refclock_wwv.c revision 56746
1/*
2 * refclock_wwv - clock driver for NIST WWV/H time/frequency station
3 */
4#ifdef HAVE_CONFIG_H
5#include <config.h>
6#endif
7
8#if defined(REFCLOCK) && defined(CLOCK_WWV)
9
10#include <stdio.h>
11#include <ctype.h>
12#include <sys/time.h>
13#include <math.h>
14#ifdef HAVE_SYS_IOCTL_H
15#include <sys/ioctl.h>
16#endif /* HAVE_SYS_IOCTL_H */
17
18#include "ntpd.h"
19#include "ntp_io.h"
20#include "ntp_refclock.h"
21#include "ntp_calendar.h"
22#include "ntp_stdlib.h"
23#include "audio.h"
24
25#define ICOM 	1		/* undefine to suppress ICOM code */
26
27#ifdef ICOM
28#include "icom.h"
29#endif /* ICOM */
30
31/*
32 * Audio WWV/H demodulator/decoder
33 *
34 * This driver synchronizes the computer time using data encoded in
35 * radio transmissions from NIST time/frequency stations WWV in Boulder,
36 * CO, and WWVH in Kauai, HI. Transmikssions are made continuously on
37 * 2.5, 5, 10, 15 and 20 MHz in AM mode. An ordinary shortwave receiver
38 * can be tuned manually to one of these frequencies or, in the case of
39 * ICOM receivers, the receiver can be tuned automatically using this
40 * program as propagation conditions change throughout the day and
41 * night.
42 *
43 * The driver receives, demodulates and decodes the radio signals when
44 * connected to the audio codec of a Sun workstation running SunOS or
45 * Solaris, and with a little help, other workstations with similar
46 * codecs or sound cards. In this implementation, only one audio driver
47 * and codec can be supported on a single machine.
48 *
49 * The demodulation and decoding algorithms used in this driver are
50 * based on those developed for the TAPR DSP93 development board and the
51 * TI 320C25 digital signal processor described in: Mills, D.L. A
52 * precision radio clock for WWV transmissions. Electrical Engineering
53 * Report 97-8-1, University of Delaware, August 1997, 25 pp. Available
54 * from www.eecis.udel.edu/~mills/reports.htm. The algorithms described
55 * in this report have been modified somewhat to improve performance
56 * under weak signal conditions and to provide an automatic station
57 * identification feature.
58 *
59 * The ICOM code is normally compiled in the driver. It isn't used,
60 * unless the mode keyword on the server configuration command specifies
61 * a nonzero ICOM ID select code. The C-IV trace is turned on if the
62 * debug level is greater than one.
63 */
64/*
65 * Interface definitions
66 */
67#define	PRECISION	(-10)	/* precision assumed (about 1 ms) */
68#define	REFID		"NONE"	/* reference ID */
69#define	DESCRIPTION	"WWV/H Audio Demodulator/Decoder" /* WRU */
70#define SECOND		8000	/* second epoch (sample rate) (Hz) */
71#define MINUTE		(SECOND * 60) /* minute epoch */
72#define OFFSET		128	/* companded sample offset */
73#define SIZE		256	/* decompanding table size */
74#define	MAXSIG		6000.	/* maximum signal level reference */
75#define MAXSNR		30.	/* max SNR reference */
76#define DGAIN		20.	/* data channel gain reference */
77#define SGAIN		10.	/* sync channel gain reference */
78#define MAXFREQ		(125e-6 * SECOND) /* freq tolerance (.0125%) */
79#define PI		3.1415926535 /* the real thing */
80#define DATSIZ		(170 * MS) /* data matched filter size */
81#define SYNSIZ		(800 * MS) /* minute sync matched filter size */
82#define UTCYEAR		72	/* the first UTC year */
83#define MAXERR		30	/* max data bit errors in minute */
84#define NCHAN		5	/* number of channels */
85
86/*
87 * Macroni
88 */
89#define MOD(x, y)	((x) < 0 ? -(-(x) % (y)) : (x) % (y))
90
91/*
92 * General purpose status bits (status)
93 *
94 * Notes: SELV and/or SELH are set when the minute sync pulse from
95 * either or both WWV and/or WWVH stations has been heard. MSYNC is set
96 * when the minute sync pulse has been acquired and never reset. SSYNC
97 * is set when the second sync pulse has been acquired and cleared by
98 * watchdog or signal loss. DSYNC is set when the minutes unit digit has
99 * reached the threshold and INSYNC is set when if all nine digits have
100 * reached the threshold and never cleared.
101 *
102 * DGATE is set if a data bit is invalid, BGATE is set if a BCD digit
103 * bit is invalid. SFLAG is set when during seconds 59, 0 and 1 while
104 * probing for alternate frequencies. LEPSEC is set when the SECWAR of
105 * the timecode is set on the last second of 30 June or 31 December. At
106 * the end of this minute both the receiver and transmitter insert
107 * second 60 in the minute and the minute sync slips a second.
108 */
109#define MSYNC		0x0001	/* minute epoch sync */
110#define SSYNC		0x0002	/* second epoch sync */
111#define DSYNC		0x0004	/* minute units sync */
112#define INSYNC		0x0008	/* clock synchronized */
113#define DGATE		0x0010	/* data bit error */
114#define BGATE		0x0020	/* BCD digit bit error */
115#define SFLAG		0x1000	/* probe flag */
116#define LEPSEC		0x2000	/* leap second in progress */
117
118/*
119 * Station scoreboard bits (select)
120 *
121 * These are used to establish the signal quality for each of the five
122 * frequencies and two stations.
123 */
124#define JITRNG		0x0001	/* jitter above threshold */
125#define SYNCNG		0x0002	/* sync below threshold or SNR */
126#define DATANG		0x0004	/* data below threshold or SNR */
127#define SELV		0x0100	/* WWV station select */
128#define SELH		0x0200	/* WWVH station select */
129
130/*
131 * Alarm status bits (alarm)
132 *
133 * These bits indicate various alarm conditions, which are decoded to
134 * form the quality character included in the timecode. There are four
135 * four-bit nibble fields in the word, each corresponding to a specific
136 * alarm condition. At the end of each second, the word is shifted left
137 * one position and the least significant bit of each nibble cleared.
138 * This bit can be set during the next minute if the associated alarm
139 * condition is raised. This provides a way to remember alarm conditions
140 * up to four minutes.
141 *
142 * If not tracking both minute sync and second sync, the SYNERR alarm is
143 * raised. The data error counter is incremented for each invalid data
144 * bit. If too many data bit errors are encountered in one minute, the
145 * MODERR alarm is raised. The DECERR alarm is raised if a maximum
146 * likelihood digit fails to compare with the current clock digit. If
147 * the probability of any miscellaneous bit or any digit falls below the
148 * threshold, the SYMERR alarm is raised.
149 */
150#define DECERR		0	/* BCD digit compare error */
151#define SYMERR		4	/* low bit or digit probability */
152#define MODERR		8	/* too many data bit errors */
153#define SYNERR		12	/* not synchronized to station */
154
155/*
156 * Watchdog timeouts (watch)
157 *
158 * If these timeouts expire, the status bits are mashed to zero and the
159 * driver starts from scratch. Suitably more refined procedures may be
160 * developed in future. All these are in minutes.
161 */
162#define ACQSN		5	/* acquisition timeout */
163#define HSPEC		15	/* second sync timeout */
164#define DIGIT		30	/* minute unit digit timeout */
165#define PANIC		(4 * 1440) /* panic timeout */
166
167/*
168 * Thresholds. These establish the minimum signal level, minimum SNR and
169 * maximum jitter thresholds which establish the error and false alarm
170 * rates of the receiver. The values defined here may be on the
171 * adventurous side in the interest of the highest sensitivity.
172 */
173#define ATHR		2000	/* acquisition amplitude threshold */
174#define ASNR		6.0	/* acquisition SNR threshold (dB) */
175#define AWND		50	/* acquisition window threshold (ms) */
176#define AMIN		3	/* acquisition min compare count */
177#define AMAX		6	/* max compare count */
178#define QTHR		2000	/* QSY amplitude threshold */
179#define QSNR		20.0	/* QSY SNR threshold (dB) */
180#define STHR		500	/* second sync amplitude threshold */
181#define SCMP		10 	/* second sync compare threshold */
182#define DTHR		1000	/* bit amplitude threshold */
183#define DSNR		10.0	/* bit SNR threshold (dB) */
184#define BTHR		1000	/* digit probability threshold */
185#define BSNR		3.0	/* digit likelihood threshold (dB) */
186#define BCMP		5	/* digit compare threshold (dB) */
187
188/*
189 * Tone frequency definitions.
190 */
191#define MS		8	/* samples per millisecond */
192#define IN100		1	/* 100 Hz 4.5-deg sin table */
193#define IN1000		10	/* 1000 Hz 4.5-deg sin table */
194#define IN1200		12	/* 1200 Hz 4.5-deg sin table */
195
196/*
197 * Acquisition and tracking time constants. Usually powers of 2.
198 */
199#define MINAVG		8	/* min time constant (s) */
200#define MAXAVG		7	/* max time constant (log2 s) */
201#define TCONST		16	/* minute time constant (s) */
202#define SYNCTC		(1024 / (1 << MAXAVG)) /* FLL constant (s) */
203
204/*
205 * Miscellaneous status bits (misc)
206 *
207 * These bits correspond to designated bits in the WWV/H timecode. The
208 * bit probabilities are exponentially averaged over several minutes and
209 * processed by a integrator and threshold.
210 */
211#define DUT1		0x01	/* 56 DUT .1 */
212#define DUT2		0x02	/* 57 DUT .2 */
213#define DUT4		0x04	/* 58 DUT .4 */
214#define DUTS		0x08	/* 50 DUT sign */
215#define DST1		0x10	/* 55 DST1 DST in progress */
216#define DST2		0x20	/* 2 DST2 DST change warning */
217#define SECWAR		0x40	/* 3 leap second warning */
218
219/*
220 * The total system delay with the DSP93 program is at 22.5 ms,
221 * including the propagation delay from Ft. Collins, CO, to Newark, DE
222 * (8.9 ms), the communications receiver delay and the delay of the
223 * DSP93 program itself. The DSP93 program delay is due mainly to the
224 * 400-Hz FIR bandpass filter (5 ms) and second sync matched filter (5
225 * ms), leaving about 3.6 ms for the receiver delay and strays.
226 *
227 * The total system delay with this program is estimated at 27.1 ms by
228 * comparison with another PPS-synchronized NTP server over a 10-Mb/s
229 * Ethernet. The propagation and receiver delays are the same as with
230 * the DSP93 program. The program delay is due only to the 600-Hz
231 * IIR bandpass filter (1.1 ms), since other delays have been removed.
232 * Assuming 4.7 ms for the receiver, program and strays, this leaves
233 * 13.5 ms for the audio codec and operating system latencies for a
234 * total of 18.2 ms. as the systematic delay. The additional propagation
235 * delay specific to each receiver location can be programmed in the
236 * fudge time1 and time2 values for WWV and WWVH, respectively.
237 */
238#define PDELAY	(.0036 + .0011 + .0135)	/* net system delay (s) */
239
240/*
241 * Table of sine values at 4.5-degree increments. This is used by the
242 * synchronous matched filter demodulators. The integral of sine-squared
243 * over one complete cycle is PI, so the table is normallized by 1 / PI.
244 */
245double sintab[] = {
246 0.000000e+00,  2.497431e-02,  4.979464e-02,  7.430797e-02, /* 0-3 */
247 9.836316e-02,  1.218119e-01,  1.445097e-01,  1.663165e-01, /* 4-7 */
248 1.870979e-01,  2.067257e-01,  2.250791e-01,  2.420447e-01, /* 8-11 */
249 2.575181e-01,  2.714038e-01,  2.836162e-01,  2.940800e-01, /* 12-15 */
250 3.027307e-01,  3.095150e-01,  3.143910e-01,  3.173286e-01, /* 16-19 */
251 3.183099e-01,  3.173286e-01,  3.143910e-01,  3.095150e-01, /* 20-23 */
252 3.027307e-01,  2.940800e-01,  2.836162e-01,  2.714038e-01, /* 24-27 */
253 2.575181e-01,  2.420447e-01,  2.250791e-01,  2.067257e-01, /* 28-31 */
254 1.870979e-01,  1.663165e-01,  1.445097e-01,  1.218119e-01, /* 32-35 */
255 9.836316e-02,  7.430797e-02,  4.979464e-02,  2.497431e-02, /* 36-39 */
256-0.000000e+00, -2.497431e-02, -4.979464e-02, -7.430797e-02, /* 40-43 */
257-9.836316e-02, -1.218119e-01, -1.445097e-01, -1.663165e-01, /* 44-47 */
258-1.870979e-01, -2.067257e-01, -2.250791e-01, -2.420447e-01, /* 48-51 */
259-2.575181e-01, -2.714038e-01, -2.836162e-01, -2.940800e-01, /* 52-55 */
260-3.027307e-01, -3.095150e-01, -3.143910e-01, -3.173286e-01, /* 56-59 */
261-3.183099e-01, -3.173286e-01, -3.143910e-01, -3.095150e-01, /* 60-63 */
262-3.027307e-01, -2.940800e-01, -2.836162e-01, -2.714038e-01, /* 64-67 */
263-2.575181e-01, -2.420447e-01, -2.250791e-01, -2.067257e-01, /* 68-71 */
264-1.870979e-01, -1.663165e-01, -1.445097e-01, -1.218119e-01, /* 72-75 */
265-9.836316e-02, -7.430797e-02, -4.979464e-02, -2.497431e-02, /* 76-79 */
266 0.000000e+00};						    /* 80 */
267
268/*
269 * Decoder operations at the end of each second are driven by a state
270 * machine. The transition matrix consists of a dispatch table indexed
271 * by second number. Each entry in the table contains a case switch
272 * number and argument.
273 */
274struct progx {
275	int sw;			/* case switch number */
276	int arg;		/* argument */
277};
278
279/*
280 * Case switch numbers
281 */
282#define IDLE		0	/* no operation */
283#define COEF		1	/* BCD bit conditioned on DSYNC */
284#define COEF1		2	/* BCD bit */
285#define COEF2		3	/* BCD bit ignored */
286#define DECIM9		4	/* BCD digit 0-9 */
287#define DECIM6		5	/* BCD digit 0-6 */
288#define DECIM3		6	/* BCD digit 0-3 */
289#define DECIM2		7	/* BCD digit 0-2 */
290#define MSCBIT		8	/* miscellaneous bit */
291#define MSC20		9	/* miscellaneous bit */
292#define MSC21		10	/* QSY probe channel */
293#define MIN1		11	/* minute */
294#define MIN2		12	/* leap second */
295#define SYNC2		13	/* QSY data channel */
296#define SYNC3		14	/* QSY data channel */
297
298/*
299 * Offsets in decoding matrix
300 */
301#define MN		0	/* minute digits (2) */
302#define HR		2	/* hour digits (2) */
303#define DA		4	/* day digits (3) */
304#define YR		7	/* year digits (2) */
305
306struct progx progx[] = {
307	{SYNC2,	0},		/* 0 latch sync max */
308	{SYNC3,	0},		/* 1 QSY data channel */
309	{MSCBIT, DST2},		/* 2 dst2 */
310	{MSCBIT, SECWAR},	/* 3 lw */
311	{COEF,	0},		/* 4 1 year units */
312	{COEF,	1},		/* 5 2 */
313	{COEF,	2},		/* 6 4 */
314	{COEF,	3},		/* 7 8 */
315	{DECIM9, YR},		/* 8 */
316	{IDLE,	0},		/* 9 p1 */
317	{COEF1, 0},		/* 10 1 minute units */
318	{COEF1,	1},		/* 11 2 */
319	{COEF1,	2},		/* 12 4 */
320	{COEF1,	3},		/* 13 8 */
321	{DECIM9, MN},		/* 14 */
322	{COEF,	0},		/* 15 10 minute tens */
323	{COEF,	1},		/* 16 20 */
324	{COEF,	2},		/* 17 40 */
325	{COEF2,	3},		/* 18 80 (not used) */
326	{DECIM6, MN + 1},	/* 19 p2 */
327	{COEF,	0},		/* 20 1 hour units */
328	{COEF,	1},		/* 21 2 */
329	{COEF,	2},		/* 22 4 */
330	{COEF,	3},		/* 23 8 */
331	{DECIM9, HR},		/* 24 */
332	{COEF,	0},		/* 25 10 hour tens */
333	{COEF,	1},		/* 26 20 */
334	{COEF2,	2},		/* 27 40 (not used) */
335	{COEF2,	3},		/* 28 80 (not used) */
336	{DECIM2, HR + 1},	/* 29 p3 */
337	{COEF,	0},		/* 30 1 day units */
338	{COEF,	1},		/* 31 2 */
339	{COEF,	2},		/* 32 4 */
340	{COEF,	3},		/* 33 8 */
341	{DECIM9, DA},		/* 34 */
342	{COEF,	0},		/* 35 10 day tens */
343	{COEF,	1},		/* 36 20 */
344	{COEF,	2},		/* 37 40 */
345	{COEF,	3},		/* 38 80 */
346	{DECIM9, DA + 1},	/* 39 p4 */
347	{COEF,	0},		/* 40 100 day hundreds */
348	{COEF,	1},		/* 41 200 */
349	{COEF2,	2},		/* 42 400 (not used) */
350	{COEF2,	3},		/* 43 800 (not used) */
351	{DECIM3, DA + 2},	/* 44 */
352	{IDLE,	0},		/* 45 */
353	{IDLE,	0},		/* 46 */
354	{IDLE,	0},		/* 47 */
355	{IDLE,	0},		/* 48 */
356	{IDLE,	0},		/* 49 p5 */
357	{MSCBIT, DUTS},		/* 50 dut+- */
358	{COEF,	0},		/* 51 10 year tens */
359	{COEF,	1},		/* 52 20 */
360	{COEF,	2},		/* 53 40 */
361	{COEF,	3},		/* 54 80 */
362	{MSC20, DST1},		/* 55 dst1 */
363	{MSCBIT, DUT1},		/* 56 0.1 dut */
364	{MSCBIT, DUT2},		/* 57 0.2 */
365	{MSC21, DUT4},		/* 58 0.4 QSY probe channel */
366	{MIN1,	0},		/* 59 p6 latch sync min */
367	{MIN2,	0}		/* 60 leap second */
368};
369
370/*
371 * BCD coefficients for maximum likelihood digit decode
372 */
373#define P15	1.		/* max positive number */
374#define N15	-1.		/* max negative number */
375
376/*
377 * Digits 0-9
378 */
379#define P9	(P15 / 4)	/* mark (+1) */
380#define N9	(N15 / 4)	/* space (-1) */
381
382double bcd9[][4] = {
383	{N9, N9, N9, N9}, 	/* 0 */
384	{P9, N9, N9, N9}, 	/* 1 */
385	{N9, P9, N9, N9}, 	/* 2 */
386	{P9, P9, N9, N9}, 	/* 3 */
387	{N9, N9, P9, N9}, 	/* 4 */
388	{P9, N9, P9, N9}, 	/* 5 */
389	{N9, P9, P9, N9}, 	/* 6 */
390	{P9, P9, P9, N9}, 	/* 7 */
391	{N9, N9, N9, P9}, 	/* 8 */
392	{P9, N9, N9, P9}, 	/* 9 */
393	{0, 0, 0, 0}		/* backstop */
394};
395
396/*
397 * Digits 0-6 (minute tens)
398 */
399#define P6	(P15 / 3)	/* mark (+1) */
400#define N6	(N15 / 3)	/* space (-1) */
401
402double bcd6[][4] = {
403	{N6, N6, N6, 0}, 	/* 0 */
404	{P6, N6, N6, 0}, 	/* 1 */
405	{N6, P6, N6, 0}, 	/* 2 */
406	{P6, P6, N6, 0}, 	/* 3 */
407	{N6, N6, P6, 0}, 	/* 4 */
408	{P6, N6, P6, 0}, 	/* 5 */
409	{N6, P6, P6, 0}, 	/* 6 */
410	{0, 0, 0, 0}		/* backstop */
411};
412
413/*
414 * Digits 0-3 (day hundreds)
415 */
416#define P3	(P15 / 2)	/* mark (+1) */
417#define N3	(N15 / 2)	/* space (-1) */
418
419double bcd3[][4] = {
420	{N3, N3, 0, 0}, 	/* 0 */
421	{P3, N3, 0, 0}, 	/* 1 */
422	{N3, P3, 0, 0}, 	/* 2 */
423	{P3, P3, 0, 0}, 	/* 3 */
424	{0, 0, 0, 0}		/* backstop */
425};
426
427/*
428 * Digits 0-2 (hour tens)
429 */
430#define P2	(P15 / 2)	/* mark (+1) */
431#define N2	(N15 / 2)	/* space (-1) */
432
433double bcd2[][4] = {
434	{N2, N2, 0, 0}, 	/* 0 */
435	{P2, N2, 0, 0}, 	/* 1 */
436	{N2, P2, 0, 0}, 	/* 2 */
437	{0, 0, 0, 0}		/* backstop */
438};
439
440/*
441 * DST decode (DST2 DST1) for prettyprint
442 */
443char dstcod[] = {
444	'S',			/* 00 standard time */
445	'I',			/* 01 daylight warning */
446	'O',			/* 10 standard warning */
447	'D'			/* 11 daylight time */
448};
449
450/*
451 * The decoding matrix consists of nine row vectors, one for each digit
452 * of the timecode. The digits are stored from least to most significant
453 * order. The maximum likelihood timecode is formed from the digits
454 * corresponding to the maximum likelihood values reading in the
455 * opposite order: yy ddd hh:mm.
456 */
457struct decvec {
458	int radix;		/* radix (3, 4, 6, 10) */
459	int digit;		/* current clock digit */
460	int mldigit;		/* maximum likelihood digit */
461	int phase;		/* maximum likelihood digit phase */
462	int count;		/* match count */
463	double digprb;		/* max digit probability */
464	double digsnr;		/* likelihood function (dB) */
465	double like[10];	/* likelihood integrator 0-9 */
466};
467
468/*
469 * The station structure is used to acquire the minute pulse from WWV
470 * and/or WWVH. These stations are distinguished by the frequency used
471 * for the second and minute sync pulses, 1000 Hz for WWV and 1200 Hz
472 * for WWVH. Other than frequency, the format is the same.
473 */
474struct sync {
475	double	amp;		/* sync amplitude (I, Q square) */
476	double	synamp;		/* sync envelope at 800 ms */
477	double	synmax;		/* sync envelope at 0 s */
478	double	synmin;		/* avg sync envelope at 59 s, 1 s */
479	double	synsnr;		/* sync signal SNR */
480	double	noise;		/* max amplitude off pulse */
481	double	sigmax;		/* max amplitude on pulse */
482	double	lastmax;	/* last max amplitude on pulse */
483	long	pos;		/* position at maximum amplitude */
484	long	lastpos;	/* last position at maximum amplitude */
485	long	jitter;		/* shake, wiggle and waggle */
486	long	mepoch;		/* minute synch epoch */
487	int	count;		/* compare counter */
488	char	refid[5];	/* reference identifier */
489	char	ident[4];	/* station identifier */
490	int	select;		/* select bits */
491};
492
493/*
494 * The channel structure is used to mitigate between channels. At this
495 * point we have already decided which station to use.
496 */
497struct chan {
498	int	gain;		/* audio gain */
499	int	errcnt;		/* data bit error counter */
500	double	noiamp;		/* I-channel average noise amplitude */
501	struct sync wwv;	/* wwv station */
502	struct sync wwvh;	/* wwvh station */
503};
504
505/*
506 * WWV unit control structure
507 */
508struct wwvunit {
509	l_fp	timestamp;	/* audio sample timestamp */
510	l_fp	tick;		/* audio sample increment */
511	double	comp[SIZE];	/* decompanding table */
512	double	phase, freq;	/* logical clock phase and frequency */
513	double	monitor;	/* audio monitor point */
514	int	fd_icom;	/* ICOM file descriptor */
515	int	errflg;		/* error flags */
516	int	bufcnt;		/* samples in buffer */
517	int	bufptr;		/* buffer index pointer */
518	int	port;		/* codec port */
519	int	gain;		/* codec gain */
520	int	clipcnt;	/* sample clipped count */
521	int	seccnt;		/* second countdown */
522	int	minset;		/* minutes since last clock set */
523	int	watch;		/* watchcat */
524	int	swatch;		/* second sync watchcat */
525
526	/*
527	 * Variables used to establish basic system timing
528	 */
529	int	avgint;		/* log2 master time constant (s) */
530	int	epoch;		/* second epoch ramp */
531	int	repoch;		/* receiver sync epoch */
532	int	yepoch;		/* transmitter sync epoch */
533	double	epomax;		/* second sync amplitude */
534	double	irig;		/* data I channel amplitude */
535	double	qrig;		/* data Q channel amplitude */
536	int	datapt;		/* 100 Hz ramp */
537	double	datpha;		/* 100 Hz VFO control */
538	int	rphase;		/* receiver sample counter */
539	int	rsec;		/* receiver seconds counter */
540	long	mphase;		/* minute sample counter */
541	long	nepoch;		/* minute epoch index */
542
543	/*
544	 * Variables used to mitigate which channel to use
545	 */
546	struct chan mitig[NCHAN]; /* channel data */
547	struct sync *sptr;	/* station pointer */
548	int	dchan;		/* data channel */
549	int	schan;		/* probe channel */
550	int	achan;		/* active channel */
551
552	/*
553	 * Variables used by the clock state machine
554	 */
555	struct decvec decvec[9]; /* decoding matrix */
556	int	cdelay;		/* WWV propagation delay (samples) */
557	int	hdelay;		/* WVVH propagation delay (samples) */
558	int	pdelay;		/* propagation delay (samples) */
559	int	tphase;		/* transmitter sample counter */
560	int	tsec;		/* transmitter seconds counter */
561	int	digcnt;		/* count of digits synchronized */
562
563	/*
564	 * Variables used to estimate signal levels and bit/digit
565	 * probabilities
566	 */
567	double	sigamp;		/* I-channel peak signal amplitude */
568	double	noiamp;		/* I-channel average noise amplitude */
569	double	datsnr;		/* data SNR (dB) */
570
571	/*
572	 * Variables used to establish status and alarm conditions
573	 */
574	int	status;		/* status bits */
575	int	alarm;		/* alarm flashers */
576	int	misc;		/* miscellaneous timecode bits */
577	int	errcnt;		/* data bit error counter */
578};
579
580/*
581 * Function prototypes
582 */
583static	int	wwv_start	P((int, struct peer *));
584static	void	wwv_shutdown	P((int, struct peer *));
585static	void	wwv_receive	P((struct recvbuf *));
586static	void	wwv_poll	P((int, struct peer *));
587
588/*
589 * More function prototypes
590 */
591static	void	wwv_epoch	P((struct peer *));
592static	void	wwv_rf		P((struct peer *, double));
593static	void	wwv_endpoc	P((struct peer *, double, int));
594static	void	wwv_rsec	P((struct peer *, double));
595static	void	wwv_qrz		P((struct peer *, struct sync *,
596				    double));
597static	void	wwv_corr4	P((struct peer *, struct decvec *,
598				    double [], double [][4]));
599static	void	wwv_gain	P((struct peer *));
600static	void	wwv_tsec	P((struct wwvunit *));
601static	double	wwv_data	P((struct wwvunit *, double));
602static	int	timecode	P((struct wwvunit *, char *));
603static	double	wwv_snr		P((double, double));
604static	int	carry		P((struct decvec *));
605static	void	wwv_newchan	P((struct peer *));
606static	int	wwv_qsy		P((struct peer *, int));
607static double qsy[NCHAN] = {2.5, 5, 10, 15, 20}; /* frequencies (MHz) */
608
609/*
610 * Transfer vector
611 */
612struct	refclock refclock_wwv = {
613	wwv_start,		/* start up driver */
614	wwv_shutdown,		/* shut down driver */
615	wwv_poll,		/* transmit poll message */
616	noentry,		/* not used (old wwv_control) */
617	noentry,		/* initialize driver (not used) */
618	noentry,		/* not used (old wwv_buginfo) */
619	NOFLAGS			/* not used */
620};
621
622
623/*
624 * wwv_start - open the devices and initialize data for processing
625 */
626static int
627wwv_start(
628	int	unit,		/* instance number (not used) */
629	struct peer *peer	/* peer structure pointer */
630	)
631{
632	struct refclockproc *pp;
633	struct wwvunit *up;
634	struct chan *cp;
635#ifdef ICOM
636	int	temp;
637#endif /* ICOM */
638
639	/*
640	 * Local variables
641	 */
642	int	fd;		/* file descriptor */
643	int	i;		/* index */
644	double	step;		/* codec adjustment */
645
646	/*
647	 * Open audio device
648	 */
649	fd = audio_init();
650	if (fd < 0)
651		return (0);
652#ifdef DEBUG
653	if (debug)
654		audio_show();
655#endif
656
657	/*
658	 * Allocate and initialize unit structure
659	 */
660	if (!(up = (struct wwvunit *)
661	      emalloc(sizeof(struct wwvunit)))) {
662		(void) close(fd);
663		return (0);
664	}
665	memset((char *)up, 0, sizeof(struct wwvunit));
666	pp = peer->procptr;
667	pp->unitptr = (caddr_t)up;
668	pp->io.clock_recv = wwv_receive;
669	pp->io.srcclock = (caddr_t)peer;
670	pp->io.datalen = 0;
671	pp->io.fd = fd;
672	if (!io_addclock(&pp->io)) {
673		(void)close(fd);
674		free(up);
675		return (0);
676	}
677
678	/*
679	 * Initialize miscellaneous variables
680	 */
681	peer->precision = PRECISION;
682	pp->clockdesc = DESCRIPTION;
683	memcpy((char *)&pp->refid, REFID, 4);
684	DTOLFP(1. / SECOND, &up->tick);
685
686	/*
687	 * The companded samples are encoded sign-magnitude. The table
688	 * contains all the 256 values in the interest of speed.
689	 */
690	up->comp[0] = up->comp[OFFSET] = 0.;
691	up->comp[1] = 1; up->comp[OFFSET + 1] = -1.;
692	up->comp[2] = 3; up->comp[OFFSET + 2] = -3.;
693	step = 2.;
694	for (i = 3; i < OFFSET; i++) {
695		up->comp[i] = up->comp[i - 1] + step;
696		up->comp[OFFSET + i] = -up->comp[i];
697                if (i % 16 == 0)
698		    step *= 2.;
699	}
700
701	/*
702	 * Initialize the decoding matrix with the radix for each digit
703	 * position.
704	 */
705	up->decvec[MN].radix = 10;	/* minutes */
706	up->decvec[MN + 1].radix = 6;
707	up->decvec[HR].radix = 10;	/* hours */
708	up->decvec[HR + 1].radix = 3;
709	up->decvec[DA].radix = 10;	/* days */
710	up->decvec[DA + 1].radix = 10;
711	up->decvec[DA + 2].radix = 4;
712	up->decvec[YR].radix = 10;	/* years */
713	up->decvec[YR + 1].radix = 10;
714
715	/*
716	 * Initialize the station processes for audio gain, select bit,
717	 * station/frequency identifier and reference identifier.
718	 */
719	up->gain = 127;
720	for (i = 0; i < NCHAN; i++) {
721		cp = &up->mitig[i];
722		cp->gain = up->gain;
723		cp->wwv.select = SELV;
724		strcpy(cp->wwv.refid, "WWV ");
725		sprintf(cp->wwv.ident,"C%.0f", floor(qsy[i]));
726		cp->wwvh.select = SELH;
727		strcpy(cp->wwvh.refid, "WWVH");
728		sprintf(cp->wwvh.ident, "H%.0f", floor(qsy[i]));
729	}
730
731	/*
732	 * Initialize autotune if available. Start out at 15 MHz. Note
733	 * that the ICOM select code must be less than 128, so the high
734	 * order bit can be used to select the line speed.
735	 */
736#ifdef ICOM
737	temp = 0;
738#ifdef DEBUG
739	if (debug > 1)
740		temp = P_TRACE;
741#endif
742	if (peer->ttl != 0) {
743		if (peer->ttl & 0x80)
744			up->fd_icom = icom_init("/dev/icom", B1200,
745			    temp);
746		else
747			up->fd_icom = icom_init("/dev/icom", B9600,
748			    temp);
749	}
750	if (up->fd_icom > 0) {
751		up->schan = 3;
752		if ((temp = wwv_qsy(peer, up->schan)) < 0) {
753			NLOG(NLOG_SYNCEVENT | NLOG_SYSEVENT)
754			    msyslog(LOG_ERR,
755			    "ICOM bus error; autotune disabled");
756			up->errflg = CEVNT_FAULT;
757			close(up->fd_icom);
758			up->fd_icom = 0;
759		}
760	}
761#endif /* ICOM */
762	return (1);
763}
764
765
766/*
767 * wwv_shutdown - shut down the clock
768 */
769static void
770wwv_shutdown(
771	int	unit,		/* instance number (not used) */
772	struct peer *peer	/* peer structure pointer */
773	)
774{
775	struct refclockproc *pp;
776	struct wwvunit *up;
777
778	pp = peer->procptr;
779	up = (struct wwvunit *)pp->unitptr;
780	io_closeclock(&pp->io);
781	if (up->fd_icom > 0)
782		close(up->fd_icom);
783	free(up);
784}
785
786
787/*
788 * wwv_receive - receive data from the audio device
789 *
790 * This routine reads input samples and adjusts the logical clock to
791 * track the A/D sample clock by dropping or duplicating codec samples.
792 * It also controls the A/D signal level with an AGC loop to mimimize
793 * quantization noise and avoid overload.
794 */
795static void
796wwv_receive(
797	struct recvbuf *rbufp	/* receive buffer structure pointer */
798	)
799{
800	struct peer *peer;
801	struct refclockproc *pp;
802	struct wwvunit *up;
803
804	/*
805	 * Local variables
806	 */
807	double	sample;		/* codec sample */
808	u_char	*dpt;		/* buffer pointer */
809	l_fp	ltemp;
810	int	isneg;
811	double	dtemp;
812	int	i, j;
813
814	peer = (struct peer *)rbufp->recv_srcclock;
815	pp = peer->procptr;
816	up = (struct wwvunit *)pp->unitptr;
817
818	/*
819	 * Main loop - read until there ain't no more. Note codec
820	 * samples are bit-inverted.
821	 */
822	up->timestamp = rbufp->recv_time;
823	up->bufcnt = rbufp->recv_length;
824	DTOLFP((double)up->bufcnt / SECOND, &ltemp);
825	L_SUB(&up->timestamp, &ltemp);
826	dpt = rbufp->recv_buffer;
827	for (up->bufptr = 0; up->bufptr < up->bufcnt; up->bufptr++) {
828		sample = up->comp[~*dpt & 0xff];
829
830		/*
831		 * Clip noise spikes greater than MAXSIG. If no clips,
832		 * increase the gain a tad; if the clips are too high,
833		 * decrease a tad.
834		 */
835		if (sample > MAXSIG) {
836			sample = MAXSIG;
837			up->clipcnt++;
838		} else if (sample < -MAXSIG) {
839			sample = -MAXSIG;
840			up->clipcnt++;
841		}
842
843		/*
844		 * Variable frequency oscillator. A phase change of one
845		 * unit produces a change of 360 degrees; a frequency
846		 * change of one unit produces a change of 1 Hz.
847		 */
848		up->phase += up->freq / SECOND;
849		if (up->phase >= .5) {
850			up->phase -= 1.;
851		} else if (up->phase < - .5) {
852			up->phase += 1.;
853			wwv_rf(peer, sample);
854			wwv_rf(peer, sample);
855		} else {
856			wwv_rf(peer, sample);
857		}
858		L_ADD(&up->timestamp, &up->tick);
859
860		/*
861		 * Once each second adjust the codec port and gain.
862		 * While at it, initialize the propagation delay for
863		 * both WWV and WWVH. Don't forget to correct for the
864		 * receiver phase delay, mostly due to the 600-Hz
865		 * IIR bandpass filter used for the sync signals.
866		 */
867		up->cdelay = (int)(SECOND * (pp->fudgetime1 + PDELAY));
868		up->hdelay = (int)(SECOND * (pp->fudgetime2 + PDELAY));
869		up->seccnt = (up->seccnt + 1) % SECOND;
870		if (up->seccnt == 0) {
871			if (pp->sloppyclockflag & CLK_FLAG2)
872			    up->port = 2;
873			else
874			    up->port = 1;
875		}
876
877		/*
878		 * During development, it is handy to have an audio
879		 * monitor that can be switched to various signals. This
880		 * code converts the linear signal left in up->monitor
881		 * to codec format.
882		 */
883		isneg = 0;
884		dtemp = up->monitor;
885		if (sample < 0) {
886			isneg = 1;
887			dtemp -= dtemp;
888		}
889		i = 0;
890		j = OFFSET >> 1;
891		while (j != 0) {
892			if (dtemp > up->comp[i])
893				i += j;
894			else if (dtemp < up->comp[i])
895				i -= j;
896			else
897				break;
898			j >>= 1;
899		}
900		if (isneg)
901			*dpt = ~(i + OFFSET);
902		else
903			*dpt = ~i;
904		dpt++;
905	}
906
907	/*
908	 * Squawk to the monitor speaker if enabled.
909	 */
910	if (pp->sloppyclockflag & CLK_FLAG3)
911	    if (write(pp->io.fd, (u_char *)&rbufp->recv_space,
912		      (u_int)up->bufcnt) < 0)
913		perror("wwv:");
914}
915
916
917/*
918 * wwv_poll - called by the transmit procedure
919 *
920 * This routine keeps track of status. If nothing is heard for two
921 * successive poll intervals, a timeout event is declared and any
922 * orphaned timecode updates are sent to foster care. Once the clock is
923 * set, it always appears reachable, unless reset by watchdog timeout.
924 */
925static void
926wwv_poll(
927	int	unit,		/* instance number (not used) */
928	struct peer *peer	/* peer structure pointer */
929	)
930{
931	struct refclockproc *pp;
932	struct wwvunit *up;
933
934	pp = peer->procptr;
935	up = (struct wwvunit *)pp->unitptr;
936	if (pp->coderecv == pp->codeproc)
937		up->errflg = CEVNT_TIMEOUT;
938	else
939		pp->polls++;
940	if (up->status & INSYNC)
941		peer->reach |= 1;
942	if (up->errflg)
943		refclock_report(peer, up->errflg);
944	up->errflg = 0;
945}
946
947
948/*
949 * wwv_rf - process signals and demodulate to baseband
950 *
951 * This routine grooms and filters decompanded raw audio samples. The
952 * output signals include the 100-Hz baseband data signal in quadrature
953 * form, plus the epoch index of the second sync signal and the second
954 * index of the minute sync signal.
955 *
956 * There are three 1-s ramps used by this program, all spanning the
957 * range 0-7999 logical samples for exactly one second, as determined by
958 * the logical clock. The first drives the second epoch and runs
959 * continuously. The second determines the receiver phase and the third
960 * the transmitter phase within the second. The receiver second begins
961 * upon arrival of the 5-ms second sync pulse which begins the second;
962 * while the transmitter second begins before it by the specified
963 * propagation delay.
964 *
965 * There are three 1-m ramps spanning the range 0-59 seconds. The first
966 * drives the minute epoch in samples and runs continuously. The second
967 * determines the receiver second and the third the transmitter second.
968 * The receiver second begins upon arrival of the 800-ms sync pulse sent
969 * during the first second of the minute; while the transmitter second
970 * begins before it by the specified propagation delay.
971 *
972 * The output signals include the epoch maximum and phase and second
973 * maximum and index. The epoch phase provides the master reference for
974 * all signal and timing functions, while the second index identifies
975 * the first second of the minute. The epoch and second maxima are used
976 * to calculate SNR for gating functions.
977 *
978 * Demodulation operations are based on three synthesized quadrature
979 * sinusoids: 100 Hz for the data subcarrier, 1000 Hz for the WWV sync
980 * signals and 1200 Hz for the WWVH sync signal. These drive synchronous
981 * matched filters for the data subcarrier (170 ms at 100 Hz), WWV
982 * minute sync signal (800 ms at 1000 Hz) and WWVH minute sync signal
983 * (800 ms at 1200 Hz). Two additional matched filters are switched in
984 * as required for the WWV seconds sync signal (5 ms at 1000 Hz) and
985 * WWVH seconds sync signal (5 ms at 1200 Hz).
986 */
987static void
988wwv_rf(
989	struct peer *peer,	/* peerstructure pointer */
990	double isig		/* input signal */
991	)
992{
993	struct refclockproc *pp;
994	struct wwvunit *up;
995
996	static double lpf[5];	/* 150-Hz lpf delay line */
997	double data;		/* lpf output */
998	static double bpf[9];	/* 1000/1200-Hz bpf delay line */
999	double syncx;		/* bpf output */
1000	static double mf[41];	/* 1000/1200-Hz mf delay line */
1001	double mfsync;		/* mf output */
1002
1003	static int iptr;	/* data channel pointer */
1004	static double ibuf[DATSIZ]; /* data I channel delay line */
1005	static double qbuf[DATSIZ]; /* data Q channel delay line */
1006
1007	static int jptr;	/* sync channel pointer */
1008	static double cibuf[SYNSIZ]; /* wwv I channel delay line */
1009	static double cqbuf[SYNSIZ]; /* wwv Q channel delay line */
1010	static double ciamp;	/* wwv I channel amplitude */
1011	static double cqamp;	/* wwv Q channel amplitude */
1012	static int csinptr;	/* wwv channel phase */
1013	static double hibuf[SYNSIZ]; /* wwvh I channel delay line */
1014	static double hqbuf[SYNSIZ]; /* wwvh Q channel delay line */
1015	static double hiamp;	/* wwvh I channel amplitude */
1016	static double hqamp;	/* wwvh Q channel amplitude */
1017	static int hsinptr;	/* wwvh channels phase */
1018
1019	static double epobuf[SECOND]; /* epoch sync comb filter */
1020	static double epomax;	/* epoch sync amplitude buffer */
1021	static int epopos;	/* epoch sync position buffer */
1022
1023	static int iniflg;	/* initialization flag */
1024	struct sync *sp;
1025	double dtemp;
1026	long ltemp;
1027	int i;
1028
1029	pp = peer->procptr;
1030	up = (struct wwvunit *)pp->unitptr;
1031	if (!iniflg) {
1032		iniflg = 1;
1033		memset((char *)lpf, 0, sizeof(lpf));
1034		memset((char *)bpf, 0, sizeof(bpf));
1035		memset((char *)mf, 0, sizeof(mf));
1036		memset((char *)ibuf, 0, sizeof(ibuf));
1037		memset((char *)qbuf, 0, sizeof(qbuf));
1038		memset((char *)cibuf, 0, sizeof(cibuf));
1039		memset((char *)cqbuf, 0, sizeof(cqbuf));
1040		memset((char *)hibuf, 0, sizeof(hibuf));
1041		memset((char *)hqbuf, 0, sizeof(hqbuf));
1042		memset((char *)epobuf, 0, sizeof(epobuf));
1043	}
1044	up->monitor = isig;		/* change for debug */
1045
1046	/*
1047	 * Baseband data demodulation. The 100-Hz subcarrier is
1048	 * extracted using a 150-Hz IIR lowpass filter. This attenuates
1049	 * the 1000/1200-Hz sync signals, as well as the 440-Hz and
1050	 * 600-Hz tones and most of the noise and voice modulation
1051	 * components.
1052	 *
1053	 * Matlab IIR 4th-order IIR elliptic, 150 Hz lowpass, 0.2 dB
1054	 * passband ripple, -50 dB stopband ripple.
1055	 */
1056	data = (lpf[4] = lpf[3]) * 8.360961e-01;
1057	data += (lpf[3] = lpf[2]) * -3.481740e+00;
1058	data += (lpf[2] = lpf[1]) * 5.452988e+00;
1059	data += (lpf[1] = lpf[0]) * -3.807229e+00;
1060	lpf[0] = isig - data;
1061	data = lpf[0] * 3.281435e-03
1062	    + lpf[1] * -1.149947e-02
1063	    + lpf[2] * 1.654858e-02
1064	    + lpf[3] * -1.149947e-02
1065	    + lpf[4] * 3.281435e-03;
1066
1067	/*
1068	 * The I and Q quadrature data signals are produced by
1069	 * multiplying the filtered signal by 100-Hz sine and cosine
1070	 * signals, respectively. The data signals are demodulated by
1071	 * 170-ms synchronous matched filters to produce the amplitude
1072	 * and phase signals used by the decoder. Note the correction
1073	 * due to the propagation delay is necessary for seamless
1074	 * handover between WWV and WWVH.
1075	 */
1076	i = up->datapt - up->pdelay % 80;
1077	if (i < 0)
1078		i += 80;
1079	up->datapt = (up->datapt + IN100) % 80;
1080	dtemp = sintab[i] * data / DATSIZ * DGAIN;
1081	up->irig -= ibuf[iptr];
1082	ibuf[iptr] = dtemp;
1083	up->irig += dtemp;
1084	i = (i + 20) % 80;
1085	dtemp = sintab[i] * data / DATSIZ * DGAIN;
1086	up->qrig -= qbuf[iptr];
1087	qbuf[iptr] = dtemp;
1088	up->qrig += dtemp;
1089	iptr = (iptr + 1) % DATSIZ;
1090
1091	/*
1092	 * Baseband sync demodulation. The 1000/1200 sync signals are
1093	 * extracted using a 600-Hz IIR bandpass filter. This removes
1094	 * the 100-Hz data subcarrier, as well as the 440-Hz and 600-Hz
1095	 * tones and most of the noise and voice modulation components.
1096	 *
1097	 * Matlab 4th-order IIR elliptic, 800-1400 Hz bandpass, 0.2 dB
1098	 * passband ripple, -50 dB stopband ripple.
1099	 */
1100	syncx = (bpf[8] = bpf[7]) * 4.897278e-01;
1101	syncx += (bpf[7] = bpf[6]) * -2.765914e+00;
1102	syncx += (bpf[6] = bpf[5]) * 8.110921e+00;
1103	syncx += (bpf[5] = bpf[4]) * -1.517732e+01;
1104	syncx += (bpf[4] = bpf[3]) * 1.975197e+01;
1105	syncx += (bpf[3] = bpf[2]) * -1.814365e+01;
1106	syncx += (bpf[2] = bpf[1]) * 1.159783e+01;
1107	syncx += (bpf[1] = bpf[0]) * -4.735040e+00;
1108	bpf[0] = isig - syncx;
1109	syncx = bpf[0] * 8.203628e-03
1110	    + bpf[1] * -2.375732e-02
1111	    + bpf[2] * 3.353214e-02
1112	    + bpf[3] * -4.080258e-02
1113	    + bpf[4] * 4.605479e-02
1114	    + bpf[5] * -4.080258e-02
1115	    + bpf[6] * 3.353214e-02
1116	    + bpf[7] * -2.375732e-02
1117	    + bpf[8] * 8.203628e-03;
1118
1119	/*
1120	 * The I and Q quadrature minute sync signals are produced by
1121	 * multiplying the filtered signal by 1000-Hz (WWV) and 1200-Hz
1122	 * (WWVH) sine and cosine signals, respectively. The resulting
1123	 * signals are demodulated by 800-ms synchronous matched filters
1124	 * to synchronize the second and minute and to detect which one
1125	 * (or both) the WWV or WWVH signal is present.
1126	 */
1127	up->mphase = (up->mphase + 1) % MINUTE;
1128
1129	i = csinptr;
1130	csinptr = (csinptr + IN1000) % 80;
1131	dtemp = sintab[i] * syncx / SYNSIZ * SGAIN;
1132	ciamp = ciamp - cibuf[jptr] + dtemp;
1133	cibuf[jptr] = dtemp;
1134	i = (i + 20) % 80;
1135	dtemp = sintab[i] * syncx / SYNSIZ * SGAIN;
1136	cqamp = cqamp - cqbuf[jptr] + dtemp;
1137	cqbuf[jptr] = dtemp;
1138	dtemp = ciamp * ciamp + cqamp * cqamp;
1139	wwv_qrz(peer, &up->mitig[up->schan].wwv, dtemp);
1140
1141	i = hsinptr;
1142	hsinptr = (hsinptr + IN1200) % 80;
1143	dtemp = sintab[i] * syncx / SYNSIZ * SGAIN;
1144	hiamp = hiamp - hibuf[jptr] + dtemp;
1145	hibuf[jptr] = dtemp;
1146	i = (i + 20) % 80;
1147	dtemp = sintab[i] * syncx / SYNSIZ * SGAIN;
1148	hqamp = hqamp - hqbuf[jptr] + dtemp;
1149	hqbuf[jptr] = dtemp;
1150	dtemp = hiamp * hiamp + hqamp * hqamp;
1151	wwv_qrz(peer, &up->mitig[up->schan].wwvh, dtemp);
1152
1153	jptr = (jptr + 1) % SYNSIZ;
1154
1155	if (up->mphase == 0) {
1156
1157		/*
1158		 * This section is called once per minute at the minute
1159		 * epoch independently of the transmitter or receiver
1160		 * minute. If the leap bit is set, set the minute epoch
1161		 * back one second so the station processes don't miss a
1162		 * beat. Then, increment the watchdog counter and test
1163		 * for two sets of conditions depending on whether
1164		 * minute sync has been acquired or not.
1165		 */
1166		up->watch++;
1167		if (up->rsec == 60) {
1168			up->mphase -= SECOND;
1169			if (up->mphase < 0)
1170				up->mphase += MINUTE;
1171		} else if (!(up->status & MSYNC)) {
1172
1173	 		/*
1174			 * If minute sync has not been acquired, the
1175			 * program listens for minute sync pulses from
1176			 * both WWV and WWVH. The station with the
1177			 * greater compare count is selected, with ties
1178			 * broken by WWV, but only if the count is at
1179			 * least three. Once a station has been
1180			 * acquired, it is initialized and begins
1181			 * tracking the signal.
1182			 */
1183			if (up->mitig[up->achan].wwv.count >=
1184			    up->mitig[up->achan].wwvh.count)
1185				sp = &up->mitig[up->achan].wwv;
1186			else
1187				sp = &up->mitig[up->achan].wwvh;
1188			if (sp->count >= AMIN) {
1189				up->watch = up->swatch = 0;
1190				up->status |= MSYNC;
1191				ltemp = sp->mepoch - SYNSIZ;
1192				if (ltemp < 0)
1193					ltemp += MINUTE;
1194				up->rsec = (MINUTE - ltemp) / SECOND;
1195				if (!(up->status & SSYNC)) {
1196					up->repoch = ltemp % SECOND;
1197					up->yepoch = up->repoch -
1198					    up->pdelay;
1199					if (up->yepoch < 0)
1200						up->yepoch += SECOND;
1201				}
1202				wwv_newchan(peer);
1203			} else if (sp->count == 0 || up->watch >= ACQSN)
1204			    {
1205				up->watch = sp->count = 0;
1206				up->schan = (up->schan + 1) % NCHAN;
1207				wwv_qsy(peer, up->schan);
1208			}
1209		} else {
1210
1211			/*
1212			 * If minute sync has been acquired, the program
1213			 * watches for timeout. The timeout is reset
1214			 * when the clock is set or verified. If a
1215			 * timeout occurs and the minute units digit has
1216			 * not synchronized, reset the program and start
1217			 * over.
1218			 */
1219			if (up->watch > DIGIT && !(up->status & DSYNC))
1220				up->watch = up->status = 0;
1221
1222			/*
1223			 * If the second sync times out, dim the sync
1224			 * lamp and raise an alarm.
1225			 */
1226			up->swatch++;
1227			if (up->swatch > HSPEC)
1228				up->status &= ~SSYNC;
1229			if (!(up->status & SSYNC))
1230				up->alarm |= 1 << SYNERR;
1231		}
1232	}
1233
1234	/*
1235	 * The second sync pulse is extracted using 5-ms FIR matched
1236	 * filters at 1000 Hz for WWV or 1200 Hz for WWVH. This pulse is
1237	 * used for the most precise synchronization, since if provides
1238	 * a resolution of one sample (125 us).
1239	 */
1240	if (up->status & SELV) {
1241		up->pdelay = up->cdelay;
1242
1243		/*
1244		 * WWV FIR matched filter, five cycles of 1000-Hz
1245		 * sinewave.
1246		 */
1247		mf[40] = mf[39];
1248		mfsync = (mf[39] = mf[38]) * 4.224514e-02;
1249		mfsync += (mf[38] = mf[37]) * 5.974365e-02;
1250		mfsync += (mf[37] = mf[36]) * 4.224514e-02;
1251		mf[36] = mf[35];
1252		mfsync += (mf[35] = mf[34]) * -4.224514e-02;
1253		mfsync += (mf[34] = mf[33]) * -5.974365e-02;
1254		mfsync += (mf[33] = mf[32]) * -4.224514e-02;
1255		mf[32] = mf[31];
1256		mfsync += (mf[31] = mf[30]) * 4.224514e-02;
1257		mfsync += (mf[30] = mf[29]) * 5.974365e-02;
1258		mfsync += (mf[29] = mf[28]) * 4.224514e-02;
1259		mf[28] = mf[27];
1260		mfsync += (mf[27] = mf[26]) * -4.224514e-02;
1261		mfsync += (mf[26] = mf[25]) * -5.974365e-02;
1262		mfsync += (mf[25] = mf[24]) * -4.224514e-02;
1263		mf[24] = mf[23];
1264		mfsync += (mf[23] = mf[22]) * 4.224514e-02;
1265		mfsync += (mf[22] = mf[21]) * 5.974365e-02;
1266		mfsync += (mf[21] = mf[20]) * 4.224514e-02;
1267		mf[20] = mf[19];
1268		mfsync += (mf[19] = mf[18]) * -4.224514e-02;
1269		mfsync += (mf[18] = mf[17]) * -5.974365e-02;
1270		mfsync += (mf[17] = mf[16]) * -4.224514e-02;
1271		mf[16] = mf[15];
1272		mfsync += (mf[15] = mf[14]) * 4.224514e-02;
1273		mfsync += (mf[14] = mf[13]) * 5.974365e-02;
1274		mfsync += (mf[13] = mf[12]) * 4.224514e-02;
1275		mf[12] = mf[11];
1276		mfsync += (mf[11] = mf[10]) * -4.224514e-02;
1277		mfsync += (mf[10] = mf[9]) * -5.974365e-02;
1278		mfsync += (mf[9] = mf[8]) * -4.224514e-02;
1279		mf[8] = mf[7];
1280		mfsync += (mf[7] = mf[6]) * 4.224514e-02;
1281		mfsync += (mf[6] = mf[5]) * 5.974365e-02;
1282		mfsync += (mf[5] = mf[4]) * 4.224514e-02;
1283		mf[4] = mf[3];
1284		mfsync += (mf[3] = mf[2]) * -4.224514e-02;
1285		mfsync += (mf[2] = mf[1]) * -5.974365e-02;
1286		mfsync += (mf[1] = mf[0]) * -4.224514e-02;
1287		mf[0] = syncx;
1288	} else if (up->status & SELH) {
1289		up->pdelay = up->hdelay;
1290
1291		/*
1292		 * WWVH FIR matched filter, six cycles of 1200-Hz
1293		 * sinewave.
1294		 */
1295		mf[40] = mf[39];
1296		mfsync = (mf[39] = mf[38]) * 4.833363e-02;
1297		mfsync += (mf[38] = mf[37]) * 5.681959e-02;
1298		mfsync += (mf[37] = mf[36]) * 1.846180e-02;
1299		mfsync += (mf[36] = mf[35]) * -3.511644e-02;
1300		mfsync += (mf[35] = mf[34]) * -5.974365e-02;
1301		mfsync += (mf[34] = mf[33]) * -3.511644e-02;
1302		mfsync += (mf[33] = mf[32]) * 1.846180e-02;
1303		mfsync += (mf[32] = mf[31]) * 5.681959e-02;
1304		mfsync += (mf[31] = mf[30]) * 4.833363e-02;
1305		mf[30] = mf[29];
1306		mfsync += (mf[29] = mf[28]) * -4.833363e-02;
1307		mfsync += (mf[28] = mf[27]) * -5.681959e-02;
1308		mfsync += (mf[27] = mf[26]) * -1.846180e-02;
1309		mfsync += (mf[26] = mf[25]) * 3.511644e-02;
1310		mfsync += (mf[25] = mf[24]) * 5.974365e-02;
1311		mfsync += (mf[24] = mf[23]) * 3.511644e-02;
1312		mfsync += (mf[23] = mf[22]) * -1.846180e-02;
1313		mfsync += (mf[22] = mf[21]) * -5.681959e-02;
1314		mfsync += (mf[21] = mf[20]) * -4.833363e-02;
1315		mf[20] = mf[19];
1316		mfsync += (mf[19] = mf[18]) * 4.833363e-02;
1317		mfsync += (mf[18] = mf[17]) * 5.681959e-02;
1318		mfsync += (mf[17] = mf[16]) * 1.846180e-02;
1319		mfsync += (mf[16] = mf[15]) * -3.511644e-02;
1320		mfsync += (mf[15] = mf[14]) * -5.974365e-02;
1321		mfsync += (mf[14] = mf[13]) * -3.511644e-02;
1322		mfsync += (mf[13] = mf[12]) * 1.846180e-02;
1323		mfsync += (mf[12] = mf[11]) * 5.681959e-02;
1324		mfsync += (mf[11] = mf[10]) * 4.833363e-02;
1325		mf[10] = mf[9];
1326		mfsync += (mf[9] = mf[8]) * -4.833363e-02;
1327		mfsync += (mf[8] = mf[7]) * -5.681959e-02;
1328		mfsync += (mf[7] = mf[6]) * -1.846180e-02;
1329		mfsync += (mf[6] = mf[5]) * 3.511644e-02;
1330		mfsync += (mf[5] = mf[4]) * 5.974365e-02;
1331		mfsync += (mf[4] = mf[3]) * 3.511644e-02;
1332		mfsync += (mf[3] = mf[2]) * -1.846180e-02;
1333		mfsync += (mf[2] = mf[1]) * -5.681959e-02;
1334		mfsync += (mf[1] = mf[0]) * -4.833363e-02;
1335		mf[0] = syncx;
1336	} else {
1337		mfsync = 0;
1338	}
1339
1340	/*
1341	 * Extract the seconds sync pulse using a 1-s comb filter at
1342	 * baseband. Correct for the FIR matched filter delay, which is
1343	 * 5 ms for both the WWV and WWVH filters. Blank the signal when
1344	 * probing.
1345	 */
1346	up->epoch = (up->epoch + 1) % SECOND;
1347	if (up->epoch == 0) {
1348		wwv_endpoc(peer, epomax, epopos);
1349		up->epomax = epomax;
1350		epomax = 0;
1351		if (!(up->status & MSYNC))
1352			wwv_gain(peer);
1353	}
1354	dtemp = (epobuf[up->epoch] += (mfsync - epobuf[up->epoch]) /
1355	    (MINAVG << up->avgint));
1356	if (dtemp > epomax) {
1357		epomax = dtemp;
1358		epopos = up->epoch - up->pdelay - 5 * MS;
1359		if (epopos < 0)
1360			epopos += SECOND;
1361	}
1362	if (up->status & MSYNC)
1363		wwv_epoch(peer);
1364}
1365
1366
1367/*
1368 * wwv_qrz - identify and acquire WWV/WWVH minute sync pulse
1369 *
1370 * This routine implements a virtual station process used to acquire
1371 * minute sync and to mitigate among the ten frequency and station
1372 * combinations. During minute sync acquisition, the process probes each
1373 * frequency in turn for the minute pulse from either station, which
1374 * involves searching through the entire epoch minute of samples. After
1375 * minute sync acquisition, the process searches only during the probe
1376 * window, which occupies seconds 59, 0 and 1, to construct a metric
1377 * used to determine which frequency and station provides the best
1378 * signal.
1379 *
1380 * The pulse discriminator requires that (a) the peak on-pulse sample
1381 * amplitude must be above 2000, (b) the SNR relative to the peak
1382 * off-pulse sample amplitude must be reduced 6 dB or more below the
1383 * peak and (c) the maximum difference between the current and previous
1384 * epoch indices must be less than 50 ms. A compare counter keeps track
1385 * of the number of successive intervals which satisfy these criteria.
1386 *
1387 * Students of radar receiver technology will discover this algorithm
1388 * amounts to a range gate discriminator. In practice, the performance
1389 * of this gadget is amazing. Once setting teeth in a station, it hangs
1390 * on until the minute beep can barely be heard and long after the
1391 * second tick and comb filter have given up.
1392 */
1393static void
1394wwv_qrz(
1395	struct peer *peer,	/* peerstructure pointer */
1396	struct sync *sp,	/* sync channel structure */
1397	double syncx		/* bandpass filtered sync signal */
1398	)
1399{
1400	struct refclockproc *pp;
1401	struct wwvunit *up;
1402	char tbuf[80];		/* monitor buffer */
1403	double snr;		/* on-pulse/off-pulse ratio (dB) */
1404	long epoch;
1405	int isgood;
1406
1407	pp = peer->procptr;
1408	up = (struct wwvunit *)pp->unitptr;
1409
1410	/*
1411	 * Find the sample with peak energy, which defines the minute
1412	 * epoch. If minute sync has been acquired, search only the
1413	 * probe window; otherwise, search the entire minute. If a
1414	 * maximum has been found with good amplitude, search only the
1415	 * second before and after that position for the next maximum
1416	 * and the rest of the window for the noise.
1417	 */
1418	if (!(up->status & MSYNC) || up->status & SFLAG) {
1419		sp->amp = syncx;
1420		if (up->status & MSYNC)
1421			epoch = up->nepoch;
1422		else if (sp->count > 1)
1423			epoch = sp->mepoch;
1424		else
1425			epoch = sp->lastpos;
1426		if (syncx > sp->sigmax) {
1427			sp->sigmax = syncx;
1428			sp->pos = up->mphase;
1429		}
1430		if (abs(MOD(up->mphase - epoch, MINUTE)) > SYNSIZ &&
1431		    syncx > sp->noise) {
1432			sp->noise = syncx;
1433		}
1434	}
1435	if (up->mphase == 0) {
1436
1437		/*
1438		 * At the end of the minute, determine the epoch of the
1439		 * sync pulse, as well as the SNR and difference between
1440		 * the current and previous epoch (jitter).
1441		 */
1442		sp->jitter = MOD(sp->pos - sp->lastpos, MINUTE);
1443		sp->select &= ~JITRNG;
1444		if (abs(sp->jitter) > AWND * MS)
1445			sp->select |= JITRNG;
1446		sp->sigmax = sqrt(sp->sigmax);
1447		sp->noise = sqrt(sp->noise);
1448		if (up->status & MSYNC) {
1449
1450			/*
1451			 * If in minute sync, just count the runs up and
1452			 * down.
1453			 */
1454			if (sp->select & (DATANG | SYNCNG | JITRNG)) {
1455				if (sp->count > 0)
1456					sp->count--;
1457			} else {
1458				if (sp->count < AMAX)
1459					sp->count++;
1460			}
1461		} else {
1462
1463			/*
1464			 * If not yet in minute sync, we have to do a
1465			 * little dance to find a valid minute sync
1466			 * pulse, emphasis valid.
1467			 */
1468			snr = wwv_snr(sp->sigmax, sp->noise);
1469			isgood = sp->sigmax > ATHR && snr > ASNR &&
1470			    !(sp->select & JITRNG);
1471			switch (sp->count) {
1472
1473			/*
1474			 * In state 0 the station was not heard during
1475			 * the previous probe. Look for the biggest blip
1476			 * greater than the amplitude threshold in the
1477			 * minute and assume that the minute sync pulse.
1478			 * If found, bump to state 1.
1479			 */
1480			case 0:
1481				if (sp->sigmax >= ATHR)
1482					sp->count++;
1483				break;
1484
1485			/*
1486			 * In state 1 a candidate blip has been found
1487			 * and the next minute has been searched for
1488			 * another blip. If none are found greater than
1489			 * the threshold, or if the biggest blip outside
1490			 * the candidate pulse is less than 6 dB below
1491			 * the biggest blip, drop back to state 0 and
1492			 * hunt some more. Otherwise, a legitimate
1493			 * minute pulse may have been found, so bump to
1494			 * state 2.
1495			 */
1496			case 1:
1497			if (sp->sigmax < ATHR) {
1498					sp->count--;
1499					break;
1500				} else if (!isgood) {
1501					break;
1502				}
1503				/* fall through */
1504
1505			/*
1506			 * In states 2 and above, continue to groom
1507			 * samples as before and drop back to the
1508			 * previous state if the groom fails. If it
1509			 * succeeds, bump to the next state until
1510			 * reaching the clamp, if ever.
1511			 */
1512			default:
1513				if (!isgood) {
1514					sp->count--;
1515					break;
1516				}
1517				sp->mepoch = sp->pos;
1518				if (sp->count < AMAX)
1519					sp->count++;
1520					break;
1521			}
1522			sprintf(tbuf,
1523			    "wwv8 %d %3d %-3s %d %5.0f %5.1f %7ld %7ld %7ld",
1524			    up->port, up->gain, sp->ident, sp->count,
1525			    sp->sigmax, snr, sp->pos, sp->jitter,
1526			    MOD(sp->pos - up->nepoch - SYNSIZ, MINUTE));
1527			if (pp->sloppyclockflag & CLK_FLAG4)
1528				record_clock_stats(&peer->srcadr, tbuf);
1529#ifdef DEBUG
1530			if (debug)
1531				printf("%s\n", tbuf);
1532#endif
1533		}
1534		sp->lastmax = sp->sigmax;
1535		sp->lastpos = sp->pos;
1536		sp->sigmax = sp->noise = 0;
1537	}
1538}
1539
1540
1541/*
1542 * wwv_endpoc - process receiver epoch
1543 *
1544 * This routine is called at the end of the receiver epoch. It
1545 * determines the epoch position within the second and disciplines the
1546 * sample clock using a frequency-lock loop (FLL).
1547 *
1548 * Seconds sync is determined in the RF input routine as the maximum
1549 * over all 8000 samples in the second comb filter. To assure accurate
1550 * and reliable time and frequency discipline, this routine performs a
1551 * great deal of heavy-handed data filtering and grooming.
1552 */
1553static void
1554wwv_endpoc(
1555	struct peer *peer,	/* peer structure pointer */
1556	double epomax,		/* epoch max */
1557	int epopos		/* epoch max position */
1558	)
1559{
1560	struct refclockproc *pp;
1561	struct wwvunit *up;
1562
1563	static int epoch_mf[3]; /* epoch median filter */
1564 	static int tepoch;	/* median filter epoch */
1565	static int tspan;	/* median filter span */
1566 	static int xepoch;	/* last second epoch */
1567 	static int zepoch;	/* last averaging interval epoch */
1568	static int syncnt;	/* second epoch run length counter */
1569	static int jitcnt;	/* jitter holdoff counter */
1570	static int avgcnt;	/* averaging interval counter */
1571	static int avginc;	/* averaging ratchet */
1572
1573	static int iniflg;	/* initialization flag */
1574	char tbuf[80];		/* monitor buffer */
1575	double dtemp;
1576	int tmp2, tmp3;
1577
1578	pp = peer->procptr;
1579	up = (struct wwvunit *)pp->unitptr;
1580	if (!iniflg) {
1581		iniflg = 1;
1582		memset((char *)epoch_mf, 0, sizeof(epoch_mf));
1583	}
1584
1585	/*
1586	 * A three-stage median filter is used to help denoise the
1587	 * seconds sync pulse. The median sample becomes the candidate
1588	 * epoch; the difference between the other two samples becomes
1589	 * the span, which is used currently only for debugging.
1590	 */
1591	epoch_mf[2] = epoch_mf[1];
1592	epoch_mf[1] = epoch_mf[0];
1593	epoch_mf[0] = epopos;
1594	if (epoch_mf[0] > epoch_mf[1]) {
1595		if (epoch_mf[1] > epoch_mf[2]) {
1596			tepoch = epoch_mf[1];	/* 0 1 2 */
1597			tspan = epoch_mf[0] - epoch_mf[2];
1598		} else if (epoch_mf[2] > epoch_mf[0]) {
1599			tepoch = epoch_mf[0];	/* 2 0 1 */
1600			tspan = epoch_mf[2] - epoch_mf[1];
1601		} else {
1602			tepoch = epoch_mf[2];	/* 0 2 1 */
1603			tspan = epoch_mf[0] - epoch_mf[1];
1604		}
1605	} else {
1606		if (epoch_mf[1] < epoch_mf[2]) {
1607			tepoch = epoch_mf[1];	/* 2 1 0 */
1608			tspan = epoch_mf[2] - epoch_mf[0];
1609		} else if (epoch_mf[2] < epoch_mf[0]) {
1610			tepoch = epoch_mf[0];	/* 1 0 2 */
1611			tspan = epoch_mf[1] - epoch_mf[2];
1612		} else {
1613			tepoch = epoch_mf[2];	/* 1 2 0 */
1614			tspan = epoch_mf[1] - epoch_mf[0];
1615		}
1616	}
1617
1618	/*
1619	 * If the epoch candidate is within 1 ms of the last one, the
1620	 * new candidate replaces the last one and the jitter counter is
1621	 * reset; otherwise, the candidate is ignored and the jitter
1622	 * counter is incremented. If the jitter counter exceeds the
1623	 * frequency averaging interval, the new candidate replaces the
1624	 * old one anyway. The compare counter is incremented if the new
1625	 * candidate is identical to the last one; otherwise, it is
1626	 * forced to zero. If the compare counter increments to 10, the
1627	 * epoch is reset and the receiver second epoch is set.
1628	 *
1629	 * Careful attention to detail here. If the signal amplitude
1630	 * falls below the threshold or if no stations are heard, we
1631	 * certainly cannot be in sync.
1632	 */
1633	tmp2 = MOD(tepoch - xepoch, SECOND);
1634	if (up->epomax < STHR || !(up->status & (SELV | SELH))) {
1635		up->status &= ~SSYNC;
1636		jitcnt = syncnt = avgcnt = 0;
1637	} else if (abs(tmp2) <= MS || jitcnt >= (MINAVG << up->avgint))
1638	    {
1639		jitcnt = 0;
1640		if (tmp2 != 0) {
1641			xepoch = tepoch;
1642			syncnt = 0;
1643		} else {
1644			if (syncnt < SCMP) {
1645				syncnt++;
1646			} else {
1647				up->status |= SSYNC;
1648				up->swatch = 0;
1649				up->repoch = tepoch;
1650				up->yepoch = up->repoch;
1651				if (up->yepoch < 0)
1652					up->yepoch += SECOND;
1653			}
1654		}
1655		avgcnt++;
1656	} else {
1657		jitcnt++;
1658		syncnt = avgcnt = 0;
1659	}
1660	if (!(up->status & SSYNC) && 0) {
1661		sprintf(tbuf,
1662		    "wwv1 %2d %04x %5.0f %2d %5.0f %5d %5d %5d %2d %4d",
1663		    up->rsec, up->status, up->epomax, avgcnt, epomax,
1664		    tepoch, tspan, tmp2, syncnt, jitcnt);
1665		if (pp->sloppyclockflag & CLK_FLAG4)
1666			record_clock_stats(&peer->srcadr, tbuf);
1667#ifdef DEBUG
1668		if (debug)
1669			printf("%s\n", tbuf);
1670#endif /* DEBUG */
1671	}
1672
1673	/*
1674	 * The sample clock frequency is disciplined using a first-order
1675	 * feedback loop with time constant consistent with the Allan
1676	 * intercept of typical computer clocks. The loop update is
1677	 * calculated each averaging interval from the epoch change in
1678	 * 125-us units and interval length in seconds. The interval is
1679	 * doubled after four intervals where epoch change is not more
1680	 * than one sample.
1681	 *
1682	 * The averaging interval affects other receiver functions,
1683	 * including the the 1000/1200-Hz comb filter and sample clock
1684	 * loop. It also affects the 100-Hz subcarrier loop and the bit
1685	 * and digit comparison counter thresholds.
1686	 */
1687	tmp3 = MOD(tepoch - zepoch, SECOND);
1688	if (avgcnt >= (MINAVG << up->avgint)) {
1689		if (abs(tmp3) < MS) {
1690			dtemp = (double)tmp3 / avgcnt;
1691			up->freq += dtemp / SYNCTC;
1692			if (up->freq > MAXFREQ)
1693				up->freq = MAXFREQ;
1694			else if (up->freq < -MAXFREQ)
1695				up->freq = -MAXFREQ;
1696			if (abs(tmp3) <= 1 && up->avgint < MAXAVG) {
1697				if (avginc < 4) {
1698					avginc++;
1699				} else {
1700					avginc = 0;
1701					up->avgint++;
1702				}
1703			}
1704			if (up->avgint < MAXAVG) {
1705				sprintf(tbuf,
1706				    "wwv2 %2d %04x %5.0f %5d %5d %2d %2d %6.1f %6.1f",
1707				    up->rsec, up->status, up->epomax,
1708				    MINAVG << up->avgint, avgcnt,
1709				    avginc, tmp3, dtemp / SECOND * 1e6,
1710				    up->freq / SECOND * 1e6);
1711				if (pp->sloppyclockflag & CLK_FLAG4)
1712					record_clock_stats(
1713					    &peer->srcadr, tbuf);
1714#ifdef DEBUG
1715				if (debug)
1716					printf("%s\n", tbuf);
1717#endif /* DEBUG */
1718			}
1719		}
1720		zepoch = tepoch;
1721		avgcnt = 0;
1722	}
1723}
1724
1725
1726/*
1727 * wwv_epoch -  main loop
1728 *
1729 * This routine establishes receiver and transmitter epoch
1730 * synchronization and determines the data subcarrier pulse length.
1731 * Receiver synchronization is determined by the minute sync pulse
1732 * detected in the wwv_rf() routine and the second sync pulse detected
1733 * in the wwv_epoch() routine. This establishes when to sample the data
1734 * subcarrier in-phase signal for the maximum level and noise level and
1735 * when to determine the pulse length. The transmitter second leads the
1736 * receiver second by the propagation delay, receiver delay and filter
1737 * delay of this program. It establishes the clock time and implements
1738 * the sometimes idiosyncratic conventional clock time and civil
1739 * calendar.
1740 *
1741 * Most communications radios use a highpass filter in the audio stages,
1742 * which can do nasty things to the subcarrier phase relative to the
1743 * sync pulses. Therefore, the data subcarrier reference phase is
1744 * disciplined using the hardlimited quadrature-phase signal sampled at
1745 * the same time as the in-phase signal. The phase tracking loop uses
1746 * phase adjustments of plus-minus one sample (125 us).
1747 */
1748static void
1749wwv_epoch(
1750	struct peer *peer	/* peer structure pointer */
1751	)
1752{
1753	static double dpulse;	/* data pulse length */
1754	struct refclockproc *pp;
1755	struct wwvunit *up;
1756	struct chan *cp;
1757	struct sync *sp;
1758	l_fp offset;		/* NTP format offset */
1759	double dtemp;
1760
1761	pp = peer->procptr;
1762	up = (struct wwvunit *)pp->unitptr;
1763
1764	/*
1765	 * Sample the minute sync pulse amplitude at epoch 800 for both
1766	 * the WWV and WWVH stations. This will be used later for
1767	 * channel mitigation.
1768	 */
1769	cp = &up->mitig[up->achan];
1770	if (up->rphase == 800 * MS) {
1771		sp = &cp->wwv;
1772		sp->synamp = sqrt(sp->amp);
1773		sp = &cp->wwvh;
1774		sp->synamp = sqrt(sp->amp);
1775	}
1776
1777	if (up->rsec == 0) {
1778		up->sigamp = up->datsnr = 0;
1779	} else {
1780
1781		/*
1782		 * Estimate the noise level by integrating the I-channel
1783		 * energy at epoch 30 ms.
1784		 */
1785		if (up->rphase == 30 * MS) {
1786			if (!(up->status & SFLAG))
1787				up->noiamp += (up->irig - up->noiamp) /
1788				    (MINAVG << up->avgint);
1789			else
1790				cp->noiamp += (sqrt(up->irig *
1791				    up->irig + up->qrig * up->qrig) -
1792				    cp->noiamp) / 8;
1793
1794		/*
1795		 * Strobe the peak I-channel data signal at epoch 200
1796		 * ms. Compute the SNR and adjust the 100-Hz reference
1797		 * oscillator phase using the Q-channel data signal at
1798		 * that epoch. Save the envelope amplitude for the probe
1799		 * channel.
1800		 */
1801		} else if (up->rphase == 200 * MS) {
1802			if (!(up->status & SFLAG)) {
1803				up->sigamp = up->irig;
1804				if (up->sigamp < 0)
1805					up->sigamp = 0;
1806				up->datsnr = wwv_snr(up->sigamp,
1807				    up->noiamp);
1808				up->datpha = up->qrig / (MINAVG <<
1809				    up->avgint);
1810				if (up->datpha >= 0) {
1811					up->datapt++;
1812					if (up->datapt >= 80)
1813						up->datapt -= 80;
1814				} else {
1815					up->datapt--;
1816					if (up->datapt < 0)
1817						up->datapt += 80;
1818				}
1819			} else {
1820				up->sigamp = sqrt(up->irig * up->irig +
1821				    up->qrig * up->qrig);
1822				up->datsnr = wwv_snr(up->sigamp,
1823				    cp->noiamp);
1824			}
1825
1826		/*
1827		 * The slice level is set half way between the peak
1828		 * signal and noise levels. Strobe the negative zero
1829		 * crossing after epoch 200 ms and record the epoch at
1830		 * that time. This defines the length of the data pulse,
1831		 * which will later be converted into scaled bit
1832		 * probabilities.
1833		 */
1834		} else if (up->rphase > 200 * MS) {
1835			dtemp = (up->sigamp + up->noiamp) / 2;
1836			if (up->irig < dtemp && dpulse == 0)
1837				dpulse = up->rphase;
1838		}
1839 	}
1840
1841	/*
1842	 * At the end of the transmitter second, crank the clock state
1843	 * machine. Note we have to be careful to set the transmitter
1844	 * epoch at the same time as the receiver epoch to be sure the
1845	 * right propagation delay is used. We don't bother the heavy
1846	 * machinery unless the clock is set.
1847	 */
1848	up->tphase++;
1849	if (up->epoch == up->yepoch) {
1850		wwv_tsec(up);
1851		up->tphase = 0;
1852
1853		/*
1854		 * Determine the current offset from the time of century
1855		 * and the sample timestamp, but only if the SYNERR
1856		 * alarm has not been raised in the present or previous
1857		 * minute.
1858		 */
1859		if (!(up->status & SFLAG) && up->status & INSYNC &&
1860		    (up->alarm & (3 << SYNERR)) == 0) {
1861			pp->second = up->tsec;
1862			pp->minute = up->decvec[MN].digit +
1863			    up->decvec[MN + 1].digit * 10;
1864			pp->hour = up->decvec[HR].digit +
1865			    up->decvec[HR + 1].digit * 10;
1866			pp->day = up->decvec[DA].digit + up->decvec[DA +
1867			    1].digit * 10 + up->decvec[DA + 2].digit *
1868			    100;
1869			pp->year = up->decvec[YR].digit +
1870			    up->decvec[YR + 1].digit * 10;
1871			if (pp->year < UTCYEAR)
1872				pp->year += 2000;
1873			else
1874				pp->year += 1900;
1875
1876			/*
1877			 * We have to simulate refclock_process() here,
1878			 * since the fudgetime gets added much earlier
1879			 * than this.
1880			 */
1881			pp->lastrec = up->timestamp;
1882			L_CLR(&offset);
1883			if (!clocktime(pp->day, pp->hour, pp->minute,
1884			    pp->second, GMT, pp->lastrec.l_ui,
1885			    &pp->yearstart, &offset.l_ui))
1886				up->errflg = CEVNT_BADTIME;
1887			else
1888				refclock_process_offset(pp, offset,
1889				    pp->lastrec, 0.);
1890		}
1891	}
1892
1893	/*
1894	 * At the end of the receiver second, process the data bit and
1895	 * update the decoding matrix probabilities.
1896	 */
1897	up->rphase++;
1898	if (up->epoch == up->repoch) {
1899		wwv_rsec(peer, dpulse);
1900		wwv_gain(peer);
1901		up->rphase = dpulse = 0;
1902	}
1903}
1904
1905
1906/*
1907 * wwv_rsec - process receiver second
1908 *
1909 * This routine is called at the end of each receiver second to
1910 * implement the per-second state machine. The machine assembles BCD
1911 * digit bits, decodes miscellaneous bits and dances the leap seconds.
1912 *
1913 * Normally, the minute has 60 seconds numbered 0-59. If the leap
1914 * warning bit is set, the last minute (1439) of 30 June (day 181 or 182
1915 * for leap years) or 31 December (day 365 or 366 for leap years) is
1916 * augmented by one second numbered 60. This is accomplished by
1917 * extending the minute interval by one second and teaching the state
1918 * machine to ignore it. BTW, stations WWV/WWVH cowardly kill the
1919 * transmitter carrier for a few seconds around the leap to avoid icky
1920 * details of transmission format during the leap.
1921 */
1922static void
1923wwv_rsec(
1924	struct peer *peer,	/* peer structure pointer */
1925	double dpulse
1926	)
1927{
1928	static int iniflg;	/* initialization flag */
1929	static double bcddld[4]; /* BCD data bits */
1930	static double bitvec[61]; /* bit integrator for misc bits */
1931	struct refclockproc *pp;
1932	struct wwvunit *up;
1933	struct chan *cp;
1934	struct sync *sp, *rp;
1935	double bit;		/* bit likelihood */
1936	char tbuf[80];		/* monitor buffer */
1937	int sw, arg, nsec;
1938
1939	pp = peer->procptr;
1940	up = (struct wwvunit *)pp->unitptr;
1941	if (!iniflg) {
1942		iniflg = 1;
1943		memset((char *)bitvec, 0, sizeof(bitvec));
1944	}
1945
1946	/*
1947	 * The bit represents the probability of a hit on zero (negative
1948	 * values), a hit on one (positive values) or a miss (zero
1949	 * value). The likelihood vector is the exponential average of
1950	 * these probabilities. Only the bits of this vector
1951	 * corresponding to the miscellaneous bits of the timecode are
1952	 * used, but it's easier to do them all. After that, crank the
1953	 * seconds state machine.
1954	 */
1955	nsec = up->rsec + 1;
1956	bit = wwv_data(up, dpulse);
1957	bitvec[up->rsec] += (bit - bitvec[up->rsec]) / TCONST;
1958	sw = progx[up->rsec].sw;
1959	arg = progx[up->rsec].arg;
1960	switch (sw) {
1961
1962	/*
1963	 * Ignore this second.
1964	 */
1965	case IDLE:			/* 9, 45-49 */
1966		break;
1967
1968	/*
1969	 * Probe channel stuff
1970	 *
1971	 * The WWV/H format contains data pulses in second 59 (position
1972	 * identifier) and second 1 (not used), and the minute sync
1973	 * pulse in second 0. At the end of second 58, we QSYed to the
1974	 * probe channel, which rotates over all WWV/H frequencies. At
1975	 * the end of second 59, we latched the sync noise and tested
1976	 * for data bit error. At the end of second 0, we now latch the
1977	 * sync peak.
1978	 */
1979	case SYNC2:			/* 0 */
1980		cp = &up->mitig[up->achan];
1981		sp = &cp->wwv;
1982		sp->synmax = sp->synamp;
1983		sp = &cp->wwvh;
1984		sp->synmax = sp->synamp;
1985		break;
1986
1987	/*
1988	 * At the end of second 1, latch and average the sync noise and
1989	 * test for data bit error. Set SYNCNG if the sync pulse
1990	 * amplitude and SNR are not above thresholds. Set DATANG if
1991	 * data error occured on both second 59 and second 1. Finally,
1992	 * QSY back to the data channel.
1993	 */
1994	case SYNC3:			/* 1 */
1995		cp = &up->mitig[up->achan];
1996		if (up->sigamp < DTHR || up->datsnr < DSNR)
1997			cp->errcnt++;
1998
1999		sp = &cp->wwv;
2000		sp->synmin = (sp->synmin + sp->synamp) / 2;
2001		sp->synsnr = wwv_snr(sp->synmax, sp->synmin);
2002		sp->select &= ~(DATANG | SYNCNG);
2003		if (sp->synmax < QTHR || sp->synsnr < QSNR)
2004			sp->select |= SYNCNG;
2005		if (cp->errcnt > 1)
2006			sp->select |= DATANG;
2007
2008		rp = &cp->wwvh;
2009		rp->synmin = (rp->synmin + rp->synamp) / 2;
2010		rp->synsnr = wwv_snr(rp->synmax, rp->synmin);
2011		rp->select &= ~(DATANG | SYNCNG);
2012		if (rp->synmax < QTHR || rp->synsnr < QSNR)
2013			rp->select |= SYNCNG;
2014		if (cp->errcnt > 1)
2015			rp->select |= DATANG;
2016
2017		cp->errcnt = 0;
2018		sprintf(tbuf,
2019    "wwv5 %d %3d %-3s %04x %d %.0f/%.1f/%ld %s %04x %d %.0f/%.1f/%ld",
2020		    up->port, up->gain, sp->ident, sp->select,
2021		    sp->count, sp->synmax, sp->synsnr, sp->jitter,
2022		    rp->ident, rp->select, rp->count, rp->synmax,
2023		    rp->synsnr, rp->jitter);
2024		if (pp->sloppyclockflag & CLK_FLAG4)
2025			record_clock_stats(&peer->srcadr, tbuf);
2026#ifdef DEBUG
2027		if (debug)
2028			printf("%s\n", tbuf);
2029#endif /* DEBUG */
2030		up->status &= ~SFLAG;
2031		wwv_newchan(peer);
2032		break;
2033
2034	/*
2035	 * Save the bit probability in the BCD data vector at the index
2036	 * given by the argument. Note that all bits of the vector have
2037	 * to be above the data gate threshold for the digit to be
2038	 * considered valid. Bits not used in the digit are forced to
2039	 * zero and not checked for errors.
2040	 */
2041	case COEF1:			/* 10-13 */
2042		if (up->status & DGATE)
2043			up->status |= BGATE;
2044		bcddld[arg] = bit;
2045		break;
2046
2047	case COEF2:			/* 18, 27-28, 42-43 */
2048		bcddld[arg] = 0;
2049		break;
2050
2051	case COEF:			/* 4-7, 15-17, 20-23, 25-26,
2052					   30-33, 35-38, 40-41, 51-54 */
2053		if (up->status & DGATE || !(up->status & DSYNC))
2054			up->status |= BGATE;
2055		bcddld[arg] = bit;
2056		break;
2057
2058	/*
2059	 * Correlate coefficient vector with each valid digit vector and
2060	 * save in decoding matrix. We step through the decoding matrix
2061	 * digits correlating each with the coefficients and saving the
2062	 * greatest and the next lower for later SNR calculation.
2063	 */
2064	case DECIM2:			/* 29 */
2065		wwv_corr4(peer, &up->decvec[arg], bcddld, bcd2);
2066		break;
2067
2068	case DECIM3:			/* 44 */
2069		wwv_corr4(peer, &up->decvec[arg], bcddld, bcd3);
2070		break;
2071
2072	case DECIM6:			/* 19 */
2073		wwv_corr4(peer, &up->decvec[arg], bcddld, bcd6);
2074		break;
2075
2076	case DECIM9:			/* 8, 14, 24, 34, 39 */
2077		wwv_corr4(peer, &up->decvec[arg], bcddld, bcd9);
2078		break;
2079
2080	/*
2081	 * Miscellaneous bits. If above the positive threshold, declare
2082	 * 1; if below the negative threshold, declare 0; otherwise
2083	 * raise the SYMERR alarm. At the end of second 58, QSY to the
2084	 * probe channel.
2085	 */
2086	case MSC20:			/* 55 */
2087		wwv_corr4(peer, &up->decvec[YR + 1], bcddld, bcd9);
2088		/* fall through */
2089
2090	case MSCBIT:			/* 2, 3, 50, 56-57 */
2091		if (bitvec[up->rsec] > BTHR)
2092			up->misc |= arg;
2093		else if (bitvec[up->rsec] < -BTHR)
2094			up->misc &= ~arg;
2095		else
2096			up->alarm |= 1 << SYMERR;
2097		break;
2098
2099	case MSC21:			/* 58 */
2100		if (bitvec[up->rsec] > BTHR)
2101			up->misc |= arg;
2102		else if (bitvec[up->rsec] < -BTHR)
2103			up->misc &= ~arg;
2104		else
2105			up->alarm |= 1 << SYMERR;
2106		up->schan = (up->schan + 1) % NCHAN;
2107		wwv_qsy(peer, up->schan);
2108		up->status |= SFLAG;
2109		break;
2110
2111	/*
2112	 * The endgames
2113	 *
2114	 * Second 59 contains the first data pulse of the probe
2115	 * sequence. Check it for validity and establish the noise floor
2116	 * for the minute sync SNR.
2117	 */
2118	case MIN1:			/* 59 */
2119		cp = &up->mitig[up->achan];
2120		if (up->sigamp < DTHR || up->datsnr < DSNR)
2121			cp->errcnt++;
2122		sp = &cp->wwv;
2123		sp->synmin = sp->synamp;
2124		sp = &cp->wwvh;
2125		sp->synmin = sp->synamp;
2126
2127		/*
2128		 * If SECWARN is set on the last minute of 30 June or 31
2129		 * December, LEPSEC bit is set. At the end of the minute
2130		 * in which LEPSEC is set the transmitter and receiver
2131		 * insert an extra second (60) in the timescale and the
2132		 * minute sync skips a second. We only get to test this
2133		 * wrinkle at intervals of about 18 months, the actual
2134		 * mileage may vary.
2135		 */
2136		if (up->tsec == 60) {
2137			up->status &= ~LEPSEC;
2138			break;
2139		}
2140		/* fall through */
2141
2142	/*
2143	 * If all nine clock digits are valid and the SYNERR alarm is
2144	 * not raised in the current or previous second, the clock is
2145	 * set or validated. If at least one digit is set, which by
2146	 * design must be the minute units digit, the clock state
2147	 * machine begins to count the minutes.
2148	 */
2149	case MIN2:			/* 59/60 */
2150		up->minset = ((current_time - peer->update) + 30) / 60;
2151		if (up->digcnt > 0)
2152			up->status |= DSYNC;
2153		if (up->digcnt >= 9 && (up->alarm & (3 << SYNERR)) == 0)
2154		    {
2155			up->status |= INSYNC;
2156			up->watch = 0;
2157		}
2158		pp->lencode = timecode(up, pp->a_lastcode);
2159		if (up->misc & SECWAR)
2160			pp->leap = LEAP_ADDSECOND;
2161		else
2162			pp->leap = LEAP_NOWARNING;
2163		refclock_receive(peer);
2164		record_clock_stats(&peer->srcadr, pp->a_lastcode);
2165#ifdef DEBUG
2166		if (debug)
2167			printf("wwv: timecode %d %s\n", pp->lencode,
2168			    pp->a_lastcode);
2169#endif /* DEBUG */
2170
2171		/*
2172		 * The ultimate watchdog is the interval since the
2173		 * reference clock interface code last received an
2174		 * update from this driver. If the interval is greater
2175		 * than a couple of days, manual intervention is
2176		 * probably required, so the program resets and tries to
2177		 * resynchronized from scratch.
2178		 */
2179		if (up->minset > PANIC)
2180			up->status = 0;
2181		up->alarm = (up->alarm & ~0x8888) << 1;
2182		up->nepoch = (up->mphase + SYNSIZ) % MINUTE;
2183		up->errcnt = up->digcnt = nsec = 0;
2184		break;
2185	}
2186	if (!(up->status & DSYNC)) {
2187		sprintf(tbuf,
2188	    "wwv3 %2d %04x %5.0f %5.0f %5.0f %5.1f %5.0f %5.0f",
2189		    up->rsec, up->status, up->epomax, up->sigamp,
2190		    up->datpha, up->datsnr, bit, bitvec[up->rsec]);
2191		if (pp->sloppyclockflag & CLK_FLAG4)
2192			record_clock_stats(&peer->srcadr, tbuf);
2193#ifdef DEBUG
2194		if (debug)
2195			printf("%s\n", tbuf);
2196#endif /* DEBUG */
2197		}
2198	up->rsec = up->tsec = nsec;
2199	return;
2200}
2201
2202
2203/*
2204 * wwv_data - calculate bit probability
2205 *
2206 * This routine is called at the end of the receiver second to calculate
2207 * the probabilities that the previous second contained a zero (P0), one
2208 * (P1) or position indicator (P2) pulse. If not in sync or if the data
2209 * bit is bad, a bit error is declared and the probabilities are forced
2210 * to zero. Otherwise, the data gate is enabled and the probabilities
2211 * are calculated. Note that the data matched filter contributes half
2212 * the pulse width, or 85 ms..
2213 */
2214static double
2215wwv_data(
2216	struct wwvunit *up,	/* driver unit pointer */
2217	double pulse		/* pulse length (sample units) */
2218	)
2219{
2220	double p0, p1, p2;	/* probabilities */
2221	double dpulse;		/* pulse length in ms */
2222
2223	p0 = p1 = p2 = 0;
2224	dpulse = pulse - DATSIZ / 2;
2225
2226	/*
2227	 * If the data amplitude or SNR are below threshold or if the
2228	 * pulse length is less than 170 ms, declare an erasure.
2229	 */
2230	if (up->sigamp < DTHR || up->datsnr < DSNR || dpulse < DATSIZ) {
2231		up->status |= DGATE;
2232		up->errcnt++;
2233		if (up->errcnt > MAXERR)
2234			up->alarm |= 1 << MODERR;
2235		return (0);
2236	}
2237
2238	/*
2239	 * The probability of P0 is one below 200 ms falling to zero at
2240	 * 500 ms. The probability of P1 is zero below 200 ms rising to
2241	 * one at 500 ms and falling to zero at 800 ms. The probability
2242	 * of P2 is zero below 500 ms, rising to one above 800 ms.
2243	 */
2244	up->status &= ~DGATE;
2245	if (dpulse < (200 * MS)) {
2246		p0 = 1;
2247	} else if (dpulse < 500 * MS) {
2248		dpulse -= 200 * MS;
2249		p1 = dpulse / (300 * MS);
2250		p0 = 1 - p1;
2251	} else if (dpulse < 800 * MS) {
2252		dpulse -= 500 * MS;
2253		p2 = dpulse / (300 * MS);
2254		p1 = 1 - p2;
2255	} else {
2256		p2 = 1;
2257	}
2258
2259	/*
2260	 * The ouput is a metric that ranges from -1 (P0), to +1 (P1)
2261	 * scaled for convenience. An output of zero represents an
2262	 * erasure, either because of a data error or pulse length
2263	 * greater than 500 ms. At the moment, we don't use P2.
2264	 */
2265	return ((p1 - p0) * MAXSIG);
2266}
2267
2268
2269/*
2270 * wwv_corr4 - determine maximum likelihood digit
2271 *
2272 * This routine correlates the received digit vector with the BCD
2273 * coefficient vectors corresponding to all valid digits at the given
2274 * position in the decoding matrix. The maximum value corresponds to the
2275 * maximum likelihood digit, while the ratio of this value to the next
2276 * lower value determines the likelihood function. Note that, if the
2277 * digit is invalid, the likelihood vector is averaged toward a miss.
2278 */
2279static void
2280wwv_corr4(
2281	struct peer *peer,	/* peer unit pointer */
2282	struct decvec *vp,	/* decoding table pointer */
2283	double data[],		/* received data vector */
2284	double tab[][4]		/* correlation vector array */
2285	)
2286{
2287	struct refclockproc *pp;
2288	struct wwvunit *up;
2289
2290	double topmax, nxtmax;	/* metrics */
2291	double acc;		/* accumulator */
2292	char tbuf[80];		/* monitor buffer */
2293	int mldigit;		/* max likelihood digit */
2294	int diff;		/* decoding difference */
2295	int i, j;
2296
2297	pp = peer->procptr;
2298	up = (struct wwvunit *)pp->unitptr;
2299
2300	/*
2301	 * Correlate digit vector with each BCD coefficient vector. If
2302	 * any BCD digit bit is bad, consider all bits a miss.
2303	 */
2304	mldigit = 0;
2305	topmax = nxtmax = -MAXSIG;
2306	for (i = 0; tab[i][0] != 0; i++) {
2307		acc = 0;
2308		for (j = 0; j < 4; j++) {
2309			if (!(up->status & BGATE))
2310				acc += data[j] * tab[i][j];
2311		}
2312		acc = (vp->like[i] += (acc - vp->like[i]) / TCONST);
2313		if (acc > topmax) {
2314			nxtmax = topmax;
2315			topmax = acc;
2316			mldigit = i;
2317		} else if (acc > nxtmax) {
2318			nxtmax = acc;
2319		}
2320	}
2321	vp->mldigit = mldigit;
2322	vp->digprb = topmax;
2323	vp->digsnr = wwv_snr(topmax, nxtmax);
2324
2325	/*
2326	 * The maximum likelihood digit is compared with the current
2327	 * clock digit. The difference represents the decoding phase
2328	 * error. If the digit probability and likelihood are good and
2329	 * the difference stays the same for a number of comparisons,
2330	 * the clock digit is reset to the maximum likelihood digit.
2331	 */
2332	diff = mldigit - vp->digit;
2333	if (diff < 0)
2334		diff += vp->radix;
2335	if (diff != vp->phase) {
2336		vp->phase = diff;
2337		vp->count = 0;
2338	}
2339	if (vp->digprb < BTHR || vp->digsnr < BSNR) {
2340		vp->count = 0;
2341		up->alarm |= 1 << SYMERR;
2342	} else if (vp->count < BCMP) {
2343		if (!(up->status & INSYNC)) {
2344			vp->phase = 0;
2345			vp->digit = mldigit;
2346		}
2347		vp->count++;
2348	} else {
2349		vp->phase = 0;
2350		vp->digit = mldigit;
2351		up->digcnt++;
2352	}
2353	if (vp->digit != mldigit)
2354		up->alarm |= 1 << DECERR;
2355	if (!(up->status & INSYNC)) {
2356		sprintf(tbuf,
2357		    "wwv4 %2d %04x %5.0f %2d %d %d %d %d %5.0f %5.1f",
2358		    up->rsec, up->status, up->epomax,  vp->radix,
2359		    vp->digit, vp->mldigit, vp->phase, vp->count,
2360		    vp->digprb, vp->digsnr);
2361		if (pp->sloppyclockflag & CLK_FLAG4)
2362			record_clock_stats(&peer->srcadr, tbuf);
2363#ifdef DEBUG
2364	if (debug)
2365		printf("%s\n", tbuf);
2366#endif /* DEBUG */
2367	}
2368	up->status &= ~BGATE;
2369}
2370
2371
2372/*
2373 * wwv_tsec - transmitter second processing
2374 *
2375 * This routine is called at the end of the transmitter second. It
2376 * implements a state machine that advances the logical clock subject to
2377 * the funny rules that govern the conventional clock and calendar. Note
2378 * that carries from the least significant (minutes) digit are inhibited
2379 * until that digit is synchronized.
2380 */
2381static void
2382wwv_tsec(
2383	struct wwvunit *up	/* driver structure pointer */
2384	)
2385{
2386	int minute, day, isleap;
2387	int temp;
2388
2389	up->tsec++;
2390	if (up->tsec < 60 || up->status & LEPSEC)
2391		return;
2392	up->tsec = 0;
2393
2394	/*
2395	 * Advance minute unit of the day. If the minute unit is not
2396	 * synchronized, go no further.
2397	 */
2398	temp = carry(&up->decvec[MN]);	/* minute units */
2399	if (!(up->status & DSYNC))
2400		return;
2401
2402	/*
2403	 * Propagate carries through the day.
2404	 */
2405	if (temp == 0)			/* carry minutes */
2406		temp = carry(&up->decvec[MN + 1]);
2407	if (temp == 0)			/* carry hours */
2408		temp = carry(&up->decvec[HR]);
2409	if (temp == 0)
2410		temp = carry(&up->decvec[HR + 1]);
2411
2412	/*
2413	 * Decode the current minute and day. Set the leap second enable
2414	 * bit on the last minute of 30 June and 31 December.
2415	 */
2416	minute = up->decvec[MN].digit + up->decvec[MN + 1].digit *
2417	    10 + up->decvec[HR].digit * 60 + up->decvec[HR +
2418	    1].digit * 600;
2419	day = up->decvec[DA].digit + up->decvec[DA + 1].digit * 10 +
2420	    up->decvec[DA + 2].digit * 100;
2421	isleap = (up->decvec[YR].digit & 0x3) == 0;
2422	if (minute == 1439 && (day == (isleap ? 182 : 183) || day ==
2423	     (isleap ? 365 : 366)) && up->misc & SECWAR)
2424		up->status |= LEPSEC;
2425
2426	/*
2427	 * Roll the day if this the first minute and propagate carries
2428	 * through the year.
2429	 */
2430	if (minute != 1440)
2431		return;
2432	minute = 0;
2433	while (carry(&up->decvec[HR]) != 0); /* advance to minute 0 */
2434	while (carry(&up->decvec[HR + 1]) != 0);
2435	day++;
2436	temp = carry(&up->decvec[DA]);	/* carry days */
2437	if (temp == 0)
2438		temp = carry(&up->decvec[DA + 1]);
2439	if (temp == 0)
2440		temp = carry(&up->decvec[DA + 2]);
2441
2442	/*
2443	 * Roll the year if this the first day and propagate carries
2444	 * through the century.
2445	 */
2446	if (day != (isleap ? 365 : 366))
2447		return;
2448	day = 1;
2449	while (carry(&up->decvec[DA]) != 1); /* advance to day 1 */
2450	while (carry(&up->decvec[DA + 1]) != 0);
2451	while (carry(&up->decvec[DA + 2]) != 0);
2452	temp = carry(&up->decvec[YR]);	/* carry years */
2453	if (temp)
2454		carry(&up->decvec[YR + 1]);
2455}
2456
2457
2458/*
2459 * carry - process digit
2460 *
2461 * This routine rotates a likelihood vector one position and increments
2462 * the clock digit modulo the radix. It returns the new clock digit -
2463 * zero if a carry occured. Once synchronized, the clock digit will
2464 * match the maximum likelihood digit corresponding to that position.
2465 */
2466static int
2467carry(
2468	struct decvec *dp	/* decoding table pointer */
2469	)
2470{
2471	int temp;
2472	int j;
2473
2474	dp->digit++;			/* advance clock digit */
2475	if (dp->digit == dp->radix) {	/* modulo radix */
2476		dp->digit = 0;
2477	}
2478	temp = dp->like[dp->radix - 1];	/* rotate likelihood vector */
2479	for (j = dp->radix - 1; j > 0; j--)
2480		dp->like[j] = dp->like[j - 1];
2481	dp->like[0] = temp;
2482	return (dp->digit);
2483}
2484
2485
2486/*
2487 * wwv_snr - compute SNR or likelihood function
2488 */
2489static double
2490wwv_snr(
2491	double signal,		/* signal */
2492	double noise		/* noise */
2493	)
2494{
2495	double rval;
2496
2497	/*
2498	 * This is a little tricky. Due to the way things are measured,
2499	 * either or both the signal or noise amplitude can be negative
2500	 * or zero. The intent is that, if the signal is negative or
2501	 * zero, the SNR must always be zero. This can happen with the
2502	 * subcarrier SNR before the phase has been aligned. On the
2503	 * other hand, in the likelihood function the "noise" is the
2504	 * next maximum down from the peak and this could be negative.
2505	 * However, in this case the SNR is truly stupendous, so we
2506	 * simply cap at MAXSNR dB.
2507	 */
2508	if (signal <= 0) {
2509		rval = 0;
2510	} else if (noise <= 0) {
2511		rval = MAXSNR;
2512	} else {
2513		rval = 20 * log10(signal / noise);
2514		if (rval > MAXSNR)
2515			rval = MAXSNR;
2516	}
2517	return (rval);
2518}
2519
2520/*
2521 * wwv_newchan - change to new data channel
2522 *
2523 * Assuming the radio can be tuned by this program, it actually appears
2524 * as a 10-channel receiver, one channel for each of WWV and WWVH on
2525 * each of five frequencies. While the radio is tuned to the working
2526 * data channel (frequency and station) for most of the minute, during
2527 * seconds 59, 0 and 1 the radio is tuned to a probe channel, in order
2528 * to pick up minute sync and data pulses. The search for WWV and WWVH
2529 * stations operates simultaneously, with WWV on 1000 Hz and WWVH on
2530 * 1200 Hz. The probe channel rotates for each minute over the five
2531 * frequencies. At the end of each rotation, this routine mitigates over
2532 * all channels and chooses the best frequency and station.
2533 */
2534static void
2535wwv_newchan(
2536	struct peer *peer	/* peer structure pointer */
2537	)
2538{
2539	struct refclockproc *pp;
2540	struct wwvunit *up;
2541	struct chan *cp;
2542	struct sync *sp, *rp;
2543	int rank;
2544	int i, j;
2545
2546	pp = peer->procptr;
2547	up = (struct wwvunit *)pp->unitptr;
2548
2549	/*
2550	 * Reset the matched filter selector and station pointer to
2551	 * avoid fooling around should we lose this game.
2552	 */
2553	up->sptr = 0;
2554	up->status &= ~(SELV | SELH);
2555
2556	/*
2557	 * Search all five station pairs looking for the station with
2558	 * the maximum compare counter. Ties go to the highest frequency
2559	 * and then to WWV.
2560	 */
2561	j = 0;
2562	sp = (struct sync *)0;
2563	rank = 0;
2564	for (i = 0; i < NCHAN; i++) {
2565		cp = &up->mitig[i];
2566		rp = &cp->wwvh;
2567		if (rp->count >= rank) {
2568			sp = rp;
2569			rank = rp->count;
2570			j = i;
2571		}
2572		rp = &cp->wwv;
2573		if (rp->count >= rank) {
2574			sp = rp;
2575			rank = rp->count;
2576			j = i;
2577		}
2578	}
2579
2580	/*
2581	 * If we find a station, continue to track it. If not, X marks
2582	 * the spot and we wait for better ions.
2583	 */
2584	if (rank > 0) {
2585		up->dchan = j;
2586		up->sptr = sp;
2587		up->status |= sp->select & (SELV | SELH);
2588		memcpy((char *)&pp->refid, sp->refid, 4);
2589		memcpy((char *)&peer->refid, sp->refid, 4);
2590		wwv_qsy(peer, up->dchan);
2591	}
2592}
2593
2594
2595/*
2596 * wwv_qsy - Tune ICOM receiver
2597 *
2598 * This routine saves the AGC for the current channel, switches to a new
2599 * channel and restores the AGC for that channel. If a tunable receiver
2600 * is not available, just fake it.
2601 */
2602static int
2603wwv_qsy(
2604	struct peer *peer,	/* peer structure pointer */
2605	int	chan		/* channel */
2606	)
2607{
2608	struct refclockproc *pp;
2609	struct wwvunit *up;
2610	int rval = 0;
2611
2612	pp = peer->procptr;
2613	up = (struct wwvunit *)pp->unitptr;
2614	up->mitig[up->achan].gain = up->gain;
2615#ifdef ICOM
2616	if (up->fd_icom > 0)
2617		rval = icom_freq(up->fd_icom, peer->ttl & 0x7f,
2618		    qsy[chan]);
2619#endif /* ICOM */
2620	up->achan = chan;
2621	up->gain = up->mitig[up->achan].gain;
2622	return (rval);
2623}
2624
2625
2626/*
2627 * timecode - assemble timecode string and length
2628 *
2629 * Prettytime format - similar to Spectracom
2630 *
2631 * sq yy ddd hh:mm:ss.fff ld dut lset agc stn comp errs freq avgt
2632 *
2633 * s	sync indicator ('?' or ' ')
2634 * q	quality character (hex 0-F)
2635 * yyyy	year of century
2636 * ddd	day of year
2637 * hh	hour of day
2638 * mm	minute of hour
2639 * ss	minute of hour
2640 * fff	millisecond of second
2641 * l	leap second warning ' ' or 'L'
2642 * d	DST state 'S', 'D', 'I', or 'O'
2643 * dut	DUT sign and magnitude in deciseconds
2644 * lset	minutes since last clock update
2645 * agc	audio gain (0-255)
2646 * iden	station identifier (station and frequency)
2647 * comp	minute sync compare counter
2648 * errs	bit errors in last minute * freq	frequency offset (PPM) * avgt	averaging time (s) */
2649static int
2650timecode(
2651	struct wwvunit *up,	/* driver structure pointer */
2652	char *ptr		/* target string */
2653	)
2654{
2655	struct sync *sp;
2656	int year, day, hour, minute, second, frac, dut;
2657	char synchar, qual, leapchar, dst;
2658	char cptr[50];
2659
2660
2661	/*
2662	 * Common fixed-format fields
2663	 */
2664	synchar = (up->status & INSYNC) ? ' ' : '?';
2665	qual = 0;
2666	if (up->alarm & (3 << DECERR))
2667		qual |= 0x1;
2668	if (up->alarm & (3 << SYMERR))
2669		qual |= 0x2;
2670	if (up->alarm & (3 << MODERR))
2671		qual |= 0x4;
2672	if (up->alarm & (3 << SYNERR))
2673		qual |= 0x8;
2674	year = up->decvec[7].digit + up->decvec[7].digit * 10;
2675	if (year < UTCYEAR)
2676		year += 2000;
2677	else
2678		year += 1900;
2679	day = up->decvec[4].digit + up->decvec[5].digit * 10 +
2680	    up->decvec[6].digit * 100;
2681	hour = up->decvec[2].digit + up->decvec[3].digit * 10;
2682	minute = up->decvec[0].digit + up->decvec[1].digit * 10;
2683	second = up->tsec;
2684	frac = (up->tphase * 1000) / SECOND;
2685	leapchar = (up->misc & SECWAR) ? 'L' : ' ';
2686	dst = dstcod[(up->misc >> 4) & 0x3];
2687	dut = up->misc & 0x7;
2688	if (!(up->misc & DUTS))
2689		dut = -dut;
2690	sprintf(ptr, "%c%1X", synchar, qual);
2691	sprintf(cptr, " %4d %03d %02d:%02d:%02d.%.03d %c%c %+d",
2692	    year, day, hour, minute, second, frac, leapchar, dst, dut);
2693	strcat(ptr, cptr);
2694
2695	/*
2696	 * Specific variable-format fields
2697	 */
2698	sp = up->sptr;
2699	if (sp != 0)
2700		sprintf(cptr, " %d %d %s %d %d %.1f %d", up->minset,
2701		    up->mitig[up->dchan].gain, sp->ident, sp->count,
2702		    up->errcnt, up->freq / SECOND * 1e6, MINAVG <<
2703		    up->avgint);
2704	else
2705		sprintf(cptr, " %d %d X 0 %d %.1f %d", up->minset,
2706		    up->mitig[up->dchan].gain, up->errcnt, up->freq /
2707		    SECOND * 1e6, MINAVG << up->avgint);
2708	strcat(ptr, cptr);
2709	return (strlen(ptr));
2710}
2711
2712
2713/*
2714 * wwv_gain - adjust codec gain
2715 *
2716 * This routine is called once each second. If the signal envelope
2717 * amplitude is too low, the codec gain is bumped up by four units; if
2718 * too high, it is bumped down. The decoder is relatively insensitive to
2719 * amplitude, so this crudity works just fine. The input port is set and
2720 * the error flag is cleared, mostly to be ornery.
2721 */
2722static void
2723wwv_gain(
2724	struct peer *peer	/* peer structure pointer */
2725	)
2726{
2727	struct refclockproc *pp;
2728	struct wwvunit *up;
2729
2730	pp = peer->procptr;
2731	up = (struct wwvunit *)pp->unitptr;
2732
2733	/*
2734	 * Apparently, the codec uses only the high order bits of the
2735	 * gain control field. Thus, it may take awhile for changes to
2736	 * wiggle the hardware bits.
2737	 */
2738	if (up->clipcnt == 0) {
2739		up->gain += 4;
2740		if (up->gain > 255)
2741			up->gain = 255;
2742	} else if (up->clipcnt > SECOND / 100) {
2743		up->gain -= 4;
2744		if (up->gain < 0)
2745			up->gain = 0;
2746	}
2747	audio_gain(up->gain, up->port);
2748	up->clipcnt = 0;
2749}
2750
2751
2752#else
2753int refclock_wwv_bs;
2754#endif /* REFCLOCK */
2755