localtime.c revision 71579
1/*
2** This file is in the public domain, so clarified as of
3** June 5, 1996 by Arthur David Olson (arthur_david_olson@nih.gov).
4**
5** $FreeBSD: head/lib/libc/stdtime/localtime.c 71579 2001-01-24 13:01:12Z deischen $
6*/
7
8#ifndef lint
9#ifndef NOID
10static char	elsieid[] = "@(#)localtime.c	7.57";
11#endif /* !defined NOID */
12#endif /* !defined lint */
13
14/*
15** Leap second handling from Bradley White (bww@k.gp.cs.cmu.edu).
16** POSIX-style TZ environment variable handling from Guy Harris
17** (guy@auspex.com).
18*/
19
20/*LINTLIBRARY*/
21
22#include "namespace.h"
23#include <sys/types.h>
24#include <sys/stat.h>
25#include <fcntl.h>
26#include <pthread.h>
27#include "private.h"
28#include "un-namespace.h"
29
30#include "tzfile.h"
31
32#include "libc_private.h"
33
34#define	_MUTEX_LOCK(x)		if (__isthreaded) _pthread_mutex_lock(x)
35#define	_MUTEX_UNLOCK(x)	if (__isthreaded) _pthread_mutex_unlock(x)
36
37/*
38** SunOS 4.1.1 headers lack O_BINARY.
39*/
40
41#ifdef O_BINARY
42#define OPEN_MODE	(O_RDONLY | O_BINARY)
43#endif /* defined O_BINARY */
44#ifndef O_BINARY
45#define OPEN_MODE	O_RDONLY
46#endif /* !defined O_BINARY */
47
48#ifndef WILDABBR
49/*
50** Someone might make incorrect use of a time zone abbreviation:
51**	1.	They might reference tzname[0] before calling tzset (explicitly
52**		or implicitly).
53**	2.	They might reference tzname[1] before calling tzset (explicitly
54**		or implicitly).
55**	3.	They might reference tzname[1] after setting to a time zone
56**		in which Daylight Saving Time is never observed.
57**	4.	They might reference tzname[0] after setting to a time zone
58**		in which Standard Time is never observed.
59**	5.	They might reference tm.TM_ZONE after calling offtime.
60** What's best to do in the above cases is open to debate;
61** for now, we just set things up so that in any of the five cases
62** WILDABBR is used.  Another possibility:  initialize tzname[0] to the
63** string "tzname[0] used before set", and similarly for the other cases.
64** And another:  initialize tzname[0] to "ERA", with an explanation in the
65** manual page of what this "time zone abbreviation" means (doing this so
66** that tzname[0] has the "normal" length of three characters).
67*/
68#define WILDABBR	"   "
69#endif /* !defined WILDABBR */
70
71static char		wildabbr[] = "WILDABBR";
72
73static const char	gmt[] = "GMT";
74
75struct ttinfo {				/* time type information */
76	long		tt_gmtoff;	/* GMT offset in seconds */
77	int		tt_isdst;	/* used to set tm_isdst */
78	int		tt_abbrind;	/* abbreviation list index */
79	int		tt_ttisstd;	/* TRUE if transition is std time */
80	int		tt_ttisgmt;	/* TRUE if transition is GMT */
81};
82
83struct lsinfo {				/* leap second information */
84	time_t		ls_trans;	/* transition time */
85	long		ls_corr;	/* correction to apply */
86};
87
88#define BIGGEST(a, b)	(((a) > (b)) ? (a) : (b))
89
90#ifdef TZNAME_MAX
91#define MY_TZNAME_MAX	TZNAME_MAX
92#endif /* defined TZNAME_MAX */
93#ifndef TZNAME_MAX
94#define MY_TZNAME_MAX	255
95#endif /* !defined TZNAME_MAX */
96
97struct state {
98	int		leapcnt;
99	int		timecnt;
100	int		typecnt;
101	int		charcnt;
102	time_t		ats[TZ_MAX_TIMES];
103	unsigned char	types[TZ_MAX_TIMES];
104	struct ttinfo	ttis[TZ_MAX_TYPES];
105	char		chars[BIGGEST(BIGGEST(TZ_MAX_CHARS + 1, sizeof gmt),
106				(2 * (MY_TZNAME_MAX + 1)))];
107	struct lsinfo	lsis[TZ_MAX_LEAPS];
108};
109
110struct rule {
111	int		r_type;		/* type of rule--see below */
112	int		r_day;		/* day number of rule */
113	int		r_week;		/* week number of rule */
114	int		r_mon;		/* month number of rule */
115	long		r_time;		/* transition time of rule */
116};
117
118#define JULIAN_DAY		0	/* Jn - Julian day */
119#define DAY_OF_YEAR		1	/* n - day of year */
120#define MONTH_NTH_DAY_OF_WEEK	2	/* Mm.n.d - month, week, day of week */
121
122/*
123** Prototypes for static functions.
124*/
125
126static long		detzcode P((const char * codep));
127static const char *	getzname P((const char * strp));
128static const char *	getnum P((const char * strp, int * nump, int min,
129				int max));
130static const char *	getsecs P((const char * strp, long * secsp));
131static const char *	getoffset P((const char * strp, long * offsetp));
132static const char *	getrule P((const char * strp, struct rule * rulep));
133static void		gmtload P((struct state * sp));
134static void		gmtsub P((const time_t * timep, long offset,
135				struct tm * tmp));
136static void		localsub P((const time_t * timep, long offset,
137				struct tm * tmp));
138static int		increment_overflow P((int * number, int delta));
139static int		normalize_overflow P((int * tensptr, int * unitsptr,
140				int base));
141static void		settzname P((void));
142static time_t		time1 P((struct tm * tmp,
143				void(*funcp) P((const time_t *,
144				long, struct tm *)),
145				long offset));
146static time_t		time2 P((struct tm *tmp,
147				void(*funcp) P((const time_t *,
148				long, struct tm*)),
149				long offset, int * okayp));
150static void		timesub P((const time_t * timep, long offset,
151				const struct state * sp, struct tm * tmp));
152static int		tmcomp P((const struct tm * atmp,
153				const struct tm * btmp));
154static time_t		transtime P((time_t janfirst, int year,
155				const struct rule * rulep, long offset));
156static int		tzload P((const char * name, struct state * sp));
157static int		tzparse P((const char * name, struct state * sp,
158				int lastditch));
159
160#ifdef ALL_STATE
161static struct state *	lclptr;
162static struct state *	gmtptr;
163#endif /* defined ALL_STATE */
164
165#ifndef ALL_STATE
166static struct state	lclmem;
167static struct state	gmtmem;
168#define lclptr		(&lclmem)
169#define gmtptr		(&gmtmem)
170#endif /* State Farm */
171
172#ifndef TZ_STRLEN_MAX
173#define TZ_STRLEN_MAX 255
174#endif /* !defined TZ_STRLEN_MAX */
175
176static char		lcl_TZname[TZ_STRLEN_MAX + 1];
177static int		lcl_is_set;
178static int		gmt_is_set;
179static pthread_mutex_t	lcl_mutex = PTHREAD_MUTEX_INITIALIZER;
180static pthread_mutex_t	gmt_mutex = PTHREAD_MUTEX_INITIALIZER;
181
182char *			tzname[2] = {
183	wildabbr,
184	wildabbr
185};
186
187/*
188** Section 4.12.3 of X3.159-1989 requires that
189**	Except for the strftime function, these functions [asctime,
190**	ctime, gmtime, localtime] return values in one of two static
191**	objects: a broken-down time structure and an array of char.
192** Thanks to Paul Eggert (eggert@twinsun.com) for noting this.
193*/
194
195static struct tm	tm;
196
197#ifdef USG_COMPAT
198time_t			timezone = 0;
199int			daylight = 0;
200#endif /* defined USG_COMPAT */
201
202#ifdef ALTZONE
203time_t			altzone = 0;
204#endif /* defined ALTZONE */
205
206static long
207detzcode(codep)
208const char * const	codep;
209{
210	register long	result;
211	register int	i;
212
213	result = (codep[0] & 0x80) ? ~0L : 0L;
214	for (i = 0; i < 4; ++i)
215		result = (result << 8) | (codep[i] & 0xff);
216	return result;
217}
218
219static void
220settzname P((void))
221{
222	register struct state * 	sp = lclptr;
223	register int			i;
224
225	tzname[0] = wildabbr;
226	tzname[1] = wildabbr;
227#ifdef USG_COMPAT
228	daylight = 0;
229	timezone = 0;
230#endif /* defined USG_COMPAT */
231#ifdef ALTZONE
232	altzone = 0;
233#endif /* defined ALTZONE */
234#ifdef ALL_STATE
235	if (sp == NULL) {
236		tzname[0] = tzname[1] = gmt;
237		return;
238	}
239#endif /* defined ALL_STATE */
240	for (i = 0; i < sp->typecnt; ++i) {
241		register const struct ttinfo * const	ttisp = &sp->ttis[i];
242
243		tzname[ttisp->tt_isdst] =
244			&sp->chars[ttisp->tt_abbrind];
245#ifdef USG_COMPAT
246		if (ttisp->tt_isdst)
247			daylight = 1;
248		if (i == 0 || !ttisp->tt_isdst)
249			timezone = -(ttisp->tt_gmtoff);
250#endif /* defined USG_COMPAT */
251#ifdef ALTZONE
252		if (i == 0 || ttisp->tt_isdst)
253			altzone = -(ttisp->tt_gmtoff);
254#endif /* defined ALTZONE */
255	}
256	/*
257	** And to get the latest zone names into tzname. . .
258	*/
259	for (i = 0; i < sp->timecnt; ++i) {
260		register const struct ttinfo * const	ttisp =
261							&sp->ttis[
262								sp->types[i]];
263
264		tzname[ttisp->tt_isdst] =
265			&sp->chars[ttisp->tt_abbrind];
266	}
267}
268
269static int
270tzload(name, sp)
271register const char *		name;
272register struct state * const	sp;
273{
274	register const char *	p;
275	register int		i;
276	register int		fid;
277
278	/* XXX The following is from OpenBSD, and I'm not sure it is correct */
279	if (name != NULL && issetugid() != 0)
280		if ((name[0] == ':' && name[1] == '/') ||
281		    name[0] == '/' || strchr(name, '.'))
282			name = NULL;
283	if (name == NULL && (name = TZDEFAULT) == NULL)
284		return -1;
285	{
286		register int	doaccess;
287		struct stat	stab;
288		/*
289		** Section 4.9.1 of the C standard says that
290		** "FILENAME_MAX expands to an integral constant expression
291		** that is the size needed for an array of char large enough
292		** to hold the longest file name string that the implementation
293		** guarantees can be opened."
294		*/
295		char		fullname[FILENAME_MAX + 1];
296
297		if (name[0] == ':')
298			++name;
299		doaccess = name[0] == '/';
300		if (!doaccess) {
301			if ((p = TZDIR) == NULL)
302				return -1;
303			if ((strlen(p) + 1 + strlen(name) + 1) >= sizeof fullname)
304				return -1;
305			(void) strcpy(fullname, p);
306			(void) strcat(fullname, "/");
307			(void) strcat(fullname, name);
308			/*
309			** Set doaccess if '.' (as in "../") shows up in name.
310			*/
311			if (strchr(name, '.') != NULL)
312				doaccess = TRUE;
313			name = fullname;
314		}
315		if (doaccess && access(name, R_OK) != 0)
316		     	return -1;
317		if ((fid = _open(name, OPEN_MODE)) == -1)
318			return -1;
319		if ((_fstat(fid, &stab) < 0) || !S_ISREG(stab.st_mode))
320			return -1;
321	}
322	{
323		struct tzhead *	tzhp;
324		char		buf[sizeof *sp + sizeof *tzhp];
325		int		ttisstdcnt;
326		int		ttisgmtcnt;
327
328		i = _read(fid, buf, sizeof buf);
329		if (_close(fid) != 0)
330			return -1;
331		p = buf;
332		p += (sizeof tzhp->tzh_magic) + (sizeof tzhp->tzh_reserved);
333		ttisstdcnt = (int) detzcode(p);
334		p += 4;
335		ttisgmtcnt = (int) detzcode(p);
336		p += 4;
337		sp->leapcnt = (int) detzcode(p);
338		p += 4;
339		sp->timecnt = (int) detzcode(p);
340		p += 4;
341		sp->typecnt = (int) detzcode(p);
342		p += 4;
343		sp->charcnt = (int) detzcode(p);
344		p += 4;
345		if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS ||
346			sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES ||
347			sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES ||
348			sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS ||
349			(ttisstdcnt != sp->typecnt && ttisstdcnt != 0) ||
350			(ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0))
351				return -1;
352		if (i - (p - buf) < sp->timecnt * 4 +	/* ats */
353			sp->timecnt +			/* types */
354			sp->typecnt * (4 + 2) +		/* ttinfos */
355			sp->charcnt +			/* chars */
356			sp->leapcnt * (4 + 4) +		/* lsinfos */
357			ttisstdcnt +			/* ttisstds */
358			ttisgmtcnt)			/* ttisgmts */
359				return -1;
360		for (i = 0; i < sp->timecnt; ++i) {
361			sp->ats[i] = detzcode(p);
362			p += 4;
363		}
364		for (i = 0; i < sp->timecnt; ++i) {
365			sp->types[i] = (unsigned char) *p++;
366			if (sp->types[i] >= sp->typecnt)
367				return -1;
368		}
369		for (i = 0; i < sp->typecnt; ++i) {
370			register struct ttinfo *	ttisp;
371
372			ttisp = &sp->ttis[i];
373			ttisp->tt_gmtoff = detzcode(p);
374			p += 4;
375			ttisp->tt_isdst = (unsigned char) *p++;
376			if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1)
377				return -1;
378			ttisp->tt_abbrind = (unsigned char) *p++;
379			if (ttisp->tt_abbrind < 0 ||
380				ttisp->tt_abbrind > sp->charcnt)
381					return -1;
382		}
383		for (i = 0; i < sp->charcnt; ++i)
384			sp->chars[i] = *p++;
385		sp->chars[i] = '\0';	/* ensure '\0' at end */
386		for (i = 0; i < sp->leapcnt; ++i) {
387			register struct lsinfo *	lsisp;
388
389			lsisp = &sp->lsis[i];
390			lsisp->ls_trans = detzcode(p);
391			p += 4;
392			lsisp->ls_corr = detzcode(p);
393			p += 4;
394		}
395		for (i = 0; i < sp->typecnt; ++i) {
396			register struct ttinfo *	ttisp;
397
398			ttisp = &sp->ttis[i];
399			if (ttisstdcnt == 0)
400				ttisp->tt_ttisstd = FALSE;
401			else {
402				ttisp->tt_ttisstd = *p++;
403				if (ttisp->tt_ttisstd != TRUE &&
404					ttisp->tt_ttisstd != FALSE)
405						return -1;
406			}
407		}
408		for (i = 0; i < sp->typecnt; ++i) {
409			register struct ttinfo *	ttisp;
410
411			ttisp = &sp->ttis[i];
412			if (ttisgmtcnt == 0)
413				ttisp->tt_ttisgmt = FALSE;
414			else {
415				ttisp->tt_ttisgmt = *p++;
416				if (ttisp->tt_ttisgmt != TRUE &&
417					ttisp->tt_ttisgmt != FALSE)
418						return -1;
419			}
420		}
421	}
422	return 0;
423}
424
425static const int	mon_lengths[2][MONSPERYEAR] = {
426	{ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
427	{ 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
428};
429
430static const int	year_lengths[2] = {
431	DAYSPERNYEAR, DAYSPERLYEAR
432};
433
434/*
435** Given a pointer into a time zone string, scan until a character that is not
436** a valid character in a zone name is found.  Return a pointer to that
437** character.
438*/
439
440static const char *
441getzname(strp)
442register const char *	strp;
443{
444	register char	c;
445
446	while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' &&
447		c != '+')
448			++strp;
449	return strp;
450}
451
452/*
453** Given a pointer into a time zone string, extract a number from that string.
454** Check that the number is within a specified range; if it is not, return
455** NULL.
456** Otherwise, return a pointer to the first character not part of the number.
457*/
458
459static const char *
460getnum(strp, nump, min, max)
461register const char *	strp;
462int * const		nump;
463const int		min;
464const int		max;
465{
466	register char	c;
467	register int	num;
468
469	if (strp == NULL || !is_digit(c = *strp))
470		return NULL;
471	num = 0;
472	do {
473		num = num * 10 + (c - '0');
474		if (num > max)
475			return NULL;	/* illegal value */
476		c = *++strp;
477	} while (is_digit(c));
478	if (num < min)
479		return NULL;		/* illegal value */
480	*nump = num;
481	return strp;
482}
483
484/*
485** Given a pointer into a time zone string, extract a number of seconds,
486** in hh[:mm[:ss]] form, from the string.
487** If any error occurs, return NULL.
488** Otherwise, return a pointer to the first character not part of the number
489** of seconds.
490*/
491
492static const char *
493getsecs(strp, secsp)
494register const char *	strp;
495long * const		secsp;
496{
497	int	num;
498
499	/*
500	** `HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like
501	** "M10.4.6/26", which does not conform to Posix,
502	** but which specifies the equivalent of
503	** ``02:00 on the first Sunday on or after 23 Oct''.
504	*/
505	strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
506	if (strp == NULL)
507		return NULL;
508	*secsp = num * (long) SECSPERHOUR;
509	if (*strp == ':') {
510		++strp;
511		strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
512		if (strp == NULL)
513			return NULL;
514		*secsp += num * SECSPERMIN;
515		if (*strp == ':') {
516			++strp;
517			/* `SECSPERMIN' allows for leap seconds.  */
518			strp = getnum(strp, &num, 0, SECSPERMIN);
519			if (strp == NULL)
520				return NULL;
521			*secsp += num;
522		}
523	}
524	return strp;
525}
526
527/*
528** Given a pointer into a time zone string, extract an offset, in
529** [+-]hh[:mm[:ss]] form, from the string.
530** If any error occurs, return NULL.
531** Otherwise, return a pointer to the first character not part of the time.
532*/
533
534static const char *
535getoffset(strp, offsetp)
536register const char *	strp;
537long * const		offsetp;
538{
539	register int	neg = 0;
540
541	if (*strp == '-') {
542		neg = 1;
543		++strp;
544	} else if (*strp == '+')
545		++strp;
546	strp = getsecs(strp, offsetp);
547	if (strp == NULL)
548		return NULL;		/* illegal time */
549	if (neg)
550		*offsetp = -*offsetp;
551	return strp;
552}
553
554/*
555** Given a pointer into a time zone string, extract a rule in the form
556** date[/time].  See POSIX section 8 for the format of "date" and "time".
557** If a valid rule is not found, return NULL.
558** Otherwise, return a pointer to the first character not part of the rule.
559*/
560
561static const char *
562getrule(strp, rulep)
563const char *			strp;
564register struct rule * const	rulep;
565{
566	if (*strp == 'J') {
567		/*
568		** Julian day.
569		*/
570		rulep->r_type = JULIAN_DAY;
571		++strp;
572		strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
573	} else if (*strp == 'M') {
574		/*
575		** Month, week, day.
576		*/
577		rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
578		++strp;
579		strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
580		if (strp == NULL)
581			return NULL;
582		if (*strp++ != '.')
583			return NULL;
584		strp = getnum(strp, &rulep->r_week, 1, 5);
585		if (strp == NULL)
586			return NULL;
587		if (*strp++ != '.')
588			return NULL;
589		strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
590	} else if (is_digit(*strp)) {
591		/*
592		** Day of year.
593		*/
594		rulep->r_type = DAY_OF_YEAR;
595		strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
596	} else	return NULL;		/* invalid format */
597	if (strp == NULL)
598		return NULL;
599	if (*strp == '/') {
600		/*
601		** Time specified.
602		*/
603		++strp;
604		strp = getsecs(strp, &rulep->r_time);
605	} else	rulep->r_time = 2 * SECSPERHOUR;	/* default = 2:00:00 */
606	return strp;
607}
608
609/*
610** Given the Epoch-relative time of January 1, 00:00:00 GMT, in a year, the
611** year, a rule, and the offset from GMT at the time that rule takes effect,
612** calculate the Epoch-relative time that rule takes effect.
613*/
614
615static time_t
616transtime(janfirst, year, rulep, offset)
617const time_t				janfirst;
618const int				year;
619register const struct rule * const	rulep;
620const long				offset;
621{
622	register int	leapyear;
623	register time_t	value;
624	register int	i;
625	int		d, m1, yy0, yy1, yy2, dow;
626
627	INITIALIZE(value);
628	leapyear = isleap(year);
629	switch (rulep->r_type) {
630
631	case JULIAN_DAY:
632		/*
633		** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
634		** years.
635		** In non-leap years, or if the day number is 59 or less, just
636		** add SECSPERDAY times the day number-1 to the time of
637		** January 1, midnight, to get the day.
638		*/
639		value = janfirst + (rulep->r_day - 1) * SECSPERDAY;
640		if (leapyear && rulep->r_day >= 60)
641			value += SECSPERDAY;
642		break;
643
644	case DAY_OF_YEAR:
645		/*
646		** n - day of year.
647		** Just add SECSPERDAY times the day number to the time of
648		** January 1, midnight, to get the day.
649		*/
650		value = janfirst + rulep->r_day * SECSPERDAY;
651		break;
652
653	case MONTH_NTH_DAY_OF_WEEK:
654		/*
655		** Mm.n.d - nth "dth day" of month m.
656		*/
657		value = janfirst;
658		for (i = 0; i < rulep->r_mon - 1; ++i)
659			value += mon_lengths[leapyear][i] * SECSPERDAY;
660
661		/*
662		** Use Zeller's Congruence to get day-of-week of first day of
663		** month.
664		*/
665		m1 = (rulep->r_mon + 9) % 12 + 1;
666		yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
667		yy1 = yy0 / 100;
668		yy2 = yy0 % 100;
669		dow = ((26 * m1 - 2) / 10 +
670			1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
671		if (dow < 0)
672			dow += DAYSPERWEEK;
673
674		/*
675		** "dow" is the day-of-week of the first day of the month.  Get
676		** the day-of-month (zero-origin) of the first "dow" day of the
677		** month.
678		*/
679		d = rulep->r_day - dow;
680		if (d < 0)
681			d += DAYSPERWEEK;
682		for (i = 1; i < rulep->r_week; ++i) {
683			if (d + DAYSPERWEEK >=
684				mon_lengths[leapyear][rulep->r_mon - 1])
685					break;
686			d += DAYSPERWEEK;
687		}
688
689		/*
690		** "d" is the day-of-month (zero-origin) of the day we want.
691		*/
692		value += d * SECSPERDAY;
693		break;
694	}
695
696	/*
697	** "value" is the Epoch-relative time of 00:00:00 GMT on the day in
698	** question.  To get the Epoch-relative time of the specified local
699	** time on that day, add the transition time and the current offset
700	** from GMT.
701	*/
702	return value + rulep->r_time + offset;
703}
704
705/*
706** Given a POSIX section 8-style TZ string, fill in the rule tables as
707** appropriate.
708*/
709
710static int
711tzparse(name, sp, lastditch)
712const char *			name;
713register struct state * const	sp;
714const int			lastditch;
715{
716	const char *			stdname;
717	const char *			dstname;
718	size_t				stdlen;
719	size_t				dstlen;
720	long				stdoffset;
721	long				dstoffset;
722	register time_t *		atp;
723	register unsigned char *	typep;
724	register char *			cp;
725	register int			load_result;
726
727	INITIALIZE(dstname);
728	stdname = name;
729	if (lastditch) {
730		stdlen = strlen(name);	/* length of standard zone name */
731		name += stdlen;
732		if (stdlen >= sizeof sp->chars)
733			stdlen = (sizeof sp->chars) - 1;
734		stdoffset = 0;
735	} else {
736		name = getzname(name);
737		stdlen = name - stdname;
738		if (stdlen < 3)
739			return -1;
740		if (*name == '\0')
741			return -1;	/* was "stdoffset = 0;" */
742		else {
743			name = getoffset(name, &stdoffset);
744			if (name == NULL)
745				return -1;
746		}
747	}
748	load_result = tzload(TZDEFRULES, sp);
749	if (load_result != 0)
750		sp->leapcnt = 0;		/* so, we're off a little */
751	if (*name != '\0') {
752		dstname = name;
753		name = getzname(name);
754		dstlen = name - dstname;	/* length of DST zone name */
755		if (dstlen < 3)
756			return -1;
757		if (*name != '\0' && *name != ',' && *name != ';') {
758			name = getoffset(name, &dstoffset);
759			if (name == NULL)
760				return -1;
761		} else	dstoffset = stdoffset - SECSPERHOUR;
762		if (*name == ',' || *name == ';') {
763			struct rule	start;
764			struct rule	end;
765			register int	year;
766			register time_t	janfirst;
767			time_t		starttime;
768			time_t		endtime;
769
770			++name;
771			if ((name = getrule(name, &start)) == NULL)
772				return -1;
773			if (*name++ != ',')
774				return -1;
775			if ((name = getrule(name, &end)) == NULL)
776				return -1;
777			if (*name != '\0')
778				return -1;
779			sp->typecnt = 2;	/* standard time and DST */
780			/*
781			** Two transitions per year, from EPOCH_YEAR to 2037.
782			*/
783			sp->timecnt = 2 * (2037 - EPOCH_YEAR + 1);
784			if (sp->timecnt > TZ_MAX_TIMES)
785				return -1;
786			sp->ttis[0].tt_gmtoff = -dstoffset;
787			sp->ttis[0].tt_isdst = 1;
788			sp->ttis[0].tt_abbrind = stdlen + 1;
789			sp->ttis[1].tt_gmtoff = -stdoffset;
790			sp->ttis[1].tt_isdst = 0;
791			sp->ttis[1].tt_abbrind = 0;
792			atp = sp->ats;
793			typep = sp->types;
794			janfirst = 0;
795			for (year = EPOCH_YEAR; year <= 2037; ++year) {
796				starttime = transtime(janfirst, year, &start,
797					stdoffset);
798				endtime = transtime(janfirst, year, &end,
799					dstoffset);
800				if (starttime > endtime) {
801					*atp++ = endtime;
802					*typep++ = 1;	/* DST ends */
803					*atp++ = starttime;
804					*typep++ = 0;	/* DST begins */
805				} else {
806					*atp++ = starttime;
807					*typep++ = 0;	/* DST begins */
808					*atp++ = endtime;
809					*typep++ = 1;	/* DST ends */
810				}
811				janfirst += year_lengths[isleap(year)] *
812					SECSPERDAY;
813			}
814		} else {
815			register long	theirstdoffset;
816			register long	theirdstoffset;
817			register long	theiroffset;
818			register int	isdst;
819			register int	i;
820			register int	j;
821
822			if (*name != '\0')
823				return -1;
824			if (load_result != 0)
825				return -1;
826			/*
827			** Initial values of theirstdoffset and theirdstoffset.
828			*/
829			theirstdoffset = 0;
830			for (i = 0; i < sp->timecnt; ++i) {
831				j = sp->types[i];
832				if (!sp->ttis[j].tt_isdst) {
833					theirstdoffset =
834						-sp->ttis[j].tt_gmtoff;
835					break;
836				}
837			}
838			theirdstoffset = 0;
839			for (i = 0; i < sp->timecnt; ++i) {
840				j = sp->types[i];
841				if (sp->ttis[j].tt_isdst) {
842					theirdstoffset =
843						-sp->ttis[j].tt_gmtoff;
844					break;
845				}
846			}
847			/*
848			** Initially we're assumed to be in standard time.
849			*/
850			isdst = FALSE;
851			theiroffset = theirstdoffset;
852			/*
853			** Now juggle transition times and types
854			** tracking offsets as you do.
855			*/
856			for (i = 0; i < sp->timecnt; ++i) {
857				j = sp->types[i];
858				sp->types[i] = sp->ttis[j].tt_isdst;
859				if (sp->ttis[j].tt_ttisgmt) {
860					/* No adjustment to transition time */
861				} else {
862					/*
863					** If summer time is in effect, and the
864					** transition time was not specified as
865					** standard time, add the summer time
866					** offset to the transition time;
867					** otherwise, add the standard time
868					** offset to the transition time.
869					*/
870					/*
871					** Transitions from DST to DDST
872					** will effectively disappear since
873					** POSIX provides for only one DST
874					** offset.
875					*/
876					if (isdst && !sp->ttis[j].tt_ttisstd) {
877						sp->ats[i] += dstoffset -
878							theirdstoffset;
879					} else {
880						sp->ats[i] += stdoffset -
881							theirstdoffset;
882					}
883				}
884				theiroffset = -sp->ttis[j].tt_gmtoff;
885				if (sp->ttis[j].tt_isdst)
886					theirdstoffset = theiroffset;
887				else	theirstdoffset = theiroffset;
888			}
889			/*
890			** Finally, fill in ttis.
891			** ttisstd and ttisgmt need not be handled.
892			*/
893			sp->ttis[0].tt_gmtoff = -stdoffset;
894			sp->ttis[0].tt_isdst = FALSE;
895			sp->ttis[0].tt_abbrind = 0;
896			sp->ttis[1].tt_gmtoff = -dstoffset;
897			sp->ttis[1].tt_isdst = TRUE;
898			sp->ttis[1].tt_abbrind = stdlen + 1;
899		}
900	} else {
901		dstlen = 0;
902		sp->typecnt = 1;		/* only standard time */
903		sp->timecnt = 0;
904		sp->ttis[0].tt_gmtoff = -stdoffset;
905		sp->ttis[0].tt_isdst = 0;
906		sp->ttis[0].tt_abbrind = 0;
907	}
908	sp->charcnt = stdlen + 1;
909	if (dstlen != 0)
910		sp->charcnt += dstlen + 1;
911	if (sp->charcnt > sizeof sp->chars)
912		return -1;
913	cp = sp->chars;
914	(void) strncpy(cp, stdname, stdlen);
915	cp += stdlen;
916	*cp++ = '\0';
917	if (dstlen != 0) {
918		(void) strncpy(cp, dstname, dstlen);
919		*(cp + dstlen) = '\0';
920	}
921	return 0;
922}
923
924static void
925gmtload(sp)
926struct state * const	sp;
927{
928	if (tzload(gmt, sp) != 0)
929		(void) tzparse(gmt, sp, TRUE);
930}
931
932static void
933tzsetwall_basic(void)
934{
935	if (lcl_is_set < 0)
936		return;
937	lcl_is_set = -1;
938
939#ifdef ALL_STATE
940	if (lclptr == NULL) {
941		lclptr = (struct state *) malloc(sizeof *lclptr);
942		if (lclptr == NULL) {
943			settzname();	/* all we can do */
944			return;
945		}
946	}
947#endif /* defined ALL_STATE */
948	if (tzload((char *) NULL, lclptr) != 0)
949		gmtload(lclptr);
950	settzname();
951}
952
953void
954tzsetwall P((void))
955{
956	_MUTEX_LOCK(&lcl_mutex);
957	tzsetwall_basic();
958	_MUTEX_UNLOCK(&lcl_mutex);
959}
960
961static void
962tzset_basic(void)
963{
964	register const char *	name;
965
966	name = getenv("TZ");
967	if (name == NULL) {
968		tzsetwall();
969		return;
970	}
971
972	if (lcl_is_set > 0  &&  strcmp(lcl_TZname, name) == 0)
973		return;
974	lcl_is_set = (strlen(name) < sizeof(lcl_TZname));
975	if (lcl_is_set)
976		(void) strcpy(lcl_TZname, name);
977
978#ifdef ALL_STATE
979	if (lclptr == NULL) {
980		lclptr = (struct state *) malloc(sizeof *lclptr);
981		if (lclptr == NULL) {
982			settzname();	/* all we can do */
983			return;
984		}
985	}
986#endif /* defined ALL_STATE */
987	if (*name == '\0') {
988		/*
989		** User wants it fast rather than right.
990		*/
991		lclptr->leapcnt = 0;		/* so, we're off a little */
992		lclptr->timecnt = 0;
993		lclptr->ttis[0].tt_gmtoff = 0;
994		lclptr->ttis[0].tt_abbrind = 0;
995		(void) strcpy(lclptr->chars, gmt);
996	} else if (tzload(name, lclptr) != 0)
997		if (name[0] == ':' || tzparse(name, lclptr, FALSE) != 0)
998			(void) gmtload(lclptr);
999	settzname();
1000}
1001
1002void
1003tzset P((void))
1004{
1005	_MUTEX_LOCK(&lcl_mutex);
1006	tzset_basic();
1007	_MUTEX_UNLOCK(&lcl_mutex);
1008}
1009
1010/*
1011** The easy way to behave "as if no library function calls" localtime
1012** is to not call it--so we drop its guts into "localsub", which can be
1013** freely called.  (And no, the PANS doesn't require the above behavior--
1014** but it *is* desirable.)
1015**
1016** The unused offset argument is for the benefit of mktime variants.
1017*/
1018
1019/*ARGSUSED*/
1020static void
1021localsub(timep, offset, tmp)
1022const time_t * const	timep;
1023const long		offset;
1024struct tm * const	tmp;
1025{
1026	register struct state *		sp;
1027	register const struct ttinfo *	ttisp;
1028	register int			i;
1029	const time_t			t = *timep;
1030
1031	sp = lclptr;
1032#ifdef ALL_STATE
1033	if (sp == NULL) {
1034		gmtsub(timep, offset, tmp);
1035		return;
1036	}
1037#endif /* defined ALL_STATE */
1038	if (sp->timecnt == 0 || t < sp->ats[0]) {
1039		i = 0;
1040		while (sp->ttis[i].tt_isdst)
1041			if (++i >= sp->typecnt) {
1042				i = 0;
1043				break;
1044			}
1045	} else {
1046		for (i = 1; i < sp->timecnt; ++i)
1047			if (t < sp->ats[i])
1048				break;
1049		i = sp->types[i - 1];
1050	}
1051	ttisp = &sp->ttis[i];
1052	/*
1053	** To get (wrong) behavior that's compatible with System V Release 2.0
1054	** you'd replace the statement below with
1055	**	t += ttisp->tt_gmtoff;
1056	**	timesub(&t, 0L, sp, tmp);
1057	*/
1058	timesub(&t, ttisp->tt_gmtoff, sp, tmp);
1059	tmp->tm_isdst = ttisp->tt_isdst;
1060	tzname[tmp->tm_isdst] = &sp->chars[ttisp->tt_abbrind];
1061#ifdef TM_ZONE
1062	tmp->TM_ZONE = &sp->chars[ttisp->tt_abbrind];
1063#endif /* defined TM_ZONE */
1064}
1065
1066struct tm *
1067localtime_r(timep, p_tm)
1068const time_t * const	timep;
1069struct tm *p_tm;
1070{
1071	_MUTEX_LOCK(&lcl_mutex);
1072	tzset();
1073	localsub(timep, 0L, p_tm);
1074	_MUTEX_UNLOCK(&lcl_mutex);
1075	return(p_tm);
1076}
1077
1078struct tm *
1079localtime(timep)
1080const time_t * const	timep;
1081{
1082	static pthread_mutex_t localtime_mutex = PTHREAD_MUTEX_INITIALIZER;
1083	static pthread_key_t localtime_key = -1;
1084	struct tm *p_tm;
1085
1086	if (__isthreaded != 0) {
1087		_pthread_mutex_lock(&localtime_mutex);
1088		if (localtime_key < 0) {
1089			if (_pthread_key_create(&localtime_key, free) < 0) {
1090				_pthread_mutex_unlock(&localtime_mutex);
1091				return(NULL);
1092			}
1093		}
1094		_pthread_mutex_unlock(&localtime_mutex);
1095		p_tm = _pthread_getspecific(localtime_key);
1096		if (p_tm == NULL) {
1097			if ((p_tm = (struct tm *)malloc(sizeof(struct tm)))
1098			    == NULL)
1099				return(NULL);
1100			_pthread_setspecific(localtime_key, p_tm);
1101		}
1102		_pthread_mutex_lock(&lcl_mutex);
1103		tzset();
1104		localsub(timep, 0L, p_tm);
1105		_pthread_mutex_unlock(&lcl_mutex);
1106		return(p_tm);
1107	} else {
1108		tzset();
1109		localsub(timep, 0L, &tm);
1110		return(&tm);
1111	}
1112}
1113
1114/*
1115** gmtsub is to gmtime as localsub is to localtime.
1116*/
1117
1118static void
1119gmtsub(timep, offset, tmp)
1120const time_t * const	timep;
1121const long		offset;
1122struct tm * const	tmp;
1123{
1124	_MUTEX_LOCK(&gmt_mutex);
1125	if (!gmt_is_set) {
1126		gmt_is_set = TRUE;
1127#ifdef ALL_STATE
1128		gmtptr = (struct state *) malloc(sizeof *gmtptr);
1129		if (gmtptr != NULL)
1130#endif /* defined ALL_STATE */
1131			gmtload(gmtptr);
1132	}
1133	_MUTEX_UNLOCK(&gmt_mutex);
1134	timesub(timep, offset, gmtptr, tmp);
1135#ifdef TM_ZONE
1136	/*
1137	** Could get fancy here and deliver something such as
1138	** "GMT+xxxx" or "GMT-xxxx" if offset is non-zero,
1139	** but this is no time for a treasure hunt.
1140	*/
1141	if (offset != 0)
1142		tmp->TM_ZONE = wildabbr;
1143	else {
1144#ifdef ALL_STATE
1145		if (gmtptr == NULL)
1146			tmp->TM_ZONE = gmt;
1147		else	tmp->TM_ZONE = gmtptr->chars;
1148#endif /* defined ALL_STATE */
1149#ifndef ALL_STATE
1150		tmp->TM_ZONE = gmtptr->chars;
1151#endif /* State Farm */
1152	}
1153#endif /* defined TM_ZONE */
1154}
1155
1156struct tm *
1157gmtime(timep)
1158const time_t * const	timep;
1159{
1160	static pthread_mutex_t gmtime_mutex = PTHREAD_MUTEX_INITIALIZER;
1161	static pthread_key_t gmtime_key = -1;
1162	struct tm *p_tm;
1163
1164	if (__isthreaded != 0) {
1165		_pthread_mutex_lock(&gmtime_mutex);
1166		if (gmtime_key < 0) {
1167			if (_pthread_key_create(&gmtime_key, free) < 0) {
1168				_pthread_mutex_unlock(&gmtime_mutex);
1169				return(NULL);
1170			}
1171		}
1172		_pthread_mutex_unlock(&gmtime_mutex);
1173		/*
1174		 * Changed to follow POSIX.1 threads standard, which
1175		 * is what BSD currently has.
1176		 */
1177		if ((p_tm = _pthread_getspecific(gmtime_key)) == NULL) {
1178			if ((p_tm = (struct tm *)malloc(sizeof(struct tm)))
1179			    == NULL) {
1180				return(NULL);
1181			}
1182			_pthread_setspecific(gmtime_key, p_tm);
1183		}
1184		gmtsub(timep, 0L, p_tm);
1185		return(p_tm);
1186	}
1187	else {
1188		gmtsub(timep, 0L, &tm);
1189		return(&tm);
1190	}
1191}
1192
1193struct tm *
1194gmtime_r(const time_t * timep, struct tm * tm)
1195{
1196	gmtsub(timep, 0L, tm);
1197	return(tm);
1198}
1199
1200#ifdef STD_INSPIRED
1201
1202struct tm *
1203offtime(timep, offset)
1204const time_t * const	timep;
1205const long		offset;
1206{
1207	gmtsub(timep, offset, &tm);
1208	return &tm;
1209}
1210
1211#endif /* defined STD_INSPIRED */
1212
1213static void
1214timesub(timep, offset, sp, tmp)
1215const time_t * const			timep;
1216const long				offset;
1217register const struct state * const	sp;
1218register struct tm * const		tmp;
1219{
1220	register const struct lsinfo *	lp;
1221	register long			days;
1222	register long			rem;
1223	register int			y;
1224	register int			yleap;
1225	register const int *		ip;
1226	register long			corr;
1227	register int			hit;
1228	register int			i;
1229
1230	corr = 0;
1231	hit = 0;
1232#ifdef ALL_STATE
1233	i = (sp == NULL) ? 0 : sp->leapcnt;
1234#endif /* defined ALL_STATE */
1235#ifndef ALL_STATE
1236	i = sp->leapcnt;
1237#endif /* State Farm */
1238	while (--i >= 0) {
1239		lp = &sp->lsis[i];
1240		if (*timep >= lp->ls_trans) {
1241			if (*timep == lp->ls_trans) {
1242				hit = ((i == 0 && lp->ls_corr > 0) ||
1243					lp->ls_corr > sp->lsis[i - 1].ls_corr);
1244				if (hit)
1245					while (i > 0 &&
1246						sp->lsis[i].ls_trans ==
1247						sp->lsis[i - 1].ls_trans + 1 &&
1248						sp->lsis[i].ls_corr ==
1249						sp->lsis[i - 1].ls_corr + 1) {
1250							++hit;
1251							--i;
1252					}
1253			}
1254			corr = lp->ls_corr;
1255			break;
1256		}
1257	}
1258	days = *timep / SECSPERDAY;
1259	rem = *timep % SECSPERDAY;
1260#ifdef mc68k
1261	if (*timep == 0x80000000) {
1262		/*
1263		** A 3B1 muffs the division on the most negative number.
1264		*/
1265		days = -24855;
1266		rem = -11648;
1267	}
1268#endif /* defined mc68k */
1269	rem += (offset - corr);
1270	while (rem < 0) {
1271		rem += SECSPERDAY;
1272		--days;
1273	}
1274	while (rem >= SECSPERDAY) {
1275		rem -= SECSPERDAY;
1276		++days;
1277	}
1278	tmp->tm_hour = (int) (rem / SECSPERHOUR);
1279	rem = rem % SECSPERHOUR;
1280	tmp->tm_min = (int) (rem / SECSPERMIN);
1281	/*
1282	** A positive leap second requires a special
1283	** representation.  This uses "... ??:59:60" et seq.
1284	*/
1285	tmp->tm_sec = (int) (rem % SECSPERMIN) + hit;
1286	tmp->tm_wday = (int) ((EPOCH_WDAY + days) % DAYSPERWEEK);
1287	if (tmp->tm_wday < 0)
1288		tmp->tm_wday += DAYSPERWEEK;
1289	y = EPOCH_YEAR;
1290#define LEAPS_THRU_END_OF(y)	((y) / 4 - (y) / 100 + (y) / 400)
1291	while (days < 0 || days >= (long) year_lengths[yleap = isleap(y)]) {
1292		register int	newy;
1293
1294		newy = y + days / DAYSPERNYEAR;
1295		if (days < 0)
1296			--newy;
1297		days -= (newy - y) * DAYSPERNYEAR +
1298			LEAPS_THRU_END_OF(newy - 1) -
1299			LEAPS_THRU_END_OF(y - 1);
1300		y = newy;
1301	}
1302	tmp->tm_year = y - TM_YEAR_BASE;
1303	tmp->tm_yday = (int) days;
1304	ip = mon_lengths[yleap];
1305	for (tmp->tm_mon = 0; days >= (long) ip[tmp->tm_mon]; ++(tmp->tm_mon))
1306		days = days - (long) ip[tmp->tm_mon];
1307	tmp->tm_mday = (int) (days + 1);
1308	tmp->tm_isdst = 0;
1309#ifdef TM_GMTOFF
1310	tmp->TM_GMTOFF = offset;
1311#endif /* defined TM_GMTOFF */
1312}
1313
1314char *
1315ctime(timep)
1316const time_t * const	timep;
1317{
1318/*
1319** Section 4.12.3.2 of X3.159-1989 requires that
1320**	The ctime funciton converts the calendar time pointed to by timer
1321**	to local time in the form of a string.  It is equivalent to
1322**		asctime(localtime(timer))
1323*/
1324	return asctime(localtime(timep));
1325}
1326
1327char *
1328ctime_r(timep, buf)
1329const time_t * const	timep;
1330char *buf;
1331{
1332        struct tm tm;
1333	return asctime_r(localtime_r(timep, &tm), buf);
1334}
1335
1336/*
1337** Adapted from code provided by Robert Elz, who writes:
1338**	The "best" way to do mktime I think is based on an idea of Bob
1339**	Kridle's (so its said...) from a long time ago.
1340**	[kridle@xinet.com as of 1996-01-16.]
1341**	It does a binary search of the time_t space.  Since time_t's are
1342**	just 32 bits, its a max of 32 iterations (even at 64 bits it
1343**	would still be very reasonable).
1344*/
1345
1346#ifndef WRONG
1347#define WRONG	(-1)
1348#endif /* !defined WRONG */
1349
1350/*
1351** Simplified normalize logic courtesy Paul Eggert (eggert@twinsun.com).
1352*/
1353
1354static int
1355increment_overflow(number, delta)
1356int *	number;
1357int	delta;
1358{
1359	int	number0;
1360
1361	number0 = *number;
1362	*number += delta;
1363	return (*number < number0) != (delta < 0);
1364}
1365
1366static int
1367normalize_overflow(tensptr, unitsptr, base)
1368int * const	tensptr;
1369int * const	unitsptr;
1370const int	base;
1371{
1372	register int	tensdelta;
1373
1374	tensdelta = (*unitsptr >= 0) ?
1375		(*unitsptr / base) :
1376		(-1 - (-1 - *unitsptr) / base);
1377	*unitsptr -= tensdelta * base;
1378	return increment_overflow(tensptr, tensdelta);
1379}
1380
1381static int
1382tmcomp(atmp, btmp)
1383register const struct tm * const atmp;
1384register const struct tm * const btmp;
1385{
1386	register int	result;
1387
1388	if ((result = (atmp->tm_year - btmp->tm_year)) == 0 &&
1389		(result = (atmp->tm_mon - btmp->tm_mon)) == 0 &&
1390		(result = (atmp->tm_mday - btmp->tm_mday)) == 0 &&
1391		(result = (atmp->tm_hour - btmp->tm_hour)) == 0 &&
1392		(result = (atmp->tm_min - btmp->tm_min)) == 0)
1393			result = atmp->tm_sec - btmp->tm_sec;
1394	return result;
1395}
1396
1397static time_t
1398time2(tmp, funcp, offset, okayp)
1399struct tm * const	tmp;
1400void (* const		funcp) P((const time_t*, long, struct tm*));
1401const long		offset;
1402int * const		okayp;
1403{
1404	register const struct state *	sp;
1405	register int			dir;
1406	register int			bits;
1407	register int			i, j ;
1408	register int			saved_seconds;
1409	time_t				newt;
1410	time_t				t;
1411	struct tm			yourtm, mytm;
1412
1413	*okayp = FALSE;
1414	yourtm = *tmp;
1415	if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR))
1416		return WRONG;
1417	if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY))
1418		return WRONG;
1419	if (normalize_overflow(&yourtm.tm_year, &yourtm.tm_mon, MONSPERYEAR))
1420		return WRONG;
1421	/*
1422	** Turn yourtm.tm_year into an actual year number for now.
1423	** It is converted back to an offset from TM_YEAR_BASE later.
1424	*/
1425	if (increment_overflow(&yourtm.tm_year, TM_YEAR_BASE))
1426		return WRONG;
1427	while (yourtm.tm_mday <= 0) {
1428		if (increment_overflow(&yourtm.tm_year, -1))
1429			return WRONG;
1430		i = yourtm.tm_year + (1 < yourtm.tm_mon);
1431		yourtm.tm_mday += year_lengths[isleap(i)];
1432	}
1433	while (yourtm.tm_mday > DAYSPERLYEAR) {
1434		i = yourtm.tm_year + (1 < yourtm.tm_mon);
1435		yourtm.tm_mday -= year_lengths[isleap(i)];
1436		if (increment_overflow(&yourtm.tm_year, 1))
1437			return WRONG;
1438	}
1439	for ( ; ; ) {
1440		i = mon_lengths[isleap(yourtm.tm_year)][yourtm.tm_mon];
1441		if (yourtm.tm_mday <= i)
1442			break;
1443		yourtm.tm_mday -= i;
1444		if (++yourtm.tm_mon >= MONSPERYEAR) {
1445			yourtm.tm_mon = 0;
1446			if (increment_overflow(&yourtm.tm_year, 1))
1447				return WRONG;
1448		}
1449	}
1450	if (increment_overflow(&yourtm.tm_year, -TM_YEAR_BASE))
1451		return WRONG;
1452	if (yourtm.tm_year + TM_YEAR_BASE < EPOCH_YEAR) {
1453		/*
1454		** We can't set tm_sec to 0, because that might push the
1455		** time below the minimum representable time.
1456		** Set tm_sec to 59 instead.
1457		** This assumes that the minimum representable time is
1458		** not in the same minute that a leap second was deleted from,
1459		** which is a safer assumption than using 58 would be.
1460		*/
1461		if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN))
1462			return WRONG;
1463		saved_seconds = yourtm.tm_sec;
1464		yourtm.tm_sec = SECSPERMIN - 1;
1465	} else {
1466		saved_seconds = yourtm.tm_sec;
1467		yourtm.tm_sec = 0;
1468	}
1469	/*
1470	** Divide the search space in half
1471	** (this works whether time_t is signed or unsigned).
1472	*/
1473	bits = TYPE_BIT(time_t) - 1;
1474	/*
1475	** If time_t is signed, then 0 is just above the median,
1476	** assuming two's complement arithmetic.
1477	** If time_t is unsigned, then (1 << bits) is just above the median.
1478	*/
1479	t = TYPE_SIGNED(time_t) ? 0 : (((time_t) 1) << bits);
1480	for ( ; ; ) {
1481		(*funcp)(&t, offset, &mytm);
1482		dir = tmcomp(&mytm, &yourtm);
1483		if (dir != 0) {
1484			if (bits-- < 0)
1485				return WRONG;
1486			if (bits < 0)
1487				--t; /* may be needed if new t is minimal */
1488			else if (dir > 0)
1489				t -= ((time_t) 1) << bits;
1490			else	t += ((time_t) 1) << bits;
1491			continue;
1492		}
1493		if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst)
1494			break;
1495		/*
1496		** Right time, wrong type.
1497		** Hunt for right time, right type.
1498		** It's okay to guess wrong since the guess
1499		** gets checked.
1500		*/
1501		/*
1502		** The (void *) casts are the benefit of SunOS 3.3 on Sun 2's.
1503		*/
1504		sp = (const struct state *)
1505			(((void *) funcp == (void *) localsub) ?
1506			lclptr : gmtptr);
1507#ifdef ALL_STATE
1508		if (sp == NULL)
1509			return WRONG;
1510#endif /* defined ALL_STATE */
1511		for (i = sp->typecnt - 1; i >= 0; --i) {
1512			if (sp->ttis[i].tt_isdst != yourtm.tm_isdst)
1513				continue;
1514			for (j = sp->typecnt - 1; j >= 0; --j) {
1515				if (sp->ttis[j].tt_isdst == yourtm.tm_isdst)
1516					continue;
1517				newt = t + sp->ttis[j].tt_gmtoff -
1518					sp->ttis[i].tt_gmtoff;
1519				(*funcp)(&newt, offset, &mytm);
1520				if (tmcomp(&mytm, &yourtm) != 0)
1521					continue;
1522				if (mytm.tm_isdst != yourtm.tm_isdst)
1523					continue;
1524				/*
1525				** We have a match.
1526				*/
1527				t = newt;
1528				goto label;
1529			}
1530		}
1531		return WRONG;
1532	}
1533label:
1534	newt = t + saved_seconds;
1535	if ((newt < t) != (saved_seconds < 0))
1536		return WRONG;
1537	t = newt;
1538	(*funcp)(&t, offset, tmp);
1539	*okayp = TRUE;
1540	return t;
1541}
1542
1543static time_t
1544time1(tmp, funcp, offset)
1545struct tm * const	tmp;
1546void (* const		funcp) P((const time_t *, long, struct tm *));
1547const long		offset;
1548{
1549	register time_t			t;
1550	register const struct state *	sp;
1551	register int			samei, otheri;
1552	int				okay;
1553
1554	if (tmp->tm_isdst > 1)
1555		tmp->tm_isdst = 1;
1556	t = time2(tmp, funcp, offset, &okay);
1557#ifdef PCTS
1558	/*
1559	** PCTS code courtesy Grant Sullivan (grant@osf.org).
1560	*/
1561	if (okay)
1562		return t;
1563	if (tmp->tm_isdst < 0)
1564		tmp->tm_isdst = 0;	/* reset to std and try again */
1565#endif /* defined PCTS */
1566#ifndef PCTS
1567	if (okay || tmp->tm_isdst < 0)
1568		return t;
1569#endif /* !defined PCTS */
1570	/*
1571	** We're supposed to assume that somebody took a time of one type
1572	** and did some math on it that yielded a "struct tm" that's bad.
1573	** We try to divine the type they started from and adjust to the
1574	** type they need.
1575	*/
1576	/*
1577	** The (void *) casts are the benefit of SunOS 3.3 on Sun 2's.
1578	*/
1579	sp = (const struct state *) (((void *) funcp == (void *) localsub) ?
1580		lclptr : gmtptr);
1581#ifdef ALL_STATE
1582	if (sp == NULL)
1583		return WRONG;
1584#endif /* defined ALL_STATE */
1585	for (samei = sp->typecnt - 1; samei >= 0; --samei) {
1586		if (sp->ttis[samei].tt_isdst != tmp->tm_isdst)
1587			continue;
1588		for (otheri = sp->typecnt - 1; otheri >= 0; --otheri) {
1589			if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst)
1590				continue;
1591			tmp->tm_sec += sp->ttis[otheri].tt_gmtoff -
1592					sp->ttis[samei].tt_gmtoff;
1593			tmp->tm_isdst = !tmp->tm_isdst;
1594			t = time2(tmp, funcp, offset, &okay);
1595			if (okay)
1596				return t;
1597			tmp->tm_sec -= sp->ttis[otheri].tt_gmtoff -
1598					sp->ttis[samei].tt_gmtoff;
1599			tmp->tm_isdst = !tmp->tm_isdst;
1600		}
1601	}
1602	return WRONG;
1603}
1604
1605time_t
1606mktime(tmp)
1607struct tm * const	tmp;
1608{
1609	time_t mktime_return_value;
1610	_MUTEX_LOCK(&lcl_mutex);
1611	tzset();
1612	mktime_return_value = time1(tmp, localsub, 0L);
1613	_MUTEX_UNLOCK(&lcl_mutex);
1614	return(mktime_return_value);
1615}
1616
1617#ifdef STD_INSPIRED
1618
1619time_t
1620timelocal(tmp)
1621struct tm * const	tmp;
1622{
1623	tmp->tm_isdst = -1;	/* in case it wasn't initialized */
1624	return mktime(tmp);
1625}
1626
1627time_t
1628timegm(tmp)
1629struct tm * const	tmp;
1630{
1631	tmp->tm_isdst = 0;
1632	return time1(tmp, gmtsub, 0L);
1633}
1634
1635time_t
1636timeoff(tmp, offset)
1637struct tm * const	tmp;
1638const long		offset;
1639{
1640	tmp->tm_isdst = 0;
1641	return time1(tmp, gmtsub, offset);
1642}
1643
1644#endif /* defined STD_INSPIRED */
1645
1646#ifdef CMUCS
1647
1648/*
1649** The following is supplied for compatibility with
1650** previous versions of the CMUCS runtime library.
1651*/
1652
1653long
1654gtime(tmp)
1655struct tm * const	tmp;
1656{
1657	const time_t	t = mktime(tmp);
1658
1659	if (t == WRONG)
1660		return -1;
1661	return t;
1662}
1663
1664#endif /* defined CMUCS */
1665
1666/*
1667** XXX--is the below the right way to conditionalize??
1668*/
1669
1670#ifdef STD_INSPIRED
1671
1672/*
1673** IEEE Std 1003.1-1988 (POSIX) legislates that 536457599
1674** shall correspond to "Wed Dec 31 23:59:59 GMT 1986", which
1675** is not the case if we are accounting for leap seconds.
1676** So, we provide the following conversion routines for use
1677** when exchanging timestamps with POSIX conforming systems.
1678*/
1679
1680static long
1681leapcorr(timep)
1682time_t *	timep;
1683{
1684	register struct state *		sp;
1685	register struct lsinfo *	lp;
1686	register int			i;
1687
1688	sp = lclptr;
1689	i = sp->leapcnt;
1690	while (--i >= 0) {
1691		lp = &sp->lsis[i];
1692		if (*timep >= lp->ls_trans)
1693			return lp->ls_corr;
1694	}
1695	return 0;
1696}
1697
1698time_t
1699time2posix(t)
1700time_t	t;
1701{
1702	tzset();
1703	return t - leapcorr(&t);
1704}
1705
1706time_t
1707posix2time(t)
1708time_t	t;
1709{
1710	time_t	x;
1711	time_t	y;
1712
1713	tzset();
1714	/*
1715	** For a positive leap second hit, the result
1716	** is not unique.  For a negative leap second
1717	** hit, the corresponding time doesn't exist,
1718	** so we return an adjacent second.
1719	*/
1720	x = t + leapcorr(&t);
1721	y = x - leapcorr(&x);
1722	if (y < t) {
1723		do {
1724			x++;
1725			y = x - leapcorr(&x);
1726		} while (y < t);
1727		if (t != y)
1728			return x - 1;
1729	} else if (y > t) {
1730		do {
1731			--x;
1732			y = x - leapcorr(&x);
1733		} while (y > t);
1734		if (t != y)
1735			return x + 1;
1736	}
1737	return x;
1738}
1739
1740#endif /* defined STD_INSPIRED */
1741