localtime.c revision 192625
12702Swollman/*
22702Swollman** This file is in the public domain, so clarified as of
32702Swollman** 1996-06-05 by Arthur David Olson.
42702Swollman*/
52702Swollman
62702Swollman#include <sys/cdefs.h>
72702Swollman#ifndef lint
82702Swollman#ifndef NOID
92702Swollmanstatic char	elsieid[] __unused = "@(#)localtime.c	8.9";
102702Swollman#endif /* !defined NOID */
112702Swollman#endif /* !defined lint */
122702Swollman__FBSDID("$FreeBSD: head/lib/libc/stdtime/localtime.c 192625 2009-05-23 06:31:50Z edwin $");
132702Swollman
142702Swollman/*
152702Swollman** Leap second handling from Bradley White.
162702Swollman** POSIX-style TZ environment variable handling from Guy Harris.
172702Swollman*/
182702Swollman
192702Swollman/*LINTLIBRARY*/
202702Swollman
212702Swollman#include "namespace.h"
222702Swollman#include <sys/types.h>
232702Swollman#include <sys/stat.h>
242702Swollman#include <fcntl.h>
252702Swollman#include <pthread.h>
262702Swollman#include "private.h"
272702Swollman#include "un-namespace.h"
282702Swollman
292702Swollman#include "tzfile.h"
302702Swollman#include "float.h"	/* for FLT_MAX and DBL_MAX */
312702Swollman
322702Swollman#ifndef TZ_ABBR_MAX_LEN
332702Swollman#define TZ_ABBR_MAX_LEN	16
342702Swollman#endif /* !defined TZ_ABBR_MAX_LEN */
352702Swollman
362702Swollman#ifndef TZ_ABBR_CHAR_SET
372702Swollman#define TZ_ABBR_CHAR_SET \
382702Swollman	"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 :+-._"
392702Swollman#endif /* !defined TZ_ABBR_CHAR_SET */
402702Swollman
412702Swollman#ifndef TZ_ABBR_ERR_CHAR
422702Swollman#define TZ_ABBR_ERR_CHAR	'_'
432702Swollman#endif /* !defined TZ_ABBR_ERR_CHAR */
442702Swollman
452702Swollman#include "libc_private.h"
462702Swollman
472702Swollman#define	_MUTEX_LOCK(x)		if (__isthreaded) _pthread_mutex_lock(x)
482702Swollman#define	_MUTEX_UNLOCK(x)	if (__isthreaded) _pthread_mutex_unlock(x)
492702Swollman
502702Swollman#define _RWLOCK_RDLOCK(x)						\
512702Swollman		do {							\
522702Swollman			if (__isthreaded) _pthread_rwlock_rdlock(x);	\
532702Swollman		} while (0)
542702Swollman
552702Swollman#define _RWLOCK_WRLOCK(x)						\
562702Swollman		do {							\
572702Swollman			if (__isthreaded) _pthread_rwlock_wrlock(x);	\
582702Swollman		} while (0)
592702Swollman
602702Swollman#define _RWLOCK_UNLOCK(x)						\
612702Swollman		do {							\
622702Swollman			if (__isthreaded) _pthread_rwlock_unlock(x);	\
632702Swollman		} while (0)
642702Swollman
652702Swollman/*
662702Swollman** SunOS 4.1.1 headers lack O_BINARY.
672702Swollman*/
682702Swollman
692702Swollman#ifdef O_BINARY
702702Swollman#define OPEN_MODE	(O_RDONLY | O_BINARY)
712702Swollman#endif /* defined O_BINARY */
722702Swollman#ifndef O_BINARY
732702Swollman#define OPEN_MODE	O_RDONLY
742702Swollman#endif /* !defined O_BINARY */
752702Swollman
762702Swollman#ifndef WILDABBR
772702Swollman/*
782702Swollman** Someone might make incorrect use of a time zone abbreviation:
792702Swollman**	1.	They might reference tzname[0] before calling tzset (explicitly
802702Swollman**		or implicitly).
812702Swollman**	2.	They might reference tzname[1] before calling tzset (explicitly
822702Swollman**		or implicitly).
832702Swollman**	3.	They might reference tzname[1] after setting to a time zone
842702Swollman**		in which Daylight Saving Time is never observed.
852702Swollman**	4.	They might reference tzname[0] after setting to a time zone
862702Swollman**		in which Standard Time is never observed.
872702Swollman**	5.	They might reference tm.TM_ZONE after calling offtime.
882702Swollman** What's best to do in the above cases is open to debate;
892702Swollman** for now, we just set things up so that in any of the five cases
902702Swollman** WILDABBR is used. Another possibility: initialize tzname[0] to the
912702Swollman** string "tzname[0] used before set", and similarly for the other cases.
922702Swollman** And another: initialize tzname[0] to "ERA", with an explanation in the
932702Swollman** manual page of what this "time zone abbreviation" means (doing this so
942702Swollman** that tzname[0] has the "normal" length of three characters).
952702Swollman*/
962702Swollman#define WILDABBR	"   "
972702Swollman#endif /* !defined WILDABBR */
982702Swollman
992702Swollmanstatic char		wildabbr[] = WILDABBR;
1002702Swollman
1012702Swollman/*
1022702Swollman * In June 2004 it was decided UTC was a more appropriate default time
1032702Swollman * zone than GMT.
1042702Swollman */
1052702Swollman
1062702Swollmanstatic const char	gmt[] = "UTC";
1072702Swollman
1082702Swollman/*
1092702Swollman** The DST rules to use if TZ has no rules and we can't load TZDEFRULES.
1102702Swollman** We default to US rules as of 1999-08-17.
1112702Swollman** POSIX 1003.1 section 8.1.1 says that the default DST rules are
1122702Swollman** implementation dependent; for historical reasons, US rules are a
1132702Swollman** common default.
1142702Swollman*/
1152702Swollman#ifndef TZDEFRULESTRING
1162702Swollman#define TZDEFRULESTRING ",M4.1.0,M10.5.0"
1172702Swollman#endif /* !defined TZDEFDST */
1182702Swollman
1192702Swollmanstruct ttinfo {				/* time type information */
1202702Swollman	long		tt_gmtoff;	/* UTC offset in seconds */
121	int		tt_isdst;	/* used to set tm_isdst */
122	int		tt_abbrind;	/* abbreviation list index */
123	int		tt_ttisstd;	/* TRUE if transition is std time */
124	int		tt_ttisgmt;	/* TRUE if transition is UTC */
125};
126
127struct lsinfo {				/* leap second information */
128	time_t		ls_trans;	/* transition time */
129	long		ls_corr;	/* correction to apply */
130};
131
132#define BIGGEST(a, b)	(((a) > (b)) ? (a) : (b))
133
134#ifdef TZNAME_MAX
135#define MY_TZNAME_MAX	TZNAME_MAX
136#endif /* defined TZNAME_MAX */
137#ifndef TZNAME_MAX
138#define MY_TZNAME_MAX	255
139#endif /* !defined TZNAME_MAX */
140
141struct state {
142	int		leapcnt;
143	int		timecnt;
144	int		typecnt;
145	int		charcnt;
146	int		goback;
147	int		goahead;
148	time_t		ats[TZ_MAX_TIMES];
149	unsigned char	types[TZ_MAX_TIMES];
150	struct ttinfo	ttis[TZ_MAX_TYPES];
151	char		chars[BIGGEST(BIGGEST(TZ_MAX_CHARS + 1, sizeof gmt),
152				(2 * (MY_TZNAME_MAX + 1)))];
153	struct lsinfo	lsis[TZ_MAX_LEAPS];
154};
155
156struct rule {
157	int		r_type;		/* type of rule--see below */
158	int		r_day;		/* day number of rule */
159	int		r_week;		/* week number of rule */
160	int		r_mon;		/* month number of rule */
161	long		r_time;		/* transition time of rule */
162};
163
164#define JULIAN_DAY		0	/* Jn - Julian day */
165#define DAY_OF_YEAR		1	/* n - day of year */
166#define MONTH_NTH_DAY_OF_WEEK	2	/* Mm.n.d - month, week, day of week */
167
168/*
169** Prototypes for static functions.
170*/
171
172static long		detzcode(const char * codep);
173static time_t		detzcode64(const char * codep);
174static int		differ_by_repeat(time_t t1, time_t t0);
175static const char *	getzname(const char * strp);
176static const char *	getqzname(const char * strp, const int delim);
177static const char *	getnum(const char * strp, int * nump, int min,
178				int max);
179static const char *	getsecs(const char * strp, long * secsp);
180static const char *	getoffset(const char * strp, long * offsetp);
181static const char *	getrule(const char * strp, struct rule * rulep);
182static void		gmtload(struct state * sp);
183static struct tm *	gmtsub(const time_t * timep, long offset,
184				struct tm * tmp);
185static struct tm *	localsub(const time_t * timep, long offset,
186				struct tm * tmp);
187static int		increment_overflow(int * number, int delta);
188static int		leaps_thru_end_of(int y);
189static int		long_increment_overflow(long * number, int delta);
190static int		long_normalize_overflow(long * tensptr,
191				int * unitsptr, int base);
192static int		normalize_overflow(int * tensptr, int * unitsptr,
193				int base);
194static void		settzname(void);
195static time_t		time1(struct tm * tmp,
196				struct tm * (*funcp)(const time_t *,
197				long, struct tm *),
198				long offset);
199static time_t		time2(struct tm *tmp,
200				struct tm * (*funcp)(const time_t *,
201				long, struct tm*),
202				long offset, int * okayp);
203static time_t		time2sub(struct tm *tmp,
204				struct tm * (*funcp)(const time_t *,
205				long, struct tm*),
206				long offset, int * okayp, int do_norm_secs);
207static struct tm *	timesub(const time_t * timep, long offset,
208				const struct state * sp, struct tm * tmp);
209static int		tmcomp(const struct tm * atmp,
210				const struct tm * btmp);
211static time_t		transtime(time_t janfirst, int year,
212				const struct rule * rulep, long offset);
213static int		typesequiv(const struct state * sp, int a, int b);
214static int		tzload(const char * name, struct state * sp,
215				int doextend);
216static int		tzparse(const char * name, struct state * sp,
217				int lastditch);
218
219#ifdef ALL_STATE
220static struct state *	lclptr;
221static struct state *	gmtptr;
222#endif /* defined ALL_STATE */
223
224#ifndef ALL_STATE
225static struct state	lclmem;
226static struct state	gmtmem;
227#define lclptr		(&lclmem)
228#define gmtptr		(&gmtmem)
229#endif /* State Farm */
230
231#ifndef TZ_STRLEN_MAX
232#define TZ_STRLEN_MAX 255
233#endif /* !defined TZ_STRLEN_MAX */
234
235static char		lcl_TZname[TZ_STRLEN_MAX + 1];
236static int		lcl_is_set;
237static int		gmt_is_set;
238static pthread_rwlock_t	lcl_rwlock = PTHREAD_RWLOCK_INITIALIZER;
239static pthread_mutex_t	gmt_mutex = PTHREAD_MUTEX_INITIALIZER;
240
241char *			tzname[2] = {
242	wildabbr,
243	wildabbr
244};
245
246/*
247** Section 4.12.3 of X3.159-1989 requires that
248**	Except for the strftime function, these functions [asctime,
249**	ctime, gmtime, localtime] return values in one of two static
250**	objects: a broken-down time structure and an array of char.
251** Thanks to Paul Eggert for noting this.
252*/
253
254static struct tm	tm;
255
256#ifdef USG_COMPAT
257time_t			timezone = 0;
258int			daylight = 0;
259#endif /* defined USG_COMPAT */
260
261#ifdef ALTZONE
262time_t			altzone = 0;
263#endif /* defined ALTZONE */
264
265static long
266detzcode(codep)
267const char * const	codep;
268{
269	long	result;
270	int	i;
271
272	result = (codep[0] & 0x80) ? ~0L : 0;
273	for (i = 0; i < 4; ++i)
274		result = (result << 8) | (codep[i] & 0xff);
275	return result;
276}
277
278static time_t
279detzcode64(codep)
280const char * const	codep;
281{
282	register time_t	result;
283	register int	i;
284
285	result = (codep[0] & 0x80) ?  (~(int_fast64_t) 0) : 0;
286	for (i = 0; i < 8; ++i)
287		result = result * 256 + (codep[i] & 0xff);
288	return result;
289}
290
291static void
292settzname(void)
293{
294	struct state * 	sp = lclptr;
295	int			i;
296
297	tzname[0] = wildabbr;
298	tzname[1] = wildabbr;
299#ifdef USG_COMPAT
300	daylight = 0;
301	timezone = 0;
302#endif /* defined USG_COMPAT */
303#ifdef ALTZONE
304	altzone = 0;
305#endif /* defined ALTZONE */
306#ifdef ALL_STATE
307	if (sp == NULL) {
308		tzname[0] = tzname[1] = gmt;
309		return;
310	}
311#endif /* defined ALL_STATE */
312	for (i = 0; i < sp->typecnt; ++i) {
313		const struct ttinfo * const	ttisp = &sp->ttis[i];
314
315		tzname[ttisp->tt_isdst] =
316			&sp->chars[ttisp->tt_abbrind];
317#ifdef USG_COMPAT
318		if (ttisp->tt_isdst)
319			daylight = 1;
320		if (i == 0 || !ttisp->tt_isdst)
321			timezone = -(ttisp->tt_gmtoff);
322#endif /* defined USG_COMPAT */
323#ifdef ALTZONE
324		if (i == 0 || ttisp->tt_isdst)
325			altzone = -(ttisp->tt_gmtoff);
326#endif /* defined ALTZONE */
327	}
328	/*
329	** And to get the latest zone names into tzname. . .
330	*/
331	for (i = 0; i < sp->timecnt; ++i) {
332		const struct ttinfo * const	ttisp =
333							&sp->ttis[
334								sp->types[i]];
335
336		tzname[ttisp->tt_isdst] =
337			&sp->chars[ttisp->tt_abbrind];
338	}
339	/*
340	** Finally, scrub the abbreviations.
341	** First, replace bogus characters.
342	*/
343	for (i = 0; i < sp->charcnt; ++i)
344		if (strchr(TZ_ABBR_CHAR_SET, sp->chars[i]) == NULL)
345			sp->chars[i] = TZ_ABBR_ERR_CHAR;
346	/*
347	** Second, truncate long abbreviations.
348	*/
349	for (i = 0; i < sp->typecnt; ++i) {
350		register const struct ttinfo * const	ttisp = &sp->ttis[i];
351		register char *				cp = &sp->chars[ttisp->tt_abbrind];
352
353		if (strlen(cp) > TZ_ABBR_MAX_LEN &&
354			strcmp(cp, GRANDPARENTED) != 0)
355				*(cp + TZ_ABBR_MAX_LEN) = '\0';
356	}
357}
358
359static int
360differ_by_repeat(t1, t0)
361const time_t	t1;
362const time_t	t0;
363{
364	int_fast64_t _t0 = t0;
365	int_fast64_t _t1 = t1;
366
367	if (TYPE_INTEGRAL(time_t) &&
368		TYPE_BIT(time_t) - TYPE_SIGNED(time_t) < SECSPERREPEAT_BITS)
369			return 0;
370	//turn ((int_fast64_t)(t1 - t0) == SECSPERREPEAT);
371	return _t1 - _t0 == SECSPERREPEAT;
372}
373
374static int
375tzload(name, sp, doextend)
376const char *		name;
377struct state * const	sp;
378register const int	doextend;
379{
380	const char *	p;
381	int		i;
382	int		fid;
383	int		stored;
384	int		nread;
385	union {
386		struct tzhead	tzhead;
387		char		buf[2 * sizeof(struct tzhead) +
388					2 * sizeof *sp +
389					4 * TZ_MAX_TIMES];
390	} u;
391
392	/* XXX The following is from OpenBSD, and I'm not sure it is correct */
393	if (name != NULL && issetugid() != 0)
394		if ((name[0] == ':' && name[1] == '/') ||
395		    name[0] == '/' || strchr(name, '.'))
396			name = NULL;
397	if (name == NULL && (name = TZDEFAULT) == NULL)
398		return -1;
399	{
400		int	doaccess;
401		struct stat	stab;
402		/*
403		** Section 4.9.1 of the C standard says that
404		** "FILENAME_MAX expands to an integral constant expression
405		** that is the size needed for an array of char large enough
406		** to hold the longest file name string that the implementation
407		** guarantees can be opened."
408		*/
409		char		fullname[FILENAME_MAX + 1];
410
411		if (name[0] == ':')
412			++name;
413		doaccess = name[0] == '/';
414		if (!doaccess) {
415			if ((p = TZDIR) == NULL)
416				return -1;
417			if ((strlen(p) + 1 + strlen(name) + 1) >= sizeof fullname)
418				return -1;
419			(void) strcpy(fullname, p);
420			(void) strcat(fullname, "/");
421			(void) strcat(fullname, name);
422			/*
423			** Set doaccess if '.' (as in "../") shows up in name.
424			*/
425			if (strchr(name, '.') != NULL)
426				doaccess = TRUE;
427			name = fullname;
428		}
429		if (doaccess && access(name, R_OK) != 0)
430		     	return -1;
431		if ((fid = _open(name, OPEN_MODE)) == -1)
432			return -1;
433		if ((_fstat(fid, &stab) < 0) || !S_ISREG(stab.st_mode)) {
434			_close(fid);
435			return -1;
436		}
437	}
438	nread = _read(fid, u.buf, sizeof u.buf);
439	if (_close(fid) < 0 || nread <= 0)
440		return -1;
441	for (stored = 4; stored <= 8; stored *= 2) {
442		int		ttisstdcnt;
443		int		ttisgmtcnt;
444
445		ttisstdcnt = (int) detzcode(u.tzhead.tzh_ttisstdcnt);
446		ttisgmtcnt = (int) detzcode(u.tzhead.tzh_ttisgmtcnt);
447		sp->leapcnt = (int) detzcode(u.tzhead.tzh_leapcnt);
448		sp->timecnt = (int) detzcode(u.tzhead.tzh_timecnt);
449		sp->typecnt = (int) detzcode(u.tzhead.tzh_typecnt);
450		sp->charcnt = (int) detzcode(u.tzhead.tzh_charcnt);
451		p = u.tzhead.tzh_charcnt + sizeof u.tzhead.tzh_charcnt;
452		if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS ||
453			sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES ||
454			sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES ||
455			sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS ||
456			(ttisstdcnt != sp->typecnt && ttisstdcnt != 0) ||
457			(ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0))
458				return -1;
459		if (nread - (p - u.buf) <
460			sp->timecnt * stored +		/* ats */
461			sp->timecnt +			/* types */
462			sp->typecnt * 6 +		/* ttinfos */
463			sp->charcnt +			/* chars */
464			sp->leapcnt * (stored + 4) +	/* lsinfos */
465			ttisstdcnt +			/* ttisstds */
466			ttisgmtcnt)			/* ttisgmts */
467				return -1;
468		for (i = 0; i < sp->timecnt; ++i) {
469			sp->ats[i] = (stored == 4) ?
470				detzcode(p) : detzcode64(p);
471			p += stored;
472		}
473		for (i = 0; i < sp->timecnt; ++i) {
474			sp->types[i] = (unsigned char) *p++;
475			if (sp->types[i] >= sp->typecnt)
476				return -1;
477		}
478		for (i = 0; i < sp->typecnt; ++i) {
479			struct ttinfo *	ttisp;
480
481			ttisp = &sp->ttis[i];
482			ttisp->tt_gmtoff = detzcode(p);
483			p += 4;
484			ttisp->tt_isdst = (unsigned char) *p++;
485			if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1)
486				return -1;
487			ttisp->tt_abbrind = (unsigned char) *p++;
488			if (ttisp->tt_abbrind < 0 ||
489				ttisp->tt_abbrind > sp->charcnt)
490					return -1;
491		}
492		for (i = 0; i < sp->charcnt; ++i)
493			sp->chars[i] = *p++;
494		sp->chars[i] = '\0';	/* ensure '\0' at end */
495		for (i = 0; i < sp->leapcnt; ++i) {
496			struct lsinfo *	lsisp;
497
498			lsisp = &sp->lsis[i];
499			lsisp->ls_trans = (stored == 4) ?
500				detzcode(p) : detzcode64(p);
501			p += stored;
502			lsisp->ls_corr = detzcode(p);
503			p += 4;
504		}
505		for (i = 0; i < sp->typecnt; ++i) {
506			struct ttinfo *	ttisp;
507
508			ttisp = &sp->ttis[i];
509			if (ttisstdcnt == 0)
510				ttisp->tt_ttisstd = FALSE;
511			else {
512				ttisp->tt_ttisstd = *p++;
513				if (ttisp->tt_ttisstd != TRUE &&
514					ttisp->tt_ttisstd != FALSE)
515						return -1;
516			}
517		}
518		for (i = 0; i < sp->typecnt; ++i) {
519			struct ttinfo *	ttisp;
520
521			ttisp = &sp->ttis[i];
522			if (ttisgmtcnt == 0)
523				ttisp->tt_ttisgmt = FALSE;
524			else {
525				ttisp->tt_ttisgmt = *p++;
526				if (ttisp->tt_ttisgmt != TRUE &&
527					ttisp->tt_ttisgmt != FALSE)
528						return -1;
529			}
530		}
531		/*
532		** Out-of-sort ats should mean we're running on a
533		** signed time_t system but using a data file with
534		** unsigned values (or vice versa).
535		*/
536		for (i = 0; i < sp->timecnt - 2; ++i)
537			if (sp->ats[i] > sp->ats[i + 1]) {
538				++i;
539				if (TYPE_SIGNED(time_t)) {
540					/*
541					** Ignore the end (easy).
542					*/
543					sp->timecnt = i;
544				} else {
545					/*
546					** Ignore the beginning (harder).
547					*/
548					register int	j;
549
550					for (j = 0; j + i < sp->timecnt; ++j) {
551						sp->ats[j] = sp->ats[j + i];
552						sp->types[j] = sp->types[j + i];
553					}
554					sp->timecnt = j;
555				}
556				break;
557			}
558		/*
559		** If this is an old file, we're done.
560		*/
561		if (u.tzhead.tzh_version[0] == '\0')
562			break;
563		nread -= p - u.buf;
564		for (i = 0; i < nread; ++i)
565			u.buf[i] = p[i];
566		/*
567		** If this is a narrow integer time_t system, we're done.
568		*/
569		if (stored >= (int) sizeof(time_t) && TYPE_INTEGRAL(time_t))
570			break;
571	}
572	if (doextend && nread > 2 &&
573		u.buf[0] == '\n' && u.buf[nread - 1] == '\n' &&
574		sp->typecnt + 2 <= TZ_MAX_TYPES) {
575			struct state	ts;
576			register int	result;
577
578			u.buf[nread - 1] = '\0';
579			result = tzparse(&u.buf[1], &ts, FALSE);
580			if (result == 0 && ts.typecnt == 2 &&
581				sp->charcnt + ts.charcnt <= TZ_MAX_CHARS) {
582					for (i = 0; i < 2; ++i)
583						ts.ttis[i].tt_abbrind +=
584							sp->charcnt;
585					for (i = 0; i < ts.charcnt; ++i)
586						sp->chars[sp->charcnt++] =
587							ts.chars[i];
588					i = 0;
589					while (i < ts.timecnt &&
590						ts.ats[i] <=
591						sp->ats[sp->timecnt - 1])
592							++i;
593					while (i < ts.timecnt &&
594					    sp->timecnt < TZ_MAX_TIMES) {
595						sp->ats[sp->timecnt] =
596							ts.ats[i];
597						sp->types[sp->timecnt] =
598							sp->typecnt +
599							ts.types[i];
600						++sp->timecnt;
601						++i;
602					}
603					sp->ttis[sp->typecnt++] = ts.ttis[0];
604					sp->ttis[sp->typecnt++] = ts.ttis[1];
605			}
606	}
607	sp->goback = sp->goahead = FALSE;
608	if (sp->timecnt > 1) {
609		for (i = 1; i < sp->timecnt; ++i)
610			if (typesequiv(sp, sp->types[i], sp->types[0]) &&
611				differ_by_repeat(sp->ats[i], sp->ats[0])) {
612					sp->goback = TRUE;
613					break;
614				}
615		for (i = sp->timecnt - 2; i >= 0; --i)
616			if (typesequiv(sp, sp->types[sp->timecnt - 1],
617				sp->types[i]) &&
618				differ_by_repeat(sp->ats[sp->timecnt - 1],
619				sp->ats[i])) {
620					sp->goahead = TRUE;
621					break;
622		}
623	}
624	return 0;
625}
626
627static int
628typesequiv(sp, a, b)
629const struct state * const	sp;
630const int			a;
631const int			b;
632{
633	register int	result;
634
635	if (sp == NULL ||
636		a < 0 || a >= sp->typecnt ||
637		b < 0 || b >= sp->typecnt)
638			result = FALSE;
639	else {
640		register const struct ttinfo *	ap = &sp->ttis[a];
641		register const struct ttinfo *	bp = &sp->ttis[b];
642		result = ap->tt_gmtoff == bp->tt_gmtoff &&
643			ap->tt_isdst == bp->tt_isdst &&
644			ap->tt_ttisstd == bp->tt_ttisstd &&
645			ap->tt_ttisgmt == bp->tt_ttisgmt &&
646			strcmp(&sp->chars[ap->tt_abbrind],
647			&sp->chars[bp->tt_abbrind]) == 0;
648	}
649	return result;
650}
651
652static const int	mon_lengths[2][MONSPERYEAR] = {
653	{ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
654	{ 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
655};
656
657static const int	year_lengths[2] = {
658	DAYSPERNYEAR, DAYSPERLYEAR
659};
660
661/*
662** Given a pointer into a time zone string, scan until a character that is not
663** a valid character in a zone name is found. Return a pointer to that
664** character.
665*/
666
667static const char *
668getzname(strp)
669const char *	strp;
670{
671	char	c;
672
673	while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' &&
674		c != '+')
675			++strp;
676	return strp;
677}
678
679/*
680** Given a pointer into an extended time zone string, scan until the ending
681** delimiter of the zone name is located. Return a pointer to the delimiter.
682**
683** As with getzname above, the legal character set is actually quite
684** restricted, with other characters producing undefined results.
685** We don't do any checking here; checking is done later in common-case code.
686*/
687
688static const char *
689getqzname(register const char *strp, const int delim)
690{
691	register int	c;
692
693	while ((c = *strp) != '\0' && c != delim)
694		++strp;
695	return strp;
696}
697
698/*
699** Given a pointer into a time zone string, extract a number from that string.
700** Check that the number is within a specified range; if it is not, return
701** NULL.
702** Otherwise, return a pointer to the first character not part of the number.
703*/
704
705static const char *
706getnum(strp, nump, min, max)
707const char *	strp;
708int * const		nump;
709const int		min;
710const int		max;
711{
712	char	c;
713	int	num;
714
715	if (strp == NULL || !is_digit(c = *strp))
716		return NULL;
717	num = 0;
718	do {
719		num = num * 10 + (c - '0');
720		if (num > max)
721			return NULL;	/* illegal value */
722		c = *++strp;
723	} while (is_digit(c));
724	if (num < min)
725		return NULL;		/* illegal value */
726	*nump = num;
727	return strp;
728}
729
730/*
731** Given a pointer into a time zone string, extract a number of seconds,
732** in hh[:mm[:ss]] form, from the string.
733** If any error occurs, return NULL.
734** Otherwise, return a pointer to the first character not part of the number
735** of seconds.
736*/
737
738static const char *
739getsecs(strp, secsp)
740const char *	strp;
741long * const		secsp;
742{
743	int	num;
744
745	/*
746	** `HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like
747	** "M10.4.6/26", which does not conform to Posix,
748	** but which specifies the equivalent of
749	** ``02:00 on the first Sunday on or after 23 Oct''.
750	*/
751	strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
752	if (strp == NULL)
753		return NULL;
754	*secsp = num * (long) SECSPERHOUR;
755	if (*strp == ':') {
756		++strp;
757		strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
758		if (strp == NULL)
759			return NULL;
760		*secsp += num * SECSPERMIN;
761		if (*strp == ':') {
762			++strp;
763			/* `SECSPERMIN' allows for leap seconds. */
764			strp = getnum(strp, &num, 0, SECSPERMIN);
765			if (strp == NULL)
766				return NULL;
767			*secsp += num;
768		}
769	}
770	return strp;
771}
772
773/*
774** Given a pointer into a time zone string, extract an offset, in
775** [+-]hh[:mm[:ss]] form, from the string.
776** If any error occurs, return NULL.
777** Otherwise, return a pointer to the first character not part of the time.
778*/
779
780static const char *
781getoffset(strp, offsetp)
782const char *	strp;
783long * const		offsetp;
784{
785	int	neg = 0;
786
787	if (*strp == '-') {
788		neg = 1;
789		++strp;
790	} else if (*strp == '+')
791		++strp;
792	strp = getsecs(strp, offsetp);
793	if (strp == NULL)
794		return NULL;		/* illegal time */
795	if (neg)
796		*offsetp = -*offsetp;
797	return strp;
798}
799
800/*
801** Given a pointer into a time zone string, extract a rule in the form
802** date[/time]. See POSIX section 8 for the format of "date" and "time".
803** If a valid rule is not found, return NULL.
804** Otherwise, return a pointer to the first character not part of the rule.
805*/
806
807static const char *
808getrule(strp, rulep)
809const char *			strp;
810struct rule * const	rulep;
811{
812	if (*strp == 'J') {
813		/*
814		** Julian day.
815		*/
816		rulep->r_type = JULIAN_DAY;
817		++strp;
818		strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
819	} else if (*strp == 'M') {
820		/*
821		** Month, week, day.
822		*/
823		rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
824		++strp;
825		strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
826		if (strp == NULL)
827			return NULL;
828		if (*strp++ != '.')
829			return NULL;
830		strp = getnum(strp, &rulep->r_week, 1, 5);
831		if (strp == NULL)
832			return NULL;
833		if (*strp++ != '.')
834			return NULL;
835		strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
836	} else if (is_digit(*strp)) {
837		/*
838		** Day of year.
839		*/
840		rulep->r_type = DAY_OF_YEAR;
841		strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
842	} else	return NULL;		/* invalid format */
843	if (strp == NULL)
844		return NULL;
845	if (*strp == '/') {
846		/*
847		** Time specified.
848		*/
849		++strp;
850		strp = getsecs(strp, &rulep->r_time);
851	} else	rulep->r_time = 2 * SECSPERHOUR;	/* default = 2:00:00 */
852	return strp;
853}
854
855/*
856** Given the Epoch-relative time of January 1, 00:00:00 UTC, in a year, the
857** year, a rule, and the offset from UTC at the time that rule takes effect,
858** calculate the Epoch-relative time that rule takes effect.
859*/
860
861static time_t
862transtime(janfirst, year, rulep, offset)
863const time_t				janfirst;
864const int				year;
865const struct rule * const	rulep;
866const long				offset;
867{
868	int	leapyear;
869	time_t	value;
870	int	i;
871	int		d, m1, yy0, yy1, yy2, dow;
872
873	INITIALIZE(value);
874	leapyear = isleap(year);
875	switch (rulep->r_type) {
876
877	case JULIAN_DAY:
878		/*
879		** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
880		** years.
881		** In non-leap years, or if the day number is 59 or less, just
882		** add SECSPERDAY times the day number-1 to the time of
883		** January 1, midnight, to get the day.
884		*/
885		value = janfirst + (rulep->r_day - 1) * SECSPERDAY;
886		if (leapyear && rulep->r_day >= 60)
887			value += SECSPERDAY;
888		break;
889
890	case DAY_OF_YEAR:
891		/*
892		** n - day of year.
893		** Just add SECSPERDAY times the day number to the time of
894		** January 1, midnight, to get the day.
895		*/
896		value = janfirst + rulep->r_day * SECSPERDAY;
897		break;
898
899	case MONTH_NTH_DAY_OF_WEEK:
900		/*
901		** Mm.n.d - nth "dth day" of month m.
902		*/
903		value = janfirst;
904		for (i = 0; i < rulep->r_mon - 1; ++i)
905			value += mon_lengths[leapyear][i] * SECSPERDAY;
906
907		/*
908		** Use Zeller's Congruence to get day-of-week of first day of
909		** month.
910		*/
911		m1 = (rulep->r_mon + 9) % 12 + 1;
912		yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
913		yy1 = yy0 / 100;
914		yy2 = yy0 % 100;
915		dow = ((26 * m1 - 2) / 10 +
916			1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
917		if (dow < 0)
918			dow += DAYSPERWEEK;
919
920		/*
921		** "dow" is the day-of-week of the first day of the month. Get
922		** the day-of-month (zero-origin) of the first "dow" day of the
923		** month.
924		*/
925		d = rulep->r_day - dow;
926		if (d < 0)
927			d += DAYSPERWEEK;
928		for (i = 1; i < rulep->r_week; ++i) {
929			if (d + DAYSPERWEEK >=
930				mon_lengths[leapyear][rulep->r_mon - 1])
931					break;
932			d += DAYSPERWEEK;
933		}
934
935		/*
936		** "d" is the day-of-month (zero-origin) of the day we want.
937		*/
938		value += d * SECSPERDAY;
939		break;
940	}
941
942	/*
943	** "value" is the Epoch-relative time of 00:00:00 UTC on the day in
944	** question. To get the Epoch-relative time of the specified local
945	** time on that day, add the transition time and the current offset
946	** from UTC.
947	*/
948	return value + rulep->r_time + offset;
949}
950
951/*
952** Given a POSIX section 8-style TZ string, fill in the rule tables as
953** appropriate.
954*/
955
956static int
957tzparse(name, sp, lastditch)
958const char *			name;
959struct state * const	sp;
960const int			lastditch;
961{
962	const char *			stdname;
963	const char *			dstname;
964	size_t				stdlen;
965	size_t				dstlen;
966	long				stdoffset;
967	long				dstoffset;
968	time_t *		atp;
969	unsigned char *	typep;
970	char *			cp;
971	int			load_result;
972
973	INITIALIZE(dstname);
974	stdname = name;
975	if (lastditch) {
976		stdlen = strlen(name);	/* length of standard zone name */
977		name += stdlen;
978		if (stdlen >= sizeof sp->chars)
979			stdlen = (sizeof sp->chars) - 1;
980		stdoffset = 0;
981	} else {
982		if (*name == '<') {
983			name++;
984			stdname = name;
985			name = getqzname(name, '>');
986			if (*name != '>')
987				return (-1);
988			stdlen = name - stdname;
989			name++;
990		} else {
991			name = getzname(name);
992			stdlen = name - stdname;
993		}
994		if (*name == '\0')
995			return -1;	/* was "stdoffset = 0;" */
996		else {
997			name = getoffset(name, &stdoffset);
998			if (name == NULL)
999				return -1;
1000		}
1001	}
1002	load_result = tzload(TZDEFRULES, sp, FALSE);
1003	if (load_result != 0)
1004		sp->leapcnt = 0;		/* so, we're off a little */
1005	if (*name != '\0') {
1006		if (*name == '<') {
1007			dstname = ++name;
1008			name = getqzname(name, '>');
1009			if (*name != '>')
1010				return -1;
1011			dstlen = name - dstname;
1012			name++;
1013		} else {
1014			dstname = name;
1015			name = getzname(name);
1016			dstlen = name - dstname; /* length of DST zone name */
1017		}
1018		if (*name != '\0' && *name != ',' && *name != ';') {
1019			name = getoffset(name, &dstoffset);
1020			if (name == NULL)
1021				return -1;
1022		} else	dstoffset = stdoffset - SECSPERHOUR;
1023		if (*name == '\0' && load_result != 0)
1024			name = TZDEFRULESTRING;
1025		if (*name == ',' || *name == ';') {
1026			struct rule	start;
1027			struct rule	end;
1028			int	year;
1029			time_t	janfirst;
1030			time_t		starttime;
1031			time_t		endtime;
1032
1033			++name;
1034			if ((name = getrule(name, &start)) == NULL)
1035				return -1;
1036			if (*name++ != ',')
1037				return -1;
1038			if ((name = getrule(name, &end)) == NULL)
1039				return -1;
1040			if (*name != '\0')
1041				return -1;
1042			sp->typecnt = 2;	/* standard time and DST */
1043			/*
1044			** Two transitions per year, from EPOCH_YEAR forward.
1045			*/
1046			sp->ttis[0].tt_gmtoff = -dstoffset;
1047			sp->ttis[0].tt_isdst = 1;
1048			sp->ttis[0].tt_abbrind = stdlen + 1;
1049			sp->ttis[1].tt_gmtoff = -stdoffset;
1050			sp->ttis[1].tt_isdst = 0;
1051			sp->ttis[1].tt_abbrind = 0;
1052			atp = sp->ats;
1053			typep = sp->types;
1054			janfirst = 0;
1055			sp->timecnt = 0;
1056			for (year = EPOCH_YEAR;
1057			    sp->timecnt + 2 <= TZ_MAX_TIMES;
1058			    ++year) {
1059			    	time_t	newfirst;
1060
1061				starttime = transtime(janfirst, year, &start,
1062					stdoffset);
1063				endtime = transtime(janfirst, year, &end,
1064					dstoffset);
1065				if (starttime > endtime) {
1066					*atp++ = endtime;
1067					*typep++ = 1;	/* DST ends */
1068					*atp++ = starttime;
1069					*typep++ = 0;	/* DST begins */
1070				} else {
1071					*atp++ = starttime;
1072					*typep++ = 0;	/* DST begins */
1073					*atp++ = endtime;
1074					*typep++ = 1;	/* DST ends */
1075				}
1076				sp->timecnt += 2;
1077				newfirst = janfirst;
1078				newfirst += year_lengths[isleap(year)] *
1079					SECSPERDAY;
1080				if (newfirst <= janfirst)
1081					break;
1082				janfirst = newfirst;
1083			}
1084		} else {
1085			long	theirstdoffset;
1086			long	theirdstoffset;
1087			long	theiroffset;
1088			int	isdst;
1089			int	i;
1090			int	j;
1091
1092			if (*name != '\0')
1093				return -1;
1094			/*
1095			** Initial values of theirstdoffset and theirdstoffset.
1096			*/
1097			theirstdoffset = 0;
1098			for (i = 0; i < sp->timecnt; ++i) {
1099				j = sp->types[i];
1100				if (!sp->ttis[j].tt_isdst) {
1101					theirstdoffset =
1102						-sp->ttis[j].tt_gmtoff;
1103					break;
1104				}
1105			}
1106			theirdstoffset = 0;
1107			for (i = 0; i < sp->timecnt; ++i) {
1108				j = sp->types[i];
1109				if (sp->ttis[j].tt_isdst) {
1110					theirdstoffset =
1111						-sp->ttis[j].tt_gmtoff;
1112					break;
1113				}
1114			}
1115			/*
1116			** Initially we're assumed to be in standard time.
1117			*/
1118			isdst = FALSE;
1119			theiroffset = theirstdoffset;
1120			/*
1121			** Now juggle transition times and types
1122			** tracking offsets as you do.
1123			*/
1124			for (i = 0; i < sp->timecnt; ++i) {
1125				j = sp->types[i];
1126				sp->types[i] = sp->ttis[j].tt_isdst;
1127				if (sp->ttis[j].tt_ttisgmt) {
1128					/* No adjustment to transition time */
1129				} else {
1130					/*
1131					** If summer time is in effect, and the
1132					** transition time was not specified as
1133					** standard time, add the summer time
1134					** offset to the transition time;
1135					** otherwise, add the standard time
1136					** offset to the transition time.
1137					*/
1138					/*
1139					** Transitions from DST to DDST
1140					** will effectively disappear since
1141					** POSIX provides for only one DST
1142					** offset.
1143					*/
1144					if (isdst && !sp->ttis[j].tt_ttisstd) {
1145						sp->ats[i] += dstoffset -
1146							theirdstoffset;
1147					} else {
1148						sp->ats[i] += stdoffset -
1149							theirstdoffset;
1150					}
1151				}
1152				theiroffset = -sp->ttis[j].tt_gmtoff;
1153				if (sp->ttis[j].tt_isdst)
1154					theirdstoffset = theiroffset;
1155				else	theirstdoffset = theiroffset;
1156			}
1157			/*
1158			** Finally, fill in ttis.
1159			** ttisstd and ttisgmt need not be handled.
1160			*/
1161			sp->ttis[0].tt_gmtoff = -stdoffset;
1162			sp->ttis[0].tt_isdst = FALSE;
1163			sp->ttis[0].tt_abbrind = 0;
1164			sp->ttis[1].tt_gmtoff = -dstoffset;
1165			sp->ttis[1].tt_isdst = TRUE;
1166			sp->ttis[1].tt_abbrind = stdlen + 1;
1167			sp->typecnt = 2;
1168		}
1169	} else {
1170		dstlen = 0;
1171		sp->typecnt = 1;		/* only standard time */
1172		sp->timecnt = 0;
1173		sp->ttis[0].tt_gmtoff = -stdoffset;
1174		sp->ttis[0].tt_isdst = 0;
1175		sp->ttis[0].tt_abbrind = 0;
1176	}
1177	sp->charcnt = stdlen + 1;
1178	if (dstlen != 0)
1179		sp->charcnt += dstlen + 1;
1180	if ((size_t) sp->charcnt > sizeof sp->chars)
1181		return -1;
1182	cp = sp->chars;
1183	(void) strncpy(cp, stdname, stdlen);
1184	cp += stdlen;
1185	*cp++ = '\0';
1186	if (dstlen != 0) {
1187		(void) strncpy(cp, dstname, dstlen);
1188		*(cp + dstlen) = '\0';
1189	}
1190	return 0;
1191}
1192
1193static void
1194gmtload(sp)
1195struct state * const	sp;
1196{
1197	if (tzload(gmt, sp, TRUE) != 0)
1198		(void) tzparse(gmt, sp, TRUE);
1199}
1200
1201static void
1202tzsetwall_basic(int rdlocked)
1203{
1204	if (!rdlocked)
1205		_RWLOCK_RDLOCK(&lcl_rwlock);
1206	if (lcl_is_set < 0) {
1207		if (!rdlocked)
1208			_RWLOCK_UNLOCK(&lcl_rwlock);
1209		return;
1210	}
1211	_RWLOCK_UNLOCK(&lcl_rwlock);
1212
1213	_RWLOCK_WRLOCK(&lcl_rwlock);
1214	lcl_is_set = -1;
1215
1216#ifdef ALL_STATE
1217	if (lclptr == NULL) {
1218		lclptr = (struct state *) malloc(sizeof *lclptr);
1219		if (lclptr == NULL) {
1220			settzname();	/* all we can do */
1221			_RWLOCK_UNLOCK(&lcl_rwlock);
1222			if (rdlocked)
1223				_RWLOCK_RDLOCK(&lcl_rwlock);
1224			return;
1225		}
1226	}
1227#endif /* defined ALL_STATE */
1228	if (tzload((char *) NULL, lclptr, TRUE) != 0)
1229		gmtload(lclptr);
1230	settzname();
1231	_RWLOCK_UNLOCK(&lcl_rwlock);
1232
1233	if (rdlocked)
1234		_RWLOCK_RDLOCK(&lcl_rwlock);
1235}
1236
1237void
1238tzsetwall(void)
1239{
1240	tzsetwall_basic(0);
1241}
1242
1243static void
1244tzset_basic(int rdlocked)
1245{
1246	const char *	name;
1247
1248	name = getenv("TZ");
1249	if (name == NULL) {
1250		tzsetwall_basic(rdlocked);
1251		return;
1252	}
1253
1254	if (!rdlocked)
1255		_RWLOCK_RDLOCK(&lcl_rwlock);
1256	if (lcl_is_set > 0 && strcmp(lcl_TZname, name) == 0) {
1257		if (!rdlocked)
1258			_RWLOCK_UNLOCK(&lcl_rwlock);
1259		return;
1260	}
1261	_RWLOCK_UNLOCK(&lcl_rwlock);
1262
1263	_RWLOCK_WRLOCK(&lcl_rwlock);
1264	lcl_is_set = strlen(name) < sizeof lcl_TZname;
1265	if (lcl_is_set)
1266		(void) strcpy(lcl_TZname, name);
1267
1268#ifdef ALL_STATE
1269	if (lclptr == NULL) {
1270		lclptr = (struct state *) malloc(sizeof *lclptr);
1271		if (lclptr == NULL) {
1272			settzname();	/* all we can do */
1273			_RWLOCK_UNLOCK(&lcl_rwlock);
1274			if (rdlocked)
1275				_RWLOCK_RDLOCK(&lcl_rwlock);
1276			return;
1277		}
1278	}
1279#endif /* defined ALL_STATE */
1280	if (*name == '\0') {
1281		/*
1282		** User wants it fast rather than right.
1283		*/
1284		lclptr->leapcnt = 0;		/* so, we're off a little */
1285		lclptr->timecnt = 0;
1286		lclptr->typecnt = 0;
1287		lclptr->ttis[0].tt_isdst = 0;
1288		lclptr->ttis[0].tt_gmtoff = 0;
1289		lclptr->ttis[0].tt_abbrind = 0;
1290		(void) strcpy(lclptr->chars, gmt);
1291	} else if (tzload(name, lclptr, TRUE) != 0)
1292		if (name[0] == ':' || tzparse(name, lclptr, FALSE) != 0)
1293			(void) gmtload(lclptr);
1294	settzname();
1295	_RWLOCK_UNLOCK(&lcl_rwlock);
1296
1297	if (rdlocked)
1298		_RWLOCK_RDLOCK(&lcl_rwlock);
1299}
1300
1301void
1302tzset(void)
1303{
1304	tzset_basic(0);
1305}
1306
1307/*
1308** The easy way to behave "as if no library function calls" localtime
1309** is to not call it--so we drop its guts into "localsub", which can be
1310** freely called. (And no, the PANS doesn't require the above behavior--
1311** but it *is* desirable.)
1312**
1313** The unused offset argument is for the benefit of mktime variants.
1314*/
1315
1316/*ARGSUSED*/
1317static struct tm *
1318localsub(timep, offset, tmp)
1319const time_t * const	timep;
1320const long		offset;
1321struct tm * const	tmp;
1322{
1323	struct state *		sp;
1324	const struct ttinfo *	ttisp;
1325	int			i;
1326	struct tm *		result;
1327	const time_t		t = *timep;
1328
1329	sp = lclptr;
1330#ifdef ALL_STATE
1331	if (sp == NULL)
1332		return gmtsub(timep, offset, tmp);
1333#endif /* defined ALL_STATE */
1334	if ((sp->goback && t < sp->ats[0]) ||
1335		(sp->goahead && t > sp->ats[sp->timecnt - 1])) {
1336			time_t			newt = t;
1337			register time_t		seconds;
1338			register time_t		tcycles;
1339			register int_fast64_t	icycles;
1340
1341			if (t < sp->ats[0])
1342				seconds = sp->ats[0] - t;
1343			else	seconds = t - sp->ats[sp->timecnt - 1];
1344			--seconds;
1345			tcycles = seconds / YEARSPERREPEAT / AVGSECSPERYEAR;
1346			++tcycles;
1347			icycles = tcycles;
1348			if (tcycles - icycles >= 1 || icycles - tcycles >= 1)
1349				return NULL;
1350			seconds = icycles;
1351			seconds *= YEARSPERREPEAT;
1352			seconds *= AVGSECSPERYEAR;
1353			if (t < sp->ats[0])
1354				newt += seconds;
1355			else	newt -= seconds;
1356			if (newt < sp->ats[0] ||
1357				newt > sp->ats[sp->timecnt - 1])
1358					return NULL;	/* "cannot happen" */
1359			result = localsub(&newt, offset, tmp);
1360			if (result == tmp) {
1361				register time_t	newy;
1362
1363				newy = tmp->tm_year;
1364				if (t < sp->ats[0])
1365					newy -= icycles * YEARSPERREPEAT;
1366				else	newy += icycles * YEARSPERREPEAT;
1367				tmp->tm_year = newy;
1368				if (tmp->tm_year != newy)
1369					return NULL;
1370			}
1371			return result;
1372	}
1373	if (sp->timecnt == 0 || t < sp->ats[0]) {
1374		i = 0;
1375		while (sp->ttis[i].tt_isdst)
1376			if (++i >= sp->typecnt) {
1377				i = 0;
1378				break;
1379			}
1380	} else {
1381		register int	lo = 1;
1382		register int	hi = sp->timecnt;
1383
1384		while (lo < hi) {
1385			register int	mid = (lo + hi) >> 1;
1386
1387			if (t < sp->ats[mid])
1388				hi = mid;
1389			else	lo = mid + 1;
1390		}
1391		i = (int) sp->types[lo - 1];
1392	}
1393	ttisp = &sp->ttis[i];
1394	/*
1395	** To get (wrong) behavior that's compatible with System V Release 2.0
1396	** you'd replace the statement below with
1397	**	t += ttisp->tt_gmtoff;
1398	**	timesub(&t, 0L, sp, tmp);
1399	*/
1400	result = timesub(&t, ttisp->tt_gmtoff, sp, tmp);
1401	tmp->tm_isdst = ttisp->tt_isdst;
1402	tzname[tmp->tm_isdst] = &sp->chars[ttisp->tt_abbrind];
1403#ifdef TM_ZONE
1404	tmp->TM_ZONE = &sp->chars[ttisp->tt_abbrind];
1405#endif /* defined TM_ZONE */
1406	return result;
1407}
1408
1409struct tm *
1410localtime(timep)
1411const time_t * const	timep;
1412{
1413	static pthread_mutex_t localtime_mutex = PTHREAD_MUTEX_INITIALIZER;
1414	static pthread_key_t localtime_key = -1;
1415	struct tm *p_tm;
1416
1417	if (__isthreaded != 0) {
1418		if (localtime_key < 0) {
1419			_pthread_mutex_lock(&localtime_mutex);
1420			if (localtime_key < 0) {
1421				if (_pthread_key_create(&localtime_key, free) < 0) {
1422					_pthread_mutex_unlock(&localtime_mutex);
1423					return(NULL);
1424				}
1425			}
1426			_pthread_mutex_unlock(&localtime_mutex);
1427		}
1428		p_tm = _pthread_getspecific(localtime_key);
1429		if (p_tm == NULL) {
1430			if ((p_tm = (struct tm *)malloc(sizeof(struct tm)))
1431			    == NULL)
1432				return(NULL);
1433			_pthread_setspecific(localtime_key, p_tm);
1434		}
1435		_RWLOCK_RDLOCK(&lcl_rwlock);
1436		tzset_basic(1);
1437		localsub(timep, 0L, p_tm);
1438		_RWLOCK_UNLOCK(&lcl_rwlock);
1439		return(p_tm);
1440	} else {
1441		tzset_basic(0);
1442		localsub(timep, 0L, &tm);
1443		return(&tm);
1444	}
1445}
1446
1447/*
1448** Re-entrant version of localtime.
1449*/
1450
1451struct tm *
1452localtime_r(timep, tmp)
1453const time_t * const	timep;
1454struct tm *		tmp;
1455{
1456	_RWLOCK_RDLOCK(&lcl_rwlock);
1457	tzset_basic(1);
1458	localsub(timep, 0L, tmp);
1459	_RWLOCK_UNLOCK(&lcl_rwlock);
1460	return tmp;
1461}
1462
1463/*
1464** gmtsub is to gmtime as localsub is to localtime.
1465*/
1466
1467static struct tm *
1468gmtsub(timep, offset, tmp)
1469const time_t * const	timep;
1470const long		offset;
1471struct tm * const	tmp;
1472{
1473	register struct tm *	result;
1474
1475	if (!gmt_is_set) {
1476		_MUTEX_LOCK(&gmt_mutex);
1477		if (!gmt_is_set) {
1478#ifdef ALL_STATE
1479			gmtptr = (struct state *) malloc(sizeof *gmtptr);
1480			if (gmtptr != NULL)
1481#endif /* defined ALL_STATE */
1482				gmtload(gmtptr);
1483			gmt_is_set = TRUE;
1484		}
1485		_MUTEX_UNLOCK(&gmt_mutex);
1486	}
1487	result = timesub(timep, offset, gmtptr, tmp);
1488#ifdef TM_ZONE
1489	/*
1490	** Could get fancy here and deliver something such as
1491	** "UTC+xxxx" or "UTC-xxxx" if offset is non-zero,
1492	** but this is no time for a treasure hunt.
1493	*/
1494	if (offset != 0)
1495		tmp->TM_ZONE = wildabbr;
1496	else {
1497#ifdef ALL_STATE
1498		if (gmtptr == NULL)
1499			tmp->TM_ZONE = gmt;
1500		else	tmp->TM_ZONE = gmtptr->chars;
1501#endif /* defined ALL_STATE */
1502#ifndef ALL_STATE
1503		tmp->TM_ZONE = gmtptr->chars;
1504#endif /* State Farm */
1505	}
1506#endif /* defined TM_ZONE */
1507	return result;
1508}
1509
1510struct tm *
1511gmtime(timep)
1512const time_t * const	timep;
1513{
1514	static pthread_mutex_t gmtime_mutex = PTHREAD_MUTEX_INITIALIZER;
1515	static pthread_key_t gmtime_key = -1;
1516	struct tm *p_tm;
1517
1518	if (__isthreaded != 0) {
1519		if (gmtime_key < 0) {
1520			_pthread_mutex_lock(&gmtime_mutex);
1521			if (gmtime_key < 0) {
1522				if (_pthread_key_create(&gmtime_key, free) < 0) {
1523					_pthread_mutex_unlock(&gmtime_mutex);
1524					return(NULL);
1525				}
1526			}
1527			_pthread_mutex_unlock(&gmtime_mutex);
1528		}
1529		/*
1530		 * Changed to follow POSIX.1 threads standard, which
1531		 * is what BSD currently has.
1532		 */
1533		if ((p_tm = _pthread_getspecific(gmtime_key)) == NULL) {
1534			if ((p_tm = (struct tm *)malloc(sizeof(struct tm)))
1535			    == NULL) {
1536				return(NULL);
1537			}
1538			_pthread_setspecific(gmtime_key, p_tm);
1539		}
1540		gmtsub(timep, 0L, p_tm);
1541		return(p_tm);
1542	}
1543	else {
1544		gmtsub(timep, 0L, &tm);
1545		return(&tm);
1546	}
1547}
1548
1549/*
1550* Re-entrant version of gmtime.
1551*/
1552
1553struct tm *
1554gmtime_r(timep, tmp)
1555const time_t * const	timep;
1556struct tm *		tmp;
1557{
1558	return gmtsub(timep, 0L, tmp);
1559}
1560
1561#ifdef STD_INSPIRED
1562
1563struct tm *
1564offtime(timep, offset)
1565const time_t * const	timep;
1566const long		offset;
1567{
1568	return gmtsub(timep, offset, &tm);
1569}
1570
1571#endif /* defined STD_INSPIRED */
1572
1573/*
1574** Return the number of leap years through the end of the given year
1575** where, to make the math easy, the answer for year zero is defined as zero.
1576*/
1577
1578static int
1579leaps_thru_end_of(y)
1580register const int	y;
1581{
1582	return (y >= 0) ? (y / 4 - y / 100 + y / 400) :
1583		-(leaps_thru_end_of(-(y + 1)) + 1);
1584}
1585
1586static struct tm *
1587timesub(timep, offset, sp, tmp)
1588const time_t * const			timep;
1589const long				offset;
1590const struct state * const	sp;
1591struct tm * const		tmp;
1592{
1593	const struct lsinfo *	lp;
1594	time_t			tdays;
1595	int			idays;	/* unsigned would be so 2003 */
1596	long			rem;
1597	int			y;
1598	const int *		ip;
1599	long			corr;
1600	int			hit;
1601	int			i;
1602
1603	corr = 0;
1604	hit = 0;
1605#ifdef ALL_STATE
1606	i = (sp == NULL) ? 0 : sp->leapcnt;
1607#endif /* defined ALL_STATE */
1608#ifndef ALL_STATE
1609	i = sp->leapcnt;
1610#endif /* State Farm */
1611	while (--i >= 0) {
1612		lp = &sp->lsis[i];
1613		if (*timep >= lp->ls_trans) {
1614			if (*timep == lp->ls_trans) {
1615				hit = ((i == 0 && lp->ls_corr > 0) ||
1616					lp->ls_corr > sp->lsis[i - 1].ls_corr);
1617				if (hit)
1618					while (i > 0 &&
1619						sp->lsis[i].ls_trans ==
1620						sp->lsis[i - 1].ls_trans + 1 &&
1621						sp->lsis[i].ls_corr ==
1622						sp->lsis[i - 1].ls_corr + 1) {
1623							++hit;
1624							--i;
1625					}
1626			}
1627			corr = lp->ls_corr;
1628			break;
1629		}
1630	}
1631	y = EPOCH_YEAR;
1632	tdays = *timep / SECSPERDAY;
1633	rem = *timep - tdays * SECSPERDAY;
1634	while (tdays < 0 || tdays >= year_lengths[isleap(y)]) {
1635		int		newy;
1636		register time_t	tdelta;
1637		register int	idelta;
1638		register int	leapdays;
1639
1640		tdelta = tdays / DAYSPERLYEAR;
1641		idelta = tdelta;
1642		if (tdelta - idelta >= 1 || idelta - tdelta >= 1)
1643			return NULL;
1644		if (idelta == 0)
1645			idelta = (tdays < 0) ? -1 : 1;
1646		newy = y;
1647		if (increment_overflow(&newy, idelta))
1648			return NULL;
1649		leapdays = leaps_thru_end_of(newy - 1) -
1650			leaps_thru_end_of(y - 1);
1651		tdays -= ((time_t) newy - y) * DAYSPERNYEAR;
1652		tdays -= leapdays;
1653		y = newy;
1654	}
1655	{
1656		register long	seconds;
1657
1658		seconds = tdays * SECSPERDAY + 0.5;
1659		tdays = seconds / SECSPERDAY;
1660		rem += seconds - tdays * SECSPERDAY;
1661	}
1662	/*
1663	** Given the range, we can now fearlessly cast...
1664	*/
1665	idays = tdays;
1666	rem += offset - corr;
1667	while (rem < 0) {
1668		rem += SECSPERDAY;
1669		--idays;
1670	}
1671	while (rem >= SECSPERDAY) {
1672		rem -= SECSPERDAY;
1673		++idays;
1674	}
1675	while (idays < 0) {
1676		if (increment_overflow(&y, -1))
1677			return NULL;
1678		idays += year_lengths[isleap(y)];
1679	}
1680	while (idays >= year_lengths[isleap(y)]) {
1681		idays -= year_lengths[isleap(y)];
1682		if (increment_overflow(&y, 1))
1683			return NULL;
1684	}
1685	tmp->tm_year = y;
1686	if (increment_overflow(&tmp->tm_year, -TM_YEAR_BASE))
1687		return NULL;
1688	tmp->tm_yday = idays;
1689	/*
1690	** The "extra" mods below avoid overflow problems.
1691	*/
1692	tmp->tm_wday = EPOCH_WDAY +
1693		((y - EPOCH_YEAR) % DAYSPERWEEK) *
1694		(DAYSPERNYEAR % DAYSPERWEEK) +
1695		leaps_thru_end_of(y - 1) -
1696		leaps_thru_end_of(EPOCH_YEAR - 1) +
1697		idays;
1698	tmp->tm_wday %= DAYSPERWEEK;
1699	if (tmp->tm_wday < 0)
1700		tmp->tm_wday += DAYSPERWEEK;
1701	tmp->tm_hour = (int) (rem / SECSPERHOUR);
1702	rem %= SECSPERHOUR;
1703	tmp->tm_min = (int) (rem / SECSPERMIN);
1704	/*
1705	** A positive leap second requires a special
1706	** representation. This uses "... ??:59:60" et seq.
1707	*/
1708	tmp->tm_sec = (int) (rem % SECSPERMIN) + hit;
1709	ip = mon_lengths[isleap(y)];
1710	for (tmp->tm_mon = 0; idays >= ip[tmp->tm_mon]; ++(tmp->tm_mon))
1711		idays -= ip[tmp->tm_mon];
1712	tmp->tm_mday = (int) (idays + 1);
1713	tmp->tm_isdst = 0;
1714#ifdef TM_GMTOFF
1715	tmp->TM_GMTOFF = offset;
1716#endif /* defined TM_GMTOFF */
1717	return tmp;
1718}
1719
1720char *
1721ctime(timep)
1722const time_t * const	timep;
1723{
1724/*
1725** Section 4.12.3.2 of X3.159-1989 requires that
1726**	The ctime function converts the calendar time pointed to by timer
1727**	to local time in the form of a string. It is equivalent to
1728**		asctime(localtime(timer))
1729*/
1730	return asctime(localtime(timep));
1731}
1732
1733char *
1734ctime_r(timep, buf)
1735const time_t * const	timep;
1736char *			buf;
1737{
1738	struct tm	mytm;
1739
1740	return asctime_r(localtime_r(timep, &mytm), buf);
1741}
1742
1743/*
1744** Adapted from code provided by Robert Elz, who writes:
1745**	The "best" way to do mktime I think is based on an idea of Bob
1746**	Kridle's (so its said...) from a long time ago.
1747**	It does a binary search of the time_t space. Since time_t's are
1748**	just 32 bits, its a max of 32 iterations (even at 64 bits it
1749**	would still be very reasonable).
1750*/
1751
1752#ifndef WRONG
1753#define WRONG	(-1)
1754#endif /* !defined WRONG */
1755
1756/*
1757** Simplified normalize logic courtesy Paul Eggert.
1758*/
1759
1760static int
1761increment_overflow(number, delta)
1762int *	number;
1763int	delta;
1764{
1765	int	number0;
1766
1767	number0 = *number;
1768	*number += delta;
1769	return (*number < number0) != (delta < 0);
1770}
1771
1772static int
1773long_increment_overflow(number, delta)
1774long *	number;
1775int	delta;
1776{
1777	long	number0;
1778
1779	number0 = *number;
1780	*number += delta;
1781	return (*number < number0) != (delta < 0);
1782}
1783
1784static int
1785normalize_overflow(tensptr, unitsptr, base)
1786int * const	tensptr;
1787int * const	unitsptr;
1788const int	base;
1789{
1790	int	tensdelta;
1791
1792	tensdelta = (*unitsptr >= 0) ?
1793		(*unitsptr / base) :
1794		(-1 - (-1 - *unitsptr) / base);
1795	*unitsptr -= tensdelta * base;
1796	return increment_overflow(tensptr, tensdelta);
1797}
1798
1799static int
1800long_normalize_overflow(tensptr, unitsptr, base)
1801long * const	tensptr;
1802int * const	unitsptr;
1803const int	base;
1804{
1805	register int	tensdelta;
1806
1807	tensdelta = (*unitsptr >= 0) ?
1808		(*unitsptr / base) :
1809		(-1 - (-1 - *unitsptr) / base);
1810	*unitsptr -= tensdelta * base;
1811	return long_increment_overflow(tensptr, tensdelta);
1812}
1813
1814static int
1815tmcomp(atmp, btmp)
1816const struct tm * const atmp;
1817const struct tm * const btmp;
1818{
1819	int	result;
1820
1821	if ((result = (atmp->tm_year - btmp->tm_year)) == 0 &&
1822		(result = (atmp->tm_mon - btmp->tm_mon)) == 0 &&
1823		(result = (atmp->tm_mday - btmp->tm_mday)) == 0 &&
1824		(result = (atmp->tm_hour - btmp->tm_hour)) == 0 &&
1825		(result = (atmp->tm_min - btmp->tm_min)) == 0)
1826			result = atmp->tm_sec - btmp->tm_sec;
1827	return result;
1828}
1829
1830static time_t
1831time2sub(tmp, funcp, offset, okayp, do_norm_secs)
1832struct tm * const	tmp;
1833struct tm * (* const	funcp)(const time_t*, long, struct tm*);
1834const long		offset;
1835int * const		okayp;
1836const int		do_norm_secs;
1837{
1838	const struct state *	sp;
1839	int			dir;
1840	int			i, j;
1841	int			saved_seconds;
1842	long			li;
1843	time_t			lo;
1844	time_t			hi;
1845	long			y;
1846	time_t			newt;
1847	time_t			t;
1848	struct tm		yourtm, mytm;
1849
1850	*okayp = FALSE;
1851	yourtm = *tmp;
1852	if (do_norm_secs) {
1853		if (normalize_overflow(&yourtm.tm_min, &yourtm.tm_sec,
1854			SECSPERMIN))
1855				return WRONG;
1856	}
1857	if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR))
1858		return WRONG;
1859	if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY))
1860		return WRONG;
1861	y = yourtm.tm_year;
1862	if (long_normalize_overflow(&y, &yourtm.tm_mon, MONSPERYEAR))
1863		return WRONG;
1864	/*
1865	** Turn y into an actual year number for now.
1866	** It is converted back to an offset from TM_YEAR_BASE later.
1867	*/
1868	if (long_increment_overflow(&y, TM_YEAR_BASE))
1869		return WRONG;
1870	while (yourtm.tm_mday <= 0) {
1871		if (long_increment_overflow(&y, -1))
1872			return WRONG;
1873		li = y + (1 < yourtm.tm_mon);
1874		yourtm.tm_mday += year_lengths[isleap(li)];
1875	}
1876	while (yourtm.tm_mday > DAYSPERLYEAR) {
1877		li = y + (1 < yourtm.tm_mon);
1878		yourtm.tm_mday -= year_lengths[isleap(li)];
1879		if (long_increment_overflow(&y, 1))
1880			return WRONG;
1881	}
1882	for ( ; ; ) {
1883		i = mon_lengths[isleap(y)][yourtm.tm_mon];
1884		if (yourtm.tm_mday <= i)
1885			break;
1886		yourtm.tm_mday -= i;
1887		if (++yourtm.tm_mon >= MONSPERYEAR) {
1888			yourtm.tm_mon = 0;
1889			if (long_increment_overflow(&y, 1))
1890				return WRONG;
1891		}
1892	}
1893	if (long_increment_overflow(&y, -TM_YEAR_BASE))
1894		return WRONG;
1895	yourtm.tm_year = y;
1896	if (yourtm.tm_year != y)
1897		return WRONG;
1898	/* Don't go below 1900 for POLA */
1899	if (yourtm.tm_year < 0)
1900		return WRONG;
1901	if (yourtm.tm_sec >= 0 && yourtm.tm_sec < SECSPERMIN)
1902		saved_seconds = 0;
1903	else if (y + TM_YEAR_BASE < EPOCH_YEAR) {
1904		/*
1905		** We can't set tm_sec to 0, because that might push the
1906		** time below the minimum representable time.
1907		** Set tm_sec to 59 instead.
1908		** This assumes that the minimum representable time is
1909		** not in the same minute that a leap second was deleted from,
1910		** which is a safer assumption than using 58 would be.
1911		*/
1912		if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN))
1913			return WRONG;
1914		saved_seconds = yourtm.tm_sec;
1915		yourtm.tm_sec = SECSPERMIN - 1;
1916	} else {
1917		saved_seconds = yourtm.tm_sec;
1918		yourtm.tm_sec = 0;
1919	}
1920	/*
1921	** Do a binary search (this works whatever time_t's type is).
1922	*/
1923	if (!TYPE_SIGNED(time_t)) {
1924		lo = 0;
1925		hi = lo - 1;
1926	} else if (!TYPE_INTEGRAL(time_t)) {
1927		if (sizeof(time_t) > sizeof(float))
1928			hi = (time_t) DBL_MAX;
1929		else	hi = (time_t) FLT_MAX;
1930		lo = -hi;
1931	} else {
1932		lo = 1;
1933		for (i = 0; i < (int) TYPE_BIT(time_t) - 1; ++i)
1934			lo *= 2;
1935		hi = -(lo + 1);
1936	}
1937	for ( ; ; ) {
1938		t = lo / 2 + hi / 2;
1939		if (t < lo)
1940			t = lo;
1941		else if (t > hi)
1942			t = hi;
1943		if ((*funcp)(&t, offset, &mytm) == NULL) {
1944			/*
1945			** Assume that t is too extreme to be represented in
1946			** a struct tm; arrange things so that it is less
1947			** extreme on the next pass.
1948			*/
1949			dir = (t > 0) ? 1 : -1;
1950		} else	dir = tmcomp(&mytm, &yourtm);
1951		if (dir != 0) {
1952			if (t == lo) {
1953				++t;
1954				if (t <= lo)
1955					return WRONG;
1956				++lo;
1957			} else if (t == hi) {
1958				--t;
1959				if (t >= hi)
1960					return WRONG;
1961				--hi;
1962			}
1963			if (lo > hi)
1964				return WRONG;
1965			if (dir > 0)
1966				hi = t;
1967			else	lo = t;
1968			continue;
1969		}
1970		if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst)
1971			break;
1972		/*
1973		** Right time, wrong type.
1974		** Hunt for right time, right type.
1975		** It's okay to guess wrong since the guess
1976		** gets checked.
1977		*/
1978		sp = (const struct state *)
1979			((funcp == localsub) ? lclptr : gmtptr);
1980#ifdef ALL_STATE
1981		if (sp == NULL)
1982			return WRONG;
1983#endif /* defined ALL_STATE */
1984		for (i = sp->typecnt - 1; i >= 0; --i) {
1985			if (sp->ttis[i].tt_isdst != yourtm.tm_isdst)
1986				continue;
1987			for (j = sp->typecnt - 1; j >= 0; --j) {
1988				if (sp->ttis[j].tt_isdst == yourtm.tm_isdst)
1989					continue;
1990				newt = t + sp->ttis[j].tt_gmtoff -
1991					sp->ttis[i].tt_gmtoff;
1992				if ((*funcp)(&newt, offset, &mytm) == NULL)
1993					continue;
1994				if (tmcomp(&mytm, &yourtm) != 0)
1995					continue;
1996				if (mytm.tm_isdst != yourtm.tm_isdst)
1997					continue;
1998				/*
1999				** We have a match.
2000				*/
2001				t = newt;
2002				goto label;
2003			}
2004		}
2005		return WRONG;
2006	}
2007label:
2008	newt = t + saved_seconds;
2009	if ((newt < t) != (saved_seconds < 0))
2010		return WRONG;
2011	t = newt;
2012	if ((*funcp)(&t, offset, tmp))
2013		*okayp = TRUE;
2014	return t;
2015}
2016
2017static time_t
2018time2(tmp, funcp, offset, okayp)
2019struct tm * const	tmp;
2020struct tm * (* const	funcp)(const time_t*, long, struct tm*);
2021const long		offset;
2022int * const		okayp;
2023{
2024	time_t	t;
2025
2026	/*
2027	** First try without normalization of seconds
2028	** (in case tm_sec contains a value associated with a leap second).
2029	** If that fails, try with normalization of seconds.
2030	*/
2031	t = time2sub(tmp, funcp, offset, okayp, FALSE);
2032	return *okayp ? t : time2sub(tmp, funcp, offset, okayp, TRUE);
2033}
2034
2035static time_t
2036time1(tmp, funcp, offset)
2037struct tm * const	tmp;
2038struct tm * (* const  funcp)(const time_t *, long, struct tm *);
2039const long		offset;
2040{
2041	time_t			t;
2042	const struct state *	sp;
2043	int			samei, otheri;
2044	int			sameind, otherind;
2045	int			i;
2046	int			nseen;
2047	int				seen[TZ_MAX_TYPES];
2048	int				types[TZ_MAX_TYPES];
2049	int				okay;
2050
2051	if (tmp->tm_isdst > 1)
2052		tmp->tm_isdst = 1;
2053	t = time2(tmp, funcp, offset, &okay);
2054#ifdef PCTS
2055	/*
2056	** PCTS code courtesy Grant Sullivan.
2057	*/
2058	if (okay)
2059		return t;
2060	if (tmp->tm_isdst < 0)
2061		tmp->tm_isdst = 0;	/* reset to std and try again */
2062#endif /* defined PCTS */
2063#ifndef PCTS
2064	if (okay || tmp->tm_isdst < 0)
2065		return t;
2066#endif /* !defined PCTS */
2067	/*
2068	** We're supposed to assume that somebody took a time of one type
2069	** and did some math on it that yielded a "struct tm" that's bad.
2070	** We try to divine the type they started from and adjust to the
2071	** type they need.
2072	*/
2073	sp = (const struct state *) ((funcp == localsub) ? lclptr : gmtptr);
2074#ifdef ALL_STATE
2075	if (sp == NULL)
2076		return WRONG;
2077#endif /* defined ALL_STATE */
2078	for (i = 0; i < sp->typecnt; ++i)
2079		seen[i] = FALSE;
2080	nseen = 0;
2081	for (i = sp->timecnt - 1; i >= 0; --i)
2082		if (!seen[sp->types[i]]) {
2083			seen[sp->types[i]] = TRUE;
2084			types[nseen++] = sp->types[i];
2085		}
2086	for (sameind = 0; sameind < nseen; ++sameind) {
2087		samei = types[sameind];
2088		if (sp->ttis[samei].tt_isdst != tmp->tm_isdst)
2089			continue;
2090		for (otherind = 0; otherind < nseen; ++otherind) {
2091			otheri = types[otherind];
2092			if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst)
2093				continue;
2094			tmp->tm_sec += sp->ttis[otheri].tt_gmtoff -
2095					sp->ttis[samei].tt_gmtoff;
2096			tmp->tm_isdst = !tmp->tm_isdst;
2097			t = time2(tmp, funcp, offset, &okay);
2098			if (okay)
2099				return t;
2100			tmp->tm_sec -= sp->ttis[otheri].tt_gmtoff -
2101					sp->ttis[samei].tt_gmtoff;
2102			tmp->tm_isdst = !tmp->tm_isdst;
2103		}
2104	}
2105	return WRONG;
2106}
2107
2108time_t
2109mktime(tmp)
2110struct tm * const	tmp;
2111{
2112	time_t mktime_return_value;
2113	_RWLOCK_RDLOCK(&lcl_rwlock);
2114	tzset_basic(1);
2115	mktime_return_value = time1(tmp, localsub, 0L);
2116	_RWLOCK_UNLOCK(&lcl_rwlock);
2117	return(mktime_return_value);
2118}
2119
2120#ifdef STD_INSPIRED
2121
2122time_t
2123timelocal(tmp)
2124struct tm * const	tmp;
2125{
2126	tmp->tm_isdst = -1;	/* in case it wasn't initialized */
2127	return mktime(tmp);
2128}
2129
2130time_t
2131timegm(tmp)
2132struct tm * const	tmp;
2133{
2134	tmp->tm_isdst = 0;
2135	return time1(tmp, gmtsub, 0L);
2136}
2137
2138time_t
2139timeoff(tmp, offset)
2140struct tm * const	tmp;
2141const long		offset;
2142{
2143	tmp->tm_isdst = 0;
2144	return time1(tmp, gmtsub, offset);
2145}
2146
2147#endif /* defined STD_INSPIRED */
2148
2149#ifdef CMUCS
2150
2151/*
2152** The following is supplied for compatibility with
2153** previous versions of the CMUCS runtime library.
2154*/
2155
2156long
2157gtime(tmp)
2158struct tm * const	tmp;
2159{
2160	const time_t	t = mktime(tmp);
2161
2162	if (t == WRONG)
2163		return -1;
2164	return t;
2165}
2166
2167#endif /* defined CMUCS */
2168
2169/*
2170** XXX--is the below the right way to conditionalize??
2171*/
2172
2173#ifdef STD_INSPIRED
2174
2175/*
2176** IEEE Std 1003.1-1988 (POSIX) legislates that 536457599
2177** shall correspond to "Wed Dec 31 23:59:59 UTC 1986", which
2178** is not the case if we are accounting for leap seconds.
2179** So, we provide the following conversion routines for use
2180** when exchanging timestamps with POSIX conforming systems.
2181*/
2182
2183static long
2184leapcorr(timep)
2185time_t *	timep;
2186{
2187	struct state *		sp;
2188	struct lsinfo *	lp;
2189	int			i;
2190
2191	sp = lclptr;
2192	i = sp->leapcnt;
2193	while (--i >= 0) {
2194		lp = &sp->lsis[i];
2195		if (*timep >= lp->ls_trans)
2196			return lp->ls_corr;
2197	}
2198	return 0;
2199}
2200
2201time_t
2202time2posix(t)
2203time_t	t;
2204{
2205	tzset();
2206	return t - leapcorr(&t);
2207}
2208
2209time_t
2210posix2time(t)
2211time_t	t;
2212{
2213	time_t	x;
2214	time_t	y;
2215
2216	tzset();
2217	/*
2218	** For a positive leap second hit, the result
2219	** is not unique. For a negative leap second
2220	** hit, the corresponding time doesn't exist,
2221	** so we return an adjacent second.
2222	*/
2223	x = t + leapcorr(&t);
2224	y = x - leapcorr(&x);
2225	if (y < t) {
2226		do {
2227			x++;
2228			y = x - leapcorr(&x);
2229		} while (y < t);
2230		if (t != y)
2231			return x - 1;
2232	} else if (y > t) {
2233		do {
2234			--x;
2235			y = x - leapcorr(&x);
2236		} while (y > t);
2237		if (t != y)
2238			return x + 1;
2239	}
2240	return x;
2241}
2242
2243#endif /* defined STD_INSPIRED */
2244