ntp_proto.c revision 330106
1/*
2 * ntp_proto.c - NTP version 4 protocol machinery
3 *
4 * ATTENTION: Get approval from Harlan on all changes to this file!
5 *	    (Harlan will be discussing these changes with Dave Mills.)
6 *
7 */
8#ifdef HAVE_CONFIG_H
9#include <config.h>
10#endif
11
12#include "ntpd.h"
13#include "ntp_stdlib.h"
14#include "ntp_unixtime.h"
15#include "ntp_control.h"
16#include "ntp_string.h"
17#include "ntp_leapsec.h"
18#include "refidsmear.h"
19#include "lib_strbuf.h"
20
21#include <stdio.h>
22#ifdef HAVE_LIBSCF_H
23#include <libscf.h>
24#endif
25#ifdef HAVE_UNISTD_H
26#include <unistd.h>
27#endif
28
29/* [Bug 3031] define automatic broadcastdelay cutoff preset */
30#ifndef BDELAY_DEFAULT
31# define BDELAY_DEFAULT (-0.050)
32#endif
33
34/*
35 * This macro defines the authentication state. If x is 1 authentication
36 * is required; othewise it is optional.
37 */
38#define	AUTH(x, y)	((x) ? (y) == AUTH_OK \
39			     : (y) == AUTH_OK || (y) == AUTH_NONE)
40
41typedef enum
42auth_state {
43	AUTH_UNKNOWN = -1,	/* Unknown */
44	AUTH_NONE,		/* authentication not required */
45	AUTH_OK,		/* authentication OK */
46	AUTH_ERROR,		/* authentication error */
47	AUTH_CRYPTO		/* crypto_NAK */
48} auth_code;
49
50/*
51 * Set up Kiss Code values
52 */
53
54typedef enum
55kiss_codes {
56	NOKISS,				/* No Kiss Code */
57	RATEKISS,			/* Rate limit Kiss Code */
58	DENYKISS,			/* Deny Kiss */
59	RSTRKISS,			/* Restricted Kiss */
60	XKISS				/* Experimental Kiss */
61} kiss_code;
62
63typedef enum
64nak_error_codes {
65	NONAK,				/* No NAK seen */
66	INVALIDNAK,			/* NAK cannot be used */
67	VALIDNAK			/* NAK is valid */
68} nak_code;
69
70/*
71 * traffic shaping parameters
72 */
73#define	NTP_IBURST	6	/* packets in iburst */
74#define	RESP_DELAY	1	/* refclock burst delay (s) */
75
76/*
77 * pool soliciting restriction duration (s)
78 */
79#define	POOL_SOLICIT_WINDOW	8
80
81/*
82 * peer_select groups statistics for a peer used by clock_select() and
83 * clock_cluster().
84 */
85typedef struct peer_select_tag {
86	struct peer *	peer;
87	double		synch;	/* sync distance */
88	double		error;	/* jitter */
89	double		seljit;	/* selection jitter */
90} peer_select;
91
92/*
93 * System variables are declared here. Unless specified otherwise, all
94 * times are in seconds.
95 */
96u_char	sys_leap;		/* system leap indicator, use set_sys_leap() to change this */
97u_char	xmt_leap;		/* leap indicator sent in client requests, set up by set_sys_leap() */
98u_char	sys_stratum;		/* system stratum */
99s_char	sys_precision;		/* local clock precision (log2 s) */
100double	sys_rootdelay;		/* roundtrip delay to primary source */
101double	sys_rootdisp;		/* dispersion to primary source */
102u_int32 sys_refid;		/* reference id (network byte order) */
103l_fp	sys_reftime;		/* last update time */
104struct	peer *sys_peer;		/* current peer */
105
106#ifdef LEAP_SMEAR
107struct leap_smear_info leap_smear;
108#endif
109int leap_sec_in_progress;
110
111/*
112 * Rate controls. Leaky buckets are used to throttle the packet
113 * transmission rates in order to protect busy servers such as at NIST
114 * and USNO. There is a counter for each association and another for KoD
115 * packets. The association counter decrements each second, but not
116 * below zero. Each time a packet is sent the counter is incremented by
117 * a configurable value representing the average interval between
118 * packets. A packet is delayed as long as the counter is greater than
119 * zero. Note this does not affect the time value computations.
120 */
121/*
122 * Nonspecified system state variables
123 */
124int	sys_bclient;		/* broadcast client enable */
125double	sys_bdelay;		/* broadcast client default delay */
126int	sys_authenticate;	/* requre authentication for config */
127l_fp	sys_authdelay;		/* authentication delay */
128double	sys_offset;	/* current local clock offset */
129double	sys_mindisp = MINDISPERSE; /* minimum distance (s) */
130double	sys_maxdist = MAXDISTANCE; /* selection threshold */
131double	sys_jitter;		/* system jitter */
132u_long	sys_epoch;		/* last clock update time */
133static	double sys_clockhop;	/* clockhop threshold */
134static int leap_vote_ins;	/* leap consensus for insert */
135static int leap_vote_del;	/* leap consensus for delete */
136keyid_t	sys_private;		/* private value for session seed */
137int	sys_manycastserver;	/* respond to manycast client pkts */
138int	ntp_mode7;		/* respond to ntpdc (mode7) */
139int	peer_ntpdate;		/* active peers in ntpdate mode */
140int	sys_survivors;		/* truest of the truechimers */
141char	*sys_ident = NULL;	/* identity scheme */
142
143/*
144 * TOS and multicast mapping stuff
145 */
146int	sys_floor = 0;		/* cluster stratum floor */
147u_char	sys_bcpollbstep = 0;	/* Broadcast Poll backstep gate */
148int	sys_ceiling = STRATUM_UNSPEC - 1; /* cluster stratum ceiling */
149int	sys_minsane = 1;	/* minimum candidates */
150int	sys_minclock = NTP_MINCLOCK; /* minimum candidates */
151int	sys_maxclock = NTP_MAXCLOCK; /* maximum candidates */
152int	sys_cohort = 0;		/* cohort switch */
153int	sys_orphan = STRATUM_UNSPEC + 1; /* orphan stratum */
154int	sys_orphwait = NTP_ORPHWAIT; /* orphan wait */
155int	sys_beacon = BEACON;	/* manycast beacon interval */
156u_int	sys_ttlmax;		/* max ttl mapping vector index */
157u_char	sys_ttl[MAX_TTL];	/* ttl mapping vector */
158
159/*
160 * Statistics counters - first the good, then the bad
161 */
162u_long	sys_stattime;		/* elapsed time */
163u_long	sys_received;		/* packets received */
164u_long	sys_processed;		/* packets for this host */
165u_long	sys_newversion;		/* current version */
166u_long	sys_oldversion;		/* old version */
167u_long	sys_restricted;		/* access denied */
168u_long	sys_badlength;		/* bad length or format */
169u_long	sys_badauth;		/* bad authentication */
170u_long	sys_declined;		/* declined */
171u_long	sys_limitrejected;	/* rate exceeded */
172u_long	sys_kodsent;		/* KoD sent */
173
174/*
175 * Mechanism knobs: how soon do we peer_clear() or unpeer()?
176 *
177 * The default way is "on-receipt".  If this was a packet from a
178 * well-behaved source, on-receipt will offer the fastest recovery.
179 * If this was from a DoS attack, the default way makes it easier
180 * for a bad-guy to DoS us.  So look and see what bites you harder
181 * and choose according to your environment.
182 */
183int peer_clear_digest_early	= 1;	/* bad digest (TEST5) and Autokey */
184int unpeer_crypto_early		= 1;	/* bad crypto (TEST9) */
185int unpeer_crypto_nak_early	= 1;	/* crypto_NAK (TEST5) */
186int unpeer_digest_early		= 1;	/* bad digest (TEST5) */
187
188int dynamic_interleave = DYNAMIC_INTERLEAVE;	/* Bug 2978 mitigation */
189
190int kiss_code_check(u_char hisleap, u_char hisstratum, u_char hismode, u_int32 refid);
191nak_code	valid_NAK	(struct peer *peer, struct recvbuf *rbufp, u_char hismode);
192static	double	root_distance	(struct peer *);
193static	void	clock_combine	(peer_select *, int, int);
194static	void	peer_xmit	(struct peer *);
195static	void	fast_xmit	(struct recvbuf *, int, keyid_t, int);
196static	void	pool_xmit	(struct peer *);
197static	void	clock_update	(struct peer *);
198static	void	measure_precision(void);
199static	double	measure_tick_fuzz(void);
200static	int	local_refid	(struct peer *);
201static	int	peer_unfit	(struct peer *);
202#ifdef AUTOKEY
203static	int	group_test	(char *, char *);
204#endif /* AUTOKEY */
205#ifdef WORKER
206void	pool_name_resolved	(int, int, void *, const char *,
207				 const char *, const struct addrinfo *,
208				 const struct addrinfo *);
209#endif /* WORKER */
210
211const char *	amtoa		(int am);
212
213
214void
215set_sys_leap(
216	u_char new_sys_leap
217	)
218{
219	sys_leap = new_sys_leap;
220	xmt_leap = sys_leap;
221
222	/*
223	 * Under certain conditions we send faked leap bits to clients, so
224	 * eventually change xmt_leap below, but never change LEAP_NOTINSYNC.
225	 */
226	if (xmt_leap != LEAP_NOTINSYNC) {
227		if (leap_sec_in_progress) {
228			/* always send "not sync" */
229			xmt_leap = LEAP_NOTINSYNC;
230		}
231#ifdef LEAP_SMEAR
232		else {
233			/*
234			 * If leap smear is enabled in general we must
235			 * never send a leap second warning to clients,
236			 * so make sure we only send "in sync".
237			 */
238			if (leap_smear.enabled)
239				xmt_leap = LEAP_NOWARNING;
240		}
241#endif	/* LEAP_SMEAR */
242	}
243}
244
245
246/*
247 * Kiss Code check
248 */
249int
250kiss_code_check(
251	u_char hisleap,
252	u_char hisstratum,
253	u_char hismode,
254	u_int32 refid
255	)
256{
257
258	if (   hismode == MODE_SERVER
259	    && hisleap == LEAP_NOTINSYNC
260	    && hisstratum == STRATUM_UNSPEC) {
261		if(memcmp(&refid,"RATE", 4) == 0) {
262			return (RATEKISS);
263		} else if(memcmp(&refid,"DENY", 4) == 0) {
264			return (DENYKISS);
265		} else if(memcmp(&refid,"RSTR", 4) == 0) {
266			return (RSTRKISS);
267		} else if(memcmp(&refid,"X", 1) == 0) {
268			return (XKISS);
269		}
270	}
271	return (NOKISS);
272}
273
274
275/*
276 * Check that NAK is valid
277 */
278nak_code
279valid_NAK(
280	  struct peer *peer,
281	  struct recvbuf *rbufp,
282	  u_char hismode
283	  )
284{
285	int		base_packet_length = MIN_V4_PKT_LEN;
286	int		remainder_size;
287	struct pkt *	rpkt;
288	int		keyid;
289	l_fp		p_org;	/* origin timestamp */
290	const l_fp *	myorg;	/* selected peer origin */
291
292	/*
293	 * Check to see if there is something beyond the basic packet
294	 */
295	if (rbufp->recv_length == base_packet_length) {
296		return NONAK;
297	}
298
299	remainder_size = rbufp->recv_length - base_packet_length;
300	/*
301	 * Is this a potential NAK?
302	 */
303	if (remainder_size != 4) {
304		return NONAK;
305	}
306
307	/*
308	 * Only server responses can contain NAK's
309	 */
310
311	if (hismode != MODE_SERVER &&
312	    hismode != MODE_ACTIVE &&
313	    hismode != MODE_PASSIVE
314	    ) {
315		return INVALIDNAK;
316	}
317
318	/*
319	 * Make sure that the extra field in the packet is all zeros
320	 */
321	rpkt = &rbufp->recv_pkt;
322	keyid = ntohl(((u_int32 *)rpkt)[base_packet_length / 4]);
323	if (keyid != 0) {
324		return INVALIDNAK;
325	}
326
327	/*
328	 * Only valid if peer uses a key
329	 */
330	if (!peer || !peer->keyid || !(peer->flags & FLAG_SKEY)) {
331		return INVALIDNAK;
332	}
333
334	/*
335	 * The ORIGIN must match, or this cannot be a valid NAK, either.
336	 */
337	NTOHL_FP(&rpkt->org, &p_org);
338	if (peer->flip > 0)
339		myorg = &peer->borg;
340	else
341		myorg = &peer->aorg;
342
343	if (L_ISZERO(&p_org) ||
344	    L_ISZERO( myorg) ||
345	    !L_ISEQU(&p_org, myorg)) {
346		return INVALIDNAK;
347	}
348
349	/* If we ever passed all that checks, we should be safe. Well,
350	 * as safe as we can ever be with an unauthenticated crypto-nak.
351	 */
352	return VALIDNAK;
353}
354
355
356/*
357 * transmit - transmit procedure called by poll timeout
358 */
359void
360transmit(
361	struct peer *peer	/* peer structure pointer */
362	)
363{
364	u_char	hpoll;
365
366	/*
367	 * The polling state machine. There are two kinds of machines,
368	 * those that never expect a reply (broadcast and manycast
369	 * server modes) and those that do (all other modes). The dance
370	 * is intricate...
371	 */
372	hpoll = peer->hpoll;
373
374	/*
375	 * In broadcast mode the poll interval is never changed from
376	 * minpoll.
377	 */
378	if (peer->cast_flags & (MDF_BCAST | MDF_MCAST)) {
379		peer->outdate = current_time;
380		if (sys_leap != LEAP_NOTINSYNC)
381			peer_xmit(peer);
382		poll_update(peer, hpoll);
383		return;
384	}
385
386	/*
387	 * In manycast mode we start with unity ttl. The ttl is
388	 * increased by one for each poll until either sys_maxclock
389	 * servers have been found or the maximum ttl is reached. When
390	 * sys_maxclock servers are found we stop polling until one or
391	 * more servers have timed out or until less than sys_minclock
392	 * associations turn up. In this case additional better servers
393	 * are dragged in and preempt the existing ones.  Once every
394	 * sys_beacon seconds we are to transmit unconditionally, but
395	 * this code is not quite right -- peer->unreach counts polls
396	 * and is being compared with sys_beacon, so the beacons happen
397	 * every sys_beacon polls.
398	 */
399	if (peer->cast_flags & MDF_ACAST) {
400		peer->outdate = current_time;
401		if (peer->unreach > sys_beacon) {
402			peer->unreach = 0;
403			peer->ttl = 0;
404			peer_xmit(peer);
405		} else if (   sys_survivors < sys_minclock
406			   || peer_associations < sys_maxclock) {
407			if (peer->ttl < sys_ttlmax)
408				peer->ttl++;
409			peer_xmit(peer);
410		}
411		peer->unreach++;
412		poll_update(peer, hpoll);
413		return;
414	}
415
416	/*
417	 * Pool associations transmit unicast solicitations when there
418	 * are less than a hard limit of 2 * sys_maxclock associations,
419	 * and either less than sys_minclock survivors or less than
420	 * sys_maxclock associations.  The hard limit prevents unbounded
421	 * growth in associations if the system clock or network quality
422	 * result in survivor count dipping below sys_minclock often.
423	 * This was observed testing with pool, where sys_maxclock == 12
424	 * resulted in 60 associations without the hard limit.  A
425	 * similar hard limit on manycastclient ephemeral associations
426	 * may be appropriate.
427	 */
428	if (peer->cast_flags & MDF_POOL) {
429		peer->outdate = current_time;
430		if (   (peer_associations <= 2 * sys_maxclock)
431		    && (   peer_associations < sys_maxclock
432			|| sys_survivors < sys_minclock))
433			pool_xmit(peer);
434		poll_update(peer, hpoll);
435		return;
436	}
437
438	/*
439	 * In unicast modes the dance is much more intricate. It is
440	 * designed to back off whenever possible to minimize network
441	 * traffic.
442	 */
443	if (peer->burst == 0) {
444		u_char oreach;
445
446		/*
447		 * Update the reachability status. If not heard for
448		 * three consecutive polls, stuff infinity in the clock
449		 * filter.
450		 */
451		oreach = peer->reach;
452		peer->outdate = current_time;
453		peer->unreach++;
454		peer->reach <<= 1;
455		if (!peer->reach) {
456
457			/*
458			 * Here the peer is unreachable. If it was
459			 * previously reachable raise a trap. Send a
460			 * burst if enabled.
461			 */
462			clock_filter(peer, 0., 0., MAXDISPERSE);
463			if (oreach) {
464				peer_unfit(peer);
465				report_event(PEVNT_UNREACH, peer, NULL);
466			}
467			if (   (peer->flags & FLAG_IBURST)
468			    && peer->retry == 0)
469				peer->retry = NTP_RETRY;
470		} else {
471
472			/*
473			 * Here the peer is reachable. Send a burst if
474			 * enabled and the peer is fit.  Reset unreach
475			 * for persistent and ephemeral associations.
476			 * Unreach is also reset for survivors in
477			 * clock_select().
478			 */
479			hpoll = sys_poll;
480			if (!(peer->flags & FLAG_PREEMPT))
481				peer->unreach = 0;
482			if (   (peer->flags & FLAG_BURST)
483			    && peer->retry == 0
484			    && !peer_unfit(peer))
485				peer->retry = NTP_RETRY;
486		}
487
488		/*
489		 * Watch for timeout.  If ephemeral, toss the rascal;
490		 * otherwise, bump the poll interval. Note the
491		 * poll_update() routine will clamp it to maxpoll.
492		 * If preemptible and we have more peers than maxclock,
493		 * and this peer has the minimum score of preemptibles,
494		 * demobilize.
495		 */
496		if (peer->unreach >= NTP_UNREACH) {
497			hpoll++;
498			/* ephemeral: no FLAG_CONFIG nor FLAG_PREEMPT */
499			if (!(peer->flags & (FLAG_CONFIG | FLAG_PREEMPT))) {
500				report_event(PEVNT_RESTART, peer, "timeout");
501				peer_clear(peer, "TIME");
502				unpeer(peer);
503				return;
504			}
505			if (   (peer->flags & FLAG_PREEMPT)
506			    && (peer_associations > sys_maxclock)
507			    && score_all(peer)) {
508				report_event(PEVNT_RESTART, peer, "timeout");
509				peer_clear(peer, "TIME");
510				unpeer(peer);
511				return;
512			}
513		}
514	} else {
515		peer->burst--;
516		if (peer->burst == 0) {
517
518			/*
519			 * If ntpdate mode and the clock has not been
520			 * set and all peers have completed the burst,
521			 * we declare a successful failure.
522			 */
523			if (mode_ntpdate) {
524				peer_ntpdate--;
525				if (peer_ntpdate == 0) {
526					msyslog(LOG_NOTICE,
527					    "ntpd: no servers found");
528					if (!msyslog_term)
529						printf(
530						    "ntpd: no servers found\n");
531					exit (0);
532				}
533			}
534		}
535	}
536	if (peer->retry > 0)
537		peer->retry--;
538
539	/*
540	 * Do not transmit if in broadcast client mode.
541	 */
542	if (peer->hmode != MODE_BCLIENT)
543		peer_xmit(peer);
544	poll_update(peer, hpoll);
545
546	return;
547}
548
549
550const char *
551amtoa(
552	int am
553	)
554{
555	char *bp;
556
557	switch(am) {
558	    case AM_ERR:	return "AM_ERR";
559	    case AM_NOMATCH:	return "AM_NOMATCH";
560	    case AM_PROCPKT:	return "AM_PROCPKT";
561	    case AM_BCST:	return "AM_BCST";
562	    case AM_FXMIT:	return "AM_FXMIT";
563	    case AM_MANYCAST:	return "AM_MANYCAST";
564	    case AM_NEWPASS:	return "AM_NEWPASS";
565	    case AM_NEWBCL:	return "AM_NEWBCL";
566	    case AM_POSSBCL:	return "AM_POSSBCL";
567	    default:
568		LIB_GETBUF(bp);
569		snprintf(bp, LIB_BUFLENGTH, "AM_#%d", am);
570		return bp;
571	}
572}
573
574
575/*
576 * receive - receive procedure called for each packet received
577 */
578void
579receive(
580	struct recvbuf *rbufp
581	)
582{
583	register struct peer *peer;	/* peer structure pointer */
584	register struct pkt *pkt;	/* receive packet pointer */
585	u_char	hisversion;		/* packet version */
586	u_char	hisleap;		/* packet leap indicator */
587	u_char	hismode;		/* packet mode */
588	u_char	hisstratum;		/* packet stratum */
589	r4addr	r4a;			/* address restrictions */
590	u_short	restrict_mask;		/* restrict bits */
591	const char *hm_str;		/* hismode string */
592	const char *am_str;		/* association match string */
593	int	kissCode = NOKISS;	/* Kiss Code */
594	int	has_mac;		/* length of MAC field */
595	int	authlen;		/* offset of MAC field */
596	auth_code is_authentic = AUTH_UNKNOWN;	/* Was AUTH_NONE */
597	nak_code crypto_nak_test;	/* result of crypto-NAK check */
598	int	retcode = AM_NOMATCH;	/* match code */
599	keyid_t	skeyid = 0;		/* key IDs */
600	u_int32	opcode = 0;		/* extension field opcode */
601	sockaddr_u *dstadr_sin;		/* active runway */
602	struct peer *peer2;		/* aux peer structure pointer */
603	endpt	*match_ep;		/* newpeer() local address */
604	l_fp	p_org;			/* origin timestamp */
605	l_fp	p_rec;			/* receive timestamp */
606	l_fp	p_xmt;			/* transmit timestamp */
607#ifdef AUTOKEY
608	char	hostname[NTP_MAXSTRLEN + 1];
609	char	*groupname = NULL;
610	struct autokey *ap;		/* autokey structure pointer */
611	int	rval;			/* cookie snatcher */
612	keyid_t	pkeyid = 0, tkeyid = 0;	/* key IDs */
613#endif	/* AUTOKEY */
614#ifdef HAVE_NTP_SIGND
615	static unsigned char zero_key[16];
616#endif /* HAVE_NTP_SIGND */
617
618	/*
619	 * Note that there are many places we do not call record_raw_stats().
620	 *
621	 * We only want to call it *after* we've sent a response, or perhaps
622	 * when we've decided to drop a packet.
623	 */
624
625	/*
626	 * Monitor the packet and get restrictions. Note that the packet
627	 * length for control and private mode packets must be checked
628	 * by the service routines. Some restrictions have to be handled
629	 * later in order to generate a kiss-o'-death packet.
630	 */
631	/*
632	 * Bogus port check is before anything, since it probably
633	 * reveals a clogging attack.
634	 */
635	sys_received++;
636	if (0 == SRCPORT(&rbufp->recv_srcadr)) {
637		sys_badlength++;
638		return;				/* bogus port */
639	}
640	restrictions(&rbufp->recv_srcadr, &r4a);
641	restrict_mask = r4a.rflags;
642
643	pkt = &rbufp->recv_pkt;
644	hisversion = PKT_VERSION(pkt->li_vn_mode);
645	hisleap = PKT_LEAP(pkt->li_vn_mode);
646	hismode = (int)PKT_MODE(pkt->li_vn_mode);
647	hisstratum = PKT_TO_STRATUM(pkt->stratum);
648	DPRINTF(2, ("receive: at %ld %s<-%s ippeerlimit %d mode %d iflags %s restrict %s org %#010x.%08x xmt %#010x.%08x\n",
649		    current_time, stoa(&rbufp->dstadr->sin),
650		    stoa(&rbufp->recv_srcadr), r4a.ippeerlimit, hismode,
651		    build_iflags(rbufp->dstadr->flags),
652		    build_rflags(restrict_mask),
653		    ntohl(pkt->org.l_ui), ntohl(pkt->org.l_uf),
654		    ntohl(pkt->xmt.l_ui), ntohl(pkt->xmt.l_uf)));
655
656	/* See basic mode and broadcast checks, below */
657	INSIST(0 != hisstratum);
658
659	if (restrict_mask & RES_IGNORE) {
660		DPRINTF(2, ("receive: drop: RES_IGNORE\n"));
661		sys_restricted++;
662		return;				/* ignore everything */
663	}
664	if (hismode == MODE_PRIVATE) {
665		if (!ntp_mode7 || (restrict_mask & RES_NOQUERY)) {
666			DPRINTF(2, ("receive: drop: RES_NOQUERY\n"));
667			sys_restricted++;
668			return;			/* no query private */
669		}
670		process_private(rbufp, ((restrict_mask &
671		    RES_NOMODIFY) == 0));
672		return;
673	}
674	if (hismode == MODE_CONTROL) {
675		if (restrict_mask & RES_NOQUERY) {
676			DPRINTF(2, ("receive: drop: RES_NOQUERY\n"));
677			sys_restricted++;
678			return;			/* no query control */
679		}
680		process_control(rbufp, restrict_mask);
681		return;
682	}
683	if (restrict_mask & RES_DONTSERVE) {
684		DPRINTF(2, ("receive: drop: RES_DONTSERVE\n"));
685		sys_restricted++;
686		return;				/* no time serve */
687	}
688
689	/*
690	 * This is for testing. If restricted drop ten percent of
691	 * surviving packets.
692	 */
693	if (restrict_mask & RES_FLAKE) {
694		if ((double)ntp_random() / 0x7fffffff < .1) {
695			DPRINTF(2, ("receive: drop: RES_FLAKE\n"));
696			sys_restricted++;
697			return;			/* no flakeway */
698		}
699	}
700
701	/*
702	** Format Layer Checks
703	**
704	** Validate the packet format.  The packet size, packet header,
705	** and any extension field lengths are checked.  We identify
706	** the beginning of the MAC, to identify the upper limit of
707	** of the hash computation.
708	**
709	** In case of a format layer check violation, the packet is
710	** discarded with no further processing.
711	*/
712
713	/*
714	 * Version check must be after the query packets, since they
715	 * intentionally use an early version.
716	 */
717	if (hisversion == NTP_VERSION) {
718		sys_newversion++;		/* new version */
719	} else if (   !(restrict_mask & RES_VERSION)
720		   && hisversion >= NTP_OLDVERSION) {
721		sys_oldversion++;		/* previous version */
722	} else {
723		DPRINTF(2, ("receive: drop: RES_VERSION\n"));
724		sys_badlength++;
725		return;				/* old version */
726	}
727
728	/*
729	 * Figure out his mode and validate the packet. This has some
730	 * legacy raunch that probably should be removed. In very early
731	 * NTP versions mode 0 was equivalent to what later versions
732	 * would interpret as client mode.
733	 */
734	if (hismode == MODE_UNSPEC) {
735		if (hisversion == NTP_OLDVERSION) {
736			hismode = MODE_CLIENT;
737		} else {
738			DPRINTF(2, ("receive: drop: MODE_UNSPEC\n"));
739			sys_badlength++;
740			return;                 /* invalid mode */
741		}
742	}
743
744	/*
745	 * Parse the extension field if present. We figure out whether
746	 * an extension field is present by measuring the MAC size. If
747	 * the number of words following the packet header is 0, no MAC
748	 * is present and the packet is not authenticated. If 1, the
749	 * packet is a crypto-NAK; if 3, the packet is authenticated
750	 * with DES; if 5, the packet is authenticated with MD5; if 6,
751	 * the packet is authenticated with SHA. If 2 or * 4, the packet
752	 * is a runt and discarded forthwith. If greater than 6, an
753	 * extension field is present, so we subtract the length of the
754	 * field and go around again.
755	 *
756	 * Note the above description is lame.  We should/could also check
757	 * the two bytes that make up the EF type and subtype, and then
758	 * check the two bytes that tell us the EF length.  A legacy MAC
759	 * has a 4 byte keyID, and for conforming symmetric keys its value
760	 * must be <= 64k, meaning the top two bytes will always be zero.
761	 * Since the EF Type of 0 is reserved/unused, there's no way a
762	 * conforming legacy MAC could ever be misinterpreted as an EF.
763	 *
764	 * There is more, but this isn't the place to document it.
765	 */
766
767	authlen = LEN_PKT_NOMAC;
768	has_mac = rbufp->recv_length - authlen;
769	while (has_mac > 0) {
770		u_int32	len;
771#ifdef AUTOKEY
772		u_int32	hostlen;
773		struct exten *ep;
774#endif /*AUTOKEY */
775
776		if (has_mac % 4 != 0 || has_mac < (int)MIN_MAC_LEN) {
777			DPRINTF(2, ("receive: drop: bad post-packet length\n"));
778			sys_badlength++;
779			return;			/* bad length */
780		}
781		/*
782		 * This next test is clearly wrong - it needlessly
783		 * prohibits short EFs (which don't yet exist)
784		 */
785		if (has_mac <= (int)MAX_MAC_LEN) {
786			skeyid = ntohl(((u_int32 *)pkt)[authlen / 4]);
787			break;
788
789		} else {
790			opcode = ntohl(((u_int32 *)pkt)[authlen / 4]);
791			len = opcode & 0xffff;
792			if (   len % 4 != 0
793			    || len < 4
794			    || (int)len + authlen > rbufp->recv_length) {
795				DPRINTF(2, ("receive: drop: bad EF length\n"));
796				sys_badlength++;
797				return;		/* bad length */
798			}
799#ifdef AUTOKEY
800			/*
801			 * Extract calling group name for later.  If
802			 * sys_groupname is non-NULL, there must be
803			 * a group name provided to elicit a response.
804			 */
805			if (   (opcode & 0x3fff0000) == CRYPTO_ASSOC
806			    && sys_groupname != NULL) {
807				ep = (struct exten *)&((u_int32 *)pkt)[authlen / 4];
808				hostlen = ntohl(ep->vallen);
809				if (   hostlen >= sizeof(hostname)
810				    || hostlen > len -
811						offsetof(struct exten, pkt)) {
812					DPRINTF(2, ("receive: drop: bad autokey hostname length\n"));
813					sys_badlength++;
814					return;		/* bad length */
815				}
816				memcpy(hostname, &ep->pkt, hostlen);
817				hostname[hostlen] = '\0';
818				groupname = strchr(hostname, '@');
819				if (groupname == NULL) {
820					DPRINTF(2, ("receive: drop: empty autokey groupname\n"));
821					sys_declined++;
822					return;
823				}
824				groupname++;
825			}
826#endif /* AUTOKEY */
827			authlen += len;
828			has_mac -= len;
829		}
830	}
831
832	/*
833	 * If has_mac is < 0 we had a malformed packet.
834	 */
835	if (has_mac < 0) {
836		DPRINTF(2, ("receive: drop: post-packet under-read\n"));
837		sys_badlength++;
838		return;		/* bad length */
839	}
840
841	/*
842	** Packet Data Verification Layer
843	**
844	** This layer verifies the packet data content.  If
845	** authentication is required, a MAC must be present.
846	** If a MAC is present, it must validate.
847	** Crypto-NAK?  Look - a shiny thing!
848	**
849	** If authentication fails, we're done.
850	*/
851
852	/*
853	 * If authentication is explicitly required, a MAC must be present.
854	 */
855	if (restrict_mask & RES_DONTTRUST && has_mac == 0) {
856		DPRINTF(2, ("receive: drop: RES_DONTTRUST\n"));
857		sys_restricted++;
858		return;				/* access denied */
859	}
860
861	/*
862	 * Update the MRU list and finger the cloggers. It can be a
863	 * little expensive, so turn it off for production use.
864	 * RES_LIMITED and RES_KOD will be cleared in the returned
865	 * restrict_mask unless one or both actions are warranted.
866	 */
867	restrict_mask = ntp_monitor(rbufp, restrict_mask);
868	if (restrict_mask & RES_LIMITED) {
869		sys_limitrejected++;
870		if (   !(restrict_mask & RES_KOD)
871		    || MODE_BROADCAST == hismode
872		    || MODE_SERVER == hismode) {
873			if (MODE_SERVER == hismode) {
874				DPRINTF(1, ("Possibly self-induced rate limiting of MODE_SERVER from %s\n",
875					stoa(&rbufp->recv_srcadr)));
876			} else {
877				DPRINTF(2, ("receive: drop: RES_KOD\n"));
878			}
879			return;			/* rate exceeded */
880		}
881		if (hismode == MODE_CLIENT)
882			fast_xmit(rbufp, MODE_SERVER, skeyid,
883			    restrict_mask);
884		else
885			fast_xmit(rbufp, MODE_ACTIVE, skeyid,
886			    restrict_mask);
887		return;				/* rate exceeded */
888	}
889	restrict_mask &= ~RES_KOD;
890
891	/*
892	 * We have tossed out as many buggy packets as possible early in
893	 * the game to reduce the exposure to a clogging attack. Now we
894	 * have to burn some cycles to find the association and
895	 * authenticate the packet if required. Note that we burn only
896	 * digest cycles, again to reduce exposure. There may be no
897	 * matching association and that's okay.
898	 *
899	 * More on the autokey mambo. Normally the local interface is
900	 * found when the association was mobilized with respect to a
901	 * designated remote address. We assume packets arriving from
902	 * the remote address arrive via this interface and the local
903	 * address used to construct the autokey is the unicast address
904	 * of the interface. However, if the sender is a broadcaster,
905	 * the interface broadcast address is used instead.
906	 * Notwithstanding this technobabble, if the sender is a
907	 * multicaster, the broadcast address is null, so we use the
908	 * unicast address anyway. Don't ask.
909	 */
910
911	peer = findpeer(rbufp,  hismode, &retcode);
912	dstadr_sin = &rbufp->dstadr->sin;
913	NTOHL_FP(&pkt->org, &p_org);
914	NTOHL_FP(&pkt->rec, &p_rec);
915	NTOHL_FP(&pkt->xmt, &p_xmt);
916	hm_str = modetoa(hismode);
917	am_str = amtoa(retcode);
918
919	/*
920	 * Authentication is conditioned by three switches:
921	 *
922	 * NOPEER  (RES_NOPEER) do not mobilize an association unless
923	 *         authenticated
924	 * NOTRUST (RES_DONTTRUST) do not allow access unless
925	 *         authenticated (implies NOPEER)
926	 * enable  (sys_authenticate) master NOPEER switch, by default
927	 *         on
928	 *
929	 * The NOPEER and NOTRUST can be specified on a per-client basis
930	 * using the restrict command. The enable switch if on implies
931	 * NOPEER for all clients. There are four outcomes:
932	 *
933	 * NONE    The packet has no MAC.
934	 * OK      the packet has a MAC and authentication succeeds
935	 * ERROR   the packet has a MAC and authentication fails
936	 * CRYPTO  crypto-NAK. The MAC has four octets only.
937	 *
938	 * Note: The AUTH(x, y) macro is used to filter outcomes. If x
939	 * is zero, acceptable outcomes of y are NONE and OK. If x is
940	 * one, the only acceptable outcome of y is OK.
941	 */
942	crypto_nak_test = valid_NAK(peer, rbufp, hismode);
943
944	/*
945	 * Drop any invalid crypto-NAKs
946	 */
947	if (crypto_nak_test == INVALIDNAK) {
948		report_event(PEVNT_AUTH, peer, "Invalid_NAK");
949		if (0 != peer) {
950			peer->badNAK++;
951		}
952		msyslog(LOG_ERR, "Invalid-NAK error at %ld %s<-%s",
953			current_time, stoa(dstadr_sin), stoa(&rbufp->recv_srcadr));
954		return;
955	}
956
957	if (has_mac == 0) {
958		restrict_mask &= ~RES_MSSNTP;
959		is_authentic = AUTH_NONE; /* not required */
960		DPRINTF(2, ("receive: at %ld %s<-%s mode %d/%s:%s len %d org %#010x.%08x xmt %#010x.%08x NOMAC\n",
961			    current_time, stoa(dstadr_sin),
962			    stoa(&rbufp->recv_srcadr), hismode, hm_str, am_str,
963			    authlen,
964			    ntohl(pkt->org.l_ui), ntohl(pkt->org.l_uf),
965			    ntohl(pkt->xmt.l_ui), ntohl(pkt->xmt.l_uf)));
966	} else if (crypto_nak_test == VALIDNAK) {
967		restrict_mask &= ~RES_MSSNTP;
968		is_authentic = AUTH_CRYPTO; /* crypto-NAK */
969		DPRINTF(2, ("receive: at %ld %s<-%s mode %d/%s:%s keyid %08x len %d auth %d org %#010x.%08x xmt %#010x.%08x MAC4\n",
970			    current_time, stoa(dstadr_sin),
971			    stoa(&rbufp->recv_srcadr), hismode, hm_str, am_str,
972			    skeyid, authlen + has_mac, is_authentic,
973			    ntohl(pkt->org.l_ui), ntohl(pkt->org.l_uf),
974			    ntohl(pkt->xmt.l_ui), ntohl(pkt->xmt.l_uf)));
975
976#ifdef HAVE_NTP_SIGND
977		/*
978		 * If the signature is 20 bytes long, the last 16 of
979		 * which are zero, then this is a Microsoft client
980		 * wanting AD-style authentication of the server's
981		 * reply.
982		 *
983		 * This is described in Microsoft's WSPP docs, in MS-SNTP:
984		 * http://msdn.microsoft.com/en-us/library/cc212930.aspx
985		 */
986	} else if (   has_mac == MAX_MD5_LEN
987		   && (restrict_mask & RES_MSSNTP)
988		   && (retcode == AM_FXMIT || retcode == AM_NEWPASS)
989		   && (memcmp(zero_key, (char *)pkt + authlen + 4,
990			      MAX_MD5_LEN - 4) == 0)) {
991		is_authentic = AUTH_NONE;
992#endif /* HAVE_NTP_SIGND */
993
994	} else {
995		/*
996		 * has_mac is not 0
997		 * Not a VALID_NAK
998		 * Not an MS-SNTP SIGND  packet
999		 *
1000		 * So there is a MAC here.
1001		 */
1002
1003		restrict_mask &= ~RES_MSSNTP;
1004#ifdef AUTOKEY
1005		/*
1006		 * For autokey modes, generate the session key
1007		 * and install in the key cache. Use the socket
1008		 * broadcast or unicast address as appropriate.
1009		 */
1010		if (crypto_flags && skeyid > NTP_MAXKEY) {
1011
1012			/*
1013			 * More on the autokey dance (AKD). A cookie is
1014			 * constructed from public and private values.
1015			 * For broadcast packets, the cookie is public
1016			 * (zero). For packets that match no
1017			 * association, the cookie is hashed from the
1018			 * addresses and private value. For server
1019			 * packets, the cookie was previously obtained
1020			 * from the server. For symmetric modes, the
1021			 * cookie was previously constructed using an
1022			 * agreement protocol; however, should PKI be
1023			 * unavailable, we construct a fake agreement as
1024			 * the EXOR of the peer and host cookies.
1025			 *
1026			 * hismode	ephemeral	persistent
1027			 * =======================================
1028			 * active	0		cookie#
1029			 * passive	0%		cookie#
1030			 * client	sys cookie	0%
1031			 * server	0%		sys cookie
1032			 * broadcast	0		0
1033			 *
1034			 * # if unsync, 0
1035			 * % can't happen
1036			 */
1037			if (has_mac < (int)MAX_MD5_LEN) {
1038				DPRINTF(2, ("receive: drop: MD5 digest too short\n"));
1039				sys_badauth++;
1040				return;
1041			}
1042			if (hismode == MODE_BROADCAST) {
1043
1044				/*
1045				 * For broadcaster, use the interface
1046				 * broadcast address when available;
1047				 * otherwise, use the unicast address
1048				 * found when the association was
1049				 * mobilized. However, if this is from
1050				 * the wildcard interface, game over.
1051				 */
1052				if (   crypto_flags
1053				    && rbufp->dstadr ==
1054				       ANY_INTERFACE_CHOOSE(&rbufp->recv_srcadr)) {
1055					DPRINTF(2, ("receive: drop: BCAST from wildcard\n"));
1056					sys_restricted++;
1057					return;	     /* no wildcard */
1058				}
1059				pkeyid = 0;
1060				if (!SOCK_UNSPEC(&rbufp->dstadr->bcast))
1061					dstadr_sin =
1062					    &rbufp->dstadr->bcast;
1063			} else if (peer == NULL) {
1064				pkeyid = session_key(
1065				    &rbufp->recv_srcadr, dstadr_sin, 0,
1066				    sys_private, 0);
1067			} else {
1068				pkeyid = peer->pcookie;
1069			}
1070
1071			/*
1072			 * The session key includes both the public
1073			 * values and cookie. In case of an extension
1074			 * field, the cookie used for authentication
1075			 * purposes is zero. Note the hash is saved for
1076			 * use later in the autokey mambo.
1077			 */
1078			if (authlen > (int)LEN_PKT_NOMAC && pkeyid != 0) {
1079				session_key(&rbufp->recv_srcadr,
1080				    dstadr_sin, skeyid, 0, 2);
1081				tkeyid = session_key(
1082				    &rbufp->recv_srcadr, dstadr_sin,
1083				    skeyid, pkeyid, 0);
1084			} else {
1085				tkeyid = session_key(
1086				    &rbufp->recv_srcadr, dstadr_sin,
1087				    skeyid, pkeyid, 2);
1088			}
1089
1090		}
1091#endif	/* AUTOKEY */
1092
1093		/*
1094		 * Compute the cryptosum. Note a clogging attack may
1095		 * succeed in bloating the key cache. If an autokey,
1096		 * purge it immediately, since we won't be needing it
1097		 * again. If the packet is authentic, it can mobilize an
1098		 * association. Note that there is no key zero.
1099		 */
1100		if (!authdecrypt(skeyid, (u_int32 *)pkt, authlen,
1101		    has_mac))
1102			is_authentic = AUTH_ERROR;
1103		else
1104			is_authentic = AUTH_OK;
1105#ifdef AUTOKEY
1106		if (crypto_flags && skeyid > NTP_MAXKEY)
1107			authtrust(skeyid, 0);
1108#endif	/* AUTOKEY */
1109		DPRINTF(2, ("receive: at %ld %s<-%s mode %d/%s:%s keyid %08x len %d auth %d org %#010x.%08x xmt %#010x.%08x\n",
1110			    current_time, stoa(dstadr_sin),
1111			    stoa(&rbufp->recv_srcadr), hismode, hm_str, am_str,
1112			    skeyid, authlen + has_mac, is_authentic,
1113			    ntohl(pkt->org.l_ui), ntohl(pkt->org.l_uf),
1114			    ntohl(pkt->xmt.l_ui), ntohl(pkt->xmt.l_uf)));
1115	}
1116
1117
1118	/*
1119	 * Bug 3454:
1120	 *
1121	 * Now come at this from a different perspective:
1122	 * - If we expect a MAC and it's not there, we drop it.
1123	 * - If we expect one keyID and get another, we drop it.
1124	 * - If we have a MAC ahd it hasn't been validated yet, try.
1125	 * - if the provided MAC doesn't validate, we drop it.
1126	 *
1127	 * There might be more to this.
1128	 */
1129	if (0 != peer && 0 != peer->keyid) {
1130		/* Should we msyslog() any of these? */
1131
1132		/*
1133		 * This should catch:
1134		 * - no keyID where one is expected,
1135		 * - different keyID than what we expect.
1136		 */
1137		if (peer->keyid != skeyid) {
1138			DPRINTF(2, ("receive: drop: Wanted keyID %d, got %d from %s\n",
1139				    peer->keyid, skeyid,
1140				    stoa(&rbufp->recv_srcadr)));
1141			sys_restricted++;
1142			return;			/* drop: access denied */
1143		}
1144
1145		/*
1146		 * if has_mac != 0 ...
1147		 * - If it has not yet been validated, do so.
1148		 *   (under what circumstances might that happen?)
1149		 * - if missing or bad MAC, log and drop.
1150		 */
1151		if (0 != has_mac) {
1152			if (is_authentic == AUTH_UNKNOWN) {
1153				/* How can this happen? */
1154				DPRINTF(2, ("receive: 3454 check: AUTH_UNKNOWN from %s\n",
1155				    stoa(&rbufp->recv_srcadr)));
1156				if (!authdecrypt(skeyid, (u_int32 *)pkt, authlen,
1157				    has_mac)) {
1158					/* MAC invalid or not found */
1159					is_authentic = AUTH_ERROR;
1160				} else {
1161					is_authentic = AUTH_OK;
1162				}
1163			}
1164			if (is_authentic != AUTH_OK) {
1165				DPRINTF(2, ("receive: drop: missing or bad MAC from %s\n",
1166					    stoa(&rbufp->recv_srcadr)));
1167				sys_restricted++;
1168				return;		/* drop: access denied */
1169			}
1170		}
1171	}
1172	/**/
1173
1174	/*
1175	** On-Wire Protocol Layer
1176	**
1177	** Verify protocol operations consistent with the on-wire protocol.
1178	** The protocol discards bogus and duplicate packets as well as
1179	** minimizes disruptions doe to protocol restarts and dropped
1180	** packets.  The operations are controlled by two timestamps:
1181	** the transmit timestamp saved in the client state variables,
1182	** and the origin timestamp in the server packet header.  The
1183	** comparison of these two timestamps is called the loopback test.
1184	** The transmit timestamp functions as a nonce to verify that the
1185	** response corresponds to the original request.  The transmit
1186	** timestamp also serves to discard replays of the most recent
1187	** packet.  Upon failure of either test, the packet is discarded
1188	** with no further action.
1189	*/
1190
1191	/*
1192	 * The association matching rules are implemented by a set of
1193	 * routines and an association table. A packet matching an
1194	 * association is processed by the peer process for that
1195	 * association. If there are no errors, an ephemeral association
1196	 * is mobilized: a broadcast packet mobilizes a broadcast client
1197	 * aassociation; a manycast server packet mobilizes a manycast
1198	 * client association; a symmetric active packet mobilizes a
1199	 * symmetric passive association.
1200	 */
1201	switch (retcode) {
1202
1203	/*
1204	 * This is a client mode packet not matching any association. If
1205	 * an ordinary client, simply toss a server mode packet back
1206	 * over the fence. If a manycast client, we have to work a
1207	 * little harder.
1208	 *
1209	 * There are cases here where we do not call record_raw_stats().
1210	 */
1211	case AM_FXMIT:
1212
1213		/*
1214		 * If authentication OK, send a server reply; otherwise,
1215		 * send a crypto-NAK.
1216		 */
1217		if (!(rbufp->dstadr->flags & INT_MCASTOPEN)) {
1218			/* HMS: would be nice to log FAST_XMIT|BADAUTH|RESTRICTED */
1219			record_raw_stats(&rbufp->recv_srcadr,
1220			    &rbufp->dstadr->sin,
1221			    &p_org, &p_rec, &p_xmt, &rbufp->recv_time,
1222			    PKT_LEAP(pkt->li_vn_mode),
1223			    PKT_VERSION(pkt->li_vn_mode),
1224			    PKT_MODE(pkt->li_vn_mode),
1225			    PKT_TO_STRATUM(pkt->stratum),
1226			    pkt->ppoll,
1227			    pkt->precision,
1228			    FPTOD(NTOHS_FP(pkt->rootdelay)),
1229			    FPTOD(NTOHS_FP(pkt->rootdisp)),
1230			    pkt->refid,
1231			    rbufp->recv_length - MIN_V4_PKT_LEN, (u_char *)&pkt->exten);
1232
1233			if (AUTH(restrict_mask & RES_DONTTRUST,
1234			   is_authentic)) {
1235				fast_xmit(rbufp, MODE_SERVER, skeyid,
1236				    restrict_mask);
1237			} else if (is_authentic == AUTH_ERROR) {
1238				fast_xmit(rbufp, MODE_SERVER, 0,
1239				    restrict_mask);
1240				sys_badauth++;
1241			} else {
1242				DPRINTF(2, ("receive: AM_FXMIT drop: !mcast restricted\n"));
1243				sys_restricted++;
1244			}
1245
1246			return;			/* hooray */
1247		}
1248
1249		/*
1250		 * This must be manycast. Do not respond if not
1251		 * configured as a manycast server.
1252		 */
1253		if (!sys_manycastserver) {
1254			DPRINTF(2, ("receive: AM_FXMIT drop: Not manycastserver\n"));
1255			sys_restricted++;
1256			return;			/* not enabled */
1257		}
1258
1259#ifdef AUTOKEY
1260		/*
1261		 * Do not respond if not the same group.
1262		 */
1263		if (group_test(groupname, NULL)) {
1264			DPRINTF(2, ("receive: AM_FXMIT drop: empty groupname\n"));
1265			sys_declined++;
1266			return;
1267		}
1268#endif /* AUTOKEY */
1269
1270		/*
1271		 * Do not respond if we are not synchronized or our
1272		 * stratum is greater than the manycaster or the
1273		 * manycaster has already synchronized to us.
1274		 */
1275		if (   sys_leap == LEAP_NOTINSYNC
1276		    || sys_stratum >= hisstratum
1277		    || (!sys_cohort && sys_stratum == hisstratum + 1)
1278		    || rbufp->dstadr->addr_refid == pkt->refid) {
1279			DPRINTF(2, ("receive: AM_FXMIT drop: LEAP_NOTINSYNC || stratum || loop\n"));
1280			sys_declined++;
1281			return;			/* no help */
1282		}
1283
1284		/*
1285		 * Respond only if authentication succeeds. Don't do a
1286		 * crypto-NAK, as that would not be useful.
1287		 */
1288		if (AUTH(restrict_mask & RES_DONTTRUST, is_authentic)) {
1289			record_raw_stats(&rbufp->recv_srcadr,
1290			    &rbufp->dstadr->sin,
1291			    &p_org, &p_rec, &p_xmt, &rbufp->recv_time,
1292			    PKT_LEAP(pkt->li_vn_mode),
1293			    PKT_VERSION(pkt->li_vn_mode),
1294			    PKT_MODE(pkt->li_vn_mode),
1295			    PKT_TO_STRATUM(pkt->stratum),
1296			    pkt->ppoll,
1297			    pkt->precision,
1298			    FPTOD(NTOHS_FP(pkt->rootdelay)),
1299			    FPTOD(NTOHS_FP(pkt->rootdisp)),
1300			    pkt->refid,
1301			    rbufp->recv_length - MIN_V4_PKT_LEN, (u_char *)&pkt->exten);
1302
1303			fast_xmit(rbufp, MODE_SERVER, skeyid,
1304			    restrict_mask);
1305		}
1306		return;				/* hooray */
1307
1308	/*
1309	 * This is a server mode packet returned in response to a client
1310	 * mode packet sent to a multicast group address (for
1311	 * manycastclient) or to a unicast address (for pool). The
1312	 * origin timestamp is a good nonce to reliably associate the
1313	 * reply with what was sent. If there is no match, that's
1314	 * curious and could be an intruder attempting to clog, so we
1315	 * just ignore it.
1316	 *
1317	 * If the packet is authentic and the manycastclient or pool
1318	 * association is found, we mobilize a client association and
1319	 * copy pertinent variables from the manycastclient or pool
1320	 * association to the new client association. If not, just
1321	 * ignore the packet.
1322	 *
1323	 * There is an implosion hazard at the manycast client, since
1324	 * the manycast servers send the server packet immediately. If
1325	 * the guy is already here, don't fire up a duplicate.
1326	 *
1327	 * There are cases here where we do not call record_raw_stats().
1328	 */
1329	case AM_MANYCAST:
1330
1331#ifdef AUTOKEY
1332		/*
1333		 * Do not respond if not the same group.
1334		 */
1335		if (group_test(groupname, NULL)) {
1336			DPRINTF(2, ("receive: AM_MANYCAST drop: empty groupname\n"));
1337			sys_declined++;
1338			return;
1339		}
1340#endif /* AUTOKEY */
1341		if ((peer2 = findmanycastpeer(rbufp)) == NULL) {
1342			DPRINTF(2, ("receive: AM_MANYCAST drop: No manycast peer\n"));
1343			sys_restricted++;
1344			return;			/* not enabled */
1345		}
1346		if (!AUTH(  (!(peer2->cast_flags & MDF_POOL)
1347			     && sys_authenticate)
1348			  || (restrict_mask & (RES_NOPEER |
1349			      RES_DONTTRUST)), is_authentic)
1350		    /* MC: RES_NOEPEER? */
1351		   ) {
1352			DPRINTF(2, ("receive: AM_MANYCAST drop: bad auth || (NOPEER|DONTTRUST)\n"));
1353			sys_restricted++;
1354			return;			/* access denied */
1355		}
1356
1357		/*
1358		 * Do not respond if unsynchronized or stratum is below
1359		 * the floor or at or above the ceiling.
1360		 */
1361		if (   hisleap == LEAP_NOTINSYNC
1362		    || hisstratum < sys_floor
1363		    || hisstratum >= sys_ceiling) {
1364			DPRINTF(2, ("receive: AM_MANYCAST drop: unsync/stratum\n"));
1365			sys_declined++;
1366			return;			/* no help */
1367		}
1368		peer = newpeer(&rbufp->recv_srcadr, NULL, rbufp->dstadr,
1369			       r4a.ippeerlimit, MODE_CLIENT, hisversion,
1370			       peer2->minpoll, peer2->maxpoll,
1371			       FLAG_PREEMPT | (FLAG_IBURST & peer2->flags),
1372			       MDF_UCAST | MDF_UCLNT, 0, skeyid, sys_ident);
1373		if (NULL == peer) {
1374			DPRINTF(2, ("receive: AM_MANYCAST drop: duplicate\n"));
1375			sys_declined++;
1376			return;			/* ignore duplicate  */
1377		}
1378
1379		/*
1380		 * After each ephemeral pool association is spun,
1381		 * accelerate the next poll for the pool solicitor so
1382		 * the pool will fill promptly.
1383		 */
1384		if (peer2->cast_flags & MDF_POOL)
1385			peer2->nextdate = current_time + 1;
1386
1387		/*
1388		 * Further processing of the solicitation response would
1389		 * simply detect its origin timestamp as bogus for the
1390		 * brand-new association (it matches the prototype
1391		 * association) and tinker with peer->nextdate delaying
1392		 * first sync.
1393		 */
1394		return;		/* solicitation response handled */
1395
1396	/*
1397	 * This is the first packet received from a broadcast server. If
1398	 * the packet is authentic and we are enabled as broadcast
1399	 * client, mobilize a broadcast client association. We don't
1400	 * kiss any frogs here.
1401	 *
1402	 * There are cases here where we do not call record_raw_stats().
1403	 */
1404	case AM_NEWBCL:
1405
1406#ifdef AUTOKEY
1407		/*
1408		 * Do not respond if not the same group.
1409		 */
1410		if (group_test(groupname, sys_ident)) {
1411			DPRINTF(2, ("receive: AM_NEWBCL drop: groupname mismatch\n"));
1412			sys_declined++;
1413			return;
1414		}
1415#endif /* AUTOKEY */
1416		if (sys_bclient == 0) {
1417			DPRINTF(2, ("receive: AM_NEWBCL drop: not a bclient\n"));
1418			sys_restricted++;
1419			return;			/* not enabled */
1420		}
1421		if (!AUTH(sys_authenticate | (restrict_mask &
1422			  (RES_NOPEER | RES_DONTTRUST)), is_authentic)
1423		    /* NEWBCL: RES_NOEPEER? */
1424		   ) {
1425			DPRINTF(2, ("receive: AM_NEWBCL drop: AUTH failed\n"));
1426			sys_restricted++;
1427			return;			/* access denied */
1428		}
1429
1430		/*
1431		 * Do not respond if unsynchronized or stratum is below
1432		 * the floor or at or above the ceiling.
1433		 */
1434		if (   hisleap == LEAP_NOTINSYNC
1435		    || hisstratum < sys_floor
1436		    || hisstratum >= sys_ceiling) {
1437			DPRINTF(2, ("receive: AM_NEWBCL drop: Unsync or bad stratum\n"));
1438			sys_declined++;
1439			return;			/* no help */
1440		}
1441
1442#ifdef AUTOKEY
1443		/*
1444		 * Do not respond if Autokey and the opcode is not a
1445		 * CRYPTO_ASSOC response with association ID.
1446		 */
1447		if (   crypto_flags && skeyid > NTP_MAXKEY
1448		    && (opcode & 0xffff0000) != (CRYPTO_ASSOC | CRYPTO_RESP)) {
1449			DPRINTF(2, ("receive: AM_NEWBCL drop: Autokey but not CRYPTO_ASSOC\n"));
1450			sys_declined++;
1451			return;			/* protocol error */
1452		}
1453#endif	/* AUTOKEY */
1454
1455		/*
1456		 * Broadcasts received via a multicast address may
1457		 * arrive after a unicast volley has begun
1458		 * with the same remote address.  newpeer() will not
1459		 * find duplicate associations on other local endpoints
1460		 * if a non-NULL endpoint is supplied.  multicastclient
1461		 * ephemeral associations are unique across all local
1462		 * endpoints.
1463		 */
1464		if (!(INT_MCASTOPEN & rbufp->dstadr->flags))
1465			match_ep = rbufp->dstadr;
1466		else
1467			match_ep = NULL;
1468
1469		/*
1470		 * Determine whether to execute the initial volley.
1471		 */
1472		if (sys_bdelay > 0.0) {
1473#ifdef AUTOKEY
1474			/*
1475			 * If a two-way exchange is not possible,
1476			 * neither is Autokey.
1477			 */
1478			if (crypto_flags && skeyid > NTP_MAXKEY) {
1479				sys_restricted++;
1480				DPRINTF(2, ("receive: AM_NEWBCL drop: Autokey but not 2-way\n"));
1481				return;		/* no autokey */
1482			}
1483#endif	/* AUTOKEY */
1484
1485			/*
1486			 * Do not execute the volley. Start out in
1487			 * broadcast client mode.
1488			 */
1489			peer = newpeer(&rbufp->recv_srcadr, NULL, match_ep,
1490			    r4a.ippeerlimit, MODE_BCLIENT, hisversion,
1491			    pkt->ppoll, pkt->ppoll,
1492			    FLAG_PREEMPT, MDF_BCLNT, 0, skeyid, sys_ident);
1493			if (NULL == peer) {
1494				DPRINTF(2, ("receive: AM_NEWBCL drop: duplicate\n"));
1495				sys_restricted++;
1496				return;		/* ignore duplicate */
1497
1498			} else {
1499				peer->delay = sys_bdelay;
1500				peer->bxmt = p_xmt;
1501			}
1502			break;
1503		}
1504
1505		/*
1506		 * Execute the initial volley in order to calibrate the
1507		 * propagation delay and run the Autokey protocol.
1508		 *
1509		 * Note that the minpoll is taken from the broadcast
1510		 * packet, normally 6 (64 s) and that the poll interval
1511		 * is fixed at this value.
1512		 */
1513		peer = newpeer(&rbufp->recv_srcadr, NULL, match_ep,
1514		    r4a.ippeerlimit, MODE_CLIENT, hisversion,
1515		    pkt->ppoll, pkt->ppoll,
1516		    FLAG_BC_VOL | FLAG_IBURST | FLAG_PREEMPT, MDF_BCLNT,
1517		    0, skeyid, sys_ident);
1518		if (NULL == peer) {
1519			DPRINTF(2, ("receive: AM_NEWBCL drop: empty newpeer() failed\n"));
1520			sys_restricted++;
1521			return;			/* ignore duplicate */
1522		}
1523		peer->bxmt = p_xmt;
1524#ifdef AUTOKEY
1525		if (skeyid > NTP_MAXKEY)
1526			crypto_recv(peer, rbufp);
1527#endif	/* AUTOKEY */
1528
1529		return;				/* hooray */
1530
1531	/*
1532	 * This is the first packet received from a symmetric active
1533	 * peer.  If the packet is authentic, the first he sent, and
1534	 * RES_NOEPEER is not enabled, mobilize a passive association
1535	 * If not, kiss the frog.
1536	 *
1537	 * There are cases here where we do not call record_raw_stats().
1538	 */
1539	case AM_NEWPASS:
1540
1541#ifdef AUTOKEY
1542		/*
1543		 * Do not respond if not the same group.
1544		 */
1545		if (group_test(groupname, sys_ident)) {
1546			DPRINTF(2, ("receive: AM_NEWPASS drop: Autokey group mismatch\n"));
1547			sys_declined++;
1548			return;
1549		}
1550#endif /* AUTOKEY */
1551		if (!AUTH(sys_authenticate | (restrict_mask &
1552			  (RES_NOPEER | RES_DONTTRUST)), is_authentic)
1553		   ) {
1554			if (0 == (restrict_mask & RES_NOEPEER)) {
1555				/*
1556				 * If authenticated but cannot mobilize an
1557				 * association, send a symmetric passive
1558				 * response without mobilizing an association.
1559				 * This is for drat broken Windows clients. See
1560				 * Microsoft KB 875424 for preferred workaround.
1561				 */
1562				if (AUTH(restrict_mask & RES_DONTTRUST,
1563					 is_authentic)) {
1564					fast_xmit(rbufp, MODE_PASSIVE, skeyid,
1565					    restrict_mask);
1566					return;			/* hooray */
1567				}
1568				if (is_authentic == AUTH_ERROR) {
1569					fast_xmit(rbufp, MODE_ACTIVE, 0,
1570					    restrict_mask);
1571					sys_restricted++;
1572					return;
1573				}
1574			}
1575			/* [Bug 2941]
1576			 * If we got here, the packet isn't part of an
1577			 * existing association, either isn't correctly
1578			 * authenticated or it is but we are refusing
1579			 * ephemeral peer requests, and it didn't meet
1580			 * either of the previous two special cases so we
1581			 * should just drop it on the floor.  For example,
1582			 * crypto-NAKs (is_authentic == AUTH_CRYPTO)
1583			 * will make it this far.  This is just
1584			 * debug-printed and not logged to avoid log
1585			 * flooding.
1586			 */
1587			DPRINTF(2, ("receive: at %ld refusing to mobilize passive association"
1588				    " with unknown peer %s mode %d/%s:%s keyid %08x len %d auth %d\n",
1589				    current_time, stoa(&rbufp->recv_srcadr),
1590				    hismode, hm_str, am_str, skeyid,
1591				    (authlen + has_mac), is_authentic));
1592			sys_declined++;
1593			return;
1594		}
1595
1596		/*
1597		 * Do not respond if synchronized and if stratum is
1598		 * below the floor or at or above the ceiling. Note,
1599		 * this allows an unsynchronized peer to synchronize to
1600		 * us. It would be very strange if he did and then was
1601		 * nipped, but that could only happen if we were
1602		 * operating at the top end of the range.  It also means
1603		 * we will spin an ephemeral association in response to
1604		 * MODE_ACTIVE KoDs, which will time out eventually.
1605		 */
1606		if (   hisleap != LEAP_NOTINSYNC
1607		    && (hisstratum < sys_floor || hisstratum >= sys_ceiling)) {
1608			DPRINTF(2, ("receive: AM_NEWPASS drop: Autokey group mismatch\n"));
1609			sys_declined++;
1610			return;			/* no help */
1611		}
1612
1613		/*
1614		 * The message is correctly authenticated and allowed.
1615		 * Mobilize a symmetric passive association, if we won't
1616		 * exceed the ippeerlimit.
1617		 */
1618		if ((peer = newpeer(&rbufp->recv_srcadr, NULL, rbufp->dstadr,
1619				    r4a.ippeerlimit, MODE_PASSIVE, hisversion,
1620				    pkt->ppoll, NTP_MAXDPOLL, 0, MDF_UCAST, 0,
1621				    skeyid, sys_ident)) == NULL) {
1622			DPRINTF(2, ("receive: AM_NEWPASS drop: newpeer() failed\n"));
1623			sys_declined++;
1624			return;			/* ignore duplicate */
1625		}
1626		break;
1627
1628
1629	/*
1630	 * Process regular packet. Nothing special.
1631	 *
1632	 * There are cases here where we do not call record_raw_stats().
1633	 */
1634	case AM_PROCPKT:
1635
1636#ifdef AUTOKEY
1637		/*
1638		 * Do not respond if not the same group.
1639		 */
1640		if (group_test(groupname, peer->ident)) {
1641			DPRINTF(2, ("receive: AM_PROCPKT drop: Autokey group mismatch\n"));
1642			sys_declined++;
1643			return;
1644		}
1645#endif /* AUTOKEY */
1646
1647		if (MODE_BROADCAST == hismode) {
1648			int	bail = 0;
1649			l_fp	tdiff;
1650			u_long	deadband;
1651
1652			DPRINTF(2, ("receive: PROCPKT/BROADCAST: prev pkt %ld seconds ago, ppoll: %d, %d secs\n",
1653				    (current_time - peer->timelastrec),
1654				    peer->ppoll, (1 << peer->ppoll)
1655				    ));
1656			/* Things we can check:
1657			 *
1658			 * Did the poll interval change?
1659			 * Is the poll interval in the packet in-range?
1660			 * Did this packet arrive too soon?
1661			 * Is the timestamp in this packet monotonic
1662			 *  with respect to the previous packet?
1663			 */
1664
1665			/* This is noteworthy, not error-worthy */
1666			if (pkt->ppoll != peer->ppoll) {
1667				msyslog(LOG_INFO, "receive: broadcast poll from %s changed from %u to %u",
1668					stoa(&rbufp->recv_srcadr),
1669					peer->ppoll, pkt->ppoll);
1670			}
1671
1672			/* This is error-worthy */
1673			if (pkt->ppoll < peer->minpoll ||
1674			    pkt->ppoll > peer->maxpoll  ) {
1675				msyslog(LOG_INFO, "receive: broadcast poll of %u from %s is out-of-range (%d to %d)!",
1676					pkt->ppoll, stoa(&rbufp->recv_srcadr),
1677					peer->minpoll, peer->maxpoll);
1678				++bail;
1679			}
1680
1681			/* too early? worth an error, too!
1682			 *
1683			 * [Bug 3113] Ensure that at least one poll
1684			 * interval has elapsed since the last **clean**
1685			 * packet was received.  We limit the check to
1686			 * **clean** packets to prevent replayed packets
1687			 * and incorrectly authenticated packets, which
1688			 * we'll discard, from being used to create a
1689			 * denial of service condition.
1690			 */
1691			deadband = (1u << pkt->ppoll);
1692			if (FLAG_BC_VOL & peer->flags)
1693				deadband -= 3;	/* allow greater fuzz after volley */
1694			if ((current_time - peer->timereceived) < deadband) {
1695				msyslog(LOG_INFO, "receive: broadcast packet from %s arrived after %lu, not %lu seconds!",
1696					stoa(&rbufp->recv_srcadr),
1697					(current_time - peer->timereceived),
1698					deadband);
1699				++bail;
1700			}
1701
1702			/* Alert if time from the server is non-monotonic.
1703			 *
1704			 * [Bug 3114] is about Broadcast mode replay DoS.
1705			 *
1706			 * Broadcast mode *assumes* a trusted network.
1707			 * Even so, it's nice to be robust in the face
1708			 * of attacks.
1709			 *
1710			 * If we get an authenticated broadcast packet
1711			 * with an "earlier" timestamp, it means one of
1712			 * two things:
1713			 *
1714			 * - the broadcast server had a backward step.
1715			 *
1716			 * - somebody is trying a replay attack.
1717			 *
1718			 * deadband: By default, we assume the broadcast
1719			 * network is trustable, so we take our accepted
1720			 * broadcast packets as we receive them.  But
1721			 * some folks might want to take additional poll
1722			 * delays before believing a backward step.
1723			 */
1724			if (sys_bcpollbstep) {
1725				/* pkt->ppoll or peer->ppoll ? */
1726				deadband = (1u << pkt->ppoll)
1727					   * sys_bcpollbstep + 2;
1728			} else {
1729				deadband = 0;
1730			}
1731
1732			if (L_ISZERO(&peer->bxmt)) {
1733				tdiff.l_ui = tdiff.l_uf = 0;
1734			} else {
1735				tdiff = p_xmt;
1736				L_SUB(&tdiff, &peer->bxmt);
1737			}
1738			if (tdiff.l_i < 0 &&
1739			    (current_time - peer->timereceived) < deadband)
1740			{
1741				msyslog(LOG_INFO, "receive: broadcast packet from %s contains non-monotonic timestamp: %#010x.%08x -> %#010x.%08x",
1742					stoa(&rbufp->recv_srcadr),
1743					peer->bxmt.l_ui, peer->bxmt.l_uf,
1744					p_xmt.l_ui, p_xmt.l_uf
1745					);
1746				++bail;
1747			}
1748
1749			if (bail) {
1750				DPRINTF(2, ("receive: AM_PROCPKT drop: bail\n"));
1751				peer->timelastrec = current_time;
1752				sys_declined++;
1753				return;
1754			}
1755		}
1756
1757		break;
1758
1759	/*
1760	 * A passive packet matches a passive association. This is
1761	 * usually the result of reconfiguring a client on the fly. As
1762	 * this association might be legitimate and this packet an
1763	 * attempt to deny service, just ignore it.
1764	 */
1765	case AM_ERR:
1766		DPRINTF(2, ("receive: AM_ERR drop.\n"));
1767		sys_declined++;
1768		return;
1769
1770	/*
1771	 * For everything else there is the bit bucket.
1772	 */
1773	default:
1774		DPRINTF(2, ("receive: default drop.\n"));
1775		sys_declined++;
1776		return;
1777	}
1778
1779#ifdef AUTOKEY
1780	/*
1781	 * If the association is configured for Autokey, the packet must
1782	 * have a public key ID; if not, the packet must have a
1783	 * symmetric key ID.
1784	 */
1785	if (   is_authentic != AUTH_CRYPTO
1786	    && (   ((peer->flags & FLAG_SKEY) && skeyid <= NTP_MAXKEY)
1787	        || (!(peer->flags & FLAG_SKEY) && skeyid > NTP_MAXKEY))) {
1788		DPRINTF(2, ("receive: drop: Autokey but wrong/bad auth\n"));
1789		sys_badauth++;
1790		return;
1791	}
1792#endif	/* AUTOKEY */
1793
1794	peer->received++;
1795	peer->flash &= ~PKT_TEST_MASK;
1796	if (peer->flags & FLAG_XBOGUS) {
1797		peer->flags &= ~FLAG_XBOGUS;
1798		peer->flash |= TEST3;
1799	}
1800
1801	/*
1802	 * Next comes a rigorous schedule of timestamp checking. If the
1803	 * transmit timestamp is zero, the server has not initialized in
1804	 * interleaved modes or is horribly broken.
1805	 *
1806	 * A KoD packet we pay attention to cannot have a 0 transmit
1807	 * timestamp.
1808	 */
1809
1810	kissCode = kiss_code_check(hisleap, hisstratum, hismode, pkt->refid);
1811
1812	if (L_ISZERO(&p_xmt)) {
1813		peer->flash |= TEST3;			/* unsynch */
1814		if (kissCode != NOKISS) {		/* KoD packet */
1815			peer->bogusorg++;		/* for TEST2 or TEST3 */
1816			msyslog(LOG_INFO,
1817				"receive: Unexpected zero transmit timestamp in KoD from %s",
1818				ntoa(&peer->srcadr));
1819			return;
1820		}
1821
1822	/*
1823	 * If the transmit timestamp duplicates our previous one, the
1824	 * packet is a replay. This prevents the bad guys from replaying
1825	 * the most recent packet, authenticated or not.
1826	 */
1827	} else if (L_ISEQU(&peer->xmt, &p_xmt)) {
1828		DPRINTF(2, ("receive: drop: Duplicate xmit\n"));
1829		peer->flash |= TEST1;			/* duplicate */
1830		peer->oldpkt++;
1831		return;
1832
1833	/*
1834	 * If this is a broadcast mode packet, make sure hisstratum
1835	 * is appropriate.  Don't do anything else here - we wait to
1836	 * see if this is an interleave broadcast packet until after
1837	 * we've validated the MAC that SHOULD be provided.
1838	 *
1839	 * hisstratum cannot be 0 - see assertion above.
1840	 * If hisstratum is 15, then we'll advertise as UNSPEC but
1841	 * at least we'll be able to sync with the broadcast server.
1842	 */
1843	} else if (hismode == MODE_BROADCAST) {
1844		/* 0 is unexpected too, and impossible */
1845		if (STRATUM_UNSPEC <= hisstratum) {
1846			/* Is this a ++sys_declined or ??? */
1847			msyslog(LOG_INFO,
1848				"receive: Unexpected stratum (%d) in broadcast from %s",
1849				hisstratum, ntoa(&peer->srcadr));
1850			return;
1851		}
1852
1853	/*
1854	 * Basic KoD validation checking:
1855	 *
1856	 * KoD packets are a mixed-blessing.  Forged KoD packets
1857	 * are DoS attacks.  There are rare situations where we might
1858	 * get a valid KoD response, though.  Since KoD packets are
1859	 * a special case that complicate the checks we do next, we
1860	 * handle the basic KoD checks here.
1861	 *
1862	 * Note that we expect the incoming KoD packet to have its
1863	 * (nonzero) org, rec, and xmt timestamps set to the xmt timestamp
1864	 * that we have previously sent out.  Watch interleave mode.
1865	 */
1866	} else if (kissCode != NOKISS) {
1867		DEBUG_INSIST(!L_ISZERO(&p_xmt));
1868		if (   L_ISZERO(&p_org)		/* We checked p_xmt above */
1869		    || L_ISZERO(&p_rec)) {
1870			peer->bogusorg++;
1871			msyslog(LOG_INFO,
1872				"receive: KoD packet from %s has a zero org or rec timestamp.  Ignoring.",
1873				ntoa(&peer->srcadr));
1874			return;
1875		}
1876
1877		if (   !L_ISEQU(&p_xmt, &p_org)
1878		    || !L_ISEQU(&p_xmt, &p_rec)) {
1879			peer->bogusorg++;
1880			msyslog(LOG_INFO,
1881				"receive: KoD packet from %s has inconsistent xmt/org/rec timestamps.  Ignoring.",
1882				ntoa(&peer->srcadr));
1883			return;
1884		}
1885
1886		/* Be conservative */
1887		if (peer->flip == 0 && !L_ISEQU(&p_org, &peer->aorg)) {
1888			peer->bogusorg++;
1889			msyslog(LOG_INFO,
1890				"receive: flip 0 KoD origin timestamp %#010x.%08x from %s does not match %#010x.%08x - ignoring.",
1891				p_org.l_ui, p_org.l_uf,
1892				ntoa(&peer->srcadr),
1893				peer->aorg.l_ui, peer->aorg.l_uf);
1894			return;
1895		} else if (peer->flip == 1 && !L_ISEQU(&p_org, &peer->borg)) {
1896			peer->bogusorg++;
1897			msyslog(LOG_INFO,
1898				"receive: flip 1 KoD origin timestamp %#010x.%08x from %s does not match interleave %#010x.%08x - ignoring.",
1899				p_org.l_ui, p_org.l_uf,
1900				ntoa(&peer->srcadr),
1901				peer->borg.l_ui, peer->borg.l_uf);
1902			return;
1903		}
1904
1905	/*
1906	 * Basic mode checks:
1907	 *
1908	 * If there is no origin timestamp, it's either an initial packet
1909	 * or we've already received a response to our query.  Of course,
1910	 * should 'aorg' be all-zero because this really was the original
1911	 * transmit timestamp, we'll ignore this reply.  There is a window
1912	 * of one nanosecond once every 136 years' time where this is
1913	 * possible.  We currently ignore this situation, as a completely
1914	 * zero timestamp is (quietly?) disallowed.
1915	 *
1916	 * Otherwise, check for bogus packet in basic mode.
1917	 * If it is bogus, switch to interleaved mode and resynchronize,
1918	 * but only after confirming the packet is not bogus in
1919	 * symmetric interleaved mode.
1920	 *
1921	 * This could also mean somebody is forging packets claiming to
1922	 * be from us, attempting to cause our server to KoD us.
1923	 *
1924	 * We have earlier asserted that hisstratum cannot be 0.
1925	 * If hisstratum is STRATUM_UNSPEC, it means he's not sync'd.
1926	 */
1927	} else if (peer->flip == 0) {
1928		if (0) {
1929		} else if (L_ISZERO(&p_org)) {
1930			const char *action;
1931
1932#ifdef BUG3361
1933			msyslog(LOG_INFO,
1934				"receive: BUG 3361: Clearing peer->aorg ");
1935			L_CLR(&peer->aorg);
1936#endif
1937			/**/
1938			switch (hismode) {
1939			/* We allow 0org for: */
1940			    case UCHAR_MAX:
1941				action = "Allow";
1942				break;
1943			/* We disallow 0org for: */
1944			    case MODE_UNSPEC:
1945			    case MODE_ACTIVE:
1946			    case MODE_PASSIVE:
1947			    case MODE_CLIENT:
1948			    case MODE_SERVER:
1949			    case MODE_BROADCAST:
1950				action = "Drop";
1951				peer->bogusorg++;
1952				peer->flash |= TEST2;	/* bogus */
1953				break;
1954			    default:
1955				action = "";	/* for cranky compilers / MSVC */
1956				INSIST(!"receive(): impossible hismode");
1957				break;
1958			}
1959			/**/
1960			msyslog(LOG_INFO,
1961				"receive: %s 0 origin timestamp from %s@%s xmt %#010x.%08x",
1962				action, hm_str, ntoa(&peer->srcadr),
1963				ntohl(pkt->xmt.l_ui), ntohl(pkt->xmt.l_uf));
1964		} else if (!L_ISEQU(&p_org, &peer->aorg)) {
1965			/* are there cases here where we should bail? */
1966			/* Should we set TEST2 if we decide to try xleave? */
1967			peer->bogusorg++;
1968			peer->flash |= TEST2;	/* bogus */
1969			msyslog(LOG_INFO,
1970				"receive: Unexpected origin timestamp %#010x.%08x does not match aorg %#010x.%08x from %s@%s xmt %#010x.%08x",
1971				ntohl(pkt->org.l_ui), ntohl(pkt->org.l_uf),
1972				peer->aorg.l_ui, peer->aorg.l_uf,
1973				hm_str, ntoa(&peer->srcadr),
1974				ntohl(pkt->xmt.l_ui), ntohl(pkt->xmt.l_uf));
1975			if (  !L_ISZERO(&peer->dst)
1976			    && L_ISEQU(&p_org, &peer->dst)) {
1977				/* Might be the start of an interleave */
1978				if (dynamic_interleave) {
1979					peer->flip = 1;
1980					report_event(PEVNT_XLEAVE, peer, NULL);
1981				} else {
1982					msyslog(LOG_INFO,
1983						"receive: Dynamic interleave from %s@%s denied",
1984						hm_str, ntoa(&peer->srcadr));
1985				}
1986			}
1987		} else {
1988			L_CLR(&peer->aorg);
1989		}
1990
1991	/*
1992	 * Check for valid nonzero timestamp fields.
1993	 */
1994	} else if (   L_ISZERO(&p_org)
1995		   || L_ISZERO(&p_rec)
1996		   || L_ISZERO(&peer->dst)) {
1997		peer->flash |= TEST3;		/* unsynch */
1998
1999	/*
2000	 * Check for bogus packet in interleaved symmetric mode. This
2001	 * can happen if a packet is lost, duplicated or crossed. If
2002	 * found, flip and resynchronize.
2003	 */
2004	} else if (   !L_ISZERO(&peer->dst)
2005		   && !L_ISEQU(&p_org, &peer->dst)) {
2006		DPRINTF(2, ("receive: drop: Bogus packet in interleaved symmetric mode\n"));
2007		peer->bogusorg++;
2008		peer->flags |= FLAG_XBOGUS;
2009		peer->flash |= TEST2;		/* bogus */
2010#ifdef BUG3453
2011		return; /* Bogus packet, we are done */
2012#endif
2013	}
2014
2015	/**/
2016
2017	/*
2018	 * If this is a crypto_NAK, the server cannot authenticate a
2019	 * client packet. The server might have just changed keys. Clear
2020	 * the association and restart the protocol.
2021	 */
2022	if (crypto_nak_test == VALIDNAK) {
2023		report_event(PEVNT_AUTH, peer, "crypto_NAK");
2024		peer->flash |= TEST5;		/* bad auth */
2025		peer->badauth++;
2026		if (peer->flags & FLAG_PREEMPT) {
2027			if (unpeer_crypto_nak_early) {
2028				unpeer(peer);
2029			}
2030			DPRINTF(2, ("receive: drop: PREEMPT crypto_NAK\n"));
2031			return;
2032		}
2033#ifdef AUTOKEY
2034		if (peer->crypto) {
2035			peer_clear(peer, "AUTH");
2036		}
2037#endif	/* AUTOKEY */
2038		DPRINTF(2, ("receive: drop: crypto_NAK\n"));
2039		return;
2040
2041	/*
2042	 * If the digest fails or it's missing for authenticated
2043	 * associations, the client cannot authenticate a server
2044	 * reply to a client packet previously sent. The loopback check
2045	 * is designed to avoid a bait-and-switch attack, which was
2046	 * possible in past versions. If symmetric modes, return a
2047	 * crypto-NAK. The peer should restart the protocol.
2048	 */
2049	} else if (!AUTH(peer->keyid || has_mac ||
2050			 (restrict_mask & RES_DONTTRUST), is_authentic)) {
2051
2052		if (peer->flash & PKT_TEST_MASK) {
2053			msyslog(LOG_INFO,
2054				"receive: Bad auth in packet with bad timestamps from %s denied - spoof?",
2055				ntoa(&peer->srcadr));
2056			return;
2057		}
2058
2059		report_event(PEVNT_AUTH, peer, "digest");
2060		peer->flash |= TEST5;		/* bad auth */
2061		peer->badauth++;
2062		if (   has_mac
2063		    && (   hismode == MODE_ACTIVE
2064			|| hismode == MODE_PASSIVE))
2065			fast_xmit(rbufp, MODE_ACTIVE, 0, restrict_mask);
2066		if (peer->flags & FLAG_PREEMPT) {
2067			if (unpeer_digest_early) {
2068				unpeer(peer);
2069			}
2070		}
2071#ifdef AUTOKEY
2072		else if (peer_clear_digest_early && peer->crypto) {
2073			peer_clear(peer, "AUTH");
2074		}
2075#endif	/* AUTOKEY */
2076		DPRINTF(2, ("receive: drop: Bad or missing AUTH\n"));
2077		return;
2078	}
2079
2080	/*
2081	 * For broadcast packets:
2082	 *
2083	 * HMS: This next line never made much sense to me, even
2084	 * when it was up higher:
2085	 *   If an initial volley, bail out now and let the
2086	 *   client do its stuff.
2087	 *
2088	 * If the packet has not failed authentication, then
2089	 * - if the origin timestamp is nonzero this is an
2090	 *   interleaved broadcast, so restart the protocol.
2091	 * - else, this is not an interleaved broadcast packet.
2092	 */
2093	if (hismode == MODE_BROADCAST) {
2094		if (   is_authentic == AUTH_OK
2095		    || is_authentic == AUTH_NONE) {
2096			if (!L_ISZERO(&p_org)) {
2097				if (!(peer->flags & FLAG_XB)) {
2098					msyslog(LOG_INFO,
2099						"receive: Broadcast server at %s is in interleave mode",
2100						ntoa(&peer->srcadr));
2101					peer->flags |= FLAG_XB;
2102					peer->aorg = p_xmt;
2103					peer->borg = rbufp->recv_time;
2104					report_event(PEVNT_XLEAVE, peer, NULL);
2105					return;
2106				}
2107			} else if (peer->flags & FLAG_XB) {
2108				msyslog(LOG_INFO,
2109					"receive: Broadcast server at %s is no longer in interleave mode",
2110					ntoa(&peer->srcadr));
2111				peer->flags &= ~FLAG_XB;
2112			}
2113		} else {
2114			msyslog(LOG_INFO,
2115				"receive: Bad broadcast auth (%d) from %s",
2116				is_authentic, ntoa(&peer->srcadr));
2117		}
2118
2119		/*
2120		 * Now that we know the packet is correctly authenticated,
2121		 * update peer->bxmt.
2122		 */
2123		peer->bxmt = p_xmt;
2124	}
2125
2126
2127	/*
2128	** Update the state variables.
2129	*/
2130	if (peer->flip == 0) {
2131		if (hismode != MODE_BROADCAST)
2132			peer->rec = p_xmt;
2133		peer->dst = rbufp->recv_time;
2134	}
2135	peer->xmt = p_xmt;
2136
2137	/*
2138	 * Set the peer ppoll to the maximum of the packet ppoll and the
2139	 * peer minpoll. If a kiss-o'-death, set the peer minpoll to
2140	 * this maximum and advance the headway to give the sender some
2141	 * headroom. Very intricate.
2142	 */
2143
2144	/*
2145	 * Check for any kiss codes. Note this is only used when a server
2146	 * responds to a packet request.
2147	 */
2148
2149	/*
2150	 * Check to see if this is a RATE Kiss Code
2151	 * Currently this kiss code will accept whatever poll
2152	 * rate that the server sends
2153	 */
2154	peer->ppoll = max(peer->minpoll, pkt->ppoll);
2155	if (kissCode == RATEKISS) {
2156		peer->selbroken++;	/* Increment the KoD count */
2157		report_event(PEVNT_RATE, peer, NULL);
2158		if (pkt->ppoll > peer->minpoll)
2159			peer->minpoll = peer->ppoll;
2160		peer->burst = peer->retry = 0;
2161		peer->throttle = (NTP_SHIFT + 1) * (1 << peer->minpoll);
2162		poll_update(peer, pkt->ppoll);
2163		return;				/* kiss-o'-death */
2164	}
2165	if (kissCode != NOKISS) {
2166		peer->selbroken++;	/* Increment the KoD count */
2167		return;		/* Drop any other kiss code packets */
2168	}
2169
2170
2171	/*
2172	 * XXX
2173	 */
2174
2175
2176	/*
2177	 * If:
2178	 *	- this is a *cast (uni-, broad-, or m-) server packet
2179	 *	- and it's symmetric-key authenticated
2180	 * then see if the sender's IP is trusted for this keyid.
2181	 * If it is, great - nothing special to do here.
2182	 * Otherwise, we should report and bail.
2183	 *
2184	 * Autokey-authenticated packets are accepted.
2185	 */
2186
2187	switch (hismode) {
2188	    case MODE_SERVER:		/* server mode */
2189	    case MODE_BROADCAST:	/* broadcast mode */
2190	    case MODE_ACTIVE:		/* symmetric active mode */
2191	    case MODE_PASSIVE:		/* symmetric passive mode */
2192		if (   is_authentic == AUTH_OK
2193		    && skeyid
2194		    && skeyid <= NTP_MAXKEY
2195		    && !authistrustedip(skeyid, &peer->srcadr)) {
2196			report_event(PEVNT_AUTH, peer, "authIP");
2197			peer->badauth++;
2198			return;
2199		}
2200		break;
2201
2202	    case MODE_CLIENT:		/* client mode */
2203#if 0		/* At this point, MODE_CONTROL is overloaded by MODE_BCLIENT */
2204	    case MODE_CONTROL:		/* control mode */
2205#endif
2206	    case MODE_PRIVATE:		/* private mode */
2207	    case MODE_BCLIENT:		/* broadcast client mode */
2208		break;
2209
2210	    case MODE_UNSPEC:		/* unspecified (old version) */
2211	    default:
2212		msyslog(LOG_INFO,
2213			"receive: Unexpected mode (%d) in packet from %s",
2214			hismode, ntoa(&peer->srcadr));
2215		break;
2216	}
2217
2218
2219	/*
2220	 * That was hard and I am sweaty, but the packet is squeaky
2221	 * clean. Get on with real work.
2222	 */
2223	peer->timereceived = current_time;
2224	peer->timelastrec = current_time;
2225	if (is_authentic == AUTH_OK)
2226		peer->flags |= FLAG_AUTHENTIC;
2227	else
2228		peer->flags &= ~FLAG_AUTHENTIC;
2229
2230#ifdef AUTOKEY
2231	/*
2232	 * More autokey dance. The rules of the cha-cha are as follows:
2233	 *
2234	 * 1. If there is no key or the key is not auto, do nothing.
2235	 *
2236	 * 2. If this packet is in response to the one just previously
2237	 *    sent or from a broadcast server, do the extension fields.
2238	 *    Otherwise, assume bogosity and bail out.
2239	 *
2240	 * 3. If an extension field contains a verified signature, it is
2241	 *    self-authenticated and we sit the dance.
2242	 *
2243	 * 4. If this is a server reply, check only to see that the
2244	 *    transmitted key ID matches the received key ID.
2245	 *
2246	 * 5. Check to see that one or more hashes of the current key ID
2247	 *    matches the previous key ID or ultimate original key ID
2248	 *    obtained from the broadcaster or symmetric peer. If no
2249	 *    match, sit the dance and call for new autokey values.
2250	 *
2251	 * In case of crypto error, fire the orchestra, stop dancing and
2252	 * restart the protocol.
2253	 */
2254	if (peer->flags & FLAG_SKEY) {
2255		/*
2256		 * Decrement remaining autokey hashes. This isn't
2257		 * perfect if a packet is lost, but results in no harm.
2258		 */
2259		ap = (struct autokey *)peer->recval.ptr;
2260		if (ap != NULL) {
2261			if (ap->seq > 0)
2262				ap->seq--;
2263		}
2264		peer->flash |= TEST8;
2265		rval = crypto_recv(peer, rbufp);
2266		if (rval == XEVNT_OK) {
2267			peer->unreach = 0;
2268		} else {
2269			if (rval == XEVNT_ERR) {
2270				report_event(PEVNT_RESTART, peer,
2271				    "crypto error");
2272				peer_clear(peer, "CRYP");
2273				peer->flash |= TEST9;	/* bad crypt */
2274				if (peer->flags & FLAG_PREEMPT) {
2275					if (unpeer_crypto_early) {
2276						unpeer(peer);
2277					}
2278				}
2279			}
2280			return;
2281		}
2282
2283		/*
2284		 * If server mode, verify the receive key ID matches
2285		 * the transmit key ID.
2286		 */
2287		if (hismode == MODE_SERVER) {
2288			if (skeyid == peer->keyid)
2289				peer->flash &= ~TEST8;
2290
2291		/*
2292		 * If an extension field is present, verify only that it
2293		 * has been correctly signed. We don't need a sequence
2294		 * check here, but the sequence continues.
2295		 */
2296		} else if (!(peer->flash & TEST8)) {
2297			peer->pkeyid = skeyid;
2298
2299		/*
2300		 * Now the fun part. Here, skeyid is the current ID in
2301		 * the packet, pkeyid is the ID in the last packet and
2302		 * tkeyid is the hash of skeyid. If the autokey values
2303		 * have not been received, this is an automatic error.
2304		 * If so, check that the tkeyid matches pkeyid. If not,
2305		 * hash tkeyid and try again. If the number of hashes
2306		 * exceeds the number remaining in the sequence, declare
2307		 * a successful failure and refresh the autokey values.
2308		 */
2309		} else if (ap != NULL) {
2310			int i;
2311
2312			for (i = 0; ; i++) {
2313				if (   tkeyid == peer->pkeyid
2314				    || tkeyid == ap->key) {
2315					peer->flash &= ~TEST8;
2316					peer->pkeyid = skeyid;
2317					ap->seq -= i;
2318					break;
2319				}
2320				if (i > ap->seq) {
2321					peer->crypto &=
2322					    ~CRYPTO_FLAG_AUTO;
2323					break;
2324				}
2325				tkeyid = session_key(
2326				    &rbufp->recv_srcadr, dstadr_sin,
2327				    tkeyid, pkeyid, 0);
2328			}
2329			if (peer->flash & TEST8)
2330				report_event(PEVNT_AUTH, peer, "keylist");
2331		}
2332		if (!(peer->crypto & CRYPTO_FLAG_PROV)) /* test 9 */
2333			peer->flash |= TEST8;	/* bad autokey */
2334
2335		/*
2336		 * The maximum lifetime of the protocol is about one
2337		 * week before restarting the Autokey protocol to
2338		 * refresh certificates and leapseconds values.
2339		 */
2340		if (current_time > peer->refresh) {
2341			report_event(PEVNT_RESTART, peer,
2342			    "crypto refresh");
2343			peer_clear(peer, "TIME");
2344			return;
2345		}
2346	}
2347#endif	/* AUTOKEY */
2348
2349	/*
2350	 * The dance is complete and the flash bits have been lit. Toss
2351	 * the packet over the fence for processing, which may light up
2352	 * more flashers.
2353	 */
2354	process_packet(peer, pkt, rbufp->recv_length);
2355
2356	/*
2357	 * In interleaved mode update the state variables. Also adjust the
2358	 * transmit phase to avoid crossover.
2359	 */
2360	if (peer->flip != 0) {
2361		peer->rec = p_rec;
2362		peer->dst = rbufp->recv_time;
2363		if (peer->nextdate - current_time < (1U << min(peer->ppoll,
2364		    peer->hpoll)) / 2)
2365			peer->nextdate++;
2366		else
2367			peer->nextdate--;
2368	}
2369}
2370
2371
2372/*
2373 * process_packet - Packet Procedure, a la Section 3.4.4 of RFC-1305
2374 *	Or almost, at least.  If we're in here we have a reasonable
2375 *	expectation that we will be having a long term
2376 *	relationship with this host.
2377 */
2378void
2379process_packet(
2380	register struct peer *peer,
2381	register struct pkt *pkt,
2382	u_int	len
2383	)
2384{
2385	double	t34, t21;
2386	double	p_offset, p_del, p_disp;
2387	l_fp	p_rec, p_xmt, p_org, p_reftime, ci;
2388	u_char	pmode, pleap, pversion, pstratum;
2389	char	statstr[NTP_MAXSTRLEN];
2390#ifdef ASSYM
2391	int	itemp;
2392	double	etemp, ftemp, td;
2393#endif /* ASSYM */
2394
2395#if 0
2396	sys_processed++;
2397	peer->processed++;
2398#endif
2399	p_del = FPTOD(NTOHS_FP(pkt->rootdelay));
2400	p_offset = 0;
2401	p_disp = FPTOD(NTOHS_FP(pkt->rootdisp));
2402	NTOHL_FP(&pkt->reftime, &p_reftime);
2403	NTOHL_FP(&pkt->org, &p_org);
2404	NTOHL_FP(&pkt->rec, &p_rec);
2405	NTOHL_FP(&pkt->xmt, &p_xmt);
2406	pmode = PKT_MODE(pkt->li_vn_mode);
2407	pleap = PKT_LEAP(pkt->li_vn_mode);
2408	pversion = PKT_VERSION(pkt->li_vn_mode);
2409	pstratum = PKT_TO_STRATUM(pkt->stratum);
2410
2411	/**/
2412
2413	/**/
2414
2415	/*
2416	 * Verify the server is synchronized; that is, the leap bits,
2417	 * stratum and root distance are valid.
2418	 */
2419	if (   pleap == LEAP_NOTINSYNC		/* test 6 */
2420	    || pstratum < sys_floor || pstratum >= sys_ceiling)
2421		peer->flash |= TEST6;		/* bad synch or strat */
2422	if (p_del / 2 + p_disp >= MAXDISPERSE)	/* test 7 */
2423		peer->flash |= TEST7;		/* bad header */
2424
2425	/*
2426	 * If any tests fail at this point, the packet is discarded.
2427	 * Note that some flashers may have already been set in the
2428	 * receive() routine.
2429	 */
2430	if (peer->flash & PKT_TEST_MASK) {
2431		peer->seldisptoolarge++;
2432		DPRINTF(1, ("packet: flash header %04x\n",
2433			    peer->flash));
2434		return;
2435	}
2436
2437	/**/
2438
2439#if 1
2440	sys_processed++;
2441	peer->processed++;
2442#endif
2443
2444	/*
2445	 * Capture the header values in the client/peer association..
2446	 */
2447	record_raw_stats(&peer->srcadr,
2448	    peer->dstadr ? &peer->dstadr->sin : NULL,
2449	    &p_org, &p_rec, &p_xmt, &peer->dst,
2450	    pleap, pversion, pmode, pstratum, pkt->ppoll, pkt->precision,
2451	    p_del, p_disp, pkt->refid,
2452	    len - MIN_V4_PKT_LEN, (u_char *)&pkt->exten);
2453	peer->leap = pleap;
2454	peer->stratum = min(pstratum, STRATUM_UNSPEC);
2455	peer->pmode = pmode;
2456	peer->precision = pkt->precision;
2457	peer->rootdelay = p_del;
2458	peer->rootdisp = p_disp;
2459	peer->refid = pkt->refid;		/* network byte order */
2460	peer->reftime = p_reftime;
2461
2462	/*
2463	 * First, if either burst mode is armed, enable the burst.
2464	 * Compute the headway for the next packet and delay if
2465	 * necessary to avoid exceeding the threshold.
2466	 */
2467	if (peer->retry > 0) {
2468		peer->retry = 0;
2469		if (peer->reach)
2470			peer->burst = min(1 << (peer->hpoll -
2471			    peer->minpoll), NTP_SHIFT) - 1;
2472		else
2473			peer->burst = NTP_IBURST - 1;
2474		if (peer->burst > 0)
2475			peer->nextdate = current_time;
2476	}
2477	poll_update(peer, peer->hpoll);
2478
2479	/**/
2480
2481	/*
2482	 * If the peer was previously unreachable, raise a trap. In any
2483	 * case, mark it reachable.
2484	 */
2485	if (!peer->reach) {
2486		report_event(PEVNT_REACH, peer, NULL);
2487		peer->timereachable = current_time;
2488	}
2489	peer->reach |= 1;
2490
2491	/*
2492	 * For a client/server association, calculate the clock offset,
2493	 * roundtrip delay and dispersion. The equations are reordered
2494	 * from the spec for more efficient use of temporaries. For a
2495	 * broadcast association, offset the last measurement by the
2496	 * computed delay during the client/server volley. Note the
2497	 * computation of dispersion includes the system precision plus
2498	 * that due to the frequency error since the origin time.
2499	 *
2500	 * It is very important to respect the hazards of overflow. The
2501	 * only permitted operation on raw timestamps is subtraction,
2502	 * where the result is a signed quantity spanning from 68 years
2503	 * in the past to 68 years in the future. To avoid loss of
2504	 * precision, these calculations are done using 64-bit integer
2505	 * arithmetic. However, the offset and delay calculations are
2506	 * sums and differences of these first-order differences, which
2507	 * if done using 64-bit integer arithmetic, would be valid over
2508	 * only half that span. Since the typical first-order
2509	 * differences are usually very small, they are converted to 64-
2510	 * bit doubles and all remaining calculations done in floating-
2511	 * double arithmetic. This preserves the accuracy while
2512	 * retaining the 68-year span.
2513	 *
2514	 * There are three interleaving schemes, basic, interleaved
2515	 * symmetric and interleaved broadcast. The timestamps are
2516	 * idioscyncratically different. See the onwire briefing/white
2517	 * paper at www.eecis.udel.edu/~mills for details.
2518	 *
2519	 * Interleaved symmetric mode
2520	 * t1 = peer->aorg/borg, t2 = peer->rec, t3 = p_xmt,
2521	 * t4 = peer->dst
2522	 */
2523	if (peer->flip != 0) {
2524		ci = p_xmt;				/* t3 - t4 */
2525		L_SUB(&ci, &peer->dst);
2526		LFPTOD(&ci, t34);
2527		ci = p_rec;				/* t2 - t1 */
2528		if (peer->flip > 0)
2529			L_SUB(&ci, &peer->borg);
2530		else
2531			L_SUB(&ci, &peer->aorg);
2532		LFPTOD(&ci, t21);
2533		p_del = t21 - t34;
2534		p_offset = (t21 + t34) / 2.;
2535		if (p_del < 0 || p_del > 1.) {
2536			snprintf(statstr, sizeof(statstr),
2537			    "t21 %.6f t34 %.6f", t21, t34);
2538			report_event(PEVNT_XERR, peer, statstr);
2539			return;
2540		}
2541
2542	/*
2543	 * Broadcast modes
2544	 */
2545	} else if (peer->pmode == MODE_BROADCAST) {
2546
2547		/*
2548		 * Interleaved broadcast mode. Use interleaved timestamps.
2549		 * t1 = peer->borg, t2 = p_org, t3 = p_org, t4 = aorg
2550		 */
2551		if (peer->flags & FLAG_XB) {
2552			ci = p_org;			/* delay */
2553			L_SUB(&ci, &peer->aorg);
2554			LFPTOD(&ci, t34);
2555			ci = p_org;			/* t2 - t1 */
2556			L_SUB(&ci, &peer->borg);
2557			LFPTOD(&ci, t21);
2558			peer->aorg = p_xmt;
2559			peer->borg = peer->dst;
2560			if (t34 < 0 || t34 > 1.) {
2561				/* drop all if in the initial volley */
2562				if (FLAG_BC_VOL & peer->flags)
2563					goto bcc_init_volley_fail;
2564				snprintf(statstr, sizeof(statstr),
2565				    "offset %.6f delay %.6f", t21, t34);
2566				report_event(PEVNT_XERR, peer, statstr);
2567				return;
2568			}
2569			p_offset = t21;
2570			peer->xleave = t34;
2571
2572		/*
2573		 * Basic broadcast - use direct timestamps.
2574		 * t3 = p_xmt, t4 = peer->dst
2575		 */
2576		} else {
2577			ci = p_xmt;		/* t3 - t4 */
2578			L_SUB(&ci, &peer->dst);
2579			LFPTOD(&ci, t34);
2580			p_offset = t34;
2581		}
2582
2583		/*
2584		 * When calibration is complete and the clock is
2585		 * synchronized, the bias is calculated as the difference
2586		 * between the unicast timestamp and the broadcast
2587		 * timestamp. This works for both basic and interleaved
2588		 * modes.
2589		 * [Bug 3031] Don't keep this peer when the delay
2590		 * calculation gives reason to suspect clock steps.
2591		 * This is assumed for delays > 50ms.
2592		 */
2593		if (FLAG_BC_VOL & peer->flags) {
2594			peer->flags &= ~FLAG_BC_VOL;
2595			peer->delay = fabs(peer->offset - p_offset) * 2;
2596			DPRINTF(2, ("broadcast volley: initial delay=%.6f\n",
2597				peer->delay));
2598			if (peer->delay > fabs(sys_bdelay)) {
2599		bcc_init_volley_fail:
2600				DPRINTF(2, ("%s", "broadcast volley: initial delay exceeds limit\n"));
2601				unpeer(peer);
2602				return;
2603			}
2604		}
2605		peer->nextdate = current_time + (1u << peer->ppoll) - 2u;
2606		p_del = peer->delay;
2607		p_offset += p_del / 2;
2608
2609
2610	/*
2611	 * Basic mode, otherwise known as the old fashioned way.
2612	 *
2613	 * t1 = p_org, t2 = p_rec, t3 = p_xmt, t4 = peer->dst
2614	 */
2615	} else {
2616		ci = p_xmt;				/* t3 - t4 */
2617		L_SUB(&ci, &peer->dst);
2618		LFPTOD(&ci, t34);
2619		ci = p_rec;				/* t2 - t1 */
2620		L_SUB(&ci, &p_org);
2621		LFPTOD(&ci, t21);
2622		p_del = fabs(t21 - t34);
2623		p_offset = (t21 + t34) / 2.;
2624	}
2625	p_del = max(p_del, LOGTOD(sys_precision));
2626	p_disp = LOGTOD(sys_precision) + LOGTOD(peer->precision) +
2627	    clock_phi * p_del;
2628
2629#if ASSYM
2630	/*
2631	 * This code calculates the outbound and inbound data rates by
2632	 * measuring the differences between timestamps at different
2633	 * packet lengths. This is helpful in cases of large asymmetric
2634	 * delays commonly experienced on deep space communication
2635	 * links.
2636	 */
2637	if (peer->t21_last > 0 && peer->t34_bytes > 0) {
2638		itemp = peer->t21_bytes - peer->t21_last;
2639		if (itemp > 25) {
2640			etemp = t21 - peer->t21;
2641			if (fabs(etemp) > 1e-6) {
2642				ftemp = itemp / etemp;
2643				if (ftemp > 1000.)
2644					peer->r21 = ftemp;
2645			}
2646		}
2647		itemp = len - peer->t34_bytes;
2648		if (itemp > 25) {
2649			etemp = -t34 - peer->t34;
2650			if (fabs(etemp) > 1e-6) {
2651				ftemp = itemp / etemp;
2652				if (ftemp > 1000.)
2653					peer->r34 = ftemp;
2654			}
2655		}
2656	}
2657
2658	/*
2659	 * The following section compensates for different data rates on
2660	 * the outbound (d21) and inbound (t34) directions. To do this,
2661	 * it finds t such that r21 * t - r34 * (d - t) = 0, where d is
2662	 * the roundtrip delay. Then it calculates the correction as a
2663	 * fraction of d.
2664	 */
2665	peer->t21 = t21;
2666	peer->t21_last = peer->t21_bytes;
2667	peer->t34 = -t34;
2668	peer->t34_bytes = len;
2669	DPRINTF(2, ("packet: t21 %.9lf %d t34 %.9lf %d\n", peer->t21,
2670		    peer->t21_bytes, peer->t34, peer->t34_bytes));
2671	if (peer->r21 > 0 && peer->r34 > 0 && p_del > 0) {
2672		if (peer->pmode != MODE_BROADCAST)
2673			td = (peer->r34 / (peer->r21 + peer->r34) -
2674			    .5) * p_del;
2675		else
2676			td = 0;
2677
2678		/*
2679		 * Unfortunately, in many cases the errors are
2680		 * unacceptable, so for the present the rates are not
2681		 * used. In future, we might find conditions where the
2682		 * calculations are useful, so this should be considered
2683		 * a work in progress.
2684		 */
2685		t21 -= td;
2686		t34 -= td;
2687		DPRINTF(2, ("packet: del %.6lf r21 %.1lf r34 %.1lf %.6lf\n",
2688			    p_del, peer->r21 / 1e3, peer->r34 / 1e3,
2689			    td));
2690	}
2691#endif /* ASSYM */
2692
2693	/*
2694	 * That was awesome. Now hand off to the clock filter.
2695	 */
2696	clock_filter(peer, p_offset + peer->bias, p_del, p_disp);
2697
2698	/*
2699	 * If we are in broadcast calibrate mode, return to broadcast
2700	 * client mode when the client is fit and the autokey dance is
2701	 * complete.
2702	 */
2703	if (   (FLAG_BC_VOL & peer->flags)
2704	    && MODE_CLIENT == peer->hmode
2705	    && !(TEST11 & peer_unfit(peer))) {	/* distance exceeded */
2706#ifdef AUTOKEY
2707		if (peer->flags & FLAG_SKEY) {
2708			if (!(~peer->crypto & CRYPTO_FLAG_ALL))
2709				peer->hmode = MODE_BCLIENT;
2710		} else {
2711			peer->hmode = MODE_BCLIENT;
2712		}
2713#else	/* !AUTOKEY follows */
2714		peer->hmode = MODE_BCLIENT;
2715#endif	/* !AUTOKEY */
2716	}
2717}
2718
2719
2720/*
2721 * clock_update - Called at system process update intervals.
2722 */
2723static void
2724clock_update(
2725	struct peer *peer	/* peer structure pointer */
2726	)
2727{
2728	double	dtemp;
2729	l_fp	now;
2730#ifdef HAVE_LIBSCF_H
2731	char	*fmri;
2732#endif /* HAVE_LIBSCF_H */
2733
2734	/*
2735	 * Update the system state variables. We do this very carefully,
2736	 * as the poll interval might need to be clamped differently.
2737	 */
2738	sys_peer = peer;
2739	sys_epoch = peer->epoch;
2740	if (sys_poll < peer->minpoll)
2741		sys_poll = peer->minpoll;
2742	if (sys_poll > peer->maxpoll)
2743		sys_poll = peer->maxpoll;
2744	poll_update(peer, sys_poll);
2745	sys_stratum = min(peer->stratum + 1, STRATUM_UNSPEC);
2746	if (   peer->stratum == STRATUM_REFCLOCK
2747	    || peer->stratum == STRATUM_UNSPEC)
2748		sys_refid = peer->refid;
2749	else
2750		sys_refid = addr2refid(&peer->srcadr);
2751	/*
2752	 * Root Dispersion (E) is defined (in RFC 5905) as:
2753	 *
2754	 * E = p.epsilon_r + p.epsilon + p.psi + PHI*(s.t - p.t) + |THETA|
2755	 *
2756	 * where:
2757	 *  p.epsilon_r is the PollProc's root dispersion
2758	 *  p.epsilon   is the PollProc's dispersion
2759	 *  p.psi       is the PollProc's jitter
2760	 *  THETA       is the combined offset
2761	 *
2762	 * NB: Think Hard about where these numbers come from and
2763	 * what they mean.  When did peer->update happen?  Has anything
2764	 * interesting happened since then?  What values are the most
2765	 * defensible?  Why?
2766	 *
2767	 * DLM thinks this equation is probably the best of all worse choices.
2768	 */
2769	dtemp	= peer->rootdisp
2770		+ peer->disp
2771		+ sys_jitter
2772		+ clock_phi * (current_time - peer->update)
2773		+ fabs(sys_offset);
2774
2775	if (dtemp > sys_mindisp)
2776		sys_rootdisp = dtemp;
2777	else
2778		sys_rootdisp = sys_mindisp;
2779	sys_rootdelay = peer->delay + peer->rootdelay;
2780	sys_reftime = peer->dst;
2781
2782	DPRINTF(1, ("clock_update: at %lu sample %lu associd %d\n",
2783		    current_time, peer->epoch, peer->associd));
2784
2785	/*
2786	 * Comes now the moment of truth. Crank the clock discipline and
2787	 * see what comes out.
2788	 */
2789	switch (local_clock(peer, sys_offset)) {
2790
2791	/*
2792	 * Clock exceeds panic threshold. Life as we know it ends.
2793	 */
2794	case -1:
2795#ifdef HAVE_LIBSCF_H
2796		/*
2797		 * For Solaris enter the maintenance mode.
2798		 */
2799		if ((fmri = getenv("SMF_FMRI")) != NULL) {
2800			if (smf_maintain_instance(fmri, 0) < 0) {
2801				printf("smf_maintain_instance: %s\n",
2802				    scf_strerror(scf_error()));
2803				exit(1);
2804			}
2805			/*
2806			 * Sleep until SMF kills us.
2807			 */
2808			for (;;)
2809				pause();
2810		}
2811#endif /* HAVE_LIBSCF_H */
2812		exit (-1);
2813		/* not reached */
2814
2815	/*
2816	 * Clock was stepped. Flush all time values of all peers.
2817	 */
2818	case 2:
2819		clear_all();
2820		set_sys_leap(LEAP_NOTINSYNC);
2821		sys_stratum = STRATUM_UNSPEC;
2822		memcpy(&sys_refid, "STEP", 4);
2823		sys_rootdelay = 0;
2824		sys_rootdisp = 0;
2825		L_CLR(&sys_reftime);
2826		sys_jitter = LOGTOD(sys_precision);
2827		leapsec_reset_frame();
2828		break;
2829
2830	/*
2831	 * Clock was slewed. Handle the leapsecond stuff.
2832	 */
2833	case 1:
2834
2835		/*
2836		 * If this is the first time the clock is set, reset the
2837		 * leap bits. If crypto, the timer will goose the setup
2838		 * process.
2839		 */
2840		if (sys_leap == LEAP_NOTINSYNC) {
2841			set_sys_leap(LEAP_NOWARNING);
2842#ifdef AUTOKEY
2843			if (crypto_flags)
2844				crypto_update();
2845#endif	/* AUTOKEY */
2846			/*
2847			 * If our parent process is waiting for the
2848			 * first clock sync, send them home satisfied.
2849			 */
2850#ifdef HAVE_WORKING_FORK
2851			if (waitsync_fd_to_close != -1) {
2852				close(waitsync_fd_to_close);
2853				waitsync_fd_to_close = -1;
2854				DPRINTF(1, ("notified parent --wait-sync is done\n"));
2855			}
2856#endif /* HAVE_WORKING_FORK */
2857
2858		}
2859
2860		/*
2861		 * If there is no leap second pending and the number of
2862		 * survivor leap bits is greater than half the number of
2863		 * survivors, try to schedule a leap for the end of the
2864		 * current month. (This only works if no leap second for
2865		 * that range is in the table, so doing this more than
2866		 * once is mostly harmless.)
2867		 */
2868		if (leapsec == LSPROX_NOWARN) {
2869			if (   leap_vote_ins > leap_vote_del
2870			    && leap_vote_ins > sys_survivors / 2) {
2871				get_systime(&now);
2872				leapsec_add_dyn(TRUE, now.l_ui, NULL);
2873			}
2874			if (   leap_vote_del > leap_vote_ins
2875			    && leap_vote_del > sys_survivors / 2) {
2876				get_systime(&now);
2877				leapsec_add_dyn(FALSE, now.l_ui, NULL);
2878			}
2879		}
2880		break;
2881
2882	/*
2883	 * Popcorn spike or step threshold exceeded. Pretend it never
2884	 * happened.
2885	 */
2886	default:
2887		break;
2888	}
2889}
2890
2891
2892/*
2893 * poll_update - update peer poll interval
2894 */
2895void
2896poll_update(
2897	struct peer *peer,	/* peer structure pointer */
2898	u_char	mpoll
2899	)
2900{
2901	u_long	next, utemp;
2902	u_char	hpoll;
2903
2904	/*
2905	 * This routine figures out when the next poll should be sent.
2906	 * That turns out to be wickedly complicated. One problem is
2907	 * that sometimes the time for the next poll is in the past when
2908	 * the poll interval is reduced. We watch out for races here
2909	 * between the receive process and the poll process.
2910	 *
2911	 * Clamp the poll interval between minpoll and maxpoll.
2912	 */
2913	hpoll = max(min(peer->maxpoll, mpoll), peer->minpoll);
2914
2915#ifdef AUTOKEY
2916	/*
2917	 * If during the crypto protocol the poll interval has changed,
2918	 * the lifetimes in the key list are probably bogus. Purge the
2919	 * the key list and regenerate it later.
2920	 */
2921	if ((peer->flags & FLAG_SKEY) && hpoll != peer->hpoll)
2922		key_expire(peer);
2923#endif	/* AUTOKEY */
2924	peer->hpoll = hpoll;
2925
2926	/*
2927	 * There are three variables important for poll scheduling, the
2928	 * current time (current_time), next scheduled time (nextdate)
2929	 * and the earliest time (utemp). The earliest time is 2 s
2930	 * seconds, but could be more due to rate management. When
2931	 * sending in a burst, use the earliest time. When not in a
2932	 * burst but with a reply pending, send at the earliest time
2933	 * unless the next scheduled time has not advanced. This can
2934	 * only happen if multiple replies are pending in the same
2935	 * response interval. Otherwise, send at the later of the next
2936	 * scheduled time and the earliest time.
2937	 *
2938	 * Now we figure out if there is an override. If a burst is in
2939	 * progress and we get called from the receive process, just
2940	 * slink away. If called from the poll process, delay 1 s for a
2941	 * reference clock, otherwise 2 s.
2942	 */
2943	utemp = current_time + max(peer->throttle - (NTP_SHIFT - 1) *
2944	    (1 << peer->minpoll), ntp_minpkt);
2945	if (peer->burst > 0) {
2946		if (peer->nextdate > current_time)
2947			return;
2948#ifdef REFCLOCK
2949		else if (peer->flags & FLAG_REFCLOCK)
2950			peer->nextdate = current_time + RESP_DELAY;
2951#endif /* REFCLOCK */
2952		else
2953			peer->nextdate = utemp;
2954
2955#ifdef AUTOKEY
2956	/*
2957	 * If a burst is not in progress and a crypto response message
2958	 * is pending, delay 2 s, but only if this is a new interval.
2959	 */
2960	} else if (peer->cmmd != NULL) {
2961		if (peer->nextdate > current_time) {
2962			if (peer->nextdate + ntp_minpkt != utemp)
2963				peer->nextdate = utemp;
2964		} else {
2965			peer->nextdate = utemp;
2966		}
2967#endif	/* AUTOKEY */
2968
2969	/*
2970	 * The ordinary case. If a retry, use minpoll; if unreachable,
2971	 * use host poll; otherwise, use the minimum of host and peer
2972	 * polls; In other words, oversampling is okay but
2973	 * understampling is evil. Use the maximum of this value and the
2974	 * headway. If the average headway is greater than the headway
2975	 * threshold, increase the headway by the minimum interval.
2976	 */
2977	} else {
2978		if (peer->retry > 0)
2979			hpoll = peer->minpoll;
2980		else if (!(peer->reach))
2981			hpoll = peer->hpoll;
2982		else
2983			hpoll = min(peer->ppoll, peer->hpoll);
2984#ifdef REFCLOCK
2985		if (peer->flags & FLAG_REFCLOCK)
2986			next = 1 << hpoll;
2987		else
2988#endif /* REFCLOCK */
2989			next = ((0x1000UL | (ntp_random() & 0x0ff)) <<
2990			    hpoll) >> 12;
2991		next += peer->outdate;
2992		if (next > utemp)
2993			peer->nextdate = next;
2994		else
2995			peer->nextdate = utemp;
2996		if (peer->throttle > (1 << peer->minpoll))
2997			peer->nextdate += ntp_minpkt;
2998	}
2999	DPRINTF(2, ("poll_update: at %lu %s poll %d burst %d retry %d head %d early %lu next %lu\n",
3000		    current_time, ntoa(&peer->srcadr), peer->hpoll,
3001		    peer->burst, peer->retry, peer->throttle,
3002		    utemp - current_time, peer->nextdate -
3003		    current_time));
3004}
3005
3006
3007/*
3008 * peer_clear - clear peer filter registers.  See Section 3.4.8 of the
3009 * spec.
3010 */
3011void
3012peer_clear(
3013	struct peer *peer,		/* peer structure */
3014	const char *ident		/* tally lights */
3015	)
3016{
3017	u_char	u;
3018	l_fp	bxmt = peer->bxmt;	/* bcast clients retain this! */
3019
3020#ifdef AUTOKEY
3021	/*
3022	 * If cryptographic credentials have been acquired, toss them to
3023	 * Valhalla. Note that autokeys are ephemeral, in that they are
3024	 * tossed immediately upon use. Therefore, the keylist can be
3025	 * purged anytime without needing to preserve random keys. Note
3026	 * that, if the peer is purged, the cryptographic variables are
3027	 * purged, too. This makes it much harder to sneak in some
3028	 * unauthenticated data in the clock filter.
3029	 */
3030	key_expire(peer);
3031	if (peer->iffval != NULL)
3032		BN_free(peer->iffval);
3033	value_free(&peer->cookval);
3034	value_free(&peer->recval);
3035	value_free(&peer->encrypt);
3036	value_free(&peer->sndval);
3037	if (peer->cmmd != NULL)
3038		free(peer->cmmd);
3039	if (peer->subject != NULL)
3040		free(peer->subject);
3041	if (peer->issuer != NULL)
3042		free(peer->issuer);
3043#endif /* AUTOKEY */
3044
3045	/*
3046	 * Clear all values, including the optional crypto values above.
3047	 */
3048	memset(CLEAR_TO_ZERO(peer), 0, LEN_CLEAR_TO_ZERO(peer));
3049	peer->ppoll = peer->maxpoll;
3050	peer->hpoll = peer->minpoll;
3051	peer->disp = MAXDISPERSE;
3052	peer->flash = peer_unfit(peer);
3053	peer->jitter = LOGTOD(sys_precision);
3054
3055	/* Don't throw away our broadcast replay protection */
3056	if (peer->hmode == MODE_BCLIENT)
3057		peer->bxmt = bxmt;
3058
3059	/*
3060	 * If interleave mode, initialize the alternate origin switch.
3061	 */
3062	if (peer->flags & FLAG_XLEAVE)
3063		peer->flip = 1;
3064	for (u = 0; u < NTP_SHIFT; u++) {
3065		peer->filter_order[u] = u;
3066		peer->filter_disp[u] = MAXDISPERSE;
3067	}
3068#ifdef REFCLOCK
3069	if (!(peer->flags & FLAG_REFCLOCK)) {
3070#endif
3071		peer->leap = LEAP_NOTINSYNC;
3072		peer->stratum = STRATUM_UNSPEC;
3073		memcpy(&peer->refid, ident, 4);
3074#ifdef REFCLOCK
3075	}
3076#endif
3077
3078	/*
3079	 * During initialization use the association count to spread out
3080	 * the polls at one-second intervals. Passive associations'
3081	 * first poll is delayed by the "discard minimum" to avoid rate
3082	 * limiting. Other post-startup new or cleared associations
3083	 * randomize the first poll over the minimum poll interval to
3084	 * avoid implosion.
3085	 */
3086	peer->nextdate = peer->update = peer->outdate = current_time;
3087	if (initializing) {
3088		peer->nextdate += peer_associations;
3089	} else if (MODE_PASSIVE == peer->hmode) {
3090		peer->nextdate += ntp_minpkt;
3091	} else {
3092		peer->nextdate += ntp_random() % peer->minpoll;
3093	}
3094#ifdef AUTOKEY
3095	peer->refresh = current_time + (1 << NTP_REFRESH);
3096#endif	/* AUTOKEY */
3097	DPRINTF(1, ("peer_clear: at %ld next %ld associd %d refid %s\n",
3098		    current_time, peer->nextdate, peer->associd,
3099		    ident));
3100}
3101
3102
3103/*
3104 * clock_filter - add incoming clock sample to filter register and run
3105 *		  the filter procedure to find the best sample.
3106 */
3107void
3108clock_filter(
3109	struct peer *peer,		/* peer structure pointer */
3110	double	sample_offset,		/* clock offset */
3111	double	sample_delay,		/* roundtrip delay */
3112	double	sample_disp		/* dispersion */
3113	)
3114{
3115	double	dst[NTP_SHIFT];		/* distance vector */
3116	int	ord[NTP_SHIFT];		/* index vector */
3117	int	i, j, k, m;
3118	double	dtemp, etemp;
3119	char	tbuf[80];
3120
3121	/*
3122	 * A sample consists of the offset, delay, dispersion and epoch
3123	 * of arrival. The offset and delay are determined by the on-
3124	 * wire protocol. The dispersion grows from the last outbound
3125	 * packet to the arrival of this one increased by the sum of the
3126	 * peer precision and the system precision as required by the
3127	 * error budget. First, shift the new arrival into the shift
3128	 * register discarding the oldest one.
3129	 */
3130	j = peer->filter_nextpt;
3131	peer->filter_offset[j] = sample_offset;
3132	peer->filter_delay[j] = sample_delay;
3133	peer->filter_disp[j] = sample_disp;
3134	peer->filter_epoch[j] = current_time;
3135	j = (j + 1) % NTP_SHIFT;
3136	peer->filter_nextpt = j;
3137
3138	/*
3139	 * Update dispersions since the last update and at the same
3140	 * time initialize the distance and index lists. Since samples
3141	 * become increasingly uncorrelated beyond the Allan intercept,
3142	 * only under exceptional cases will an older sample be used.
3143	 * Therefore, the distance list uses a compound metric. If the
3144	 * dispersion is greater than the maximum dispersion, clamp the
3145	 * distance at that value. If the time since the last update is
3146	 * less than the Allan intercept use the delay; otherwise, use
3147	 * the sum of the delay and dispersion.
3148	 */
3149	dtemp = clock_phi * (current_time - peer->update);
3150	peer->update = current_time;
3151	for (i = NTP_SHIFT - 1; i >= 0; i--) {
3152		if (i != 0)
3153			peer->filter_disp[j] += dtemp;
3154		if (peer->filter_disp[j] >= MAXDISPERSE) {
3155			peer->filter_disp[j] = MAXDISPERSE;
3156			dst[i] = MAXDISPERSE;
3157		} else if (peer->update - peer->filter_epoch[j] >
3158		    (u_long)ULOGTOD(allan_xpt)) {
3159			dst[i] = peer->filter_delay[j] +
3160			    peer->filter_disp[j];
3161		} else {
3162			dst[i] = peer->filter_delay[j];
3163		}
3164		ord[i] = j;
3165		j = (j + 1) % NTP_SHIFT;
3166	}
3167
3168	/*
3169	 * If the clock has stabilized, sort the samples by distance.
3170	 */
3171	if (freq_cnt == 0) {
3172		for (i = 1; i < NTP_SHIFT; i++) {
3173			for (j = 0; j < i; j++) {
3174				if (dst[j] > dst[i]) {
3175					k = ord[j];
3176					ord[j] = ord[i];
3177					ord[i] = k;
3178					etemp = dst[j];
3179					dst[j] = dst[i];
3180					dst[i] = etemp;
3181				}
3182			}
3183		}
3184	}
3185
3186	/*
3187	 * Copy the index list to the association structure so ntpq
3188	 * can see it later. Prune the distance list to leave only
3189	 * samples less than the maximum dispersion, which disfavors
3190	 * uncorrelated samples older than the Allan intercept. To
3191	 * further improve the jitter estimate, of the remainder leave
3192	 * only samples less than the maximum distance, but keep at
3193	 * least two samples for jitter calculation.
3194	 */
3195	m = 0;
3196	for (i = 0; i < NTP_SHIFT; i++) {
3197		peer->filter_order[i] = (u_char) ord[i];
3198		if (   dst[i] >= MAXDISPERSE
3199		    || (m >= 2 && dst[i] >= sys_maxdist))
3200			continue;
3201		m++;
3202	}
3203
3204	/*
3205	 * Compute the dispersion and jitter. The dispersion is weighted
3206	 * exponentially by NTP_FWEIGHT (0.5) so it is normalized close
3207	 * to 1.0. The jitter is the RMS differences relative to the
3208	 * lowest delay sample.
3209	 */
3210	peer->disp = peer->jitter = 0;
3211	k = ord[0];
3212	for (i = NTP_SHIFT - 1; i >= 0; i--) {
3213		j = ord[i];
3214		peer->disp = NTP_FWEIGHT * (peer->disp +
3215		    peer->filter_disp[j]);
3216		if (i < m)
3217			peer->jitter += DIFF(peer->filter_offset[j],
3218			    peer->filter_offset[k]);
3219	}
3220
3221	/*
3222	 * If no acceptable samples remain in the shift register,
3223	 * quietly tiptoe home leaving only the dispersion. Otherwise,
3224	 * save the offset, delay and jitter. Note the jitter must not
3225	 * be less than the precision.
3226	 */
3227	if (m == 0) {
3228		clock_select();
3229		return;
3230	}
3231	etemp = fabs(peer->offset - peer->filter_offset[k]);
3232	peer->offset = peer->filter_offset[k];
3233	peer->delay = peer->filter_delay[k];
3234	if (m > 1)
3235		peer->jitter /= m - 1;
3236	peer->jitter = max(SQRT(peer->jitter), LOGTOD(sys_precision));
3237
3238	/*
3239	 * If the the new sample and the current sample are both valid
3240	 * and the difference between their offsets exceeds CLOCK_SGATE
3241	 * (3) times the jitter and the interval between them is less
3242	 * than twice the host poll interval, consider the new sample
3243	 * a popcorn spike and ignore it.
3244	 */
3245	if (   peer->disp < sys_maxdist
3246	    && peer->filter_disp[k] < sys_maxdist
3247	    && etemp > CLOCK_SGATE * peer->jitter
3248	    && peer->filter_epoch[k] - peer->epoch
3249	       < 2. * ULOGTOD(peer->hpoll)) {
3250		snprintf(tbuf, sizeof(tbuf), "%.6f s", etemp);
3251		report_event(PEVNT_POPCORN, peer, tbuf);
3252		return;
3253	}
3254
3255	/*
3256	 * A new minimum sample is useful only if it is later than the
3257	 * last one used. In this design the maximum lifetime of any
3258	 * sample is not greater than eight times the poll interval, so
3259	 * the maximum interval between minimum samples is eight
3260	 * packets.
3261	 */
3262	if (peer->filter_epoch[k] <= peer->epoch) {
3263	DPRINTF(2, ("clock_filter: old sample %lu\n", current_time -
3264		    peer->filter_epoch[k]));
3265		return;
3266	}
3267	peer->epoch = peer->filter_epoch[k];
3268
3269	/*
3270	 * The mitigated sample statistics are saved for later
3271	 * processing. If not synchronized or not in a burst, tickle the
3272	 * clock select algorithm.
3273	 */
3274	record_peer_stats(&peer->srcadr, ctlpeerstatus(peer),
3275	    peer->offset, peer->delay, peer->disp, peer->jitter);
3276	DPRINTF(1, ("clock_filter: n %d off %.6f del %.6f dsp %.6f jit %.6f\n",
3277		    m, peer->offset, peer->delay, peer->disp,
3278		    peer->jitter));
3279	if (peer->burst == 0 || sys_leap == LEAP_NOTINSYNC)
3280		clock_select();
3281}
3282
3283
3284/*
3285 * clock_select - find the pick-of-the-litter clock
3286 *
3287 * LOCKCLOCK: (1) If the local clock is the prefer peer, it will always
3288 * be enabled, even if declared falseticker, (2) only the prefer peer
3289 * can be selected as the system peer, (3) if the external source is
3290 * down, the system leap bits are set to 11 and the stratum set to
3291 * infinity.
3292 */
3293void
3294clock_select(void)
3295{
3296	struct peer *peer;
3297	int	i, j, k, n;
3298	int	nlist, nl2;
3299	int	allow;
3300	int	speer;
3301	double	d, e, f, g;
3302	double	high, low;
3303	double	speermet;
3304	double	orphmet = 2.0 * U_INT32_MAX; /* 2x is greater than */
3305	struct endpoint endp;
3306	struct peer *osys_peer;
3307	struct peer *sys_prefer = NULL;	/* prefer peer */
3308	struct peer *typesystem = NULL;
3309	struct peer *typeorphan = NULL;
3310#ifdef REFCLOCK
3311	struct peer *typeacts = NULL;
3312	struct peer *typelocal = NULL;
3313	struct peer *typepps = NULL;
3314#endif /* REFCLOCK */
3315	static struct endpoint *endpoint = NULL;
3316	static int *indx = NULL;
3317	static peer_select *peers = NULL;
3318	static u_int endpoint_size = 0;
3319	static u_int peers_size = 0;
3320	static u_int indx_size = 0;
3321	size_t octets;
3322
3323	/*
3324	 * Initialize and create endpoint, index and peer lists big
3325	 * enough to handle all associations.
3326	 */
3327	osys_peer = sys_peer;
3328	sys_survivors = 0;
3329#ifdef LOCKCLOCK
3330	set_sys_leap(LEAP_NOTINSYNC);
3331	sys_stratum = STRATUM_UNSPEC;
3332	memcpy(&sys_refid, "DOWN", 4);
3333#endif /* LOCKCLOCK */
3334
3335	/*
3336	 * Allocate dynamic space depending on the number of
3337	 * associations.
3338	 */
3339	nlist = 1;
3340	for (peer = peer_list; peer != NULL; peer = peer->p_link)
3341		nlist++;
3342	endpoint_size = ALIGNED_SIZE(nlist * 2 * sizeof(*endpoint));
3343	peers_size = ALIGNED_SIZE(nlist * sizeof(*peers));
3344	indx_size = ALIGNED_SIZE(nlist * 2 * sizeof(*indx));
3345	octets = endpoint_size + peers_size + indx_size;
3346	endpoint = erealloc(endpoint, octets);
3347	peers = INC_ALIGNED_PTR(endpoint, endpoint_size);
3348	indx = INC_ALIGNED_PTR(peers, peers_size);
3349
3350	/*
3351	 * Initially, we populate the island with all the rifraff peers
3352	 * that happen to be lying around. Those with seriously
3353	 * defective clocks are immediately booted off the island. Then,
3354	 * the falsetickers are culled and put to sea. The truechimers
3355	 * remaining are subject to repeated rounds where the most
3356	 * unpopular at each round is kicked off. When the population
3357	 * has dwindled to sys_minclock, the survivors split a million
3358	 * bucks and collectively crank the chimes.
3359	 */
3360	nlist = nl2 = 0;	/* none yet */
3361	for (peer = peer_list; peer != NULL; peer = peer->p_link) {
3362		peer->new_status = CTL_PST_SEL_REJECT;
3363
3364		/*
3365		 * Leave the island immediately if the peer is
3366		 * unfit to synchronize.
3367		 */
3368		if (peer_unfit(peer)) {
3369			continue;
3370		}
3371
3372		/*
3373		 * If this peer is an orphan parent, elect the
3374		 * one with the lowest metric defined as the
3375		 * IPv4 address or the first 64 bits of the
3376		 * hashed IPv6 address.  To ensure convergence
3377		 * on the same selected orphan, consider as
3378		 * well that this system may have the lowest
3379		 * metric and be the orphan parent.  If this
3380		 * system wins, sys_peer will be NULL to trigger
3381		 * orphan mode in timer().
3382		 */
3383		if (peer->stratum == sys_orphan) {
3384			u_int32	localmet;
3385			u_int32 peermet;
3386
3387			if (peer->dstadr != NULL)
3388				localmet = ntohl(peer->dstadr->addr_refid);
3389			else
3390				localmet = U_INT32_MAX;
3391			peermet = ntohl(addr2refid(&peer->srcadr));
3392			if (peermet < localmet && peermet < orphmet) {
3393				typeorphan = peer;
3394				orphmet = peermet;
3395			}
3396			continue;
3397		}
3398
3399		/*
3400		 * If this peer could have the orphan parent
3401		 * as a synchronization ancestor, exclude it
3402		 * from selection to avoid forming a
3403		 * synchronization loop within the orphan mesh,
3404		 * triggering stratum climb to infinity
3405		 * instability.  Peers at stratum higher than
3406		 * the orphan stratum could have the orphan
3407		 * parent in ancestry so are excluded.
3408		 * See http://bugs.ntp.org/2050
3409		 */
3410		if (peer->stratum > sys_orphan) {
3411			continue;
3412		}
3413#ifdef REFCLOCK
3414		/*
3415		 * The following are special cases. We deal
3416		 * with them later.
3417		 */
3418		if (!(peer->flags & FLAG_PREFER)) {
3419			switch (peer->refclktype) {
3420			case REFCLK_LOCALCLOCK:
3421				if (   current_time > orphwait
3422				    && typelocal == NULL)
3423					typelocal = peer;
3424				continue;
3425
3426			case REFCLK_ACTS:
3427				if (   current_time > orphwait
3428				    && typeacts == NULL)
3429					typeacts = peer;
3430				continue;
3431			}
3432		}
3433#endif /* REFCLOCK */
3434
3435		/*
3436		 * If we get this far, the peer can stay on the
3437		 * island, but does not yet have the immunity
3438		 * idol.
3439		 */
3440		peer->new_status = CTL_PST_SEL_SANE;
3441		f = root_distance(peer);
3442		peers[nlist].peer = peer;
3443		peers[nlist].error = peer->jitter;
3444		peers[nlist].synch = f;
3445		nlist++;
3446
3447		/*
3448		 * Insert each interval endpoint on the unsorted
3449		 * endpoint[] list.
3450		 */
3451		e = peer->offset;
3452		endpoint[nl2].type = -1;	/* lower end */
3453		endpoint[nl2].val = e - f;
3454		nl2++;
3455		endpoint[nl2].type = 1;		/* upper end */
3456		endpoint[nl2].val = e + f;
3457		nl2++;
3458	}
3459	/*
3460	 * Construct sorted indx[] of endpoint[] indexes ordered by
3461	 * offset.
3462	 */
3463	for (i = 0; i < nl2; i++)
3464		indx[i] = i;
3465	for (i = 0; i < nl2; i++) {
3466		endp = endpoint[indx[i]];
3467		e = endp.val;
3468		k = i;
3469		for (j = i + 1; j < nl2; j++) {
3470			endp = endpoint[indx[j]];
3471			if (endp.val < e) {
3472				e = endp.val;
3473				k = j;
3474			}
3475		}
3476		if (k != i) {
3477			j = indx[k];
3478			indx[k] = indx[i];
3479			indx[i] = j;
3480		}
3481	}
3482	for (i = 0; i < nl2; i++)
3483		DPRINTF(3, ("select: endpoint %2d %.6f\n",
3484			endpoint[indx[i]].type, endpoint[indx[i]].val));
3485
3486	/*
3487	 * This is the actual algorithm that cleaves the truechimers
3488	 * from the falsetickers. The original algorithm was described
3489	 * in Keith Marzullo's dissertation, but has been modified for
3490	 * better accuracy.
3491	 *
3492	 * Briefly put, we first assume there are no falsetickers, then
3493	 * scan the candidate list first from the low end upwards and
3494	 * then from the high end downwards. The scans stop when the
3495	 * number of intersections equals the number of candidates less
3496	 * the number of falsetickers. If this doesn't happen for a
3497	 * given number of falsetickers, we bump the number of
3498	 * falsetickers and try again. If the number of falsetickers
3499	 * becomes equal to or greater than half the number of
3500	 * candidates, the Albanians have won the Byzantine wars and
3501	 * correct synchronization is not possible.
3502	 *
3503	 * Here, nlist is the number of candidates and allow is the
3504	 * number of falsetickers. Upon exit, the truechimers are the
3505	 * survivors with offsets not less than low and not greater than
3506	 * high. There may be none of them.
3507	 */
3508	low = 1e9;
3509	high = -1e9;
3510	for (allow = 0; 2 * allow < nlist; allow++) {
3511
3512		/*
3513		 * Bound the interval (low, high) as the smallest
3514		 * interval containing points from the most sources.
3515		 */
3516		n = 0;
3517		for (i = 0; i < nl2; i++) {
3518			low = endpoint[indx[i]].val;
3519			n -= endpoint[indx[i]].type;
3520			if (n >= nlist - allow)
3521				break;
3522		}
3523		n = 0;
3524		for (j = nl2 - 1; j >= 0; j--) {
3525			high = endpoint[indx[j]].val;
3526			n += endpoint[indx[j]].type;
3527			if (n >= nlist - allow)
3528				break;
3529		}
3530
3531		/*
3532		 * If an interval containing truechimers is found, stop.
3533		 * If not, increase the number of falsetickers and go
3534		 * around again.
3535		 */
3536		if (high > low)
3537			break;
3538	}
3539
3540	/*
3541	 * Clustering algorithm. Whittle candidate list of falsetickers,
3542	 * who leave the island immediately. The TRUE peer is always a
3543	 * truechimer. We must leave at least one peer to collect the
3544	 * million bucks.
3545	 *
3546	 * We assert the correct time is contained in the interval, but
3547	 * the best offset estimate for the interval might not be
3548	 * contained in the interval. For this purpose, a truechimer is
3549	 * defined as the midpoint of an interval that overlaps the
3550	 * intersection interval.
3551	 */
3552	j = 0;
3553	for (i = 0; i < nlist; i++) {
3554		double	h;
3555
3556		peer = peers[i].peer;
3557		h = peers[i].synch;
3558		if ((   high <= low
3559		     || peer->offset + h < low
3560		     || peer->offset - h > high
3561		    ) && !(peer->flags & FLAG_TRUE))
3562			continue;
3563
3564#ifdef REFCLOCK
3565		/*
3566		 * Eligible PPS peers must survive the intersection
3567		 * algorithm. Use the first one found, but don't
3568		 * include any of them in the cluster population.
3569		 */
3570		if (peer->flags & FLAG_PPS) {
3571			if (typepps == NULL)
3572				typepps = peer;
3573			if (!(peer->flags & FLAG_TSTAMP_PPS))
3574				continue;
3575		}
3576#endif /* REFCLOCK */
3577
3578		if (j != i)
3579			peers[j] = peers[i];
3580		j++;
3581	}
3582	nlist = j;
3583
3584	/*
3585	 * If no survivors remain at this point, check if the modem
3586	 * driver, local driver or orphan parent in that order. If so,
3587	 * nominate the first one found as the only survivor.
3588	 * Otherwise, give up and leave the island to the rats.
3589	 */
3590	if (nlist == 0) {
3591		peers[0].error = 0;
3592		peers[0].synch = sys_mindisp;
3593#ifdef REFCLOCK
3594		if (typeacts != NULL) {
3595			peers[0].peer = typeacts;
3596			nlist = 1;
3597		} else if (typelocal != NULL) {
3598			peers[0].peer = typelocal;
3599			nlist = 1;
3600		} else
3601#endif /* REFCLOCK */
3602		if (typeorphan != NULL) {
3603			peers[0].peer = typeorphan;
3604			nlist = 1;
3605		}
3606	}
3607
3608	/*
3609	 * Mark the candidates at this point as truechimers.
3610	 */
3611	for (i = 0; i < nlist; i++) {
3612		peers[i].peer->new_status = CTL_PST_SEL_SELCAND;
3613		DPRINTF(2, ("select: survivor %s %f\n",
3614			stoa(&peers[i].peer->srcadr), peers[i].synch));
3615	}
3616
3617	/*
3618	 * Now, vote outliers off the island by select jitter weighted
3619	 * by root distance. Continue voting as long as there are more
3620	 * than sys_minclock survivors and the select jitter of the peer
3621	 * with the worst metric is greater than the minimum peer
3622	 * jitter. Stop if we are about to discard a TRUE or PREFER
3623	 * peer, who of course have the immunity idol.
3624	 */
3625	while (1) {
3626		d = 1e9;
3627		e = -1e9;
3628		g = 0;
3629		k = 0;
3630		for (i = 0; i < nlist; i++) {
3631			if (peers[i].error < d)
3632				d = peers[i].error;
3633			peers[i].seljit = 0;
3634			if (nlist > 1) {
3635				f = 0;
3636				for (j = 0; j < nlist; j++)
3637					f += DIFF(peers[j].peer->offset,
3638					    peers[i].peer->offset);
3639				peers[i].seljit = SQRT(f / (nlist - 1));
3640			}
3641			if (peers[i].seljit * peers[i].synch > e) {
3642				g = peers[i].seljit;
3643				e = peers[i].seljit * peers[i].synch;
3644				k = i;
3645			}
3646		}
3647		g = max(g, LOGTOD(sys_precision));
3648		if (   nlist <= max(1, sys_minclock)
3649		    || g <= d
3650		    || ((FLAG_TRUE | FLAG_PREFER) & peers[k].peer->flags))
3651			break;
3652
3653		DPRINTF(3, ("select: drop %s seljit %.6f jit %.6f\n",
3654			ntoa(&peers[k].peer->srcadr), g, d));
3655		if (nlist > sys_maxclock)
3656			peers[k].peer->new_status = CTL_PST_SEL_EXCESS;
3657		for (j = k + 1; j < nlist; j++)
3658			peers[j - 1] = peers[j];
3659		nlist--;
3660	}
3661
3662	/*
3663	 * What remains is a list usually not greater than sys_minclock
3664	 * peers. Note that unsynchronized peers cannot survive this
3665	 * far.  Count and mark these survivors.
3666	 *
3667	 * While at it, count the number of leap warning bits found.
3668	 * This will be used later to vote the system leap warning bit.
3669	 * If a leap warning bit is found on a reference clock, the vote
3670	 * is always won.
3671	 *
3672	 * Choose the system peer using a hybrid metric composed of the
3673	 * selection jitter scaled by the root distance augmented by
3674	 * stratum scaled by sys_mindisp (.001 by default). The goal of
3675	 * the small stratum factor is to avoid clockhop between a
3676	 * reference clock and a network peer which has a refclock and
3677	 * is using an older ntpd, which does not floor sys_rootdisp at
3678	 * sys_mindisp.
3679	 *
3680	 * In contrast, ntpd 4.2.6 and earlier used stratum primarily
3681	 * in selecting the system peer, using a weight of 1 second of
3682	 * additional root distance per stratum.  This heavy bias is no
3683	 * longer appropriate, as the scaled root distance provides a
3684	 * more rational metric carrying the cumulative error budget.
3685	 */
3686	e = 1e9;
3687	speer = 0;
3688	leap_vote_ins = 0;
3689	leap_vote_del = 0;
3690	for (i = 0; i < nlist; i++) {
3691		peer = peers[i].peer;
3692		peer->unreach = 0;
3693		peer->new_status = CTL_PST_SEL_SYNCCAND;
3694		sys_survivors++;
3695		if (peer->leap == LEAP_ADDSECOND) {
3696			if (peer->flags & FLAG_REFCLOCK)
3697				leap_vote_ins = nlist;
3698			else if (leap_vote_ins < nlist)
3699				leap_vote_ins++;
3700		}
3701		if (peer->leap == LEAP_DELSECOND) {
3702			if (peer->flags & FLAG_REFCLOCK)
3703				leap_vote_del = nlist;
3704			else if (leap_vote_del < nlist)
3705				leap_vote_del++;
3706		}
3707		if (peer->flags & FLAG_PREFER)
3708			sys_prefer = peer;
3709		speermet = peers[i].seljit * peers[i].synch +
3710		    peer->stratum * sys_mindisp;
3711		if (speermet < e) {
3712			e = speermet;
3713			speer = i;
3714		}
3715	}
3716
3717	/*
3718	 * Unless there are at least sys_misane survivors, leave the
3719	 * building dark. Otherwise, do a clockhop dance. Ordinarily,
3720	 * use the selected survivor speer. However, if the current
3721	 * system peer is not speer, stay with the current system peer
3722	 * as long as it doesn't get too old or too ugly.
3723	 */
3724	if (nlist > 0 && nlist >= sys_minsane) {
3725		double	x;
3726
3727		typesystem = peers[speer].peer;
3728		if (osys_peer == NULL || osys_peer == typesystem) {
3729			sys_clockhop = 0;
3730		} else if ((x = fabs(typesystem->offset -
3731		    osys_peer->offset)) < sys_mindisp) {
3732			if (sys_clockhop == 0)
3733				sys_clockhop = sys_mindisp;
3734			else
3735				sys_clockhop *= .5;
3736			DPRINTF(1, ("select: clockhop %d %.6f %.6f\n",
3737				j, x, sys_clockhop));
3738			if (fabs(x) < sys_clockhop)
3739				typesystem = osys_peer;
3740			else
3741				sys_clockhop = 0;
3742		} else {
3743			sys_clockhop = 0;
3744		}
3745	}
3746
3747	/*
3748	 * Mitigation rules of the game. We have the pick of the
3749	 * litter in typesystem if any survivors are left. If
3750	 * there is a prefer peer, use its offset and jitter.
3751	 * Otherwise, use the combined offset and jitter of all kitters.
3752	 */
3753	if (typesystem != NULL) {
3754		if (sys_prefer == NULL) {
3755			typesystem->new_status = CTL_PST_SEL_SYSPEER;
3756			clock_combine(peers, sys_survivors, speer);
3757		} else {
3758			typesystem = sys_prefer;
3759			sys_clockhop = 0;
3760			typesystem->new_status = CTL_PST_SEL_SYSPEER;
3761			sys_offset = typesystem->offset;
3762			sys_jitter = typesystem->jitter;
3763		}
3764		DPRINTF(1, ("select: combine offset %.9f jitter %.9f\n",
3765			sys_offset, sys_jitter));
3766	}
3767#ifdef REFCLOCK
3768	/*
3769	 * If a PPS driver is lit and the combined offset is less than
3770	 * 0.4 s, select the driver as the PPS peer and use its offset
3771	 * and jitter. However, if this is the atom driver, use it only
3772	 * if there is a prefer peer or there are no survivors and none
3773	 * are required.
3774	 */
3775	if (   typepps != NULL
3776	    && fabs(sys_offset) < 0.4
3777	    && (   typepps->refclktype != REFCLK_ATOM_PPS
3778		|| (   typepps->refclktype == REFCLK_ATOM_PPS
3779		    && (   sys_prefer != NULL
3780			|| (typesystem == NULL && sys_minsane == 0))))) {
3781		typesystem = typepps;
3782		sys_clockhop = 0;
3783		typesystem->new_status = CTL_PST_SEL_PPS;
3784		sys_offset = typesystem->offset;
3785		sys_jitter = typesystem->jitter;
3786		DPRINTF(1, ("select: pps offset %.9f jitter %.9f\n",
3787			sys_offset, sys_jitter));
3788	}
3789#endif /* REFCLOCK */
3790
3791	/*
3792	 * If there are no survivors at this point, there is no
3793	 * system peer. If so and this is an old update, keep the
3794	 * current statistics, but do not update the clock.
3795	 */
3796	if (typesystem == NULL) {
3797		if (osys_peer != NULL) {
3798			if (sys_orphwait > 0)
3799				orphwait = current_time + sys_orphwait;
3800			report_event(EVNT_NOPEER, NULL, NULL);
3801		}
3802		sys_peer = NULL;
3803		for (peer = peer_list; peer != NULL; peer = peer->p_link)
3804			peer->status = peer->new_status;
3805		return;
3806	}
3807
3808	/*
3809	 * Do not use old data, as this may mess up the clock discipline
3810	 * stability.
3811	 */
3812	if (typesystem->epoch <= sys_epoch)
3813		return;
3814
3815	/*
3816	 * We have found the alpha male. Wind the clock.
3817	 */
3818	if (osys_peer != typesystem)
3819		report_event(PEVNT_NEWPEER, typesystem, NULL);
3820	for (peer = peer_list; peer != NULL; peer = peer->p_link)
3821		peer->status = peer->new_status;
3822	clock_update(typesystem);
3823}
3824
3825
3826static void
3827clock_combine(
3828	peer_select *	peers,	/* survivor list */
3829	int		npeers,	/* number of survivors */
3830	int		syspeer	/* index of sys.peer */
3831	)
3832{
3833	int	i;
3834	double	x, y, z, w;
3835
3836	y = z = w = 0;
3837	for (i = 0; i < npeers; i++) {
3838		x = 1. / peers[i].synch;
3839		y += x;
3840		z += x * peers[i].peer->offset;
3841		w += x * DIFF(peers[i].peer->offset,
3842		    peers[syspeer].peer->offset);
3843	}
3844	sys_offset = z / y;
3845	sys_jitter = SQRT(w / y + SQUARE(peers[syspeer].seljit));
3846}
3847
3848
3849/*
3850 * root_distance - compute synchronization distance from peer to root
3851 */
3852static double
3853root_distance(
3854	struct peer *peer	/* peer structure pointer */
3855	)
3856{
3857	double	dtemp;
3858
3859	/*
3860	 * Root Distance (LAMBDA) is defined as:
3861	 * (delta + DELTA)/2 + epsilon + EPSILON + D
3862	 *
3863	 * where:
3864	 *  delta   is the round-trip delay
3865	 *  DELTA   is the root delay
3866	 *  epsilon is the peer dispersion
3867	 *	    + (15 usec each second)
3868	 *  EPSILON is the root dispersion
3869	 *  D       is sys_jitter
3870	 *
3871	 * NB: Think hard about why we are using these values, and what
3872	 * the alternatives are, and the various pros/cons.
3873	 *
3874	 * DLM thinks these are probably the best choices from any of the
3875	 * other worse choices.
3876	 */
3877	dtemp = (peer->delay + peer->rootdelay) / 2
3878		+ peer->disp
3879		  + clock_phi * (current_time - peer->update)
3880		+ peer->rootdisp
3881		+ peer->jitter;
3882	/*
3883	 * Careful squeak here. The value returned must be greater than
3884	 * the minimum root dispersion in order to avoid clockhop with
3885	 * highly precise reference clocks. Note that the root distance
3886	 * cannot exceed the sys_maxdist, as this is the cutoff by the
3887	 * selection algorithm.
3888	 */
3889	if (dtemp < sys_mindisp)
3890		dtemp = sys_mindisp;
3891	return (dtemp);
3892}
3893
3894
3895/*
3896 * peer_xmit - send packet for persistent association.
3897 */
3898static void
3899peer_xmit(
3900	struct peer *peer	/* peer structure pointer */
3901	)
3902{
3903	struct pkt xpkt;	/* transmit packet */
3904	size_t	sendlen, authlen;
3905	keyid_t	xkeyid = 0;	/* transmit key ID */
3906	l_fp	xmt_tx, xmt_ty;
3907
3908	if (!peer->dstadr)	/* drop peers without interface */
3909		return;
3910
3911	xpkt.li_vn_mode = PKT_LI_VN_MODE(sys_leap, peer->version,
3912	    peer->hmode);
3913	xpkt.stratum = STRATUM_TO_PKT(sys_stratum);
3914	xpkt.ppoll = peer->hpoll;
3915	xpkt.precision = sys_precision;
3916	xpkt.refid = sys_refid;
3917	xpkt.rootdelay = HTONS_FP(DTOFP(sys_rootdelay));
3918	xpkt.rootdisp =  HTONS_FP(DTOUFP(sys_rootdisp));
3919	HTONL_FP(&sys_reftime, &xpkt.reftime);
3920	HTONL_FP(&peer->rec, &xpkt.org);
3921	HTONL_FP(&peer->dst, &xpkt.rec);
3922
3923	/*
3924	 * If the received packet contains a MAC, the transmitted packet
3925	 * is authenticated and contains a MAC. If not, the transmitted
3926	 * packet is not authenticated.
3927	 *
3928	 * It is most important when autokey is in use that the local
3929	 * interface IP address be known before the first packet is
3930	 * sent. Otherwise, it is not possible to compute a correct MAC
3931	 * the recipient will accept. Thus, the I/O semantics have to do
3932	 * a little more work. In particular, the wildcard interface
3933	 * might not be usable.
3934	 */
3935	sendlen = LEN_PKT_NOMAC;
3936	if (
3937#ifdef AUTOKEY
3938	    !(peer->flags & FLAG_SKEY) &&
3939#endif	/* !AUTOKEY */
3940	    peer->keyid == 0) {
3941
3942		/*
3943		 * Transmit a-priori timestamps
3944		 */
3945		get_systime(&xmt_tx);
3946		if (peer->flip == 0) {	/* basic mode */
3947			peer->aorg = xmt_tx;
3948			HTONL_FP(&xmt_tx, &xpkt.xmt);
3949		} else {		/* interleaved modes */
3950			if (peer->hmode == MODE_BROADCAST) { /* bcst */
3951				HTONL_FP(&xmt_tx, &xpkt.xmt);
3952				if (peer->flip > 0)
3953					HTONL_FP(&peer->borg,
3954					    &xpkt.org);
3955				else
3956					HTONL_FP(&peer->aorg,
3957					    &xpkt.org);
3958			} else {	/* symmetric */
3959				if (peer->flip > 0)
3960					HTONL_FP(&peer->borg,
3961					    &xpkt.xmt);
3962				else
3963					HTONL_FP(&peer->aorg,
3964					    &xpkt.xmt);
3965			}
3966		}
3967		peer->t21_bytes = sendlen;
3968		sendpkt(&peer->srcadr, peer->dstadr,
3969			sys_ttl[(peer->ttl >= sys_ttlmax) ? sys_ttlmax : peer->ttl],
3970			&xpkt, sendlen);
3971		peer->sent++;
3972		peer->throttle += (1 << peer->minpoll) - 2;
3973
3974		/*
3975		 * Capture a-posteriori timestamps
3976		 */
3977		get_systime(&xmt_ty);
3978		if (peer->flip != 0) {		/* interleaved modes */
3979			if (peer->flip > 0)
3980				peer->aorg = xmt_ty;
3981			else
3982				peer->borg = xmt_ty;
3983			peer->flip = -peer->flip;
3984		}
3985		L_SUB(&xmt_ty, &xmt_tx);
3986		LFPTOD(&xmt_ty, peer->xleave);
3987		DPRINTF(1, ("peer_xmit: at %ld %s->%s mode %d len %zu xmt %#010x.%08x\n",
3988			    current_time,
3989			    peer->dstadr ? stoa(&peer->dstadr->sin) : "-",
3990		            stoa(&peer->srcadr), peer->hmode, sendlen,
3991			    xmt_tx.l_ui, xmt_tx.l_uf));
3992		return;
3993	}
3994
3995	/*
3996	 * Authentication is enabled, so the transmitted packet must be
3997	 * authenticated. If autokey is enabled, fuss with the various
3998	 * modes; otherwise, symmetric key cryptography is used.
3999	 */
4000#ifdef AUTOKEY
4001	if (peer->flags & FLAG_SKEY) {
4002		struct exten *exten;	/* extension field */
4003
4004		/*
4005		 * The Public Key Dance (PKD): Cryptographic credentials
4006		 * are contained in extension fields, each including a
4007		 * 4-octet length/code word followed by a 4-octet
4008		 * association ID and optional additional data. Optional
4009		 * data includes a 4-octet data length field followed by
4010		 * the data itself. Request messages are sent from a
4011		 * configured association; response messages can be sent
4012		 * from a configured association or can take the fast
4013		 * path without ever matching an association. Response
4014		 * messages have the same code as the request, but have
4015		 * a response bit and possibly an error bit set. In this
4016		 * implementation, a message may contain no more than
4017		 * one command and one or more responses.
4018		 *
4019		 * Cryptographic session keys include both a public and
4020		 * a private componet. Request and response messages
4021		 * using extension fields are always sent with the
4022		 * private component set to zero. Packets without
4023		 * extension fields indlude the private component when
4024		 * the session key is generated.
4025		 */
4026		while (1) {
4027
4028			/*
4029			 * Allocate and initialize a keylist if not
4030			 * already done. Then, use the list in inverse
4031			 * order, discarding keys once used. Keep the
4032			 * latest key around until the next one, so
4033			 * clients can use client/server packets to
4034			 * compute propagation delay.
4035			 *
4036			 * Note that once a key is used from the list,
4037			 * it is retained in the key cache until the
4038			 * next key is used. This is to allow a client
4039			 * to retrieve the encrypted session key
4040			 * identifier to verify authenticity.
4041			 *
4042			 * If for some reason a key is no longer in the
4043			 * key cache, a birthday has happened or the key
4044			 * has expired, so the pseudo-random sequence is
4045			 * broken. In that case, purge the keylist and
4046			 * regenerate it.
4047			 */
4048			if (peer->keynumber == 0)
4049				make_keylist(peer, peer->dstadr);
4050			else
4051				peer->keynumber--;
4052			xkeyid = peer->keylist[peer->keynumber];
4053			if (authistrusted(xkeyid))
4054				break;
4055			else
4056				key_expire(peer);
4057		}
4058		peer->keyid = xkeyid;
4059		exten = NULL;
4060		switch (peer->hmode) {
4061
4062		/*
4063		 * In broadcast server mode the autokey values are
4064		 * required by the broadcast clients. Push them when a
4065		 * new keylist is generated; otherwise, push the
4066		 * association message so the client can request them at
4067		 * other times.
4068		 */
4069		case MODE_BROADCAST:
4070			if (peer->flags & FLAG_ASSOC)
4071				exten = crypto_args(peer, CRYPTO_AUTO |
4072				    CRYPTO_RESP, peer->associd, NULL);
4073			else
4074				exten = crypto_args(peer, CRYPTO_ASSOC |
4075				    CRYPTO_RESP, peer->associd, NULL);
4076			break;
4077
4078		/*
4079		 * In symmetric modes the parameter, certificate,
4080		 * identity, cookie and autokey exchanges are
4081		 * required. The leapsecond exchange is optional. But, a
4082		 * peer will not believe the other peer until the other
4083		 * peer has synchronized, so the certificate exchange
4084		 * might loop until then. If a peer finds a broken
4085		 * autokey sequence, it uses the autokey exchange to
4086		 * retrieve the autokey values. In any case, if a new
4087		 * keylist is generated, the autokey values are pushed.
4088		 */
4089		case MODE_ACTIVE:
4090		case MODE_PASSIVE:
4091
4092			/*
4093			 * Parameter, certificate and identity.
4094			 */
4095			if (!peer->crypto)
4096				exten = crypto_args(peer, CRYPTO_ASSOC,
4097				    peer->associd, hostval.ptr);
4098			else if (!(peer->crypto & CRYPTO_FLAG_CERT))
4099				exten = crypto_args(peer, CRYPTO_CERT,
4100				    peer->associd, peer->issuer);
4101			else if (!(peer->crypto & CRYPTO_FLAG_VRFY))
4102				exten = crypto_args(peer,
4103				    crypto_ident(peer), peer->associd,
4104				    NULL);
4105
4106			/*
4107			 * Cookie and autokey. We request the cookie
4108			 * only when the this peer and the other peer
4109			 * are synchronized. But, this peer needs the
4110			 * autokey values when the cookie is zero. Any
4111			 * time we regenerate the key list, we offer the
4112			 * autokey values without being asked. If for
4113			 * some reason either peer finds a broken
4114			 * autokey sequence, the autokey exchange is
4115			 * used to retrieve the autokey values.
4116			 */
4117			else if (   sys_leap != LEAP_NOTINSYNC
4118				 && peer->leap != LEAP_NOTINSYNC
4119				 && !(peer->crypto & CRYPTO_FLAG_COOK))
4120				exten = crypto_args(peer, CRYPTO_COOK,
4121				    peer->associd, NULL);
4122			else if (!(peer->crypto & CRYPTO_FLAG_AUTO))
4123				exten = crypto_args(peer, CRYPTO_AUTO,
4124				    peer->associd, NULL);
4125			else if (   peer->flags & FLAG_ASSOC
4126				 && peer->crypto & CRYPTO_FLAG_SIGN)
4127				exten = crypto_args(peer, CRYPTO_AUTO |
4128				    CRYPTO_RESP, peer->assoc, NULL);
4129
4130			/*
4131			 * Wait for clock sync, then sign the
4132			 * certificate and retrieve the leapsecond
4133			 * values.
4134			 */
4135			else if (sys_leap == LEAP_NOTINSYNC)
4136				break;
4137
4138			else if (!(peer->crypto & CRYPTO_FLAG_SIGN))
4139				exten = crypto_args(peer, CRYPTO_SIGN,
4140				    peer->associd, hostval.ptr);
4141			else if (!(peer->crypto & CRYPTO_FLAG_LEAP))
4142				exten = crypto_args(peer, CRYPTO_LEAP,
4143				    peer->associd, NULL);
4144			break;
4145
4146		/*
4147		 * In client mode the parameter, certificate, identity,
4148		 * cookie and sign exchanges are required. The
4149		 * leapsecond exchange is optional. If broadcast client
4150		 * mode the same exchanges are required, except that the
4151		 * autokey exchange is substitutes for the cookie
4152		 * exchange, since the cookie is always zero. If the
4153		 * broadcast client finds a broken autokey sequence, it
4154		 * uses the autokey exchange to retrieve the autokey
4155		 * values.
4156		 */
4157		case MODE_CLIENT:
4158
4159			/*
4160			 * Parameter, certificate and identity.
4161			 */
4162			if (!peer->crypto)
4163				exten = crypto_args(peer, CRYPTO_ASSOC,
4164				    peer->associd, hostval.ptr);
4165			else if (!(peer->crypto & CRYPTO_FLAG_CERT))
4166				exten = crypto_args(peer, CRYPTO_CERT,
4167				    peer->associd, peer->issuer);
4168			else if (!(peer->crypto & CRYPTO_FLAG_VRFY))
4169				exten = crypto_args(peer,
4170				    crypto_ident(peer), peer->associd,
4171				    NULL);
4172
4173			/*
4174			 * Cookie and autokey. These are requests, but
4175			 * we use the peer association ID with autokey
4176			 * rather than our own.
4177			 */
4178			else if (!(peer->crypto & CRYPTO_FLAG_COOK))
4179				exten = crypto_args(peer, CRYPTO_COOK,
4180				    peer->associd, NULL);
4181			else if (!(peer->crypto & CRYPTO_FLAG_AUTO))
4182				exten = crypto_args(peer, CRYPTO_AUTO,
4183				    peer->assoc, NULL);
4184
4185			/*
4186			 * Wait for clock sync, then sign the
4187			 * certificate and retrieve the leapsecond
4188			 * values.
4189			 */
4190			else if (sys_leap == LEAP_NOTINSYNC)
4191				break;
4192
4193			else if (!(peer->crypto & CRYPTO_FLAG_SIGN))
4194				exten = crypto_args(peer, CRYPTO_SIGN,
4195				    peer->associd, hostval.ptr);
4196			else if (!(peer->crypto & CRYPTO_FLAG_LEAP))
4197				exten = crypto_args(peer, CRYPTO_LEAP,
4198				    peer->associd, NULL);
4199			break;
4200		}
4201
4202		/*
4203		 * Add a queued extension field if present. This is
4204		 * always a request message, so the reply ID is already
4205		 * in the message. If an error occurs, the error bit is
4206		 * lit in the response.
4207		 */
4208		if (peer->cmmd != NULL) {
4209			u_int32 temp32;
4210
4211			temp32 = CRYPTO_RESP;
4212			peer->cmmd->opcode |= htonl(temp32);
4213			sendlen += crypto_xmit(peer, &xpkt, NULL,
4214			    sendlen, peer->cmmd, 0);
4215			free(peer->cmmd);
4216			peer->cmmd = NULL;
4217		}
4218
4219		/*
4220		 * Add an extension field created above. All but the
4221		 * autokey response message are request messages.
4222		 */
4223		if (exten != NULL) {
4224			if (exten->opcode != 0)
4225				sendlen += crypto_xmit(peer, &xpkt,
4226				    NULL, sendlen, exten, 0);
4227			free(exten);
4228		}
4229
4230		/*
4231		 * Calculate the next session key. Since extension
4232		 * fields are present, the cookie value is zero.
4233		 */
4234		if (sendlen > (int)LEN_PKT_NOMAC) {
4235			session_key(&peer->dstadr->sin, &peer->srcadr,
4236			    xkeyid, 0, 2);
4237		}
4238	}
4239#endif	/* AUTOKEY */
4240
4241	/*
4242	 * Transmit a-priori timestamps
4243	 */
4244	get_systime(&xmt_tx);
4245	if (peer->flip == 0) {		/* basic mode */
4246		peer->aorg = xmt_tx;
4247		HTONL_FP(&xmt_tx, &xpkt.xmt);
4248	} else {			/* interleaved modes */
4249		if (peer->hmode == MODE_BROADCAST) { /* bcst */
4250			HTONL_FP(&xmt_tx, &xpkt.xmt);
4251			if (peer->flip > 0)
4252				HTONL_FP(&peer->borg, &xpkt.org);
4253			else
4254				HTONL_FP(&peer->aorg, &xpkt.org);
4255		} else {		/* symmetric */
4256			if (peer->flip > 0)
4257				HTONL_FP(&peer->borg, &xpkt.xmt);
4258			else
4259				HTONL_FP(&peer->aorg, &xpkt.xmt);
4260		}
4261	}
4262	xkeyid = peer->keyid;
4263	authlen = authencrypt(xkeyid, (u_int32 *)&xpkt, sendlen);
4264	if (authlen == 0) {
4265		report_event(PEVNT_AUTH, peer, "no key");
4266		peer->flash |= TEST5;		/* auth error */
4267		peer->badauth++;
4268		return;
4269	}
4270	sendlen += authlen;
4271#ifdef AUTOKEY
4272	if (xkeyid > NTP_MAXKEY)
4273		authtrust(xkeyid, 0);
4274#endif	/* AUTOKEY */
4275	if (sendlen > sizeof(xpkt)) {
4276		msyslog(LOG_ERR, "peer_xmit: buffer overflow %zu", sendlen);
4277		exit (-1);
4278	}
4279	peer->t21_bytes = sendlen;
4280	sendpkt(&peer->srcadr, peer->dstadr,
4281		sys_ttl[(peer->ttl >= sys_ttlmax) ? sys_ttlmax : peer->ttl],
4282		&xpkt, sendlen);
4283	peer->sent++;
4284	peer->throttle += (1 << peer->minpoll) - 2;
4285
4286	/*
4287	 * Capture a-posteriori timestamps
4288	 */
4289	get_systime(&xmt_ty);
4290	if (peer->flip != 0) {			/* interleaved modes */
4291		if (peer->flip > 0)
4292			peer->aorg = xmt_ty;
4293		else
4294			peer->borg = xmt_ty;
4295		peer->flip = -peer->flip;
4296	}
4297	L_SUB(&xmt_ty, &xmt_tx);
4298	LFPTOD(&xmt_ty, peer->xleave);
4299#ifdef AUTOKEY
4300	DPRINTF(1, ("peer_xmit: at %ld %s->%s mode %d keyid %08x len %zu index %d\n",
4301		    current_time, latoa(peer->dstadr),
4302		    ntoa(&peer->srcadr), peer->hmode, xkeyid, sendlen,
4303		    peer->keynumber));
4304#else	/* !AUTOKEY follows */
4305	DPRINTF(1, ("peer_xmit: at %ld %s->%s mode %d keyid %08x len %zu\n",
4306		    current_time, peer->dstadr ?
4307		    ntoa(&peer->dstadr->sin) : "-",
4308		    ntoa(&peer->srcadr), peer->hmode, xkeyid, sendlen));
4309#endif	/* !AUTOKEY */
4310
4311	return;
4312}
4313
4314
4315#ifdef LEAP_SMEAR
4316
4317static void
4318leap_smear_add_offs(
4319	l_fp *t,
4320	l_fp *t_recv
4321	)
4322{
4323
4324	L_ADD(t, &leap_smear.offset);
4325
4326	/*
4327	** XXX: Should the smear be added to the root dispersion?
4328	*/
4329
4330	return;
4331}
4332
4333#endif  /* LEAP_SMEAR */
4334
4335
4336/*
4337 * fast_xmit - Send packet for nonpersistent association. Note that
4338 * neither the source or destination can be a broadcast address.
4339 */
4340static void
4341fast_xmit(
4342	struct recvbuf *rbufp,	/* receive packet pointer */
4343	int	xmode,		/* receive mode */
4344	keyid_t	xkeyid,		/* transmit key ID */
4345	int	flags		/* restrict mask */
4346	)
4347{
4348	struct pkt xpkt;	/* transmit packet structure */
4349	struct pkt *rpkt;	/* receive packet structure */
4350	l_fp	xmt_tx, xmt_ty;
4351	size_t	sendlen;
4352#ifdef AUTOKEY
4353	u_int32	temp32;
4354#endif
4355
4356	/*
4357	 * Initialize transmit packet header fields from the receive
4358	 * buffer provided. We leave the fields intact as received, but
4359	 * set the peer poll at the maximum of the receive peer poll and
4360	 * the system minimum poll (ntp_minpoll). This is for KoD rate
4361	 * control and not strictly specification compliant, but doesn't
4362	 * break anything.
4363	 *
4364	 * If the gazinta was from a multicast address, the gazoutta
4365	 * must go out another way.
4366	 */
4367	rpkt = &rbufp->recv_pkt;
4368	if (rbufp->dstadr->flags & INT_MCASTOPEN)
4369		rbufp->dstadr = findinterface(&rbufp->recv_srcadr);
4370
4371	/*
4372	 * If this is a kiss-o'-death (KoD) packet, show leap
4373	 * unsynchronized, stratum zero, reference ID the four-character
4374	 * kiss code and system root delay. Note we don't reveal the
4375	 * local time, so these packets can't be used for
4376	 * synchronization.
4377	 */
4378	if (flags & RES_KOD) {
4379		sys_kodsent++;
4380		xpkt.li_vn_mode = PKT_LI_VN_MODE(LEAP_NOTINSYNC,
4381		    PKT_VERSION(rpkt->li_vn_mode), xmode);
4382		xpkt.stratum = STRATUM_PKT_UNSPEC;
4383		xpkt.ppoll = max(rpkt->ppoll, ntp_minpoll);
4384		xpkt.precision = rpkt->precision;
4385		memcpy(&xpkt.refid, "RATE", 4);
4386		xpkt.rootdelay = rpkt->rootdelay;
4387		xpkt.rootdisp = rpkt->rootdisp;
4388		xpkt.reftime = rpkt->reftime;
4389		xpkt.org = rpkt->xmt;
4390		xpkt.rec = rpkt->xmt;
4391		xpkt.xmt = rpkt->xmt;
4392
4393	/*
4394	 * This is a normal packet. Use the system variables.
4395	 */
4396	} else {
4397#ifdef LEAP_SMEAR
4398		/*
4399		 * Make copies of the variables which can be affected by smearing.
4400		 */
4401		l_fp this_ref_time;
4402		l_fp this_recv_time;
4403#endif
4404
4405		/*
4406		 * If we are inside the leap smear interval we add the current smear offset to
4407		 * the packet receive time, to the packet transmit time, and eventually to the
4408		 * reftime to make sure the reftime isn't later than the transmit/receive times.
4409		 */
4410		xpkt.li_vn_mode = PKT_LI_VN_MODE(xmt_leap,
4411		    PKT_VERSION(rpkt->li_vn_mode), xmode);
4412
4413		xpkt.stratum = STRATUM_TO_PKT(sys_stratum);
4414		xpkt.ppoll = max(rpkt->ppoll, ntp_minpoll);
4415		xpkt.precision = sys_precision;
4416		xpkt.refid = sys_refid;
4417		xpkt.rootdelay = HTONS_FP(DTOFP(sys_rootdelay));
4418		xpkt.rootdisp = HTONS_FP(DTOUFP(sys_rootdisp));
4419
4420#ifdef LEAP_SMEAR
4421		this_ref_time = sys_reftime;
4422		if (leap_smear.in_progress) {
4423			leap_smear_add_offs(&this_ref_time, NULL);
4424			xpkt.refid = convertLFPToRefID(leap_smear.offset);
4425			DPRINTF(2, ("fast_xmit: leap_smear.in_progress: refid %8x, smear %s\n",
4426				ntohl(xpkt.refid),
4427				lfptoa(&leap_smear.offset, 8)
4428				));
4429		}
4430		HTONL_FP(&this_ref_time, &xpkt.reftime);
4431#else
4432		HTONL_FP(&sys_reftime, &xpkt.reftime);
4433#endif
4434
4435		xpkt.org = rpkt->xmt;
4436
4437#ifdef LEAP_SMEAR
4438		this_recv_time = rbufp->recv_time;
4439		if (leap_smear.in_progress)
4440			leap_smear_add_offs(&this_recv_time, NULL);
4441		HTONL_FP(&this_recv_time, &xpkt.rec);
4442#else
4443		HTONL_FP(&rbufp->recv_time, &xpkt.rec);
4444#endif
4445
4446		get_systime(&xmt_tx);
4447#ifdef LEAP_SMEAR
4448		if (leap_smear.in_progress)
4449			leap_smear_add_offs(&xmt_tx, &this_recv_time);
4450#endif
4451		HTONL_FP(&xmt_tx, &xpkt.xmt);
4452	}
4453
4454#ifdef HAVE_NTP_SIGND
4455	if (flags & RES_MSSNTP) {
4456		send_via_ntp_signd(rbufp, xmode, xkeyid, flags, &xpkt);
4457		return;
4458	}
4459#endif /* HAVE_NTP_SIGND */
4460
4461	/*
4462	 * If the received packet contains a MAC, the transmitted packet
4463	 * is authenticated and contains a MAC. If not, the transmitted
4464	 * packet is not authenticated.
4465	 */
4466	sendlen = LEN_PKT_NOMAC;
4467	if (rbufp->recv_length == sendlen) {
4468		sendpkt(&rbufp->recv_srcadr, rbufp->dstadr, 0, &xpkt,
4469		    sendlen);
4470		DPRINTF(1, ("fast_xmit: at %ld %s->%s mode %d len %lu\n",
4471			    current_time, stoa(&rbufp->dstadr->sin),
4472			    stoa(&rbufp->recv_srcadr), xmode,
4473			    (u_long)sendlen));
4474		return;
4475	}
4476
4477	/*
4478	 * The received packet contains a MAC, so the transmitted packet
4479	 * must be authenticated. For symmetric key cryptography, use
4480	 * the predefined and trusted symmetric keys to generate the
4481	 * cryptosum. For autokey cryptography, use the server private
4482	 * value to generate the cookie, which is unique for every
4483	 * source-destination-key ID combination.
4484	 */
4485#ifdef AUTOKEY
4486	if (xkeyid > NTP_MAXKEY) {
4487		keyid_t cookie;
4488
4489		/*
4490		 * The only way to get here is a reply to a legitimate
4491		 * client request message, so the mode must be
4492		 * MODE_SERVER. If an extension field is present, there
4493		 * can be only one and that must be a command. Do what
4494		 * needs, but with private value of zero so the poor
4495		 * jerk can decode it. If no extension field is present,
4496		 * use the cookie to generate the session key.
4497		 */
4498		cookie = session_key(&rbufp->recv_srcadr,
4499		    &rbufp->dstadr->sin, 0, sys_private, 0);
4500		if ((size_t)rbufp->recv_length > sendlen + MAX_MAC_LEN) {
4501			session_key(&rbufp->dstadr->sin,
4502			    &rbufp->recv_srcadr, xkeyid, 0, 2);
4503			temp32 = CRYPTO_RESP;
4504			rpkt->exten[0] |= htonl(temp32);
4505			sendlen += crypto_xmit(NULL, &xpkt, rbufp,
4506			    sendlen, (struct exten *)rpkt->exten,
4507			    cookie);
4508		} else {
4509			session_key(&rbufp->dstadr->sin,
4510			    &rbufp->recv_srcadr, xkeyid, cookie, 2);
4511		}
4512	}
4513#endif	/* AUTOKEY */
4514	get_systime(&xmt_tx);
4515	sendlen += authencrypt(xkeyid, (u_int32 *)&xpkt, sendlen);
4516#ifdef AUTOKEY
4517	if (xkeyid > NTP_MAXKEY)
4518		authtrust(xkeyid, 0);
4519#endif	/* AUTOKEY */
4520	sendpkt(&rbufp->recv_srcadr, rbufp->dstadr, 0, &xpkt, sendlen);
4521	get_systime(&xmt_ty);
4522	L_SUB(&xmt_ty, &xmt_tx);
4523	sys_authdelay = xmt_ty;
4524	DPRINTF(1, ("fast_xmit: at %ld %s->%s mode %d keyid %08x len %lu\n",
4525		    current_time, ntoa(&rbufp->dstadr->sin),
4526		    ntoa(&rbufp->recv_srcadr), xmode, xkeyid,
4527		    (u_long)sendlen));
4528}
4529
4530
4531/*
4532 * pool_xmit - resolve hostname or send unicast solicitation for pool.
4533 */
4534static void
4535pool_xmit(
4536	struct peer *pool	/* pool solicitor association */
4537	)
4538{
4539#ifdef WORKER
4540	struct pkt		xpkt;	/* transmit packet structure */
4541	struct addrinfo		hints;
4542	int			rc;
4543	struct interface *	lcladr;
4544	sockaddr_u *		rmtadr;
4545	r4addr			r4a;
4546	int			restrict_mask;
4547	struct peer *		p;
4548	l_fp			xmt_tx;
4549
4550	if (NULL == pool->ai) {
4551		if (pool->addrs != NULL) {
4552			/* free() is used with copy_addrinfo_list() */
4553			free(pool->addrs);
4554			pool->addrs = NULL;
4555		}
4556		ZERO(hints);
4557		hints.ai_family = AF(&pool->srcadr);
4558		hints.ai_socktype = SOCK_DGRAM;
4559		hints.ai_protocol = IPPROTO_UDP;
4560		/* ignore getaddrinfo_sometime() errors, we will retry */
4561		rc = getaddrinfo_sometime(
4562			pool->hostname,
4563			"ntp",
4564			&hints,
4565			0,			/* no retry */
4566			&pool_name_resolved,
4567			(void *)(intptr_t)pool->associd);
4568		if (!rc)
4569			DPRINTF(1, ("pool DNS lookup %s started\n",
4570				pool->hostname));
4571		else
4572			msyslog(LOG_ERR,
4573				"unable to start pool DNS %s: %m",
4574				pool->hostname);
4575		return;
4576	}
4577
4578	do {
4579		/* copy_addrinfo_list ai_addr points to a sockaddr_u */
4580		rmtadr = (sockaddr_u *)(void *)pool->ai->ai_addr;
4581		pool->ai = pool->ai->ai_next;
4582		p = findexistingpeer(rmtadr, NULL, NULL, MODE_CLIENT, 0, NULL);
4583	} while (p != NULL && pool->ai != NULL);
4584	if (p != NULL)
4585		return;	/* out of addresses, re-query DNS next poll */
4586	restrictions(rmtadr, &r4a);
4587	restrict_mask = r4a.rflags;
4588	if (RES_FLAGS & restrict_mask)
4589		restrict_source(rmtadr, 0,
4590				current_time + POOL_SOLICIT_WINDOW + 1);
4591	lcladr = findinterface(rmtadr);
4592	memset(&xpkt, 0, sizeof(xpkt));
4593	xpkt.li_vn_mode = PKT_LI_VN_MODE(sys_leap, pool->version,
4594					 MODE_CLIENT);
4595	xpkt.stratum = STRATUM_TO_PKT(sys_stratum);
4596	xpkt.ppoll = pool->hpoll;
4597	xpkt.precision = sys_precision;
4598	xpkt.refid = sys_refid;
4599	xpkt.rootdelay = HTONS_FP(DTOFP(sys_rootdelay));
4600	xpkt.rootdisp = HTONS_FP(DTOUFP(sys_rootdisp));
4601	HTONL_FP(&sys_reftime, &xpkt.reftime);
4602	get_systime(&xmt_tx);
4603	pool->aorg = xmt_tx;
4604	HTONL_FP(&xmt_tx, &xpkt.xmt);
4605	sendpkt(rmtadr, lcladr,
4606		sys_ttl[(pool->ttl >= sys_ttlmax) ? sys_ttlmax : pool->ttl],
4607		&xpkt, LEN_PKT_NOMAC);
4608	pool->sent++;
4609	pool->throttle += (1 << pool->minpoll) - 2;
4610	DPRINTF(1, ("pool_xmit: at %ld %s->%s pool\n",
4611		    current_time, latoa(lcladr), stoa(rmtadr)));
4612	msyslog(LOG_INFO, "Soliciting pool server %s", stoa(rmtadr));
4613#endif	/* WORKER */
4614}
4615
4616
4617#ifdef AUTOKEY
4618	/*
4619	 * group_test - test if this is the same group
4620	 *
4621	 * host		assoc		return		action
4622	 * none		none		0		mobilize *
4623	 * none		group		0		mobilize *
4624	 * group	none		0		mobilize *
4625	 * group	group		1		mobilize
4626	 * group	different	1		ignore
4627	 * * ignore if notrust
4628	 */
4629int
4630group_test(
4631	char	*grp,
4632	char	*ident
4633	)
4634{
4635	if (grp == NULL)
4636		return (0);
4637
4638	if (strcmp(grp, sys_groupname) == 0)
4639		return (0);
4640
4641	if (ident == NULL)
4642		return (1);
4643
4644	if (strcmp(grp, ident) == 0)
4645		return (0);
4646
4647	return (1);
4648}
4649#endif /* AUTOKEY */
4650
4651
4652#ifdef WORKER
4653void
4654pool_name_resolved(
4655	int			rescode,
4656	int			gai_errno,
4657	void *			context,
4658	const char *		name,
4659	const char *		service,
4660	const struct addrinfo *	hints,
4661	const struct addrinfo *	res
4662	)
4663{
4664	struct peer *	pool;	/* pool solicitor association */
4665	associd_t	assoc;
4666
4667	if (rescode) {
4668		msyslog(LOG_ERR,
4669			"error resolving pool %s: %s (%d)",
4670			name, gai_strerror(rescode), rescode);
4671		return;
4672	}
4673
4674	assoc = (associd_t)(intptr_t)context;
4675	pool = findpeerbyassoc(assoc);
4676	if (NULL == pool) {
4677		msyslog(LOG_ERR,
4678			"Could not find assoc %u for pool DNS %s",
4679			assoc, name);
4680		return;
4681	}
4682	DPRINTF(1, ("pool DNS %s completed\n", name));
4683	pool->addrs = copy_addrinfo_list(res);
4684	pool->ai = pool->addrs;
4685	pool_xmit(pool);
4686
4687}
4688#endif	/* WORKER */
4689
4690
4691#ifdef AUTOKEY
4692/*
4693 * key_expire - purge the key list
4694 */
4695void
4696key_expire(
4697	struct peer *peer	/* peer structure pointer */
4698	)
4699{
4700	int i;
4701
4702	if (peer->keylist != NULL) {
4703		for (i = 0; i <= peer->keynumber; i++)
4704			authtrust(peer->keylist[i], 0);
4705		free(peer->keylist);
4706		peer->keylist = NULL;
4707	}
4708	value_free(&peer->sndval);
4709	peer->keynumber = 0;
4710	peer->flags &= ~FLAG_ASSOC;
4711	DPRINTF(1, ("key_expire: at %lu associd %d\n", current_time,
4712		    peer->associd));
4713}
4714#endif	/* AUTOKEY */
4715
4716
4717/*
4718 * local_refid(peer) - check peer refid to avoid selecting peers
4719 *		       currently synced to this ntpd.
4720 */
4721static int
4722local_refid(
4723	struct peer *	p
4724	)
4725{
4726	endpt *	unicast_ep;
4727
4728	if (p->dstadr != NULL && !(INT_MCASTIF & p->dstadr->flags))
4729		unicast_ep = p->dstadr;
4730	else
4731		unicast_ep = findinterface(&p->srcadr);
4732
4733	if (unicast_ep != NULL && p->refid == unicast_ep->addr_refid)
4734		return TRUE;
4735	else
4736		return FALSE;
4737}
4738
4739
4740/*
4741 * Determine if the peer is unfit for synchronization
4742 *
4743 * A peer is unfit for synchronization if
4744 * > TEST10 bad leap or stratum below floor or at or above ceiling
4745 * > TEST11 root distance exceeded for remote peer
4746 * > TEST12 a direct or indirect synchronization loop would form
4747 * > TEST13 unreachable or noselect
4748 */
4749int				/* FALSE if fit, TRUE if unfit */
4750peer_unfit(
4751	struct peer *peer	/* peer structure pointer */
4752	)
4753{
4754	int	rval = 0;
4755
4756	/*
4757	 * A stratum error occurs if (1) the server has never been
4758	 * synchronized, (2) the server stratum is below the floor or
4759	 * greater than or equal to the ceiling.
4760	 */
4761	if (   peer->leap == LEAP_NOTINSYNC
4762	    || peer->stratum < sys_floor
4763	    || peer->stratum >= sys_ceiling) {
4764		rval |= TEST10;		/* bad synch or stratum */
4765	}
4766
4767	/*
4768	 * A distance error for a remote peer occurs if the root
4769	 * distance is greater than or equal to the distance threshold
4770	 * plus the increment due to one host poll interval.
4771	 */
4772	if (   !(peer->flags & FLAG_REFCLOCK)
4773	    && root_distance(peer) >= sys_maxdist
4774				      + clock_phi * ULOGTOD(peer->hpoll)) {
4775		rval |= TEST11;		/* distance exceeded */
4776	}
4777
4778	/*
4779	 * A loop error occurs if the remote peer is synchronized to the
4780	 * local peer or if the remote peer is synchronized to the same
4781	 * server as the local peer but only if the remote peer is
4782	 * neither a reference clock nor an orphan.
4783	 */
4784	if (peer->stratum > 1 && local_refid(peer)) {
4785		rval |= TEST12;		/* synchronization loop */
4786	}
4787
4788	/*
4789	 * An unreachable error occurs if the server is unreachable or
4790	 * the noselect bit is set.
4791	 */
4792	if (!peer->reach || (peer->flags & FLAG_NOSELECT)) {
4793		rval |= TEST13;		/* unreachable */
4794	}
4795
4796	peer->flash &= ~PEER_TEST_MASK;
4797	peer->flash |= rval;
4798	return (rval);
4799}
4800
4801
4802/*
4803 * Find the precision of this particular machine
4804 */
4805#define MINSTEP		20e-9	/* minimum clock increment (s) */
4806#define MAXSTEP		1	/* maximum clock increment (s) */
4807#define MINCHANGES	12	/* minimum number of step samples */
4808#define MAXLOOPS	((int)(1. / MINSTEP))	/* avoid infinite loop */
4809
4810/*
4811 * This routine measures the system precision defined as the minimum of
4812 * a sequence of differences between successive readings of the system
4813 * clock. However, if a difference is less than MINSTEP, the clock has
4814 * been read more than once during a clock tick and the difference is
4815 * ignored. We set MINSTEP greater than zero in case something happens
4816 * like a cache miss, and to tolerate underlying system clocks which
4817 * ensure each reading is strictly greater than prior readings while
4818 * using an underlying stepping (not interpolated) clock.
4819 *
4820 * sys_tick and sys_precision represent the time to read the clock for
4821 * systems with high-precision clocks, and the tick interval or step
4822 * size for lower-precision stepping clocks.
4823 *
4824 * This routine also measures the time to read the clock on stepping
4825 * system clocks by counting the number of readings between changes of
4826 * the underlying clock.  With either type of clock, the minimum time
4827 * to read the clock is saved as sys_fuzz, and used to ensure the
4828 * get_systime() readings always increase and are fuzzed below sys_fuzz.
4829 */
4830void
4831measure_precision(void)
4832{
4833	/*
4834	 * With sys_fuzz set to zero, get_systime() fuzzing of low bits
4835	 * is effectively disabled.  trunc_os_clock is FALSE to disable
4836	 * get_ostime() simulation of a low-precision system clock.
4837	 */
4838	set_sys_fuzz(0.);
4839	trunc_os_clock = FALSE;
4840	measured_tick = measure_tick_fuzz();
4841	set_sys_tick_precision(measured_tick);
4842	msyslog(LOG_INFO, "proto: precision = %.3f usec (%d)",
4843		sys_tick * 1e6, sys_precision);
4844	if (sys_fuzz < sys_tick) {
4845		msyslog(LOG_NOTICE, "proto: fuzz beneath %.3f usec",
4846			sys_fuzz * 1e6);
4847	}
4848}
4849
4850
4851/*
4852 * measure_tick_fuzz()
4853 *
4854 * measures the minimum time to read the clock (stored in sys_fuzz)
4855 * and returns the tick, the larger of the minimum increment observed
4856 * between successive clock readings and the time to read the clock.
4857 */
4858double
4859measure_tick_fuzz(void)
4860{
4861	l_fp	minstep;	/* MINSTEP as l_fp */
4862	l_fp	val;		/* current seconds fraction */
4863	l_fp	last;		/* last seconds fraction */
4864	l_fp	ldiff;		/* val - last */
4865	double	tick;		/* computed tick value */
4866	double	diff;
4867	long	repeats;
4868	long	max_repeats;
4869	int	changes;
4870	int	i;		/* log2 precision */
4871
4872	tick = MAXSTEP;
4873	max_repeats = 0;
4874	repeats = 0;
4875	changes = 0;
4876	DTOLFP(MINSTEP, &minstep);
4877	get_systime(&last);
4878	for (i = 0; i < MAXLOOPS && changes < MINCHANGES; i++) {
4879		get_systime(&val);
4880		ldiff = val;
4881		L_SUB(&ldiff, &last);
4882		last = val;
4883		if (L_ISGT(&ldiff, &minstep)) {
4884			max_repeats = max(repeats, max_repeats);
4885			repeats = 0;
4886			changes++;
4887			LFPTOD(&ldiff, diff);
4888			tick = min(diff, tick);
4889		} else {
4890			repeats++;
4891		}
4892	}
4893	if (changes < MINCHANGES) {
4894		msyslog(LOG_ERR, "Fatal error: precision could not be measured (MINSTEP too large?)");
4895		exit(1);
4896	}
4897
4898	if (0 == max_repeats) {
4899		set_sys_fuzz(tick);
4900	} else {
4901		set_sys_fuzz(tick / max_repeats);
4902	}
4903
4904	return tick;
4905}
4906
4907
4908void
4909set_sys_tick_precision(
4910	double tick
4911	)
4912{
4913	int i;
4914
4915	if (tick > 1.) {
4916		msyslog(LOG_ERR,
4917			"unsupported tick %.3f > 1s ignored", tick);
4918		return;
4919	}
4920	if (tick < measured_tick) {
4921		msyslog(LOG_ERR,
4922			"proto: tick %.3f less than measured tick %.3f, ignored",
4923			tick, measured_tick);
4924		return;
4925	} else if (tick > measured_tick) {
4926		trunc_os_clock = TRUE;
4927		msyslog(LOG_NOTICE,
4928			"proto: truncating system clock to multiples of %.9f",
4929			tick);
4930	}
4931	sys_tick = tick;
4932
4933	/*
4934	 * Find the nearest power of two.
4935	 */
4936	for (i = 0; tick <= 1; i--)
4937		tick *= 2;
4938	if (tick - 1 > 1 - tick / 2)
4939		i++;
4940
4941	sys_precision = (s_char)i;
4942}
4943
4944
4945/*
4946 * init_proto - initialize the protocol module's data
4947 */
4948void
4949init_proto(void)
4950{
4951	l_fp	dummy;
4952	int	i;
4953
4954	/*
4955	 * Fill in the sys_* stuff.  Default is don't listen to
4956	 * broadcasting, require authentication.
4957	 */
4958	set_sys_leap(LEAP_NOTINSYNC);
4959	sys_stratum = STRATUM_UNSPEC;
4960	memcpy(&sys_refid, "INIT", 4);
4961	sys_peer = NULL;
4962	sys_rootdelay = 0;
4963	sys_rootdisp = 0;
4964	L_CLR(&sys_reftime);
4965	sys_jitter = 0;
4966	measure_precision();
4967	get_systime(&dummy);
4968	sys_survivors = 0;
4969	sys_manycastserver = 0;
4970	sys_bclient = 0;
4971	sys_bdelay = BDELAY_DEFAULT;	/*[Bug 3031] delay cutoff */
4972	sys_authenticate = 1;
4973	sys_stattime = current_time;
4974	orphwait = current_time + sys_orphwait;
4975	proto_clr_stats();
4976	for (i = 0; i < MAX_TTL; ++i)
4977		sys_ttl[i] = (u_char)((i * 256) / MAX_TTL);
4978	sys_ttlmax = (MAX_TTL - 1);
4979	hardpps_enable = 0;
4980	stats_control = 1;
4981}
4982
4983
4984/*
4985 * proto_config - configure the protocol module
4986 */
4987void
4988proto_config(
4989	int	item,
4990	u_long	value,
4991	double	dvalue,
4992	sockaddr_u *svalue
4993	)
4994{
4995	/*
4996	 * Figure out what he wants to change, then do it
4997	 */
4998	DPRINTF(2, ("proto_config: code %d value %lu dvalue %lf\n",
4999		    item, value, dvalue));
5000
5001	switch (item) {
5002
5003	/*
5004	 * enable and disable commands - arguments are Boolean.
5005	 */
5006	case PROTO_AUTHENTICATE: /* authentication (auth) */
5007		sys_authenticate = value;
5008		break;
5009
5010	case PROTO_BROADCLIENT: /* broadcast client (bclient) */
5011		sys_bclient = (int)value;
5012		if (sys_bclient == 0)
5013			io_unsetbclient();
5014		else
5015			io_setbclient();
5016		break;
5017
5018#ifdef REFCLOCK
5019	case PROTO_CAL:		/* refclock calibrate (calibrate) */
5020		cal_enable = value;
5021		break;
5022#endif /* REFCLOCK */
5023
5024	case PROTO_KERNEL:	/* kernel discipline (kernel) */
5025		select_loop(value);
5026		break;
5027
5028	case PROTO_MONITOR:	/* monitoring (monitor) */
5029		if (value)
5030			mon_start(MON_ON);
5031		else {
5032			mon_stop(MON_ON);
5033			if (mon_enabled)
5034				msyslog(LOG_WARNING,
5035					"restrict: 'monitor' cannot be disabled while 'limited' is enabled");
5036		}
5037		break;
5038
5039	case PROTO_NTP:		/* NTP discipline (ntp) */
5040		ntp_enable = value;
5041		break;
5042
5043	case PROTO_MODE7:	/* mode7 management (ntpdc) */
5044		ntp_mode7 = value;
5045		break;
5046
5047	case PROTO_PPS:		/* PPS discipline (pps) */
5048		hardpps_enable = value;
5049		break;
5050
5051	case PROTO_FILEGEN:	/* statistics (stats) */
5052		stats_control = value;
5053		break;
5054
5055	/*
5056	 * tos command - arguments are double, sometimes cast to int
5057	 */
5058
5059	case PROTO_BCPOLLBSTEP:	/* Broadcast Poll Backstep gate (bcpollbstep) */
5060		sys_bcpollbstep = (u_char)dvalue;
5061		break;
5062
5063	case PROTO_BEACON:	/* manycast beacon (beacon) */
5064		sys_beacon = (int)dvalue;
5065		break;
5066
5067	case PROTO_BROADDELAY:	/* default broadcast delay (bdelay) */
5068		sys_bdelay = (dvalue ? dvalue : BDELAY_DEFAULT);
5069		break;
5070
5071	case PROTO_CEILING:	/* stratum ceiling (ceiling) */
5072		sys_ceiling = (int)dvalue;
5073		break;
5074
5075	case PROTO_COHORT:	/* cohort switch (cohort) */
5076		sys_cohort = (int)dvalue;
5077		break;
5078
5079	case PROTO_FLOOR:	/* stratum floor (floor) */
5080		sys_floor = (int)dvalue;
5081		break;
5082
5083	case PROTO_MAXCLOCK:	/* maximum candidates (maxclock) */
5084		sys_maxclock = (int)dvalue;
5085		break;
5086
5087	case PROTO_MAXDIST:	/* select threshold (maxdist) */
5088		sys_maxdist = dvalue;
5089		break;
5090
5091	case PROTO_CALLDELAY:	/* modem call delay (mdelay) */
5092		break;		/* NOT USED */
5093
5094	case PROTO_MINCLOCK:	/* minimum candidates (minclock) */
5095		sys_minclock = (int)dvalue;
5096		break;
5097
5098	case PROTO_MINDISP:	/* minimum distance (mindist) */
5099		sys_mindisp = dvalue;
5100		break;
5101
5102	case PROTO_MINSANE:	/* minimum survivors (minsane) */
5103		sys_minsane = (int)dvalue;
5104		break;
5105
5106	case PROTO_ORPHAN:	/* orphan stratum (orphan) */
5107		sys_orphan = (int)dvalue;
5108		break;
5109
5110	case PROTO_ORPHWAIT:	/* orphan wait (orphwait) */
5111		orphwait -= sys_orphwait;
5112		sys_orphwait = (int)dvalue;
5113		orphwait += sys_orphwait;
5114		break;
5115
5116	/*
5117	 * Miscellaneous commands
5118	 */
5119	case PROTO_MULTICAST_ADD: /* add group address */
5120		if (svalue != NULL)
5121			io_multicast_add(svalue);
5122		sys_bclient = 1;
5123		break;
5124
5125	case PROTO_MULTICAST_DEL: /* delete group address */
5126		if (svalue != NULL)
5127			io_multicast_del(svalue);
5128		break;
5129
5130	/*
5131	 * Peer_clear Early policy choices
5132	 */
5133
5134	case PROTO_PCEDIGEST:	/* Digest */
5135		peer_clear_digest_early = value;
5136		break;
5137
5138	/*
5139	 * Unpeer Early policy choices
5140	 */
5141
5142	case PROTO_UECRYPTO:	/* Crypto */
5143		unpeer_crypto_early = value;
5144		break;
5145
5146	case PROTO_UECRYPTONAK:	/* Crypto_NAK */
5147		unpeer_crypto_nak_early = value;
5148		break;
5149
5150	case PROTO_UEDIGEST:	/* Digest */
5151		unpeer_digest_early = value;
5152		break;
5153
5154	default:
5155		msyslog(LOG_NOTICE,
5156		    "proto: unsupported option %d", item);
5157	}
5158}
5159
5160
5161/*
5162 * proto_clr_stats - clear protocol stat counters
5163 */
5164void
5165proto_clr_stats(void)
5166{
5167	sys_stattime = current_time;
5168	sys_received = 0;
5169	sys_processed = 0;
5170	sys_newversion = 0;
5171	sys_oldversion = 0;
5172	sys_declined = 0;
5173	sys_restricted = 0;
5174	sys_badlength = 0;
5175	sys_badauth = 0;
5176	sys_limitrejected = 0;
5177	sys_kodsent = 0;
5178	sys_lamport = 0;
5179	sys_tsrounding = 0;
5180}
5181