a->attempts < OUTBOUND_MSG_RETRY)
593			return a;
594		dp->result_list = a->next_result;
595		return a;
596	}
597
598	/* randomly select a target from the list */
599	log_assert(num > 1);
600	/* grab secure random number, to pick unexpected server.
601	 * also we need it to be threadsafe. */
602	sel = ub_random_max(env->rnd, num);
603	a = dp->result_list;
604	prev = NULL;
605	while(sel > 0 && a) {
606		prev = a;
607		a = a->next_result;
608		sel--;
609	}
610	if(!a)  /* robustness */
611		return NULL;
612	if(++a->attempts < OUTBOUND_MSG_RETRY)
613		return a;
614	/* remove it from the delegation point result list */
615	if(prev)
616		prev->next_result = a->next_result;
617	else	dp->result_list = a->next_result;
618	return a;
619}
620
621struct dns_msg*
622dns_alloc_msg(sldns_buffer* pkt, struct msg_parse* msg,
623	struct regional* region)
624{
625	struct dns_msg* m = (struct dns_msg*)regional_alloc(region,
626		sizeof(struct dns_msg));
627	if(!m)
628		return NULL;
629	memset(m, 0, sizeof(*m));
630	if(!parse_create_msg(pkt, msg, NULL, &m->qinfo, &m->rep, region)) {
631		log_err("malloc failure: allocating incoming dns_msg");
632		return NULL;
633	}
634	return m;
635}
636
637struct dns_msg*
638dns_copy_msg(struct dns_msg* from, struct regional* region)
639{
640	struct dns_msg* m = (struct dns_msg*)regional_alloc(region,
641		sizeof(struct dns_msg));
642	if(!m)
643		return NULL;
644	m->qinfo = from->qinfo;
645	if(!(m->qinfo.qname = regional_alloc_init(region, from->qinfo.qname,
646		from->qinfo.qname_len)))
647		return NULL;
648	if(!(m->rep = reply_info_copy(from->rep, NULL, region)))
649		return NULL;
650	return m;
651}
652
653void
654iter_dns_store(struct module_env* env, struct query_info* msgqinf,
655	struct reply_info* msgrep, int is_referral, time_t leeway, int pside,
656	struct regional* region, uint16_t flags)
657{
658	if(!dns_cache_store(env, msgqinf, msgrep, is_referral, leeway,
659		pside, region, flags))
660		log_err("out of memory: cannot store data in cache");
661}
662
663int
664iter_ns_probability(struct ub_randstate* rnd, int n, int m)
665{
666	int sel;
667	if(n == m) /* 100% chance */
668		return 1;
669	/* we do not need secure random numbers here, but
670	 * we do need it to be threadsafe, so we use this */
671	sel = ub_random_max(rnd, m);
672	return (sel < n);
673}
674
675/** detect dependency cycle for query and target */
676static int
677causes_cycle(struct module_qstate* qstate, uint8_t* name, size_t namelen,
678	uint16_t t, uint16_t c)
679{
680	struct query_info qinf;
681	qinf.qname = name;
682	qinf.qname_len = namelen;
683	qinf.qtype = t;
684	qinf.qclass = c;
685	qinf.local_alias = NULL;
686	fptr_ok(fptr_whitelist_modenv_detect_cycle(
687		qstate->env->detect_cycle));
688	return (*qstate->env->detect_cycle)(qstate, &qinf,
689		(uint16_t)(BIT_RD|BIT_CD), qstate->is_priming,
690		qstate->is_valrec);
691}
692
693void
694iter_mark_cycle_targets(struct module_qstate* qstate, struct delegpt* dp)
695{
696	struct delegpt_ns* ns;
697	for(ns = dp->nslist; ns; ns = ns->next) {
698		if(ns->resolved)
699			continue;
700		/* see if this ns as target causes dependency cycle */
701		if(causes_cycle(qstate, ns->name, ns->namelen,
702			LDNS_RR_TYPE_AAAA, qstate->qinfo.qclass) ||
703		   causes_cycle(qstate, ns->name, ns->namelen,
704			LDNS_RR_TYPE_A, qstate->qinfo.qclass)) {
705			log_nametypeclass(VERB_QUERY, "skipping target due "
706			 	"to dependency cycle (harden-glue: no may "
707				"fix some of the cycles)",
708				ns->name, LDNS_RR_TYPE_A,
709				qstate->qinfo.qclass);
710			ns->resolved = 1;
711		}
712	}
713}
714
715void
716iter_mark_pside_cycle_targets(struct module_qstate* qstate, struct delegpt* dp)
717{
718	struct delegpt_ns* ns;
719	for(ns = dp->nslist; ns; ns = ns->next) {
720		if(ns->done_pside4 && ns->done_pside6)
721			continue;
722		/* see if this ns as target causes dependency cycle */
723		if(causes_cycle(qstate, ns->name, ns->namelen,
724			LDNS_RR_TYPE_A, qstate->qinfo.qclass)) {
725			log_nametypeclass(VERB_QUERY, "skipping target due "
726			 	"to dependency cycle", ns->name,
727				LDNS_RR_TYPE_A, qstate->qinfo.qclass);
728			ns->done_pside4 = 1;
729		}
730		if(causes_cycle(qstate, ns->name, ns->namelen,
731			LDNS_RR_TYPE_AAAA, qstate->qinfo.qclass)) {
732			log_nametypeclass(VERB_QUERY, "skipping target due "
733			 	"to dependency cycle", ns->name,
734				LDNS_RR_TYPE_AAAA, qstate->qinfo.qclass);
735			ns->done_pside6 = 1;
736		}
737	}
738}
739
740int
741iter_dp_is_useless(struct query_info* qinfo, uint16_t qflags,
742	struct delegpt* dp)
743{
744	struct delegpt_ns* ns;
745	/* check:
746	 *      o RD qflag is on.
747	 *      o no addresses are provided.
748	 *      o all NS items are required glue.
749	 * OR
750	 *      o RD qflag is on.
751	 *      o no addresses are provided.
752	 *      o the query is for one of the nameservers in dp,
753	 *        and that nameserver is a glue-name for this dp.
754	 */
755	if(!(qflags&BIT_RD))
756		return 0;
757	/* either available or unused targets */
758	if(dp->usable_list || dp->result_list)
759		return 0;
760
761	/* see if query is for one of the nameservers, which is glue */
762	if( (qinfo->qtype == LDNS_RR_TYPE_A ||
763		qinfo->qtype == LDNS_RR_TYPE_AAAA) &&
764		dname_subdomain_c(qinfo->qname, dp->name) &&
765		delegpt_find_ns(dp, qinfo->qname, qinfo->qname_len))
766		return 1;
767
768	for(ns = dp->nslist; ns; ns = ns->next) {
769		if(ns->resolved) /* skip failed targets */
770			continue;
771		if(!dname_subdomain_c(ns->name, dp->name))
772			return 0; /* one address is not required glue */
773	}
774	return 1;
775}
776
777int
778iter_qname_indicates_dnssec(struct module_env* env, struct query_info *qinfo)
779{
780	struct trust_anchor* a;
781	if(!env || !env->anchors || !qinfo || !qinfo->qname)
782		return 0;
783	/* a trust anchor exists above the name? */
784	if((a=anchors_lookup(env->anchors, qinfo->qname, qinfo->qname_len,
785		qinfo->qclass))) {
786		if(a->numDS == 0 && a->numDNSKEY == 0) {
787			/* insecure trust point */
788			lock_basic_unlock(&a->lock);
789			return 0;
790		}
791		lock_basic_unlock(&a->lock);
792		return 1;
793	}
794	/* no trust anchor above it. */
795	return 0;
796}
797
798int
799iter_indicates_dnssec(struct module_env* env, struct delegpt* dp,
800        struct dns_msg* msg, uint16_t dclass)
801{
802	struct trust_anchor* a;
803	/* information not available, !env->anchors can be common */
804	if(!env || !env->anchors || !dp || !dp->name)
805		return 0;
806	/* a trust anchor exists with this name, RRSIGs expected */
807	if((a=anchor_find(env->anchors, dp->name, dp->namelabs, dp->namelen,
808		dclass))) {
809		if(a->numDS == 0 && a->numDNSKEY == 0) {
810			/* insecure trust point */
811			lock_basic_unlock(&a->lock);
812			return 0;
813		}
814		lock_basic_unlock(&a->lock);
815		return 1;
816	}
817	/* see if DS rrset was given, in AUTH section */
818	if(msg && msg->rep &&
819		reply_find_rrset_section_ns(msg->rep, dp->name, dp->namelen,
820		LDNS_RR_TYPE_DS, dclass))
821		return 1;
822	/* look in key cache */
823	if(env->key_cache) {
824		struct key_entry_key* kk = key_cache_obtain(env->key_cache,
825			dp->name, dp->namelen, dclass, env->scratch, *env->now);
826		if(kk) {
827			if(query_dname_compare(kk->name, dp->name) == 0) {
828			  if(key_entry_isgood(kk) || key_entry_isbad(kk)) {
829				regional_free_all(env->scratch);
830				return 1;
831			  } else if(key_entry_isnull(kk)) {
832				regional_free_all(env->scratch);
833				return 0;
834			  }
835			}
836			regional_free_all(env->scratch);
837		}
838	}
839	return 0;
840}
841
842int
843iter_msg_has_dnssec(struct dns_msg* msg)
844{
845	size_t i;
846	if(!msg || !msg->rep)
847		return 0;
848	for(i=0; i<msg->rep->an_numrrsets + msg->rep->ns_numrrsets; i++) {
849		if(((struct packed_rrset_data*)msg->rep->rrsets[i]->
850			entry.data)->rrsig_count > 0)
851			return 1;
852	}
853	/* empty message has no DNSSEC info, with DNSSEC the reply is
854	 * not empty (NSEC) */
855	return 0;
856}
857
858int iter_msg_from_zone(struct dns_msg* msg, struct delegpt* dp,
859        enum response_type type, uint16_t dclass)
860{
861	if(!msg || !dp || !msg->rep || !dp->name)
862		return 0;
863	/* SOA RRset - always from reply zone */
864	if(reply_find_rrset_section_an(msg->rep, dp->name, dp->namelen,
865		LDNS_RR_TYPE_SOA, dclass) ||
866	   reply_find_rrset_section_ns(msg->rep, dp->name, dp->namelen,
867		LDNS_RR_TYPE_SOA, dclass))
868		return 1;
869	if(type == RESPONSE_TYPE_REFERRAL) {
870		size_t i;
871		/* if it adds a single label, i.e. we expect .com,
872		 * and referral to example.com. NS ... , then origin zone
873		 * is .com. For a referral to sub.example.com. NS ... then
874		 * we do not know, since example.com. may be in between. */
875		for(i=0; i<msg->rep->an_numrrsets+msg->rep->ns_numrrsets;
876			i++) {
877			struct ub_packed_rrset_key* s = msg->rep->rrsets[i];
878			if(ntohs(s->rk.type) == LDNS_RR_TYPE_NS &&
879				ntohs(s->rk.rrset_class) == dclass) {
880				int l = dname_count_labels(s->rk.dname);
881				if(l == dp->namelabs + 1 &&
882					dname_strict_subdomain(s->rk.dname,
883					l, dp->name, dp->namelabs))
884					return 1;
885			}
886		}
887		return 0;
888	}
889	log_assert(type==RESPONSE_TYPE_ANSWER || type==RESPONSE_TYPE_CNAME);
890	/* not a referral, and not lame delegation (upwards), so,
891	 * any NS rrset must be from the zone itself */
892	if(reply_find_rrset_section_an(msg->rep, dp->name, dp->namelen,
893		LDNS_RR_TYPE_NS, dclass) ||
894	   reply_find_rrset_section_ns(msg->rep, dp->name, dp->namelen,
895		LDNS_RR_TYPE_NS, dclass))
896		return 1;
897	/* a DNSKEY set is expected at the zone apex as well */
898	/* this is for 'minimal responses' for DNSKEYs */
899	if(reply_find_rrset_section_an(msg->rep, dp->name, dp->namelen,
900		LDNS_RR_TYPE_DNSKEY, dclass))
901		return 1;
902	return 0;
903}
904
905/**
906 * check equality of two rrsets
907 * @param k1: rrset
908 * @param k2: rrset
909 * @return true if equal
910 */
911static int
912rrset_equal(struct ub_packed_rrset_key* k1, struct ub_packed_rrset_key* k2)
913{
914	struct packed_rrset_data* d1 = (struct packed_rrset_data*)
915		k1->entry.data;
916	struct packed_rrset_data* d2 = (struct packed_rrset_data*)
917		k2->entry.data;
918	size_t i, t;
919	if(k1->rk.dname_len != k2->rk.dname_len ||
920		k1->rk.flags != k2->rk.flags ||
921		k1->rk.type != k2->rk.type ||
922		k1->rk.rrset_class != k2->rk.rrset_class ||
923		query_dname_compare(k1->rk.dname, k2->rk.dname) != 0)
924		return 0;
925	if(	/* do not check ttl: d1->ttl != d2->ttl || */
926		d1->count != d2->count ||
927		d1->rrsig_count != d2->rrsig_count ||
928		d1->trust != d2->trust ||
929		d1->security != d2->security)
930		return 0;
931	t = d1->count + d1->rrsig_count;
932	for(i=0; i<t; i++) {
933		if(d1->rr_len[i] != d2->rr_len[i] ||
934			/* no ttl check: d1->rr_ttl[i] != d2->rr_ttl[i] ||*/
935			memcmp(d1->rr_data[i], d2->rr_data[i],
936				d1->rr_len[i]) != 0)
937			return 0;
938	}
939	return 1;
940}
941
942/** compare rrsets and sort canonically.  Compares rrset name, type, class.
943 * return 0 if equal, +1 if x > y, and -1 if x < y.
944 */
945static int
946rrset_canonical_sort_cmp(const void* x, const void* y)
947{
948	struct ub_packed_rrset_key* rrx = *(struct ub_packed_rrset_key**)x;
949	struct ub_packed_rrset_key* rry = *(struct ub_packed_rrset_key**)y;
950	int r = dname_canonical_compare(rrx->rk.dname, rry->rk.dname);
951	if(r != 0)
952		return r;
953	if(rrx->rk.type != rry->rk.type) {
954		if(ntohs(rrx->rk.type) > ntohs(rry->rk.type))
955			return 1;
956		else	return -1;
957	}
958	if(rrx->rk.rrset_class != rry->rk.rrset_class) {
959		if(ntohs(rrx->rk.rrset_class) > ntohs(rry->rk.rrset_class))
960			return 1;
961		else	return -1;
962	}
963	return 0;
964}
965
966int
967reply_equal(struct reply_info* p, struct reply_info* q, struct regional* region)
968{
969	size_t i;
970	struct ub_packed_rrset_key** sorted_p, **sorted_q;
971	if(p->flags != q->flags ||
972		p->qdcount != q->qdcount ||
973		/* do not check TTL, this may differ */
974		/*
975		p->ttl != q->ttl ||
976		p->prefetch_ttl != q->prefetch_ttl ||
977		*/
978		p->security != q->security ||
979		p->an_numrrsets != q->an_numrrsets ||
980		p->ns_numrrsets != q->ns_numrrsets ||
981		p->ar_numrrsets != q->ar_numrrsets ||
982		p->rrset_count != q->rrset_count)
983		return 0;
984	/* sort the rrsets in the authority and additional sections before
985	 * compare, the query and answer sections are ordered in the sequence
986	 * they should have (eg. one after the other for aliases). */
987	sorted_p = (struct ub_packed_rrset_key**)regional_alloc_init(
988		region, p->rrsets, sizeof(*sorted_p)*p->rrset_count);
989	if(!sorted_p) return 0;
990	log_assert(p->an_numrrsets + p->ns_numrrsets + p->ar_numrrsets <=
991		p->rrset_count);
992	qsort(sorted_p + p->an_numrrsets, p->ns_numrrsets,
993		sizeof(*sorted_p), rrset_canonical_sort_cmp);
994	qsort(sorted_p + p->an_numrrsets + p->ns_numrrsets, p->ar_numrrsets,
995		sizeof(*sorted_p), rrset_canonical_sort_cmp);
996
997	sorted_q = (struct ub_packed_rrset_key**)regional_alloc_init(
998		region, q->rrsets, sizeof(*sorted_q)*q->rrset_count);
999	if(!sorted_q) {
1000		regional_free_all(region);
1001		return 0;
1002	}
1003	log_assert(q->an_numrrsets + q->ns_numrrsets + q->ar_numrrsets <=
1004		q->rrset_count);
1005	qsort(sorted_q + q->an_numrrsets, q->ns_numrrsets,
1006		sizeof(*sorted_q), rrset_canonical_sort_cmp);
1007	qsort(sorted_q + q->an_numrrsets + q->ns_numrrsets, q->ar_numrrsets,
1008		sizeof(*sorted_q), rrset_canonical_sort_cmp);
1009
1010	/* compare the rrsets */
1011	for(i=0; i<p->rrset_count; i++) {
1012		if(!rrset_equal(sorted_p[i], sorted_q[i])) {
1013			if(!rrset_canonical_equal(region, sorted_p[i],
1014				sorted_q[i])) {
1015				regional_free_all(region);
1016				return 0;
1017			}
1018		}
1019	}
1020	regional_free_all(region);
1021	return 1;
1022}
1023
1024void
1025caps_strip_reply(struct reply_info* rep)
1026{
1027	size_t i;
1028	if(!rep) return;
1029	/* see if message is a referral, in which case the additional and
1030	 * NS record cannot be removed */
1031	/* referrals have the AA flag unset (strict check, not elsewhere in
1032	 * unbound, but for 0x20 this is very convenient). */
1033	if(!(rep->flags&BIT_AA))
1034		return;
1035	/* remove the additional section from the reply */
1036	if(rep->ar_numrrsets != 0) {
1037		verbose(VERB_ALGO, "caps fallback: removing additional section");
1038		rep->rrset_count -= rep->ar_numrrsets;
1039		rep->ar_numrrsets = 0;
1040	}
1041	/* is there an NS set in the authority section to remove? */
1042	/* the failure case (Cisco firewalls) only has one rrset in authsec */
1043	for(i=rep->an_numrrsets; i<rep->an_numrrsets+rep->ns_numrrsets; i++) {
1044		struct ub_packed_rrset_key* s = rep->rrsets[i];
1045		if(ntohs(s->rk.type) == LDNS_RR_TYPE_NS) {
1046			/* remove NS rrset and break from loop (loop limits
1047			 * have changed) */
1048			/* move last rrset into this position (there is no
1049			 * additional section any more) */
1050			verbose(VERB_ALGO, "caps fallback: removing NS rrset");
1051			if(i < rep->rrset_count-1)
1052				rep->rrsets[i]=rep->rrsets[rep->rrset_count-1];
1053			rep->rrset_count --;
1054			rep->ns_numrrsets --;
1055			break;
1056		}
1057	}
1058}
1059
1060int caps_failed_rcode(struct reply_info* rep)
1061{
1062	return !(FLAGS_GET_RCODE(rep->flags) == LDNS_RCODE_NOERROR ||
1063		FLAGS_GET_RCODE(rep->flags) == LDNS_RCODE_NXDOMAIN);
1064}
1065
1066void
1067iter_store_parentside_rrset(struct module_env* env,
1068	struct ub_packed_rrset_key* rrset)
1069{
1070	struct rrset_ref ref;
1071	rrset = packed_rrset_copy_alloc(rrset, env->alloc, *env->now);
1072	if(!rrset) {
1073		log_err("malloc failure in store_parentside_rrset");
1074		return;
1075	}
1076	rrset->rk.flags |= PACKED_RRSET_PARENT_SIDE;
1077	rrset->entry.hash = rrset_key_hash(&rrset->rk);
1078	ref.key = rrset;
1079	ref.id = rrset->id;
1080	/* ignore ret: if it was in the cache, ref updated */
1081	(void)rrset_cache_update(env->rrset_cache, &ref, env->alloc, *env->now);
1082}
1083
1084/** fetch NS record from reply, if any */
1085static struct ub_packed_rrset_key*
1086reply_get_NS_rrset(struct reply_info* rep)
1087{
1088	size_t i;
1089	for(i=0; i<rep->rrset_count; i++) {
1090		if(rep->rrsets[i]->rk.type == htons(LDNS_RR_TYPE_NS)) {
1091			return rep->rrsets[i];
1092		}
1093	}
1094	return NULL;
1095}
1096
1097void
1098iter_store_parentside_NS(struct module_env* env, struct reply_info* rep)
1099{
1100	struct ub_packed_rrset_key* rrset = reply_get_NS_rrset(rep);
1101	if(rrset) {
1102		log_rrset_key(VERB_ALGO, "store parent-side NS", rrset);
1103		iter_store_parentside_rrset(env, rrset);
1104	}
1105}
1106
1107void iter_store_parentside_neg(struct module_env* env,
1108        struct query_info* qinfo, struct reply_info* rep)
1109{
1110	/* TTL: NS from referral in iq->deleg_msg,
1111	 *      or first RR from iq->response,
1112	 *      or servfail5secs if !iq->response */
1113	time_t ttl = NORR_TTL;
1114	struct ub_packed_rrset_key* neg;
1115	struct packed_rrset_data* newd;
1116	if(rep) {
1117		struct ub_packed_rrset_key* rrset = reply_get_NS_rrset(rep);
1118		if(!rrset && rep->rrset_count != 0) rrset = rep->rrsets[0];
1119		if(rrset) ttl = ub_packed_rrset_ttl(rrset);
1120	}
1121	/* create empty rrset to store */
1122	neg = (struct ub_packed_rrset_key*)regional_alloc(env->scratch,
1123	                sizeof(struct ub_packed_rrset_key));
1124	if(!neg) {
1125		log_err("out of memory in store_parentside_neg");
1126		return;
1127	}
1128	memset(&neg->entry, 0, sizeof(neg->entry));
1129	neg->entry.key = neg;
1130	neg->rk.type = htons(qinfo->qtype);
1131	neg->rk.rrset_class = htons(qinfo->qclass);
1132	neg->rk.flags = 0;
1133	neg->rk.dname = regional_alloc_init(env->scratch, qinfo->qname,
1134		qinfo->qname_len);
1135	if(!neg->rk.dname) {
1136		log_err("out of memory in store_parentside_neg");
1137		return;
1138	}
1139	neg->rk.dname_len = qinfo->qname_len;
1140	neg->entry.hash = rrset_key_hash(&neg->rk);
1141	newd = (struct packed_rrset_data*)regional_alloc_zero(env->scratch,
1142		sizeof(struct packed_rrset_data) + sizeof(size_t) +
1143		sizeof(uint8_t*) + sizeof(time_t) + sizeof(uint16_t));
1144	if(!newd) {
1145		log_err("out of memory in store_parentside_neg");
1146		return;
1147	}
1148	neg->entry.data = newd;
1149	newd->ttl = ttl;
1150	/* entry must have one RR, otherwise not valid in cache.
1151	 * put in one RR with empty rdata: those are ignored as nameserver */
1152	newd->count = 1;
1153	newd->rrsig_count = 0;
1154	newd->trust = rrset_trust_ans_noAA;
1155	newd->rr_len = (size_t*)((uint8_t*)newd +
1156		sizeof(struct packed_rrset_data));
1157	newd->rr_len[0] = 0 /* zero len rdata */ + sizeof(uint16_t);
1158	packed_rrset_ptr_fixup(newd);
1159	newd->rr_ttl[0] = newd->ttl;
1160	sldns_write_uint16(newd->rr_data[0], 0 /* zero len rdata */);
1161	/* store it */
1162	log_rrset_key(VERB_ALGO, "store parent-side negative", neg);
1163	iter_store_parentside_rrset(env, neg);
1164}
1165
1166int
1167iter_lookup_parent_NS_from_cache(struct module_env* env, struct delegpt* dp,
1168	struct regional* region, struct query_info* qinfo)
1169{
1170	struct ub_packed_rrset_key* akey;
1171	akey = rrset_cache_lookup(env->rrset_cache, dp->name,
1172		dp->namelen, LDNS_RR_TYPE_NS, qinfo->qclass,
1173		PACKED_RRSET_PARENT_SIDE, *env->now, 0);
1174	if(akey) {
1175		log_rrset_key(VERB_ALGO, "found parent-side NS in cache", akey);
1176		dp->has_parent_side_NS = 1;
1177		/* and mark the new names as lame */
1178		if(!delegpt_rrset_add_ns(dp, region, akey, 1)) {
1179			lock_rw_unlock(&akey->entry.lock);
1180			return 0;
1181		}
1182		lock_rw_unlock(&akey->entry.lock);
1183	}
1184	return 1;
1185}
1186
1187int iter_lookup_parent_glue_from_cache(struct module_env* env,
1188        struct delegpt* dp, struct regional* region, struct query_info* qinfo)
1189{
1190	struct ub_packed_rrset_key* akey;
1191	struct delegpt_ns* ns;
1192	size_t num = delegpt_count_targets(dp);
1193	for(ns = dp->nslist; ns; ns = ns->next) {
1194		/* get cached parentside A */
1195		akey = rrset_cache_lookup(env->rrset_cache, ns->name,
1196			ns->namelen, LDNS_RR_TYPE_A, qinfo->qclass,
1197			PACKED_RRSET_PARENT_SIDE, *env->now, 0);
1198		if(akey) {
1199			log_rrset_key(VERB_ALGO, "found parent-side", akey);
1200			ns->done_pside4 = 1;
1201			/* a negative-cache-element has no addresses it adds */
1202			if(!delegpt_add_rrset_A(dp, region, akey, 1, NULL))
1203				log_err("malloc failure in lookup_parent_glue");
1204			lock_rw_unlock(&akey->entry.lock);
1205		}
1206		/* get cached parentside AAAA */
1207		akey = rrset_cache_lookup(env->rrset_cache, ns->name,
1208			ns->namelen, LDNS_RR_TYPE_AAAA, qinfo->qclass,
1209			PACKED_RRSET_PARENT_SIDE, *env->now, 0);
1210		if(akey) {
1211			log_rrset_key(VERB_ALGO, "found parent-side", akey);
1212			ns->done_pside6 = 1;
1213			/* a negative-cache-element has no addresses it adds */
1214			if(!delegpt_add_rrset_AAAA(dp, region, akey, 1, NULL))
1215				log_err("malloc failure in lookup_parent_glue");
1216			lock_rw_unlock(&akey->entry.lock);
1217		}
1218	}
1219	/* see if new (but lame) addresses have become available */
1220	return delegpt_count_targets(dp) != num;
1221}
1222
1223int
1224iter_get_next_root(struct iter_hints* hints, struct iter_forwards* fwd,
1225	uint16_t* c)
1226{
1227	uint16_t c1 = *c, c2 = *c;
1228	int r1 = hints_next_root(hints, &c1);
1229	int r2 = forwards_next_root(fwd, &c2);
1230	if(!r1 && !r2) /* got none, end of list */
1231		return 0;
1232	else if(!r1) /* got one, return that */
1233		*c = c2;
1234	else if(!r2)
1235		*c = c1;
1236	else if(c1 < c2) /* got both take smallest */
1237		*c = c1;
1238	else	*c = c2;
1239	return 1;
1240}
1241
1242void
1243iter_scrub_ds(struct dns_msg* msg, struct ub_packed_rrset_key* ns, uint8_t* z)
1244{
1245	/* Only the DS record for the delegation itself is expected.
1246	 * We allow DS for everything between the bailiwick and the
1247	 * zonecut, thus DS records must be at or above the zonecut.
1248	 * And the DS records must be below the server authority zone.
1249	 * The answer section is already scrubbed. */
1250	size_t i = msg->rep->an_numrrsets;
1251	while(i < (msg->rep->an_numrrsets + msg->rep->ns_numrrsets)) {
1252		struct ub_packed_rrset_key* s = msg->rep->rrsets[i];
1253		if(ntohs(s->rk.type) == LDNS_RR_TYPE_DS &&
1254			(!ns || !dname_subdomain_c(ns->rk.dname, s->rk.dname)
1255			|| query_dname_compare(z, s->rk.dname) == 0)) {
1256			log_nametypeclass(VERB_ALGO, "removing irrelevant DS",
1257				s->rk.dname, ntohs(s->rk.type),
1258				ntohs(s->rk.rrset_class));
1259			memmove(msg->rep->rrsets+i, msg->rep->rrsets+i+1,
1260				sizeof(struct ub_packed_rrset_key*) *
1261				(msg->rep->rrset_count-i-1));
1262			msg->rep->ns_numrrsets--;
1263			msg->rep->rrset_count--;
1264			/* stay at same i, but new record */
1265			continue;
1266		}
1267		i++;
1268	}
1269}
1270
1271void
1272iter_scrub_nxdomain(struct dns_msg* msg)
1273{
1274	if(msg->rep->an_numrrsets == 0)
1275		return;
1276
1277	memmove(msg->rep->rrsets, msg->rep->rrsets+msg->rep->an_numrrsets,
1278		sizeof(struct ub_packed_rrset_key*) *
1279		(msg->rep->rrset_count-msg->rep->an_numrrsets));
1280	msg->rep->rrset_count -= msg->rep->an_numrrsets;
1281	msg->rep->an_numrrsets = 0;
1282}
1283
1284void iter_dec_attempts(struct delegpt* dp, int d)
1285{
1286	struct delegpt_addr* a;
1287	for(a=dp->target_list; a; a = a->next_target) {
1288		if(a->attempts >= OUTBOUND_MSG_RETRY) {
1289			/* add back to result list */
1290			a->next_result = dp->result_list;
1291			dp->result_list = a;
1292		}
1293		if(a->attempts > d)
1294			a->attempts -= d;
1295		else a->attempts = 0;
1296	}
1297}
1298
1299void iter_merge_retry_counts(struct delegpt* dp, struct delegpt* old)
1300{
1301	struct delegpt_addr* a, *o, *prev;
1302	for(a=dp->target_list; a; a = a->next_target) {
1303		o = delegpt_find_addr(old, &a->addr, a->addrlen);
1304		if(o) {
1305			log_addr(VERB_ALGO, "copy attempt count previous dp",
1306				&a->addr, a->addrlen);
1307			a->attempts = o->attempts;
1308		}
1309	}
1310	prev = NULL;
1311	a = dp->usable_list;
1312	while(a) {
1313		if(a->attempts >= OUTBOUND_MSG_RETRY) {
1314			log_addr(VERB_ALGO, "remove from usable list dp",
1315				&a->addr, a->addrlen);
1316			/* remove from result list */
1317			if(prev)
1318				prev->next_usable = a->next_usable;
1319			else	dp->usable_list = a->next_usable;
1320			/* prev stays the same */
1321			a = a->next_usable;
1322			continue;
1323		}
1324		prev = a;
1325		a = a->next_usable;
1326	}
1327}
1328
1329int
1330iter_ds_toolow(struct dns_msg* msg, struct delegpt* dp)
1331{
1332	/* if for query example.com, there is example.com SOA or a subdomain
1333	 * of example.com, then we are too low and need to fetch NS. */
1334	size_t i;
1335	/* if we have a DNAME or CNAME we are probably wrong */
1336	/* if we have a qtype DS in the answer section, its fine */
1337	for(i=0; i < msg->rep->an_numrrsets; i++) {
1338		struct ub_packed_rrset_key* s = msg->rep->rrsets[i];
1339		if(ntohs(s->rk.type) == LDNS_RR_TYPE_DNAME ||
1340			ntohs(s->rk.type) == LDNS_RR_TYPE_CNAME) {
1341			/* not the right answer, maybe too low, check the
1342			 * RRSIG signer name (if there is any) for a hint
1343			 * that it is from the dp zone anyway */
1344			uint8_t* sname;
1345			size_t slen;
1346			val_find_rrset_signer(s, &sname, &slen);
1347			if(sname && query_dname_compare(dp->name, sname)==0)
1348				return 0; /* it is fine, from the right dp */
1349			return 1;
1350		}
1351		if(ntohs(s->rk.type) == LDNS_RR_TYPE_DS)
1352			return 0; /* fine, we have a DS record */
1353	}
1354	for(i=msg->rep->an_numrrsets;
1355		i < msg->rep->an_numrrsets + msg->rep->ns_numrrsets; i++) {
1356		struct ub_packed_rrset_key* s = msg->rep->rrsets[i];
1357		if(ntohs(s->rk.type) == LDNS_RR_TYPE_SOA) {
1358			if(dname_subdomain_c(s->rk.dname, msg->qinfo.qname))
1359				return 1; /* point is too low */
1360			if(query_dname_compare(s->rk.dname, dp->name)==0)
1361				return 0; /* right dp */
1362		}
1363		if(ntohs(s->rk.type) == LDNS_RR_TYPE_NSEC ||
1364			ntohs(s->rk.type) == LDNS_RR_TYPE_NSEC3) {
1365			uint8_t* sname;
1366			size_t slen;
1367			val_find_rrset_signer(s, &sname, &slen);
1368			if(sname && query_dname_compare(dp->name, sname)==0)
1369				return 0; /* it is fine, from the right dp */
1370			return 1;
1371		}
1372	}
1373	/* we do not know */
1374	return 1;
1375}
1376
1377int iter_dp_cangodown(struct query_info* qinfo, struct delegpt* dp)
1378{
1379	/* no delegation point, do not see how we can go down,
1380	 * robust check, it should really exist */
1381	if(!dp) return 0;
1382
1383	/* see if dp equals the qname, then we cannot go down further */
1384	if(query_dname_compare(qinfo->qname, dp->name) == 0)
1385		return 0;
1386	/* if dp is one label above the name we also cannot go down further */
1387	if(dname_count_labels(qinfo->qname) == dp->namelabs+1)
1388		return 0;
1389	return 1;
1390}
1391
1392int
1393iter_stub_fwd_no_cache(struct module_qstate *qstate, struct query_info *qinf)
1394{
1395	struct iter_hints_stub *stub;
1396	struct delegpt *dp;
1397
1398	/* Check for stub. */
1399	stub = hints_lookup_stub(qstate->env->hints, qinf->qname,
1400	    qinf->qclass, NULL);
1401	dp = forwards_lookup(qstate->env->fwds, qinf->qname, qinf->qclass);
1402
1403	/* see if forward or stub is more pertinent */
1404	if(stub && stub->dp && dp) {
1405		if(dname_strict_subdomain(dp->name, dp->namelabs,
1406			stub->dp->name, stub->dp->namelabs)) {
1407			stub = NULL; /* ignore stub, forward is lower */
1408		} else {
1409			dp = NULL; /* ignore forward, stub is lower */
1410		}
1411	}
1412
1413	/* check stub */
1414	if (stub != NULL && stub->dp != NULL) {
1415		if(stub->dp->no_cache) {
1416			char qname[255+1];
1417			char dpname[255+1];
1418			dname_str(qinf->qname, qname);
1419			dname_str(stub->dp->name, dpname);
1420			verbose(VERB_ALGO, "stub for %s %s has no_cache", qname, dpname);
1421		}
1422		return (stub->dp->no_cache);
1423	}
1424
1425	/* Check for forward. */
1426	if (dp) {
1427		if(dp->no_cache) {
1428			char qname[255+1];
1429			char dpname[255+1];
1430			dname_str(qinf->qname, qname);
1431			dname_str(dp->name, dpname);
1432			verbose(VERB_ALGO, "forward for %s %s has no_cache", qname, dpname);
1433		}
1434		return (dp->no_cache);
1435	}
1436	return 0;
1437}
1438