localtime.c revision 200797
1/*
2** This file is in the public domain, so clarified as of
3** 1996-06-05 by Arthur David Olson.
4*/
5
6#include <sys/cdefs.h>
7#ifndef lint
8#ifndef NOID
9static char	elsieid[] __unused = "@(#)localtime.c	8.9";
10#endif /* !defined NOID */
11#endif /* !defined lint */
12__FBSDID("$FreeBSD: head/lib/libc/stdtime/localtime.c 200797 2009-12-21 19:43:23Z jhb $");
13
14/*
15** Leap second handling from Bradley White.
16** POSIX-style TZ environment variable handling from Guy Harris.
17*/
18
19/*LINTLIBRARY*/
20
21#include "namespace.h"
22#include <sys/types.h>
23#include <sys/stat.h>
24#include <errno.h>
25#include <fcntl.h>
26#include <pthread.h>
27#include "private.h"
28#include "un-namespace.h"
29
30#include "tzfile.h"
31#include "float.h"	/* for FLT_MAX and DBL_MAX */
32
33#ifndef TZ_ABBR_MAX_LEN
34#define TZ_ABBR_MAX_LEN	16
35#endif /* !defined TZ_ABBR_MAX_LEN */
36
37#ifndef TZ_ABBR_CHAR_SET
38#define TZ_ABBR_CHAR_SET \
39	"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 :+-._"
40#endif /* !defined TZ_ABBR_CHAR_SET */
41
42#ifndef TZ_ABBR_ERR_CHAR
43#define TZ_ABBR_ERR_CHAR	'_'
44#endif /* !defined TZ_ABBR_ERR_CHAR */
45
46#include "libc_private.h"
47
48#define	_MUTEX_LOCK(x)		if (__isthreaded) _pthread_mutex_lock(x)
49#define	_MUTEX_UNLOCK(x)	if (__isthreaded) _pthread_mutex_unlock(x)
50
51#define _RWLOCK_RDLOCK(x)						\
52		do {							\
53			if (__isthreaded) _pthread_rwlock_rdlock(x);	\
54		} while (0)
55
56#define _RWLOCK_WRLOCK(x)						\
57		do {							\
58			if (__isthreaded) _pthread_rwlock_wrlock(x);	\
59		} while (0)
60
61#define _RWLOCK_UNLOCK(x)						\
62		do {							\
63			if (__isthreaded) _pthread_rwlock_unlock(x);	\
64		} while (0)
65
66/*
67** SunOS 4.1.1 headers lack O_BINARY.
68*/
69
70#ifdef O_BINARY
71#define OPEN_MODE	(O_RDONLY | O_BINARY)
72#endif /* defined O_BINARY */
73#ifndef O_BINARY
74#define OPEN_MODE	O_RDONLY
75#endif /* !defined O_BINARY */
76
77#ifndef WILDABBR
78/*
79** Someone might make incorrect use of a time zone abbreviation:
80**	1.	They might reference tzname[0] before calling tzset (explicitly
81**		or implicitly).
82**	2.	They might reference tzname[1] before calling tzset (explicitly
83**		or implicitly).
84**	3.	They might reference tzname[1] after setting to a time zone
85**		in which Daylight Saving Time is never observed.
86**	4.	They might reference tzname[0] after setting to a time zone
87**		in which Standard Time is never observed.
88**	5.	They might reference tm.TM_ZONE after calling offtime.
89** What's best to do in the above cases is open to debate;
90** for now, we just set things up so that in any of the five cases
91** WILDABBR is used. Another possibility: initialize tzname[0] to the
92** string "tzname[0] used before set", and similarly for the other cases.
93** And another: initialize tzname[0] to "ERA", with an explanation in the
94** manual page of what this "time zone abbreviation" means (doing this so
95** that tzname[0] has the "normal" length of three characters).
96*/
97#define WILDABBR	"   "
98#endif /* !defined WILDABBR */
99
100static char		wildabbr[] = WILDABBR;
101
102/*
103 * In June 2004 it was decided UTC was a more appropriate default time
104 * zone than GMT.
105 */
106
107static const char	gmt[] = "UTC";
108
109/*
110** The DST rules to use if TZ has no rules and we can't load TZDEFRULES.
111** We default to US rules as of 1999-08-17.
112** POSIX 1003.1 section 8.1.1 says that the default DST rules are
113** implementation dependent; for historical reasons, US rules are a
114** common default.
115*/
116#ifndef TZDEFRULESTRING
117#define TZDEFRULESTRING ",M4.1.0,M10.5.0"
118#endif /* !defined TZDEFDST */
119
120struct ttinfo {				/* time type information */
121	long		tt_gmtoff;	/* UTC offset in seconds */
122	int		tt_isdst;	/* used to set tm_isdst */
123	int		tt_abbrind;	/* abbreviation list index */
124	int		tt_ttisstd;	/* TRUE if transition is std time */
125	int		tt_ttisgmt;	/* TRUE if transition is UTC */
126};
127
128struct lsinfo {				/* leap second information */
129	time_t		ls_trans;	/* transition time */
130	long		ls_corr;	/* correction to apply */
131};
132
133#define BIGGEST(a, b)	(((a) > (b)) ? (a) : (b))
134
135#ifdef TZNAME_MAX
136#define MY_TZNAME_MAX	TZNAME_MAX
137#endif /* defined TZNAME_MAX */
138#ifndef TZNAME_MAX
139#define MY_TZNAME_MAX	255
140#endif /* !defined TZNAME_MAX */
141
142struct state {
143	int		leapcnt;
144	int		timecnt;
145	int		typecnt;
146	int		charcnt;
147	int		goback;
148	int		goahead;
149	time_t		ats[TZ_MAX_TIMES];
150	unsigned char	types[TZ_MAX_TIMES];
151	struct ttinfo	ttis[TZ_MAX_TYPES];
152	char		chars[BIGGEST(BIGGEST(TZ_MAX_CHARS + 1, sizeof gmt),
153				(2 * (MY_TZNAME_MAX + 1)))];
154	struct lsinfo	lsis[TZ_MAX_LEAPS];
155};
156
157struct rule {
158	int		r_type;		/* type of rule--see below */
159	int		r_day;		/* day number of rule */
160	int		r_week;		/* week number of rule */
161	int		r_mon;		/* month number of rule */
162	long		r_time;		/* transition time of rule */
163};
164
165#define JULIAN_DAY		0	/* Jn - Julian day */
166#define DAY_OF_YEAR		1	/* n - day of year */
167#define MONTH_NTH_DAY_OF_WEEK	2	/* Mm.n.d - month, week, day of week */
168
169/*
170** Prototypes for static functions.
171*/
172
173static long		detzcode(const char * codep);
174static time_t		detzcode64(const char * codep);
175static int		differ_by_repeat(time_t t1, time_t t0);
176static const char *	getzname(const char * strp);
177static const char *	getqzname(const char * strp, const int delim);
178static const char *	getnum(const char * strp, int * nump, int min,
179				int max);
180static const char *	getsecs(const char * strp, long * secsp);
181static const char *	getoffset(const char * strp, long * offsetp);
182static const char *	getrule(const char * strp, struct rule * rulep);
183static void		gmtload(struct state * sp);
184static struct tm *	gmtsub(const time_t * timep, long offset,
185				struct tm * tmp);
186static struct tm *	localsub(const time_t * timep, long offset,
187				struct tm * tmp);
188static int		increment_overflow(int * number, int delta);
189static int		leaps_thru_end_of(int y);
190static int		long_increment_overflow(long * number, int delta);
191static int		long_normalize_overflow(long * tensptr,
192				int * unitsptr, int base);
193static int		normalize_overflow(int * tensptr, int * unitsptr,
194				int base);
195static void		settzname(void);
196static time_t		time1(struct tm * tmp,
197				struct tm * (*funcp)(const time_t *,
198				long, struct tm *),
199				long offset);
200static time_t		time2(struct tm *tmp,
201				struct tm * (*funcp)(const time_t *,
202				long, struct tm*),
203				long offset, int * okayp);
204static time_t		time2sub(struct tm *tmp,
205				struct tm * (*funcp)(const time_t *,
206				long, struct tm*),
207				long offset, int * okayp, int do_norm_secs);
208static struct tm *	timesub(const time_t * timep, long offset,
209				const struct state * sp, struct tm * tmp);
210static int		tmcomp(const struct tm * atmp,
211				const struct tm * btmp);
212static time_t		transtime(time_t janfirst, int year,
213				const struct rule * rulep, long offset);
214static int		typesequiv(const struct state * sp, int a, int b);
215static int		tzload(const char * name, struct state * sp,
216				int doextend);
217static int		tzparse(const char * name, struct state * sp,
218				int lastditch);
219
220#ifdef ALL_STATE
221static struct state *	lclptr;
222static struct state *	gmtptr;
223#endif /* defined ALL_STATE */
224
225#ifndef ALL_STATE
226static struct state	lclmem;
227static struct state	gmtmem;
228#define lclptr		(&lclmem)
229#define gmtptr		(&gmtmem)
230#endif /* State Farm */
231
232#ifndef TZ_STRLEN_MAX
233#define TZ_STRLEN_MAX 255
234#endif /* !defined TZ_STRLEN_MAX */
235
236static char		lcl_TZname[TZ_STRLEN_MAX + 1];
237static int		lcl_is_set;
238static pthread_once_t	gmt_once = PTHREAD_ONCE_INIT;
239static pthread_rwlock_t	lcl_rwlock = PTHREAD_RWLOCK_INITIALIZER;
240static pthread_once_t	localtime_once = PTHREAD_ONCE_INIT;
241static pthread_key_t	localtime_key;
242static int		localtime_key_error;
243
244char *			tzname[2] = {
245	wildabbr,
246	wildabbr
247};
248
249/*
250** Section 4.12.3 of X3.159-1989 requires that
251**	Except for the strftime function, these functions [asctime,
252**	ctime, gmtime, localtime] return values in one of two static
253**	objects: a broken-down time structure and an array of char.
254** Thanks to Paul Eggert for noting this.
255*/
256
257static struct tm	tm;
258
259#ifdef USG_COMPAT
260time_t			timezone = 0;
261int			daylight = 0;
262#endif /* defined USG_COMPAT */
263
264#ifdef ALTZONE
265time_t			altzone = 0;
266#endif /* defined ALTZONE */
267
268static long
269detzcode(codep)
270const char * const	codep;
271{
272	long	result;
273	int	i;
274
275	result = (codep[0] & 0x80) ? ~0L : 0;
276	for (i = 0; i < 4; ++i)
277		result = (result << 8) | (codep[i] & 0xff);
278	return result;
279}
280
281static time_t
282detzcode64(codep)
283const char * const	codep;
284{
285	register time_t	result;
286	register int	i;
287
288	result = (codep[0] & 0x80) ?  (~(int_fast64_t) 0) : 0;
289	for (i = 0; i < 8; ++i)
290		result = result * 256 + (codep[i] & 0xff);
291	return result;
292}
293
294static void
295settzname(void)
296{
297	struct state * 	sp = lclptr;
298	int			i;
299
300	tzname[0] = wildabbr;
301	tzname[1] = wildabbr;
302#ifdef USG_COMPAT
303	daylight = 0;
304	timezone = 0;
305#endif /* defined USG_COMPAT */
306#ifdef ALTZONE
307	altzone = 0;
308#endif /* defined ALTZONE */
309#ifdef ALL_STATE
310	if (sp == NULL) {
311		tzname[0] = tzname[1] = gmt;
312		return;
313	}
314#endif /* defined ALL_STATE */
315	for (i = 0; i < sp->typecnt; ++i) {
316		const struct ttinfo * const	ttisp = &sp->ttis[i];
317
318		tzname[ttisp->tt_isdst] =
319			&sp->chars[ttisp->tt_abbrind];
320#ifdef USG_COMPAT
321		if (ttisp->tt_isdst)
322			daylight = 1;
323		if (i == 0 || !ttisp->tt_isdst)
324			timezone = -(ttisp->tt_gmtoff);
325#endif /* defined USG_COMPAT */
326#ifdef ALTZONE
327		if (i == 0 || ttisp->tt_isdst)
328			altzone = -(ttisp->tt_gmtoff);
329#endif /* defined ALTZONE */
330	}
331	/*
332	** And to get the latest zone names into tzname. . .
333	*/
334	for (i = 0; i < sp->timecnt; ++i) {
335		const struct ttinfo * const	ttisp =
336							&sp->ttis[
337								sp->types[i]];
338
339		tzname[ttisp->tt_isdst] =
340			&sp->chars[ttisp->tt_abbrind];
341	}
342	/*
343	** Finally, scrub the abbreviations.
344	** First, replace bogus characters.
345	*/
346	for (i = 0; i < sp->charcnt; ++i)
347		if (strchr(TZ_ABBR_CHAR_SET, sp->chars[i]) == NULL)
348			sp->chars[i] = TZ_ABBR_ERR_CHAR;
349	/*
350	** Second, truncate long abbreviations.
351	*/
352	for (i = 0; i < sp->typecnt; ++i) {
353		register const struct ttinfo * const	ttisp = &sp->ttis[i];
354		register char *				cp = &sp->chars[ttisp->tt_abbrind];
355
356		if (strlen(cp) > TZ_ABBR_MAX_LEN &&
357			strcmp(cp, GRANDPARENTED) != 0)
358				*(cp + TZ_ABBR_MAX_LEN) = '\0';
359	}
360}
361
362static int
363differ_by_repeat(t1, t0)
364const time_t	t1;
365const time_t	t0;
366{
367	int_fast64_t _t0 = t0;
368	int_fast64_t _t1 = t1;
369
370	if (TYPE_INTEGRAL(time_t) &&
371		TYPE_BIT(time_t) - TYPE_SIGNED(time_t) < SECSPERREPEAT_BITS)
372			return 0;
373	//turn ((int_fast64_t)(t1 - t0) == SECSPERREPEAT);
374	return _t1 - _t0 == SECSPERREPEAT;
375}
376
377static int
378tzload(name, sp, doextend)
379const char *		name;
380struct state * const	sp;
381register const int	doextend;
382{
383	const char *	p;
384	int		i;
385	int		fid;
386	int		stored;
387	int		nread;
388	union {
389		struct tzhead	tzhead;
390		char		buf[2 * sizeof(struct tzhead) +
391					2 * sizeof *sp +
392					4 * TZ_MAX_TIMES];
393	} u;
394
395	/* XXX The following is from OpenBSD, and I'm not sure it is correct */
396	if (name != NULL && issetugid() != 0)
397		if ((name[0] == ':' && name[1] == '/') ||
398		    name[0] == '/' || strchr(name, '.'))
399			name = NULL;
400	if (name == NULL && (name = TZDEFAULT) == NULL)
401		return -1;
402	{
403		int	doaccess;
404		struct stat	stab;
405		/*
406		** Section 4.9.1 of the C standard says that
407		** "FILENAME_MAX expands to an integral constant expression
408		** that is the size needed for an array of char large enough
409		** to hold the longest file name string that the implementation
410		** guarantees can be opened."
411		*/
412		char		fullname[FILENAME_MAX + 1];
413
414		if (name[0] == ':')
415			++name;
416		doaccess = name[0] == '/';
417		if (!doaccess) {
418			if ((p = TZDIR) == NULL)
419				return -1;
420			if ((strlen(p) + 1 + strlen(name) + 1) >= sizeof fullname)
421				return -1;
422			(void) strcpy(fullname, p);
423			(void) strcat(fullname, "/");
424			(void) strcat(fullname, name);
425			/*
426			** Set doaccess if '.' (as in "../") shows up in name.
427			*/
428			if (strchr(name, '.') != NULL)
429				doaccess = TRUE;
430			name = fullname;
431		}
432		if (doaccess && access(name, R_OK) != 0)
433		     	return -1;
434		if ((fid = _open(name, OPEN_MODE)) == -1)
435			return -1;
436		if ((_fstat(fid, &stab) < 0) || !S_ISREG(stab.st_mode)) {
437			_close(fid);
438			return -1;
439		}
440	}
441	nread = _read(fid, u.buf, sizeof u.buf);
442	if (_close(fid) < 0 || nread <= 0)
443		return -1;
444	for (stored = 4; stored <= 8; stored *= 2) {
445		int		ttisstdcnt;
446		int		ttisgmtcnt;
447
448		ttisstdcnt = (int) detzcode(u.tzhead.tzh_ttisstdcnt);
449		ttisgmtcnt = (int) detzcode(u.tzhead.tzh_ttisgmtcnt);
450		sp->leapcnt = (int) detzcode(u.tzhead.tzh_leapcnt);
451		sp->timecnt = (int) detzcode(u.tzhead.tzh_timecnt);
452		sp->typecnt = (int) detzcode(u.tzhead.tzh_typecnt);
453		sp->charcnt = (int) detzcode(u.tzhead.tzh_charcnt);
454		p = u.tzhead.tzh_charcnt + sizeof u.tzhead.tzh_charcnt;
455		if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS ||
456			sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES ||
457			sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES ||
458			sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS ||
459			(ttisstdcnt != sp->typecnt && ttisstdcnt != 0) ||
460			(ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0))
461				return -1;
462		if (nread - (p - u.buf) <
463			sp->timecnt * stored +		/* ats */
464			sp->timecnt +			/* types */
465			sp->typecnt * 6 +		/* ttinfos */
466			sp->charcnt +			/* chars */
467			sp->leapcnt * (stored + 4) +	/* lsinfos */
468			ttisstdcnt +			/* ttisstds */
469			ttisgmtcnt)			/* ttisgmts */
470				return -1;
471		for (i = 0; i < sp->timecnt; ++i) {
472			sp->ats[i] = (stored == 4) ?
473				detzcode(p) : detzcode64(p);
474			p += stored;
475		}
476		for (i = 0; i < sp->timecnt; ++i) {
477			sp->types[i] = (unsigned char) *p++;
478			if (sp->types[i] >= sp->typecnt)
479				return -1;
480		}
481		for (i = 0; i < sp->typecnt; ++i) {
482			struct ttinfo *	ttisp;
483
484			ttisp = &sp->ttis[i];
485			ttisp->tt_gmtoff = detzcode(p);
486			p += 4;
487			ttisp->tt_isdst = (unsigned char) *p++;
488			if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1)
489				return -1;
490			ttisp->tt_abbrind = (unsigned char) *p++;
491			if (ttisp->tt_abbrind < 0 ||
492				ttisp->tt_abbrind > sp->charcnt)
493					return -1;
494		}
495		for (i = 0; i < sp->charcnt; ++i)
496			sp->chars[i] = *p++;
497		sp->chars[i] = '\0';	/* ensure '\0' at end */
498		for (i = 0; i < sp->leapcnt; ++i) {
499			struct lsinfo *	lsisp;
500
501			lsisp = &sp->lsis[i];
502			lsisp->ls_trans = (stored == 4) ?
503				detzcode(p) : detzcode64(p);
504			p += stored;
505			lsisp->ls_corr = detzcode(p);
506			p += 4;
507		}
508		for (i = 0; i < sp->typecnt; ++i) {
509			struct ttinfo *	ttisp;
510
511			ttisp = &sp->ttis[i];
512			if (ttisstdcnt == 0)
513				ttisp->tt_ttisstd = FALSE;
514			else {
515				ttisp->tt_ttisstd = *p++;
516				if (ttisp->tt_ttisstd != TRUE &&
517					ttisp->tt_ttisstd != FALSE)
518						return -1;
519			}
520		}
521		for (i = 0; i < sp->typecnt; ++i) {
522			struct ttinfo *	ttisp;
523
524			ttisp = &sp->ttis[i];
525			if (ttisgmtcnt == 0)
526				ttisp->tt_ttisgmt = FALSE;
527			else {
528				ttisp->tt_ttisgmt = *p++;
529				if (ttisp->tt_ttisgmt != TRUE &&
530					ttisp->tt_ttisgmt != FALSE)
531						return -1;
532			}
533		}
534		/*
535		** Out-of-sort ats should mean we're running on a
536		** signed time_t system but using a data file with
537		** unsigned values (or vice versa).
538		*/
539		for (i = 0; i < sp->timecnt - 2; ++i)
540			if (sp->ats[i] > sp->ats[i + 1]) {
541				++i;
542				if (TYPE_SIGNED(time_t)) {
543					/*
544					** Ignore the end (easy).
545					*/
546					sp->timecnt = i;
547				} else {
548					/*
549					** Ignore the beginning (harder).
550					*/
551					register int	j;
552
553					for (j = 0; j + i < sp->timecnt; ++j) {
554						sp->ats[j] = sp->ats[j + i];
555						sp->types[j] = sp->types[j + i];
556					}
557					sp->timecnt = j;
558				}
559				break;
560			}
561		/*
562		** If this is an old file, we're done.
563		*/
564		if (u.tzhead.tzh_version[0] == '\0')
565			break;
566		nread -= p - u.buf;
567		for (i = 0; i < nread; ++i)
568			u.buf[i] = p[i];
569		/*
570		** If this is a narrow integer time_t system, we're done.
571		*/
572		if (stored >= (int) sizeof(time_t) && TYPE_INTEGRAL(time_t))
573			break;
574	}
575	if (doextend && nread > 2 &&
576		u.buf[0] == '\n' && u.buf[nread - 1] == '\n' &&
577		sp->typecnt + 2 <= TZ_MAX_TYPES) {
578			struct state	ts;
579			register int	result;
580
581			u.buf[nread - 1] = '\0';
582			result = tzparse(&u.buf[1], &ts, FALSE);
583			if (result == 0 && ts.typecnt == 2 &&
584				sp->charcnt + ts.charcnt <= TZ_MAX_CHARS) {
585					for (i = 0; i < 2; ++i)
586						ts.ttis[i].tt_abbrind +=
587							sp->charcnt;
588					for (i = 0; i < ts.charcnt; ++i)
589						sp->chars[sp->charcnt++] =
590							ts.chars[i];
591					i = 0;
592					while (i < ts.timecnt &&
593						ts.ats[i] <=
594						sp->ats[sp->timecnt - 1])
595							++i;
596					while (i < ts.timecnt &&
597					    sp->timecnt < TZ_MAX_TIMES) {
598						sp->ats[sp->timecnt] =
599							ts.ats[i];
600						sp->types[sp->timecnt] =
601							sp->typecnt +
602							ts.types[i];
603						++sp->timecnt;
604						++i;
605					}
606					sp->ttis[sp->typecnt++] = ts.ttis[0];
607					sp->ttis[sp->typecnt++] = ts.ttis[1];
608			}
609	}
610	sp->goback = sp->goahead = FALSE;
611	if (sp->timecnt > 1) {
612		for (i = 1; i < sp->timecnt; ++i)
613			if (typesequiv(sp, sp->types[i], sp->types[0]) &&
614				differ_by_repeat(sp->ats[i], sp->ats[0])) {
615					sp->goback = TRUE;
616					break;
617				}
618		for (i = sp->timecnt - 2; i >= 0; --i)
619			if (typesequiv(sp, sp->types[sp->timecnt - 1],
620				sp->types[i]) &&
621				differ_by_repeat(sp->ats[sp->timecnt - 1],
622				sp->ats[i])) {
623					sp->goahead = TRUE;
624					break;
625		}
626	}
627	return 0;
628}
629
630static int
631typesequiv(sp, a, b)
632const struct state * const	sp;
633const int			a;
634const int			b;
635{
636	register int	result;
637
638	if (sp == NULL ||
639		a < 0 || a >= sp->typecnt ||
640		b < 0 || b >= sp->typecnt)
641			result = FALSE;
642	else {
643		register const struct ttinfo *	ap = &sp->ttis[a];
644		register const struct ttinfo *	bp = &sp->ttis[b];
645		result = ap->tt_gmtoff == bp->tt_gmtoff &&
646			ap->tt_isdst == bp->tt_isdst &&
647			ap->tt_ttisstd == bp->tt_ttisstd &&
648			ap->tt_ttisgmt == bp->tt_ttisgmt &&
649			strcmp(&sp->chars[ap->tt_abbrind],
650			&sp->chars[bp->tt_abbrind]) == 0;
651	}
652	return result;
653}
654
655static const int	mon_lengths[2][MONSPERYEAR] = {
656	{ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
657	{ 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
658};
659
660static const int	year_lengths[2] = {
661	DAYSPERNYEAR, DAYSPERLYEAR
662};
663
664/*
665** Given a pointer into a time zone string, scan until a character that is not
666** a valid character in a zone name is found. Return a pointer to that
667** character.
668*/
669
670static const char *
671getzname(strp)
672const char *	strp;
673{
674	char	c;
675
676	while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' &&
677		c != '+')
678			++strp;
679	return strp;
680}
681
682/*
683** Given a pointer into an extended time zone string, scan until the ending
684** delimiter of the zone name is located. Return a pointer to the delimiter.
685**
686** As with getzname above, the legal character set is actually quite
687** restricted, with other characters producing undefined results.
688** We don't do any checking here; checking is done later in common-case code.
689*/
690
691static const char *
692getqzname(register const char *strp, const int delim)
693{
694	register int	c;
695
696	while ((c = *strp) != '\0' && c != delim)
697		++strp;
698	return strp;
699}
700
701/*
702** Given a pointer into a time zone string, extract a number from that string.
703** Check that the number is within a specified range; if it is not, return
704** NULL.
705** Otherwise, return a pointer to the first character not part of the number.
706*/
707
708static const char *
709getnum(strp, nump, min, max)
710const char *	strp;
711int * const		nump;
712const int		min;
713const int		max;
714{
715	char	c;
716	int	num;
717
718	if (strp == NULL || !is_digit(c = *strp))
719		return NULL;
720	num = 0;
721	do {
722		num = num * 10 + (c - '0');
723		if (num > max)
724			return NULL;	/* illegal value */
725		c = *++strp;
726	} while (is_digit(c));
727	if (num < min)
728		return NULL;		/* illegal value */
729	*nump = num;
730	return strp;
731}
732
733/*
734** Given a pointer into a time zone string, extract a number of seconds,
735** in hh[:mm[:ss]] form, from the string.
736** If any error occurs, return NULL.
737** Otherwise, return a pointer to the first character not part of the number
738** of seconds.
739*/
740
741static const char *
742getsecs(strp, secsp)
743const char *	strp;
744long * const		secsp;
745{
746	int	num;
747
748	/*
749	** `HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like
750	** "M10.4.6/26", which does not conform to Posix,
751	** but which specifies the equivalent of
752	** ``02:00 on the first Sunday on or after 23 Oct''.
753	*/
754	strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
755	if (strp == NULL)
756		return NULL;
757	*secsp = num * (long) SECSPERHOUR;
758	if (*strp == ':') {
759		++strp;
760		strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
761		if (strp == NULL)
762			return NULL;
763		*secsp += num * SECSPERMIN;
764		if (*strp == ':') {
765			++strp;
766			/* `SECSPERMIN' allows for leap seconds. */
767			strp = getnum(strp, &num, 0, SECSPERMIN);
768			if (strp == NULL)
769				return NULL;
770			*secsp += num;
771		}
772	}
773	return strp;
774}
775
776/*
777** Given a pointer into a time zone string, extract an offset, in
778** [+-]hh[:mm[:ss]] form, from the string.
779** If any error occurs, return NULL.
780** Otherwise, return a pointer to the first character not part of the time.
781*/
782
783static const char *
784getoffset(strp, offsetp)
785const char *	strp;
786long * const		offsetp;
787{
788	int	neg = 0;
789
790	if (*strp == '-') {
791		neg = 1;
792		++strp;
793	} else if (*strp == '+')
794		++strp;
795	strp = getsecs(strp, offsetp);
796	if (strp == NULL)
797		return NULL;		/* illegal time */
798	if (neg)
799		*offsetp = -*offsetp;
800	return strp;
801}
802
803/*
804** Given a pointer into a time zone string, extract a rule in the form
805** date[/time]. See POSIX section 8 for the format of "date" and "time".
806** If a valid rule is not found, return NULL.
807** Otherwise, return a pointer to the first character not part of the rule.
808*/
809
810static const char *
811getrule(strp, rulep)
812const char *			strp;
813struct rule * const	rulep;
814{
815	if (*strp == 'J') {
816		/*
817		** Julian day.
818		*/
819		rulep->r_type = JULIAN_DAY;
820		++strp;
821		strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
822	} else if (*strp == 'M') {
823		/*
824		** Month, week, day.
825		*/
826		rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
827		++strp;
828		strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
829		if (strp == NULL)
830			return NULL;
831		if (*strp++ != '.')
832			return NULL;
833		strp = getnum(strp, &rulep->r_week, 1, 5);
834		if (strp == NULL)
835			return NULL;
836		if (*strp++ != '.')
837			return NULL;
838		strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
839	} else if (is_digit(*strp)) {
840		/*
841		** Day of year.
842		*/
843		rulep->r_type = DAY_OF_YEAR;
844		strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
845	} else	return NULL;		/* invalid format */
846	if (strp == NULL)
847		return NULL;
848	if (*strp == '/') {
849		/*
850		** Time specified.
851		*/
852		++strp;
853		strp = getsecs(strp, &rulep->r_time);
854	} else	rulep->r_time = 2 * SECSPERHOUR;	/* default = 2:00:00 */
855	return strp;
856}
857
858/*
859** Given the Epoch-relative time of January 1, 00:00:00 UTC, in a year, the
860** year, a rule, and the offset from UTC at the time that rule takes effect,
861** calculate the Epoch-relative time that rule takes effect.
862*/
863
864static time_t
865transtime(janfirst, year, rulep, offset)
866const time_t				janfirst;
867const int				year;
868const struct rule * const	rulep;
869const long				offset;
870{
871	int	leapyear;
872	time_t	value;
873	int	i;
874	int		d, m1, yy0, yy1, yy2, dow;
875
876	INITIALIZE(value);
877	leapyear = isleap(year);
878	switch (rulep->r_type) {
879
880	case JULIAN_DAY:
881		/*
882		** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
883		** years.
884		** In non-leap years, or if the day number is 59 or less, just
885		** add SECSPERDAY times the day number-1 to the time of
886		** January 1, midnight, to get the day.
887		*/
888		value = janfirst + (rulep->r_day - 1) * SECSPERDAY;
889		if (leapyear && rulep->r_day >= 60)
890			value += SECSPERDAY;
891		break;
892
893	case DAY_OF_YEAR:
894		/*
895		** n - day of year.
896		** Just add SECSPERDAY times the day number to the time of
897		** January 1, midnight, to get the day.
898		*/
899		value = janfirst + rulep->r_day * SECSPERDAY;
900		break;
901
902	case MONTH_NTH_DAY_OF_WEEK:
903		/*
904		** Mm.n.d - nth "dth day" of month m.
905		*/
906		value = janfirst;
907		for (i = 0; i < rulep->r_mon - 1; ++i)
908			value += mon_lengths[leapyear][i] * SECSPERDAY;
909
910		/*
911		** Use Zeller's Congruence to get day-of-week of first day of
912		** month.
913		*/
914		m1 = (rulep->r_mon + 9) % 12 + 1;
915		yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
916		yy1 = yy0 / 100;
917		yy2 = yy0 % 100;
918		dow = ((26 * m1 - 2) / 10 +
919			1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
920		if (dow < 0)
921			dow += DAYSPERWEEK;
922
923		/*
924		** "dow" is the day-of-week of the first day of the month. Get
925		** the day-of-month (zero-origin) of the first "dow" day of the
926		** month.
927		*/
928		d = rulep->r_day - dow;
929		if (d < 0)
930			d += DAYSPERWEEK;
931		for (i = 1; i < rulep->r_week; ++i) {
932			if (d + DAYSPERWEEK >=
933				mon_lengths[leapyear][rulep->r_mon - 1])
934					break;
935			d += DAYSPERWEEK;
936		}
937
938		/*
939		** "d" is the day-of-month (zero-origin) of the day we want.
940		*/
941		value += d * SECSPERDAY;
942		break;
943	}
944
945	/*
946	** "value" is the Epoch-relative time of 00:00:00 UTC on the day in
947	** question. To get the Epoch-relative time of the specified local
948	** time on that day, add the transition time and the current offset
949	** from UTC.
950	*/
951	return value + rulep->r_time + offset;
952}
953
954/*
955** Given a POSIX section 8-style TZ string, fill in the rule tables as
956** appropriate.
957*/
958
959static int
960tzparse(name, sp, lastditch)
961const char *			name;
962struct state * const	sp;
963const int			lastditch;
964{
965	const char *			stdname;
966	const char *			dstname;
967	size_t				stdlen;
968	size_t				dstlen;
969	long				stdoffset;
970	long				dstoffset;
971	time_t *		atp;
972	unsigned char *	typep;
973	char *			cp;
974	int			load_result;
975
976	INITIALIZE(dstname);
977	stdname = name;
978	if (lastditch) {
979		stdlen = strlen(name);	/* length of standard zone name */
980		name += stdlen;
981		if (stdlen >= sizeof sp->chars)
982			stdlen = (sizeof sp->chars) - 1;
983		stdoffset = 0;
984	} else {
985		if (*name == '<') {
986			name++;
987			stdname = name;
988			name = getqzname(name, '>');
989			if (*name != '>')
990				return (-1);
991			stdlen = name - stdname;
992			name++;
993		} else {
994			name = getzname(name);
995			stdlen = name - stdname;
996		}
997		if (*name == '\0')
998			return -1;	/* was "stdoffset = 0;" */
999		else {
1000			name = getoffset(name, &stdoffset);
1001			if (name == NULL)
1002				return -1;
1003		}
1004	}
1005	load_result = tzload(TZDEFRULES, sp, FALSE);
1006	if (load_result != 0)
1007		sp->leapcnt = 0;		/* so, we're off a little */
1008	if (*name != '\0') {
1009		if (*name == '<') {
1010			dstname = ++name;
1011			name = getqzname(name, '>');
1012			if (*name != '>')
1013				return -1;
1014			dstlen = name - dstname;
1015			name++;
1016		} else {
1017			dstname = name;
1018			name = getzname(name);
1019			dstlen = name - dstname; /* length of DST zone name */
1020		}
1021		if (*name != '\0' && *name != ',' && *name != ';') {
1022			name = getoffset(name, &dstoffset);
1023			if (name == NULL)
1024				return -1;
1025		} else	dstoffset = stdoffset - SECSPERHOUR;
1026		if (*name == '\0' && load_result != 0)
1027			name = TZDEFRULESTRING;
1028		if (*name == ',' || *name == ';') {
1029			struct rule	start;
1030			struct rule	end;
1031			int	year;
1032			time_t	janfirst;
1033			time_t		starttime;
1034			time_t		endtime;
1035
1036			++name;
1037			if ((name = getrule(name, &start)) == NULL)
1038				return -1;
1039			if (*name++ != ',')
1040				return -1;
1041			if ((name = getrule(name, &end)) == NULL)
1042				return -1;
1043			if (*name != '\0')
1044				return -1;
1045			sp->typecnt = 2;	/* standard time and DST */
1046			/*
1047			** Two transitions per year, from EPOCH_YEAR forward.
1048			*/
1049			sp->ttis[0].tt_gmtoff = -dstoffset;
1050			sp->ttis[0].tt_isdst = 1;
1051			sp->ttis[0].tt_abbrind = stdlen + 1;
1052			sp->ttis[1].tt_gmtoff = -stdoffset;
1053			sp->ttis[1].tt_isdst = 0;
1054			sp->ttis[1].tt_abbrind = 0;
1055			atp = sp->ats;
1056			typep = sp->types;
1057			janfirst = 0;
1058			sp->timecnt = 0;
1059			for (year = EPOCH_YEAR;
1060			    sp->timecnt + 2 <= TZ_MAX_TIMES;
1061			    ++year) {
1062			    	time_t	newfirst;
1063
1064				starttime = transtime(janfirst, year, &start,
1065					stdoffset);
1066				endtime = transtime(janfirst, year, &end,
1067					dstoffset);
1068				if (starttime > endtime) {
1069					*atp++ = endtime;
1070					*typep++ = 1;	/* DST ends */
1071					*atp++ = starttime;
1072					*typep++ = 0;	/* DST begins */
1073				} else {
1074					*atp++ = starttime;
1075					*typep++ = 0;	/* DST begins */
1076					*atp++ = endtime;
1077					*typep++ = 1;	/* DST ends */
1078				}
1079				sp->timecnt += 2;
1080				newfirst = janfirst;
1081				newfirst += year_lengths[isleap(year)] *
1082					SECSPERDAY;
1083				if (newfirst <= janfirst)
1084					break;
1085				janfirst = newfirst;
1086			}
1087		} else {
1088			long	theirstdoffset;
1089			long	theirdstoffset;
1090			long	theiroffset;
1091			int	isdst;
1092			int	i;
1093			int	j;
1094
1095			if (*name != '\0')
1096				return -1;
1097			/*
1098			** Initial values of theirstdoffset and theirdstoffset.
1099			*/
1100			theirstdoffset = 0;
1101			for (i = 0; i < sp->timecnt; ++i) {
1102				j = sp->types[i];
1103				if (!sp->ttis[j].tt_isdst) {
1104					theirstdoffset =
1105						-sp->ttis[j].tt_gmtoff;
1106					break;
1107				}
1108			}
1109			theirdstoffset = 0;
1110			for (i = 0; i < sp->timecnt; ++i) {
1111				j = sp->types[i];
1112				if (sp->ttis[j].tt_isdst) {
1113					theirdstoffset =
1114						-sp->ttis[j].tt_gmtoff;
1115					break;
1116				}
1117			}
1118			/*
1119			** Initially we're assumed to be in standard time.
1120			*/
1121			isdst = FALSE;
1122			theiroffset = theirstdoffset;
1123			/*
1124			** Now juggle transition times and types
1125			** tracking offsets as you do.
1126			*/
1127			for (i = 0; i < sp->timecnt; ++i) {
1128				j = sp->types[i];
1129				sp->types[i] = sp->ttis[j].tt_isdst;
1130				if (sp->ttis[j].tt_ttisgmt) {
1131					/* No adjustment to transition time */
1132				} else {
1133					/*
1134					** If summer time is in effect, and the
1135					** transition time was not specified as
1136					** standard time, add the summer time
1137					** offset to the transition time;
1138					** otherwise, add the standard time
1139					** offset to the transition time.
1140					*/
1141					/*
1142					** Transitions from DST to DDST
1143					** will effectively disappear since
1144					** POSIX provides for only one DST
1145					** offset.
1146					*/
1147					if (isdst && !sp->ttis[j].tt_ttisstd) {
1148						sp->ats[i] += dstoffset -
1149							theirdstoffset;
1150					} else {
1151						sp->ats[i] += stdoffset -
1152							theirstdoffset;
1153					}
1154				}
1155				theiroffset = -sp->ttis[j].tt_gmtoff;
1156				if (sp->ttis[j].tt_isdst)
1157					theirdstoffset = theiroffset;
1158				else	theirstdoffset = theiroffset;
1159			}
1160			/*
1161			** Finally, fill in ttis.
1162			** ttisstd and ttisgmt need not be handled.
1163			*/
1164			sp->ttis[0].tt_gmtoff = -stdoffset;
1165			sp->ttis[0].tt_isdst = FALSE;
1166			sp->ttis[0].tt_abbrind = 0;
1167			sp->ttis[1].tt_gmtoff = -dstoffset;
1168			sp->ttis[1].tt_isdst = TRUE;
1169			sp->ttis[1].tt_abbrind = stdlen + 1;
1170			sp->typecnt = 2;
1171		}
1172	} else {
1173		dstlen = 0;
1174		sp->typecnt = 1;		/* only standard time */
1175		sp->timecnt = 0;
1176		sp->ttis[0].tt_gmtoff = -stdoffset;
1177		sp->ttis[0].tt_isdst = 0;
1178		sp->ttis[0].tt_abbrind = 0;
1179	}
1180	sp->charcnt = stdlen + 1;
1181	if (dstlen != 0)
1182		sp->charcnt += dstlen + 1;
1183	if ((size_t) sp->charcnt > sizeof sp->chars)
1184		return -1;
1185	cp = sp->chars;
1186	(void) strncpy(cp, stdname, stdlen);
1187	cp += stdlen;
1188	*cp++ = '\0';
1189	if (dstlen != 0) {
1190		(void) strncpy(cp, dstname, dstlen);
1191		*(cp + dstlen) = '\0';
1192	}
1193	return 0;
1194}
1195
1196static void
1197gmtload(sp)
1198struct state * const	sp;
1199{
1200	if (tzload(gmt, sp, TRUE) != 0)
1201		(void) tzparse(gmt, sp, TRUE);
1202}
1203
1204static void
1205tzsetwall_basic(int rdlocked)
1206{
1207	if (!rdlocked)
1208		_RWLOCK_RDLOCK(&lcl_rwlock);
1209	if (lcl_is_set < 0) {
1210		if (!rdlocked)
1211			_RWLOCK_UNLOCK(&lcl_rwlock);
1212		return;
1213	}
1214	_RWLOCK_UNLOCK(&lcl_rwlock);
1215
1216	_RWLOCK_WRLOCK(&lcl_rwlock);
1217	lcl_is_set = -1;
1218
1219#ifdef ALL_STATE
1220	if (lclptr == NULL) {
1221		lclptr = (struct state *) malloc(sizeof *lclptr);
1222		if (lclptr == NULL) {
1223			settzname();	/* all we can do */
1224			_RWLOCK_UNLOCK(&lcl_rwlock);
1225			if (rdlocked)
1226				_RWLOCK_RDLOCK(&lcl_rwlock);
1227			return;
1228		}
1229	}
1230#endif /* defined ALL_STATE */
1231	if (tzload((char *) NULL, lclptr, TRUE) != 0)
1232		gmtload(lclptr);
1233	settzname();
1234	_RWLOCK_UNLOCK(&lcl_rwlock);
1235
1236	if (rdlocked)
1237		_RWLOCK_RDLOCK(&lcl_rwlock);
1238}
1239
1240void
1241tzsetwall(void)
1242{
1243	tzsetwall_basic(0);
1244}
1245
1246static void
1247tzset_basic(int rdlocked)
1248{
1249	const char *	name;
1250
1251	name = getenv("TZ");
1252	if (name == NULL) {
1253		tzsetwall_basic(rdlocked);
1254		return;
1255	}
1256
1257	if (!rdlocked)
1258		_RWLOCK_RDLOCK(&lcl_rwlock);
1259	if (lcl_is_set > 0 && strcmp(lcl_TZname, name) == 0) {
1260		if (!rdlocked)
1261			_RWLOCK_UNLOCK(&lcl_rwlock);
1262		return;
1263	}
1264	_RWLOCK_UNLOCK(&lcl_rwlock);
1265
1266	_RWLOCK_WRLOCK(&lcl_rwlock);
1267	lcl_is_set = strlen(name) < sizeof lcl_TZname;
1268	if (lcl_is_set)
1269		(void) strcpy(lcl_TZname, name);
1270
1271#ifdef ALL_STATE
1272	if (lclptr == NULL) {
1273		lclptr = (struct state *) malloc(sizeof *lclptr);
1274		if (lclptr == NULL) {
1275			settzname();	/* all we can do */
1276			_RWLOCK_UNLOCK(&lcl_rwlock);
1277			if (rdlocked)
1278				_RWLOCK_RDLOCK(&lcl_rwlock);
1279			return;
1280		}
1281	}
1282#endif /* defined ALL_STATE */
1283	if (*name == '\0') {
1284		/*
1285		** User wants it fast rather than right.
1286		*/
1287		lclptr->leapcnt = 0;		/* so, we're off a little */
1288		lclptr->timecnt = 0;
1289		lclptr->typecnt = 0;
1290		lclptr->ttis[0].tt_isdst = 0;
1291		lclptr->ttis[0].tt_gmtoff = 0;
1292		lclptr->ttis[0].tt_abbrind = 0;
1293		(void) strcpy(lclptr->chars, gmt);
1294	} else if (tzload(name, lclptr, TRUE) != 0)
1295		if (name[0] == ':' || tzparse(name, lclptr, FALSE) != 0)
1296			(void) gmtload(lclptr);
1297	settzname();
1298	_RWLOCK_UNLOCK(&lcl_rwlock);
1299
1300	if (rdlocked)
1301		_RWLOCK_RDLOCK(&lcl_rwlock);
1302}
1303
1304void
1305tzset(void)
1306{
1307	tzset_basic(0);
1308}
1309
1310/*
1311** The easy way to behave "as if no library function calls" localtime
1312** is to not call it--so we drop its guts into "localsub", which can be
1313** freely called. (And no, the PANS doesn't require the above behavior--
1314** but it *is* desirable.)
1315**
1316** The unused offset argument is for the benefit of mktime variants.
1317*/
1318
1319/*ARGSUSED*/
1320static struct tm *
1321localsub(timep, offset, tmp)
1322const time_t * const	timep;
1323const long		offset;
1324struct tm * const	tmp;
1325{
1326	struct state *		sp;
1327	const struct ttinfo *	ttisp;
1328	int			i;
1329	struct tm *		result;
1330	const time_t		t = *timep;
1331
1332	sp = lclptr;
1333#ifdef ALL_STATE
1334	if (sp == NULL)
1335		return gmtsub(timep, offset, tmp);
1336#endif /* defined ALL_STATE */
1337	if ((sp->goback && t < sp->ats[0]) ||
1338		(sp->goahead && t > sp->ats[sp->timecnt - 1])) {
1339			time_t			newt = t;
1340			register time_t		seconds;
1341			register time_t		tcycles;
1342			register int_fast64_t	icycles;
1343
1344			if (t < sp->ats[0])
1345				seconds = sp->ats[0] - t;
1346			else	seconds = t - sp->ats[sp->timecnt - 1];
1347			--seconds;
1348			tcycles = seconds / YEARSPERREPEAT / AVGSECSPERYEAR;
1349			++tcycles;
1350			icycles = tcycles;
1351			if (tcycles - icycles >= 1 || icycles - tcycles >= 1)
1352				return NULL;
1353			seconds = icycles;
1354			seconds *= YEARSPERREPEAT;
1355			seconds *= AVGSECSPERYEAR;
1356			if (t < sp->ats[0])
1357				newt += seconds;
1358			else	newt -= seconds;
1359			if (newt < sp->ats[0] ||
1360				newt > sp->ats[sp->timecnt - 1])
1361					return NULL;	/* "cannot happen" */
1362			result = localsub(&newt, offset, tmp);
1363			if (result == tmp) {
1364				register time_t	newy;
1365
1366				newy = tmp->tm_year;
1367				if (t < sp->ats[0])
1368					newy -= icycles * YEARSPERREPEAT;
1369				else	newy += icycles * YEARSPERREPEAT;
1370				tmp->tm_year = newy;
1371				if (tmp->tm_year != newy)
1372					return NULL;
1373			}
1374			return result;
1375	}
1376	if (sp->timecnt == 0 || t < sp->ats[0]) {
1377		i = 0;
1378		while (sp->ttis[i].tt_isdst)
1379			if (++i >= sp->typecnt) {
1380				i = 0;
1381				break;
1382			}
1383	} else {
1384		register int	lo = 1;
1385		register int	hi = sp->timecnt;
1386
1387		while (lo < hi) {
1388			register int	mid = (lo + hi) >> 1;
1389
1390			if (t < sp->ats[mid])
1391				hi = mid;
1392			else	lo = mid + 1;
1393		}
1394		i = (int) sp->types[lo - 1];
1395	}
1396	ttisp = &sp->ttis[i];
1397	/*
1398	** To get (wrong) behavior that's compatible with System V Release 2.0
1399	** you'd replace the statement below with
1400	**	t += ttisp->tt_gmtoff;
1401	**	timesub(&t, 0L, sp, tmp);
1402	*/
1403	result = timesub(&t, ttisp->tt_gmtoff, sp, tmp);
1404	tmp->tm_isdst = ttisp->tt_isdst;
1405	tzname[tmp->tm_isdst] = &sp->chars[ttisp->tt_abbrind];
1406#ifdef TM_ZONE
1407	tmp->TM_ZONE = &sp->chars[ttisp->tt_abbrind];
1408#endif /* defined TM_ZONE */
1409	return result;
1410}
1411
1412static void
1413localtime_key_init(void)
1414{
1415
1416	localtime_key_error = _pthread_key_create(&localtime_key, free);
1417}
1418
1419struct tm *
1420localtime(timep)
1421const time_t * const	timep;
1422{
1423	struct tm *p_tm;
1424
1425	if (__isthreaded != 0) {
1426		_once(&localtime_once, localtime_key_init);
1427		if (localtime_key_error != 0) {
1428			errno = localtime_key_error;
1429			return(NULL);
1430		}
1431		p_tm = _pthread_getspecific(localtime_key);
1432		if (p_tm == NULL) {
1433			if ((p_tm = (struct tm *)malloc(sizeof(struct tm)))
1434			    == NULL)
1435				return(NULL);
1436			_pthread_setspecific(localtime_key, p_tm);
1437		}
1438		_RWLOCK_RDLOCK(&lcl_rwlock);
1439		tzset_basic(1);
1440		localsub(timep, 0L, p_tm);
1441		_RWLOCK_UNLOCK(&lcl_rwlock);
1442		return(p_tm);
1443	} else {
1444		tzset_basic(0);
1445		localsub(timep, 0L, &tm);
1446		return(&tm);
1447	}
1448}
1449
1450/*
1451** Re-entrant version of localtime.
1452*/
1453
1454struct tm *
1455localtime_r(timep, tmp)
1456const time_t * const	timep;
1457struct tm *		tmp;
1458{
1459	_RWLOCK_RDLOCK(&lcl_rwlock);
1460	tzset_basic(1);
1461	localsub(timep, 0L, tmp);
1462	_RWLOCK_UNLOCK(&lcl_rwlock);
1463	return tmp;
1464}
1465
1466static void
1467gmt_init(void)
1468{
1469
1470#ifdef ALL_STATE
1471	gmtptr = (struct state *) malloc(sizeof *gmtptr);
1472	if (gmtptr != NULL)
1473#endif /* defined ALL_STATE */
1474		gmtload(gmtptr);
1475}
1476
1477/*
1478** gmtsub is to gmtime as localsub is to localtime.
1479*/
1480
1481static struct tm *
1482gmtsub(timep, offset, tmp)
1483const time_t * const	timep;
1484const long		offset;
1485struct tm * const	tmp;
1486{
1487	register struct tm *	result;
1488
1489	_once(&gmt_once, gmt_init);
1490	result = timesub(timep, offset, gmtptr, tmp);
1491#ifdef TM_ZONE
1492	/*
1493	** Could get fancy here and deliver something such as
1494	** "UTC+xxxx" or "UTC-xxxx" if offset is non-zero,
1495	** but this is no time for a treasure hunt.
1496	*/
1497	if (offset != 0)
1498		tmp->TM_ZONE = wildabbr;
1499	else {
1500#ifdef ALL_STATE
1501		if (gmtptr == NULL)
1502			tmp->TM_ZONE = gmt;
1503		else	tmp->TM_ZONE = gmtptr->chars;
1504#endif /* defined ALL_STATE */
1505#ifndef ALL_STATE
1506		tmp->TM_ZONE = gmtptr->chars;
1507#endif /* State Farm */
1508	}
1509#endif /* defined TM_ZONE */
1510	return result;
1511}
1512
1513struct tm *
1514gmtime(timep)
1515const time_t * const	timep;
1516{
1517	static pthread_mutex_t gmtime_mutex = PTHREAD_MUTEX_INITIALIZER;
1518	static pthread_key_t gmtime_key = -1;
1519	struct tm *p_tm;
1520	int r;
1521
1522	if (__isthreaded != 0) {
1523		if (gmtime_key < 0) {
1524			_pthread_mutex_lock(&gmtime_mutex);
1525			if (gmtime_key < 0) {
1526				if ((r = _pthread_key_create(&gmtime_key,
1527				    free)) != 0) {
1528					_pthread_mutex_unlock(&gmtime_mutex);
1529					errno = r;
1530					return(NULL);
1531				}
1532			}
1533			_pthread_mutex_unlock(&gmtime_mutex);
1534		}
1535		/*
1536		 * Changed to follow POSIX.1 threads standard, which
1537		 * is what BSD currently has.
1538		 */
1539		if ((p_tm = _pthread_getspecific(gmtime_key)) == NULL) {
1540			if ((p_tm = (struct tm *)malloc(sizeof(struct tm)))
1541			    == NULL) {
1542				return(NULL);
1543			}
1544			_pthread_setspecific(gmtime_key, p_tm);
1545		}
1546		gmtsub(timep, 0L, p_tm);
1547		return(p_tm);
1548	}
1549	else {
1550		gmtsub(timep, 0L, &tm);
1551		return(&tm);
1552	}
1553}
1554
1555/*
1556* Re-entrant version of gmtime.
1557*/
1558
1559struct tm *
1560gmtime_r(timep, tmp)
1561const time_t * const	timep;
1562struct tm *		tmp;
1563{
1564	return gmtsub(timep, 0L, tmp);
1565}
1566
1567#ifdef STD_INSPIRED
1568
1569struct tm *
1570offtime(timep, offset)
1571const time_t * const	timep;
1572const long		offset;
1573{
1574	return gmtsub(timep, offset, &tm);
1575}
1576
1577#endif /* defined STD_INSPIRED */
1578
1579/*
1580** Return the number of leap years through the end of the given year
1581** where, to make the math easy, the answer for year zero is defined as zero.
1582*/
1583
1584static int
1585leaps_thru_end_of(y)
1586register const int	y;
1587{
1588	return (y >= 0) ? (y / 4 - y / 100 + y / 400) :
1589		-(leaps_thru_end_of(-(y + 1)) + 1);
1590}
1591
1592static struct tm *
1593timesub(timep, offset, sp, tmp)
1594const time_t * const			timep;
1595const long				offset;
1596const struct state * const	sp;
1597struct tm * const		tmp;
1598{
1599	const struct lsinfo *	lp;
1600	time_t			tdays;
1601	int			idays;	/* unsigned would be so 2003 */
1602	long			rem;
1603	int			y;
1604	const int *		ip;
1605	long			corr;
1606	int			hit;
1607	int			i;
1608
1609	corr = 0;
1610	hit = 0;
1611#ifdef ALL_STATE
1612	i = (sp == NULL) ? 0 : sp->leapcnt;
1613#endif /* defined ALL_STATE */
1614#ifndef ALL_STATE
1615	i = sp->leapcnt;
1616#endif /* State Farm */
1617	while (--i >= 0) {
1618		lp = &sp->lsis[i];
1619		if (*timep >= lp->ls_trans) {
1620			if (*timep == lp->ls_trans) {
1621				hit = ((i == 0 && lp->ls_corr > 0) ||
1622					lp->ls_corr > sp->lsis[i - 1].ls_corr);
1623				if (hit)
1624					while (i > 0 &&
1625						sp->lsis[i].ls_trans ==
1626						sp->lsis[i - 1].ls_trans + 1 &&
1627						sp->lsis[i].ls_corr ==
1628						sp->lsis[i - 1].ls_corr + 1) {
1629							++hit;
1630							--i;
1631					}
1632			}
1633			corr = lp->ls_corr;
1634			break;
1635		}
1636	}
1637	y = EPOCH_YEAR;
1638	tdays = *timep / SECSPERDAY;
1639	rem = *timep - tdays * SECSPERDAY;
1640	while (tdays < 0 || tdays >= year_lengths[isleap(y)]) {
1641		int		newy;
1642		register time_t	tdelta;
1643		register int	idelta;
1644		register int	leapdays;
1645
1646		tdelta = tdays / DAYSPERLYEAR;
1647		idelta = tdelta;
1648		if (tdelta - idelta >= 1 || idelta - tdelta >= 1)
1649			return NULL;
1650		if (idelta == 0)
1651			idelta = (tdays < 0) ? -1 : 1;
1652		newy = y;
1653		if (increment_overflow(&newy, idelta))
1654			return NULL;
1655		leapdays = leaps_thru_end_of(newy - 1) -
1656			leaps_thru_end_of(y - 1);
1657		tdays -= ((time_t) newy - y) * DAYSPERNYEAR;
1658		tdays -= leapdays;
1659		y = newy;
1660	}
1661	{
1662		register long	seconds;
1663
1664		seconds = tdays * SECSPERDAY + 0.5;
1665		tdays = seconds / SECSPERDAY;
1666		rem += seconds - tdays * SECSPERDAY;
1667	}
1668	/*
1669	** Given the range, we can now fearlessly cast...
1670	*/
1671	idays = tdays;
1672	rem += offset - corr;
1673	while (rem < 0) {
1674		rem += SECSPERDAY;
1675		--idays;
1676	}
1677	while (rem >= SECSPERDAY) {
1678		rem -= SECSPERDAY;
1679		++idays;
1680	}
1681	while (idays < 0) {
1682		if (increment_overflow(&y, -1))
1683			return NULL;
1684		idays += year_lengths[isleap(y)];
1685	}
1686	while (idays >= year_lengths[isleap(y)]) {
1687		idays -= year_lengths[isleap(y)];
1688		if (increment_overflow(&y, 1))
1689			return NULL;
1690	}
1691	tmp->tm_year = y;
1692	if (increment_overflow(&tmp->tm_year, -TM_YEAR_BASE))
1693		return NULL;
1694	tmp->tm_yday = idays;
1695	/*
1696	** The "extra" mods below avoid overflow problems.
1697	*/
1698	tmp->tm_wday = EPOCH_WDAY +
1699		((y - EPOCH_YEAR) % DAYSPERWEEK) *
1700		(DAYSPERNYEAR % DAYSPERWEEK) +
1701		leaps_thru_end_of(y - 1) -
1702		leaps_thru_end_of(EPOCH_YEAR - 1) +
1703		idays;
1704	tmp->tm_wday %= DAYSPERWEEK;
1705	if (tmp->tm_wday < 0)
1706		tmp->tm_wday += DAYSPERWEEK;
1707	tmp->tm_hour = (int) (rem / SECSPERHOUR);
1708	rem %= SECSPERHOUR;
1709	tmp->tm_min = (int) (rem / SECSPERMIN);
1710	/*
1711	** A positive leap second requires a special
1712	** representation. This uses "... ??:59:60" et seq.
1713	*/
1714	tmp->tm_sec = (int) (rem % SECSPERMIN) + hit;
1715	ip = mon_lengths[isleap(y)];
1716	for (tmp->tm_mon = 0; idays >= ip[tmp->tm_mon]; ++(tmp->tm_mon))
1717		idays -= ip[tmp->tm_mon];
1718	tmp->tm_mday = (int) (idays + 1);
1719	tmp->tm_isdst = 0;
1720#ifdef TM_GMTOFF
1721	tmp->TM_GMTOFF = offset;
1722#endif /* defined TM_GMTOFF */
1723	return tmp;
1724}
1725
1726char *
1727ctime(timep)
1728const time_t * const	timep;
1729{
1730/*
1731** Section 4.12.3.2 of X3.159-1989 requires that
1732**	The ctime function converts the calendar time pointed to by timer
1733**	to local time in the form of a string. It is equivalent to
1734**		asctime(localtime(timer))
1735*/
1736	return asctime(localtime(timep));
1737}
1738
1739char *
1740ctime_r(timep, buf)
1741const time_t * const	timep;
1742char *			buf;
1743{
1744	struct tm	mytm;
1745
1746	return asctime_r(localtime_r(timep, &mytm), buf);
1747}
1748
1749/*
1750** Adapted from code provided by Robert Elz, who writes:
1751**	The "best" way to do mktime I think is based on an idea of Bob
1752**	Kridle's (so its said...) from a long time ago.
1753**	It does a binary search of the time_t space. Since time_t's are
1754**	just 32 bits, its a max of 32 iterations (even at 64 bits it
1755**	would still be very reasonable).
1756*/
1757
1758#ifndef WRONG
1759#define WRONG	(-1)
1760#endif /* !defined WRONG */
1761
1762/*
1763** Simplified normalize logic courtesy Paul Eggert.
1764*/
1765
1766static int
1767increment_overflow(number, delta)
1768int *	number;
1769int	delta;
1770{
1771	int	number0;
1772
1773	number0 = *number;
1774	*number += delta;
1775	return (*number < number0) != (delta < 0);
1776}
1777
1778static int
1779long_increment_overflow(number, delta)
1780long *	number;
1781int	delta;
1782{
1783	long	number0;
1784
1785	number0 = *number;
1786	*number += delta;
1787	return (*number < number0) != (delta < 0);
1788}
1789
1790static int
1791normalize_overflow(tensptr, unitsptr, base)
1792int * const	tensptr;
1793int * const	unitsptr;
1794const int	base;
1795{
1796	int	tensdelta;
1797
1798	tensdelta = (*unitsptr >= 0) ?
1799		(*unitsptr / base) :
1800		(-1 - (-1 - *unitsptr) / base);
1801	*unitsptr -= tensdelta * base;
1802	return increment_overflow(tensptr, tensdelta);
1803}
1804
1805static int
1806long_normalize_overflow(tensptr, unitsptr, base)
1807long * const	tensptr;
1808int * const	unitsptr;
1809const int	base;
1810{
1811	register int	tensdelta;
1812
1813	tensdelta = (*unitsptr >= 0) ?
1814		(*unitsptr / base) :
1815		(-1 - (-1 - *unitsptr) / base);
1816	*unitsptr -= tensdelta * base;
1817	return long_increment_overflow(tensptr, tensdelta);
1818}
1819
1820static int
1821tmcomp(atmp, btmp)
1822const struct tm * const atmp;
1823const struct tm * const btmp;
1824{
1825	int	result;
1826
1827	if ((result = (atmp->tm_year - btmp->tm_year)) == 0 &&
1828		(result = (atmp->tm_mon - btmp->tm_mon)) == 0 &&
1829		(result = (atmp->tm_mday - btmp->tm_mday)) == 0 &&
1830		(result = (atmp->tm_hour - btmp->tm_hour)) == 0 &&
1831		(result = (atmp->tm_min - btmp->tm_min)) == 0)
1832			result = atmp->tm_sec - btmp->tm_sec;
1833	return result;
1834}
1835
1836static time_t
1837time2sub(tmp, funcp, offset, okayp, do_norm_secs)
1838struct tm * const	tmp;
1839struct tm * (* const	funcp)(const time_t*, long, struct tm*);
1840const long		offset;
1841int * const		okayp;
1842const int		do_norm_secs;
1843{
1844	const struct state *	sp;
1845	int			dir;
1846	int			i, j;
1847	int			saved_seconds;
1848	long			li;
1849	time_t			lo;
1850	time_t			hi;
1851	long			y;
1852	time_t			newt;
1853	time_t			t;
1854	struct tm		yourtm, mytm;
1855
1856	*okayp = FALSE;
1857	yourtm = *tmp;
1858	if (do_norm_secs) {
1859		if (normalize_overflow(&yourtm.tm_min, &yourtm.tm_sec,
1860			SECSPERMIN))
1861				return WRONG;
1862	}
1863	if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR))
1864		return WRONG;
1865	if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY))
1866		return WRONG;
1867	y = yourtm.tm_year;
1868	if (long_normalize_overflow(&y, &yourtm.tm_mon, MONSPERYEAR))
1869		return WRONG;
1870	/*
1871	** Turn y into an actual year number for now.
1872	** It is converted back to an offset from TM_YEAR_BASE later.
1873	*/
1874	if (long_increment_overflow(&y, TM_YEAR_BASE))
1875		return WRONG;
1876	while (yourtm.tm_mday <= 0) {
1877		if (long_increment_overflow(&y, -1))
1878			return WRONG;
1879		li = y + (1 < yourtm.tm_mon);
1880		yourtm.tm_mday += year_lengths[isleap(li)];
1881	}
1882	while (yourtm.tm_mday > DAYSPERLYEAR) {
1883		li = y + (1 < yourtm.tm_mon);
1884		yourtm.tm_mday -= year_lengths[isleap(li)];
1885		if (long_increment_overflow(&y, 1))
1886			return WRONG;
1887	}
1888	for ( ; ; ) {
1889		i = mon_lengths[isleap(y)][yourtm.tm_mon];
1890		if (yourtm.tm_mday <= i)
1891			break;
1892		yourtm.tm_mday -= i;
1893		if (++yourtm.tm_mon >= MONSPERYEAR) {
1894			yourtm.tm_mon = 0;
1895			if (long_increment_overflow(&y, 1))
1896				return WRONG;
1897		}
1898	}
1899	if (long_increment_overflow(&y, -TM_YEAR_BASE))
1900		return WRONG;
1901	yourtm.tm_year = y;
1902	if (yourtm.tm_year != y)
1903		return WRONG;
1904	/* Don't go below 1900 for POLA */
1905	if (yourtm.tm_year < 0)
1906		return WRONG;
1907	if (yourtm.tm_sec >= 0 && yourtm.tm_sec < SECSPERMIN)
1908		saved_seconds = 0;
1909	else if (y + TM_YEAR_BASE < EPOCH_YEAR) {
1910		/*
1911		** We can't set tm_sec to 0, because that might push the
1912		** time below the minimum representable time.
1913		** Set tm_sec to 59 instead.
1914		** This assumes that the minimum representable time is
1915		** not in the same minute that a leap second was deleted from,
1916		** which is a safer assumption than using 58 would be.
1917		*/
1918		if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN))
1919			return WRONG;
1920		saved_seconds = yourtm.tm_sec;
1921		yourtm.tm_sec = SECSPERMIN - 1;
1922	} else {
1923		saved_seconds = yourtm.tm_sec;
1924		yourtm.tm_sec = 0;
1925	}
1926	/*
1927	** Do a binary search (this works whatever time_t's type is).
1928	*/
1929	if (!TYPE_SIGNED(time_t)) {
1930		lo = 0;
1931		hi = lo - 1;
1932	} else if (!TYPE_INTEGRAL(time_t)) {
1933		if (sizeof(time_t) > sizeof(float))
1934			hi = (time_t) DBL_MAX;
1935		else	hi = (time_t) FLT_MAX;
1936		lo = -hi;
1937	} else {
1938		lo = 1;
1939		for (i = 0; i < (int) TYPE_BIT(time_t) - 1; ++i)
1940			lo *= 2;
1941		hi = -(lo + 1);
1942	}
1943	for ( ; ; ) {
1944		t = lo / 2 + hi / 2;
1945		if (t < lo)
1946			t = lo;
1947		else if (t > hi)
1948			t = hi;
1949		if ((*funcp)(&t, offset, &mytm) == NULL) {
1950			/*
1951			** Assume that t is too extreme to be represented in
1952			** a struct tm; arrange things so that it is less
1953			** extreme on the next pass.
1954			*/
1955			dir = (t > 0) ? 1 : -1;
1956		} else	dir = tmcomp(&mytm, &yourtm);
1957		if (dir != 0) {
1958			if (t == lo) {
1959				++t;
1960				if (t <= lo)
1961					return WRONG;
1962				++lo;
1963			} else if (t == hi) {
1964				--t;
1965				if (t >= hi)
1966					return WRONG;
1967				--hi;
1968			}
1969			if (lo > hi)
1970				return WRONG;
1971			if (dir > 0)
1972				hi = t;
1973			else	lo = t;
1974			continue;
1975		}
1976		if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst)
1977			break;
1978		/*
1979		** Right time, wrong type.
1980		** Hunt for right time, right type.
1981		** It's okay to guess wrong since the guess
1982		** gets checked.
1983		*/
1984		sp = (const struct state *)
1985			((funcp == localsub) ? lclptr : gmtptr);
1986#ifdef ALL_STATE
1987		if (sp == NULL)
1988			return WRONG;
1989#endif /* defined ALL_STATE */
1990		for (i = sp->typecnt - 1; i >= 0; --i) {
1991			if (sp->ttis[i].tt_isdst != yourtm.tm_isdst)
1992				continue;
1993			for (j = sp->typecnt - 1; j >= 0; --j) {
1994				if (sp->ttis[j].tt_isdst == yourtm.tm_isdst)
1995					continue;
1996				newt = t + sp->ttis[j].tt_gmtoff -
1997					sp->ttis[i].tt_gmtoff;
1998				if ((*funcp)(&newt, offset, &mytm) == NULL)
1999					continue;
2000				if (tmcomp(&mytm, &yourtm) != 0)
2001					continue;
2002				if (mytm.tm_isdst != yourtm.tm_isdst)
2003					continue;
2004				/*
2005				** We have a match.
2006				*/
2007				t = newt;
2008				goto label;
2009			}
2010		}
2011		return WRONG;
2012	}
2013label:
2014	newt = t + saved_seconds;
2015	if ((newt < t) != (saved_seconds < 0))
2016		return WRONG;
2017	t = newt;
2018	if ((*funcp)(&t, offset, tmp))
2019		*okayp = TRUE;
2020	return t;
2021}
2022
2023static time_t
2024time2(tmp, funcp, offset, okayp)
2025struct tm * const	tmp;
2026struct tm * (* const	funcp)(const time_t*, long, struct tm*);
2027const long		offset;
2028int * const		okayp;
2029{
2030	time_t	t;
2031
2032	/*
2033	** First try without normalization of seconds
2034	** (in case tm_sec contains a value associated with a leap second).
2035	** If that fails, try with normalization of seconds.
2036	*/
2037	t = time2sub(tmp, funcp, offset, okayp, FALSE);
2038	return *okayp ? t : time2sub(tmp, funcp, offset, okayp, TRUE);
2039}
2040
2041static time_t
2042time1(tmp, funcp, offset)
2043struct tm * const	tmp;
2044struct tm * (* const  funcp)(const time_t *, long, struct tm *);
2045const long		offset;
2046{
2047	time_t			t;
2048	const struct state *	sp;
2049	int			samei, otheri;
2050	int			sameind, otherind;
2051	int			i;
2052	int			nseen;
2053	int				seen[TZ_MAX_TYPES];
2054	int				types[TZ_MAX_TYPES];
2055	int				okay;
2056
2057	if (tmp->tm_isdst > 1)
2058		tmp->tm_isdst = 1;
2059	t = time2(tmp, funcp, offset, &okay);
2060#ifdef PCTS
2061	/*
2062	** PCTS code courtesy Grant Sullivan.
2063	*/
2064	if (okay)
2065		return t;
2066	if (tmp->tm_isdst < 0)
2067		tmp->tm_isdst = 0;	/* reset to std and try again */
2068#endif /* defined PCTS */
2069#ifndef PCTS
2070	if (okay || tmp->tm_isdst < 0)
2071		return t;
2072#endif /* !defined PCTS */
2073	/*
2074	** We're supposed to assume that somebody took a time of one type
2075	** and did some math on it that yielded a "struct tm" that's bad.
2076	** We try to divine the type they started from and adjust to the
2077	** type they need.
2078	*/
2079	sp = (const struct state *) ((funcp == localsub) ? lclptr : gmtptr);
2080#ifdef ALL_STATE
2081	if (sp == NULL)
2082		return WRONG;
2083#endif /* defined ALL_STATE */
2084	for (i = 0; i < sp->typecnt; ++i)
2085		seen[i] = FALSE;
2086	nseen = 0;
2087	for (i = sp->timecnt - 1; i >= 0; --i)
2088		if (!seen[sp->types[i]]) {
2089			seen[sp->types[i]] = TRUE;
2090			types[nseen++] = sp->types[i];
2091		}
2092	for (sameind = 0; sameind < nseen; ++sameind) {
2093		samei = types[sameind];
2094		if (sp->ttis[samei].tt_isdst != tmp->tm_isdst)
2095			continue;
2096		for (otherind = 0; otherind < nseen; ++otherind) {
2097			otheri = types[otherind];
2098			if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst)
2099				continue;
2100			tmp->tm_sec += sp->ttis[otheri].tt_gmtoff -
2101					sp->ttis[samei].tt_gmtoff;
2102			tmp->tm_isdst = !tmp->tm_isdst;
2103			t = time2(tmp, funcp, offset, &okay);
2104			if (okay)
2105				return t;
2106			tmp->tm_sec -= sp->ttis[otheri].tt_gmtoff -
2107					sp->ttis[samei].tt_gmtoff;
2108			tmp->tm_isdst = !tmp->tm_isdst;
2109		}
2110	}
2111	return WRONG;
2112}
2113
2114time_t
2115mktime(tmp)
2116struct tm * const	tmp;
2117{
2118	time_t mktime_return_value;
2119	_RWLOCK_RDLOCK(&lcl_rwlock);
2120	tzset_basic(1);
2121	mktime_return_value = time1(tmp, localsub, 0L);
2122	_RWLOCK_UNLOCK(&lcl_rwlock);
2123	return(mktime_return_value);
2124}
2125
2126#ifdef STD_INSPIRED
2127
2128time_t
2129timelocal(tmp)
2130struct tm * const	tmp;
2131{
2132	tmp->tm_isdst = -1;	/* in case it wasn't initialized */
2133	return mktime(tmp);
2134}
2135
2136time_t
2137timegm(tmp)
2138struct tm * const	tmp;
2139{
2140	tmp->tm_isdst = 0;
2141	return time1(tmp, gmtsub, 0L);
2142}
2143
2144time_t
2145timeoff(tmp, offset)
2146struct tm * const	tmp;
2147const long		offset;
2148{
2149	tmp->tm_isdst = 0;
2150	return time1(tmp, gmtsub, offset);
2151}
2152
2153#endif /* defined STD_INSPIRED */
2154
2155#ifdef CMUCS
2156
2157/*
2158** The following is supplied for compatibility with
2159** previous versions of the CMUCS runtime library.
2160*/
2161
2162long
2163gtime(tmp)
2164struct tm * const	tmp;
2165{
2166	const time_t	t = mktime(tmp);
2167
2168	if (t == WRONG)
2169		return -1;
2170	return t;
2171}
2172
2173#endif /* defined CMUCS */
2174
2175/*
2176** XXX--is the below the right way to conditionalize??
2177*/
2178
2179#ifdef STD_INSPIRED
2180
2181/*
2182** IEEE Std 1003.1-1988 (POSIX) legislates that 536457599
2183** shall correspond to "Wed Dec 31 23:59:59 UTC 1986", which
2184** is not the case if we are accounting for leap seconds.
2185** So, we provide the following conversion routines for use
2186** when exchanging timestamps with POSIX conforming systems.
2187*/
2188
2189static long
2190leapcorr(timep)
2191time_t *	timep;
2192{
2193	struct state *		sp;
2194	struct lsinfo *	lp;
2195	int			i;
2196
2197	sp = lclptr;
2198	i = sp->leapcnt;
2199	while (--i >= 0) {
2200		lp = &sp->lsis[i];
2201		if (*timep >= lp->ls_trans)
2202			return lp->ls_corr;
2203	}
2204	return 0;
2205}
2206
2207time_t
2208time2posix(t)
2209time_t	t;
2210{
2211	tzset();
2212	return t - leapcorr(&t);
2213}
2214
2215time_t
2216posix2time(t)
2217time_t	t;
2218{
2219	time_t	x;
2220	time_t	y;
2221
2222	tzset();
2223	/*
2224	** For a positive leap second hit, the result
2225	** is not unique. For a negative leap second
2226	** hit, the corresponding time doesn't exist,
2227	** so we return an adjacent second.
2228	*/
2229	x = t + leapcorr(&t);
2230	y = x - leapcorr(&x);
2231	if (y < t) {
2232		do {
2233			x++;
2234			y = x - leapcorr(&x);
2235		} while (y < t);
2236		if (t != y)
2237			return x - 1;
2238	} else if (y > t) {
2239		do {
2240			--x;
2241			y = x - leapcorr(&x);
2242		} while (y > t);
2243		if (t != y)
2244			return x + 1;
2245	}
2246	return x;
2247}
2248
2249#endif /* defined STD_INSPIRED */
2250