t4.h revision 331769
1/*
2 * Copyright (c) 2006-2016 Chelsio, Inc. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses.  You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 *     Redistribution and use in source and binary forms, with or
11 *     without modification, are permitted provided that the following
12 *     conditions are met:
13 *
14 *      - Redistributions of source code must retain the above
15 *        copyright notice, this list of conditions and the following
16 *        disclaimer.
17 *      - Redistributions in binary form must reproduce the above
18 *        copyright notice, this list of conditions and the following
19 *        disclaimer in the documentation and/or other materials
20 *        provided with the distribution.
21 *
22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
23 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
24 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
25 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
26 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
27 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
28 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
29 * SOFTWARE.
30 */
31#ifndef __T4_H__
32#define __T4_H__
33
34#include <assert.h>
35#include <errno.h>
36#include <stddef.h>
37#include <stdint.h>
38#include <syslog.h>
39#include <infiniband/types.h>
40#include <infiniband/udma_barrier.h>
41#include <infiniband/endian.h>
42
43/*
44 * Try and minimize the changes from the kernel code that is pull in
45 * here for kernel bypass ops.
46 */
47#define u8 uint8_t
48#define u16 uint16_t
49#define u32 uint32_t
50#define u64 uint64_t
51#define DECLARE_PCI_UNMAP_ADDR(a)
52#define __iomem
53#define BUG_ON(c) assert(!(c))
54#define ROUND_UP(x, n) (((x) + (n) - 1u) & ~((n) - 1u))
55#define DIV_ROUND_UP(n,d) (((n) + (d) - 1) / (d))
56
57/* FIXME: Move me to a generic PCI mmio accessor */
58#define cpu_to_pci32(val) htole32(val)
59
60#define writel(v, a) do { *((volatile u32 *)(a)) = cpu_to_pci32(v); } while (0)
61
62#include "t4_regs.h"
63#include "t4_chip_type.h"
64#include "t4fw_api.h"
65#include "t4fw_ri_api.h"
66
67#ifdef DEBUG
68#define DBGLOG(s)
69#define PDBG(fmt, args...) do {syslog(LOG_DEBUG, fmt, ##args); } while (0)
70#else
71#define DBGLOG(s)
72#define PDBG(fmt, args...) do {} while (0)
73#endif
74
75#define A_PCIE_MA_SYNC 0x30b4
76
77#define T4_MAX_READ_DEPTH 16
78#define T4_QID_BASE 1024
79#define T4_MAX_QIDS 256
80#define T4_MAX_NUM_PD 65536
81#define T4_EQ_STATUS_ENTRIES (L1_CACHE_BYTES > 64 ? 2 : 1)
82#define T4_MAX_EQ_SIZE (65520 - T4_EQ_STATUS_ENTRIES)
83#define T4_MAX_IQ_SIZE (65520 - 1)
84#define T4_MAX_RQ_SIZE (8192 - T4_EQ_STATUS_ENTRIES)
85#define T4_MAX_SQ_SIZE (T4_MAX_EQ_SIZE - 1)
86#define T4_MAX_QP_DEPTH (T4_MAX_RQ_SIZE - 1)
87#define T4_MAX_CQ_DEPTH (T4_MAX_IQ_SIZE - 1)
88#define T4_MAX_NUM_STAG (1<<15)
89#define T4_MAX_MR_SIZE (~0ULL - 1)
90#define T4_PAGESIZE_MASK 0xffffffff000  /* 4KB-8TB */
91#define T4_STAG_UNSET 0xffffffff
92#define T4_FW_MAJ 0
93
94struct t4_status_page {
95	__be32 rsvd1;	/* flit 0 - hw owns */
96	__be16 rsvd2;
97	__be16 qid;
98	__be16 cidx;
99	__be16 pidx;
100	u8 qp_err;	/* flit 1 - sw owns */
101	u8 db_off;
102	u8 pad;
103	u16 host_wq_pidx;
104	u16 host_cidx;
105	u16 host_pidx;
106};
107
108#define T4_EQ_ENTRY_SIZE 64
109
110#define T4_SQ_NUM_SLOTS 5
111#define T4_SQ_NUM_BYTES (T4_EQ_ENTRY_SIZE * T4_SQ_NUM_SLOTS)
112#define T4_MAX_SEND_SGE ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_send_wr) - sizeof(struct fw_ri_isgl)) / sizeof (struct fw_ri_sge))
113#define T4_MAX_SEND_INLINE ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_send_wr) - sizeof(struct fw_ri_immd)))
114#define T4_MAX_WRITE_INLINE ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_rdma_write_wr) - sizeof(struct fw_ri_immd)))
115#define T4_MAX_WRITE_SGE ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_rdma_write_wr) - sizeof(struct fw_ri_isgl)) / sizeof (struct fw_ri_sge))
116#define T4_MAX_FR_IMMD ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_fr_nsmr_wr) - sizeof(struct fw_ri_immd)))
117#define T4_MAX_FR_DEPTH 255
118
119#define T4_RQ_NUM_SLOTS 2
120#define T4_RQ_NUM_BYTES (T4_EQ_ENTRY_SIZE * T4_RQ_NUM_SLOTS)
121#define T4_MAX_RECV_SGE 4
122
123union t4_wr {
124	struct fw_ri_res_wr res;
125	struct fw_ri_wr init;
126	struct fw_ri_rdma_write_wr write;
127	struct fw_ri_send_wr send;
128	struct fw_ri_rdma_read_wr read;
129	struct fw_ri_bind_mw_wr bind;
130	struct fw_ri_fr_nsmr_wr fr;
131	struct fw_ri_inv_lstag_wr inv;
132	struct t4_status_page status;
133	__be64 flits[T4_EQ_ENTRY_SIZE / sizeof(__be64) * T4_SQ_NUM_SLOTS];
134};
135
136union t4_recv_wr {
137	struct fw_ri_recv_wr recv;
138	struct t4_status_page status;
139	__be64 flits[T4_EQ_ENTRY_SIZE / sizeof(__be64) * T4_RQ_NUM_SLOTS];
140};
141
142static inline void init_wr_hdr(union t4_wr *wqe, u16 wrid,
143			       enum fw_wr_opcodes opcode, u8 flags, u8 len16)
144{
145	wqe->send.opcode = (u8)opcode;
146	wqe->send.flags = flags;
147	wqe->send.wrid = wrid;
148	wqe->send.r1[0] = 0;
149	wqe->send.r1[1] = 0;
150	wqe->send.r1[2] = 0;
151	wqe->send.len16 = len16;
152}
153
154/* CQE/AE status codes */
155#define T4_ERR_SUCCESS                     0x0
156#define T4_ERR_STAG                        0x1	/* STAG invalid: either the */
157						/* STAG is offlimt, being 0, */
158						/* or STAG_key mismatch */
159#define T4_ERR_PDID                        0x2	/* PDID mismatch */
160#define T4_ERR_QPID                        0x3	/* QPID mismatch */
161#define T4_ERR_ACCESS                      0x4	/* Invalid access right */
162#define T4_ERR_WRAP                        0x5	/* Wrap error */
163#define T4_ERR_BOUND                       0x6	/* base and bounds voilation */
164#define T4_ERR_INVALIDATE_SHARED_MR        0x7	/* attempt to invalidate a  */
165						/* shared memory region */
166#define T4_ERR_INVALIDATE_MR_WITH_MW_BOUND 0x8	/* attempt to invalidate a  */
167						/* shared memory region */
168#define T4_ERR_ECC                         0x9	/* ECC error detected */
169#define T4_ERR_ECC_PSTAG                   0xA	/* ECC error detected when  */
170						/* reading PSTAG for a MW  */
171						/* Invalidate */
172#define T4_ERR_PBL_ADDR_BOUND              0xB	/* pbl addr out of bounds:  */
173						/* software error */
174#define T4_ERR_SWFLUSH			   0xC	/* SW FLUSHED */
175#define T4_ERR_CRC                         0x10 /* CRC error */
176#define T4_ERR_MARKER                      0x11 /* Marker error */
177#define T4_ERR_PDU_LEN_ERR                 0x12 /* invalid PDU length */
178#define T4_ERR_OUT_OF_RQE                  0x13 /* out of RQE */
179#define T4_ERR_DDP_VERSION                 0x14 /* wrong DDP version */
180#define T4_ERR_RDMA_VERSION                0x15 /* wrong RDMA version */
181#define T4_ERR_OPCODE                      0x16 /* invalid rdma opcode */
182#define T4_ERR_DDP_QUEUE_NUM               0x17 /* invalid ddp queue number */
183#define T4_ERR_MSN                         0x18 /* MSN error */
184#define T4_ERR_TBIT                        0x19 /* tag bit not set correctly */
185#define T4_ERR_MO                          0x1A /* MO not 0 for TERMINATE  */
186						/* or READ_REQ */
187#define T4_ERR_MSN_GAP                     0x1B
188#define T4_ERR_MSN_RANGE                   0x1C
189#define T4_ERR_IRD_OVERFLOW                0x1D
190#define T4_ERR_RQE_ADDR_BOUND              0x1E /* RQE addr out of bounds:  */
191						/* software error */
192#define T4_ERR_INTERNAL_ERR                0x1F /* internal error (opcode  */
193						/* mismatch) */
194/*
195 * CQE defs
196 */
197struct t4_cqe {
198	__be32 header;
199	__be32 len;
200	union {
201		struct {
202			__be32 stag;
203			__be32 msn;
204		} rcqe;
205		struct {
206			u32 nada1;
207			u16 nada2;
208			u16 cidx;
209		} scqe;
210		struct {
211			__be32 wrid_hi;
212			__be32 wrid_low;
213		} gen;
214	} u;
215	__be64 reserved;
216	__be64 bits_type_ts;
217};
218
219/* macros for flit 0 of the cqe */
220
221#define S_CQE_QPID        12
222#define M_CQE_QPID        0xFFFFF
223#define G_CQE_QPID(x)     ((((x) >> S_CQE_QPID)) & M_CQE_QPID)
224#define V_CQE_QPID(x)	  ((x)<<S_CQE_QPID)
225
226#define S_CQE_SWCQE       11
227#define M_CQE_SWCQE       0x1
228#define G_CQE_SWCQE(x)    ((((x) >> S_CQE_SWCQE)) & M_CQE_SWCQE)
229#define V_CQE_SWCQE(x)	  ((x)<<S_CQE_SWCQE)
230
231#define S_CQE_STATUS      5
232#define M_CQE_STATUS      0x1F
233#define G_CQE_STATUS(x)   ((((x) >> S_CQE_STATUS)) & M_CQE_STATUS)
234#define V_CQE_STATUS(x)   ((x)<<S_CQE_STATUS)
235
236#define S_CQE_TYPE        4
237#define M_CQE_TYPE        0x1
238#define G_CQE_TYPE(x)     ((((x) >> S_CQE_TYPE)) & M_CQE_TYPE)
239#define V_CQE_TYPE(x)     ((x)<<S_CQE_TYPE)
240
241#define S_CQE_OPCODE      0
242#define M_CQE_OPCODE      0xF
243#define G_CQE_OPCODE(x)   ((((x) >> S_CQE_OPCODE)) & M_CQE_OPCODE)
244#define V_CQE_OPCODE(x)   ((x)<<S_CQE_OPCODE)
245
246#define SW_CQE(x)         (G_CQE_SWCQE(be32toh((x)->header)))
247#define CQE_QPID(x)       (G_CQE_QPID(be32toh((x)->header)))
248#define CQE_TYPE(x)       (G_CQE_TYPE(be32toh((x)->header)))
249#define SQ_TYPE(x)	  (CQE_TYPE((x)))
250#define RQ_TYPE(x)	  (!CQE_TYPE((x)))
251#define CQE_STATUS(x)     (G_CQE_STATUS(be32toh((x)->header)))
252#define CQE_OPCODE(x)     (G_CQE_OPCODE(be32toh((x)->header)))
253
254#define CQE_SEND_OPCODE(x)( \
255	(G_CQE_OPCODE(be32toh((x)->header)) == FW_RI_SEND) || \
256	(G_CQE_OPCODE(be32toh((x)->header)) == FW_RI_SEND_WITH_SE) || \
257	(G_CQE_OPCODE(be32toh((x)->header)) == FW_RI_SEND_WITH_INV) || \
258	(G_CQE_OPCODE(be32toh((x)->header)) == FW_RI_SEND_WITH_SE_INV))
259
260#define CQE_LEN(x)        (be32toh((x)->len))
261
262/* used for RQ completion processing */
263#define CQE_WRID_STAG(x)  (be32toh((x)->u.rcqe.stag))
264#define CQE_WRID_MSN(x)   (be32toh((x)->u.rcqe.msn))
265
266/* used for SQ completion processing */
267#define CQE_WRID_SQ_IDX(x)	(x)->u.scqe.cidx
268
269/* generic accessor macros */
270#define CQE_WRID_HI(x)		((x)->u.gen.wrid_hi)
271#define CQE_WRID_LOW(x)		((x)->u.gen.wrid_low)
272
273/* macros for flit 3 of the cqe */
274#define S_CQE_GENBIT	63
275#define M_CQE_GENBIT	0x1
276#define G_CQE_GENBIT(x)	(((x) >> S_CQE_GENBIT) & M_CQE_GENBIT)
277#define V_CQE_GENBIT(x) ((x)<<S_CQE_GENBIT)
278
279#define S_CQE_OVFBIT	62
280#define M_CQE_OVFBIT	0x1
281#define G_CQE_OVFBIT(x)	((((x) >> S_CQE_OVFBIT)) & M_CQE_OVFBIT)
282
283#define S_CQE_IQTYPE	60
284#define M_CQE_IQTYPE	0x3
285#define G_CQE_IQTYPE(x)	((((x) >> S_CQE_IQTYPE)) & M_CQE_IQTYPE)
286
287#define M_CQE_TS	0x0fffffffffffffffULL
288#define G_CQE_TS(x)	((x) & M_CQE_TS)
289
290#define CQE_OVFBIT(x)	((unsigned)G_CQE_OVFBIT(be64toh((x)->bits_type_ts)))
291#define CQE_GENBIT(x)	((unsigned)G_CQE_GENBIT(be64toh((x)->bits_type_ts)))
292#define CQE_TS(x)	(G_CQE_TS(be64toh((x)->bits_type_ts)))
293
294struct t4_swsqe {
295	u64			wr_id;
296	struct t4_cqe		cqe;
297	__be32			read_len;
298	int			opcode;
299	int			complete;
300	int			signaled;
301	u16			idx;
302	int			flushed;
303};
304
305enum {
306	T4_SQ_ONCHIP = (1<<0),
307};
308
309struct t4_sq {
310	/* queue is either host memory or WC MMIO memory if
311	 * t4_sq_onchip(). */
312	union t4_wr *queue;
313	struct t4_swsqe *sw_sq;
314	struct t4_swsqe *oldest_read;
315	/* udb is either UC or WC MMIO memory depending on device version. */
316	volatile u32 *udb;
317	size_t memsize;
318	u32 qid;
319	u32 bar2_qid;
320	void *ma_sync;
321	u16 in_use;
322	u16 size;
323	u16 cidx;
324	u16 pidx;
325	u16 wq_pidx;
326	u16 flags;
327	short flush_cidx;
328	int wc_reg_available;
329};
330
331struct t4_swrqe {
332	u64 wr_id;
333};
334
335struct t4_rq {
336	union  t4_recv_wr *queue;
337	struct t4_swrqe *sw_rq;
338	volatile u32 *udb;
339	size_t memsize;
340	u32 qid;
341	u32 bar2_qid;
342	u32 msn;
343	u32 rqt_hwaddr;
344	u16 rqt_size;
345	u16 in_use;
346	u16 size;
347	u16 cidx;
348	u16 pidx;
349	u16 wq_pidx;
350	int wc_reg_available;
351};
352
353struct t4_wq {
354	struct t4_sq sq;
355	struct t4_rq rq;
356	struct c4iw_rdev *rdev;
357	u32 qid_mask;
358	int error;
359	int flushed;
360	u8 *db_offp;
361};
362
363static inline int t4_rqes_posted(struct t4_wq *wq)
364{
365	return wq->rq.in_use;
366}
367
368static inline int t4_rq_empty(struct t4_wq *wq)
369{
370	return wq->rq.in_use == 0;
371}
372
373static inline int t4_rq_full(struct t4_wq *wq)
374{
375	return wq->rq.in_use == (wq->rq.size - 1);
376}
377
378static inline u32 t4_rq_avail(struct t4_wq *wq)
379{
380	return wq->rq.size - 1 - wq->rq.in_use;
381}
382
383static inline void t4_rq_produce(struct t4_wq *wq, u8 len16)
384{
385	wq->rq.in_use++;
386	if (++wq->rq.pidx == wq->rq.size)
387		wq->rq.pidx = 0;
388	wq->rq.wq_pidx += DIV_ROUND_UP(len16*16, T4_EQ_ENTRY_SIZE);
389	if (wq->rq.wq_pidx >= wq->rq.size * T4_RQ_NUM_SLOTS)
390		wq->rq.wq_pidx %= wq->rq.size * T4_RQ_NUM_SLOTS;
391	if (!wq->error)
392		wq->rq.queue[wq->rq.size].status.host_pidx = wq->rq.pidx;
393}
394
395static inline void t4_rq_consume(struct t4_wq *wq)
396{
397	wq->rq.in_use--;
398	wq->rq.msn++;
399	if (++wq->rq.cidx == wq->rq.size)
400		wq->rq.cidx = 0;
401	assert((wq->rq.cidx != wq->rq.pidx) || wq->rq.in_use == 0);
402	if (!wq->error)
403		wq->rq.queue[wq->rq.size].status.host_cidx = wq->rq.cidx;
404}
405
406static inline int t4_sq_empty(struct t4_wq *wq)
407{
408	return wq->sq.in_use == 0;
409}
410
411static inline int t4_sq_full(struct t4_wq *wq)
412{
413	return wq->sq.in_use == (wq->sq.size - 1);
414}
415
416static inline u32 t4_sq_avail(struct t4_wq *wq)
417{
418	return wq->sq.size - 1 - wq->sq.in_use;
419}
420
421static inline int t4_sq_onchip(struct t4_wq *wq)
422{
423	return wq->sq.flags & T4_SQ_ONCHIP;
424}
425
426static inline void t4_sq_produce(struct t4_wq *wq, u8 len16)
427{
428	wq->sq.in_use++;
429	if (++wq->sq.pidx == wq->sq.size)
430		wq->sq.pidx = 0;
431	wq->sq.wq_pidx += DIV_ROUND_UP(len16*16, T4_EQ_ENTRY_SIZE);
432	if (wq->sq.wq_pidx >= wq->sq.size * T4_SQ_NUM_SLOTS)
433		wq->sq.wq_pidx %= wq->sq.size * T4_SQ_NUM_SLOTS;
434	if (!wq->error) {
435		/* This write is only for debugging, the value does not matter
436		 * for DMA */
437		wq->sq.queue[wq->sq.size].status.host_pidx = (wq->sq.pidx);
438	}
439}
440
441static inline void t4_sq_consume(struct t4_wq *wq)
442{
443	assert(wq->sq.in_use >= 1);
444	if (wq->sq.cidx == wq->sq.flush_cidx)
445                wq->sq.flush_cidx = -1;
446	wq->sq.in_use--;
447	if (++wq->sq.cidx == wq->sq.size)
448		wq->sq.cidx = 0;
449	assert((wq->sq.cidx != wq->sq.pidx) || wq->sq.in_use == 0);
450	if (!wq->error){
451		/* This write is only for debugging, the value does not matter
452		 * for DMA */
453		wq->sq.queue[wq->sq.size].status.host_cidx = wq->sq.cidx;
454	}
455}
456
457/* Copies to WC MMIO memory */
458static void copy_wqe_to_udb(volatile u32 *udb_offset, void *wqe)
459{
460	u64 *src, *dst;
461	int len16 = 4;
462
463	src = (u64 *)wqe;
464	dst = (u64 *)udb_offset;
465
466	while (len16) {
467		*dst++ = *src++;
468		*dst++ = *src++;
469		len16--;
470	}
471}
472
473extern int ma_wr;
474extern int t5_en_wc;
475
476static inline void t4_ring_sq_db(struct t4_wq *wq, u16 inc, u8 t4, u8 len16,
477				 union t4_wr *wqe)
478{
479	if (!t4) {
480		mmio_wc_start();
481		if (t5_en_wc && inc == 1 && wq->sq.wc_reg_available) {
482			PDBG("%s: WC wq->sq.pidx = %d; len16=%d\n",
483			     __func__, wq->sq.pidx, len16);
484			copy_wqe_to_udb(wq->sq.udb + 14, wqe);
485		} else {
486			PDBG("%s: DB wq->sq.pidx = %d; len16=%d\n",
487			     __func__, wq->sq.pidx, len16);
488			writel(QID_V(wq->sq.bar2_qid) | PIDX_T5_V(inc),
489			       wq->sq.udb);
490		}
491		/* udb is WC for > t4 devices */
492		mmio_flush_writes();
493		return;
494	}
495
496	udma_to_device_barrier();
497	if (ma_wr) {
498		if (t4_sq_onchip(wq)) {
499			int i;
500
501			mmio_wc_start();
502			for (i = 0; i < 16; i++)
503				*(volatile u32 *)&wq->sq.queue[wq->sq.size].flits[2+i] = i;
504			mmio_flush_writes();
505		}
506	} else {
507		if (t4_sq_onchip(wq)) {
508			int i;
509
510			mmio_wc_start();
511			for (i = 0; i < 16; i++)
512				/* FIXME: What is this supposed to be doing?
513				 * Writing to the same address multiple times
514				 * with WC memory is not guarenteed to
515				 * generate any more than one TLP. Why isn't
516				 * writing to WC memory marked volatile? */
517				*(u32 *)&wq->sq.queue[wq->sq.size].flits[2] = i;
518			mmio_flush_writes();
519		}
520	}
521	/* udb is UC for t4 devices */
522	writel(QID_V(wq->sq.qid & wq->qid_mask) | PIDX_V(inc), wq->sq.udb);
523}
524
525static inline void t4_ring_rq_db(struct t4_wq *wq, u16 inc, u8 t4, u8 len16,
526				 union t4_recv_wr *wqe)
527{
528	if (!t4) {
529		mmio_wc_start();
530		if (t5_en_wc && inc == 1 && wq->sq.wc_reg_available) {
531			PDBG("%s: WC wq->rq.pidx = %d; len16=%d\n",
532			     __func__, wq->rq.pidx, len16);
533			copy_wqe_to_udb(wq->rq.udb + 14, wqe);
534		} else {
535			PDBG("%s: DB wq->rq.pidx = %d; len16=%d\n",
536			     __func__, wq->rq.pidx, len16);
537			writel(QID_V(wq->rq.bar2_qid) | PIDX_T5_V(inc),
538			       wq->rq.udb);
539		}
540		/* udb is WC for > t4 devices */
541		mmio_flush_writes();
542		return;
543	}
544	/* udb is UC for t4 devices */
545	udma_to_device_barrier();
546	writel(QID_V(wq->rq.qid & wq->qid_mask) | PIDX_V(inc), wq->rq.udb);
547}
548
549static inline int t4_wq_in_error(struct t4_wq *wq)
550{
551	return wq->error || wq->rq.queue[wq->rq.size].status.qp_err;
552}
553
554static inline void t4_set_wq_in_error(struct t4_wq *wq)
555{
556	wq->rq.queue[wq->rq.size].status.qp_err = 1;
557}
558
559extern int c4iw_abi_version;
560
561static inline int t4_wq_db_enabled(struct t4_wq *wq)
562{
563	/*
564	 * If iw_cxgb4 driver supports door bell drop recovery then its
565	 * c4iw_abi_version would be greater than or equal to 2. In such
566	 * case return the status of db_off flag to ring the kernel mode
567	 * DB from user mode library.
568	 */
569	if ( c4iw_abi_version >= 2 )
570		return ! *wq->db_offp;
571	else
572		return 1;
573}
574
575struct t4_cq {
576	struct t4_cqe *queue;
577	struct t4_cqe *sw_queue;
578	struct c4iw_rdev *rdev;
579	volatile u32 *ugts;
580	size_t memsize;
581	u64 bits_type_ts;
582	u32 cqid;
583	u32 qid_mask;
584	u16 size; /* including status page */
585	u16 cidx;
586	u16 sw_pidx;
587	u16 sw_cidx;
588	u16 sw_in_use;
589	u16 cidx_inc;
590	u8 gen;
591	u8 error;
592};
593
594static inline int t4_arm_cq(struct t4_cq *cq, int se)
595{
596	u32 val;
597
598	while (cq->cidx_inc > CIDXINC_M) {
599		val = SEINTARM_V(0) | CIDXINC_V(CIDXINC_M) | TIMERREG_V(7) |
600		      INGRESSQID_V(cq->cqid & cq->qid_mask);
601		writel(val, cq->ugts);
602		cq->cidx_inc -= CIDXINC_M;
603	}
604	val = SEINTARM_V(se) | CIDXINC_V(cq->cidx_inc) | TIMERREG_V(6) |
605	      INGRESSQID_V(cq->cqid & cq->qid_mask);
606	writel(val, cq->ugts);
607	cq->cidx_inc = 0;
608	return 0;
609}
610
611static inline void t4_swcq_produce(struct t4_cq *cq)
612{
613	cq->sw_in_use++;
614	if (cq->sw_in_use == cq->size) {
615		syslog(LOG_NOTICE, "cxgb4 sw cq overflow cqid %u\n", cq->cqid);
616		cq->error = 1;
617		assert(0);
618	}
619	if (++cq->sw_pidx == cq->size)
620		cq->sw_pidx = 0;
621}
622
623static inline void t4_swcq_consume(struct t4_cq *cq)
624{
625	assert(cq->sw_in_use >= 1);
626	cq->sw_in_use--;
627	if (++cq->sw_cidx == cq->size)
628		cq->sw_cidx = 0;
629}
630
631static inline void t4_hwcq_consume(struct t4_cq *cq)
632{
633	cq->bits_type_ts = cq->queue[cq->cidx].bits_type_ts;
634	if (++cq->cidx_inc == (cq->size >> 4) || cq->cidx_inc == CIDXINC_M) {
635		uint32_t val;
636
637		val = SEINTARM_V(0) | CIDXINC_V(cq->cidx_inc) | TIMERREG_V(7) |
638			INGRESSQID_V(cq->cqid & cq->qid_mask);
639		writel(val, cq->ugts);
640		cq->cidx_inc = 0;
641	}
642	if (++cq->cidx == cq->size) {
643		cq->cidx = 0;
644		cq->gen ^= 1;
645	}
646	((struct t4_status_page *)&cq->queue[cq->size])->host_cidx = cq->cidx;
647}
648
649static inline int t4_valid_cqe(struct t4_cq *cq, struct t4_cqe *cqe)
650{
651	return (CQE_GENBIT(cqe) == cq->gen);
652}
653
654static inline int t4_next_hw_cqe(struct t4_cq *cq, struct t4_cqe **cqe)
655{
656	int ret;
657	u16 prev_cidx;
658
659	if (cq->cidx == 0)
660		prev_cidx = cq->size - 1;
661	else
662		prev_cidx = cq->cidx - 1;
663
664	if (cq->queue[prev_cidx].bits_type_ts != cq->bits_type_ts) {
665		ret = -EOVERFLOW;
666		syslog(LOG_NOTICE, "cxgb4 cq overflow cqid %u\n", cq->cqid);
667		cq->error = 1;
668		assert(0);
669	} else if (t4_valid_cqe(cq, &cq->queue[cq->cidx])) {
670		udma_from_device_barrier();
671		*cqe = &cq->queue[cq->cidx];
672		ret = 0;
673	} else
674		ret = -ENODATA;
675	return ret;
676}
677
678static inline struct t4_cqe *t4_next_sw_cqe(struct t4_cq *cq)
679{
680	if (cq->sw_in_use == cq->size) {
681		syslog(LOG_NOTICE, "cxgb4 sw cq overflow cqid %u\n", cq->cqid);
682		cq->error = 1;
683		assert(0);
684		return NULL;
685	}
686	if (cq->sw_in_use)
687		return &cq->sw_queue[cq->sw_cidx];
688	return NULL;
689}
690
691static inline int t4_cq_notempty(struct t4_cq *cq)
692{
693	return cq->sw_in_use || t4_valid_cqe(cq, &cq->queue[cq->cidx]);
694}
695
696static inline int t4_next_cqe(struct t4_cq *cq, struct t4_cqe **cqe)
697{
698	int ret = 0;
699
700	if (cq->error)
701		ret = -ENODATA;
702	else if (cq->sw_in_use)
703		*cqe = &cq->sw_queue[cq->sw_cidx];
704	else ret = t4_next_hw_cqe(cq, cqe);
705	return ret;
706}
707
708static inline int t4_cq_in_error(struct t4_cq *cq)
709{
710	return ((struct t4_status_page *)&cq->queue[cq->size])->qp_err;
711}
712
713static inline void t4_set_cq_in_error(struct t4_cq *cq)
714{
715	((struct t4_status_page *)&cq->queue[cq->size])->qp_err = 1;
716}
717
718static inline void t4_reset_cq_in_error(struct t4_cq *cq)
719{
720	((struct t4_status_page *)&cq->queue[cq->size])->qp_err = 0;
721}
722
723struct t4_dev_status_page
724{
725	u8 db_off;
726	u8 wc_supported;
727	u16 pad2;
728	u32 pad3;
729	u64 qp_start;
730	u64 qp_size;
731	u64 cq_start;
732	u64 cq_size;
733};
734
735#endif
736