ntp_control.c revision 344884
1/*
2 * ntp_control.c - respond to mode 6 control messages and send async
3 *		   traps.  Provides service to ntpq and others.
4 */
5
6#ifdef HAVE_CONFIG_H
7# include <config.h>
8#endif
9
10#include <stdio.h>
11#include <ctype.h>
12#include <signal.h>
13#include <sys/stat.h>
14#ifdef HAVE_NETINET_IN_H
15# include <netinet/in.h>
16#endif
17#include <arpa/inet.h>
18
19#include "ntpd.h"
20#include "ntp_io.h"
21#include "ntp_refclock.h"
22#include "ntp_control.h"
23#include "ntp_unixtime.h"
24#include "ntp_stdlib.h"
25#include "ntp_config.h"
26#include "ntp_crypto.h"
27#include "ntp_assert.h"
28#include "ntp_leapsec.h"
29#include "ntp_md5.h"	/* provides OpenSSL digest API */
30#include "lib_strbuf.h"
31#include <rc_cmdlength.h>
32#ifdef KERNEL_PLL
33# include "ntp_syscall.h"
34#endif
35
36/*
37 * Structure to hold request procedure information
38 */
39
40struct ctl_proc {
41	short control_code;		/* defined request code */
42#define NO_REQUEST	(-1)
43	u_short flags;			/* flags word */
44	/* Only one flag.  Authentication required or not. */
45#define NOAUTH	0
46#define AUTH	1
47	void (*handler) (struct recvbuf *, int); /* handle request */
48};
49
50
51/*
52 * Request processing routines
53 */
54static	void	ctl_error	(u_char);
55#ifdef REFCLOCK
56static	u_short ctlclkstatus	(struct refclockstat *);
57#endif
58static	void	ctl_flushpkt	(u_char);
59static	void	ctl_putdata	(const char *, unsigned int, int);
60static	void	ctl_putstr	(const char *, const char *, size_t);
61static	void	ctl_putdblf	(const char *, int, int, double);
62#define	ctl_putdbl(tag, d)	ctl_putdblf(tag, 1, 3, d)
63#define	ctl_putdbl6(tag, d)	ctl_putdblf(tag, 1, 6, d)
64#define	ctl_putsfp(tag, sfp)	ctl_putdblf(tag, 0, -1, \
65					    FPTOD(sfp))
66static	void	ctl_putuint	(const char *, u_long);
67static	void	ctl_puthex	(const char *, u_long);
68static	void	ctl_putint	(const char *, long);
69static	void	ctl_putts	(const char *, l_fp *);
70static	void	ctl_putadr	(const char *, u_int32,
71				 sockaddr_u *);
72static	void	ctl_putrefid	(const char *, u_int32);
73static	void	ctl_putarray	(const char *, double *, int);
74static	void	ctl_putsys	(int);
75static	void	ctl_putpeer	(int, struct peer *);
76static	void	ctl_putfs	(const char *, tstamp_t);
77static	void	ctl_printf	(const char *, ...) NTP_PRINTF(1, 2);
78#ifdef REFCLOCK
79static	void	ctl_putclock	(int, struct refclockstat *, int);
80#endif	/* REFCLOCK */
81static	const struct ctl_var *ctl_getitem(const struct ctl_var *,
82					  char **);
83static	u_short	count_var	(const struct ctl_var *);
84static	void	control_unspec	(struct recvbuf *, int);
85static	void	read_status	(struct recvbuf *, int);
86static	void	read_sysvars	(void);
87static	void	read_peervars	(void);
88static	void	read_variables	(struct recvbuf *, int);
89static	void	write_variables (struct recvbuf *, int);
90static	void	read_clockstatus(struct recvbuf *, int);
91static	void	write_clockstatus(struct recvbuf *, int);
92static	void	set_trap	(struct recvbuf *, int);
93static	void	save_config	(struct recvbuf *, int);
94static	void	configure	(struct recvbuf *, int);
95static	void	send_mru_entry	(mon_entry *, int);
96static	void	send_random_tag_value(int);
97static	void	read_mru_list	(struct recvbuf *, int);
98static	void	send_ifstats_entry(endpt *, u_int);
99static	void	read_ifstats	(struct recvbuf *);
100static	void	sockaddrs_from_restrict_u(sockaddr_u *,	sockaddr_u *,
101					  restrict_u *, int);
102static	void	send_restrict_entry(restrict_u *, int, u_int);
103static	void	send_restrict_list(restrict_u *, int, u_int *);
104static	void	read_addr_restrictions(struct recvbuf *);
105static	void	read_ordlist	(struct recvbuf *, int);
106static	u_int32	derive_nonce	(sockaddr_u *, u_int32, u_int32);
107static	void	generate_nonce	(struct recvbuf *, char *, size_t);
108static	int	validate_nonce	(const char *, struct recvbuf *);
109static	void	req_nonce	(struct recvbuf *, int);
110static	void	unset_trap	(struct recvbuf *, int);
111static	struct ctl_trap *ctlfindtrap(sockaddr_u *,
112				     struct interface *);
113
114int/*BOOL*/ is_safe_filename(const char * name);
115
116static const struct ctl_proc control_codes[] = {
117	{ CTL_OP_UNSPEC,		NOAUTH,	control_unspec },
118	{ CTL_OP_READSTAT,		NOAUTH,	read_status },
119	{ CTL_OP_READVAR,		NOAUTH,	read_variables },
120	{ CTL_OP_WRITEVAR,		AUTH,	write_variables },
121	{ CTL_OP_READCLOCK,		NOAUTH,	read_clockstatus },
122	{ CTL_OP_WRITECLOCK,		AUTH,	write_clockstatus },
123	{ CTL_OP_SETTRAP,		AUTH,	set_trap },
124	{ CTL_OP_CONFIGURE,		AUTH,	configure },
125	{ CTL_OP_SAVECONFIG,		AUTH,	save_config },
126	{ CTL_OP_READ_MRU,		NOAUTH,	read_mru_list },
127	{ CTL_OP_READ_ORDLIST_A,	AUTH,	read_ordlist },
128	{ CTL_OP_REQ_NONCE,		NOAUTH,	req_nonce },
129	{ CTL_OP_UNSETTRAP,		AUTH,	unset_trap },
130	{ NO_REQUEST,			0,	NULL }
131};
132
133/*
134 * System variables we understand
135 */
136#define	CS_LEAP			1
137#define	CS_STRATUM		2
138#define	CS_PRECISION		3
139#define	CS_ROOTDELAY		4
140#define	CS_ROOTDISPERSION	5
141#define	CS_REFID		6
142#define	CS_REFTIME		7
143#define	CS_POLL			8
144#define	CS_PEERID		9
145#define	CS_OFFSET		10
146#define	CS_DRIFT		11
147#define	CS_JITTER		12
148#define	CS_ERROR		13
149#define	CS_CLOCK		14
150#define	CS_PROCESSOR		15
151#define	CS_SYSTEM		16
152#define	CS_VERSION		17
153#define	CS_STABIL		18
154#define	CS_VARLIST		19
155#define	CS_TAI			20
156#define	CS_LEAPTAB		21
157#define	CS_LEAPEND		22
158#define	CS_RATE			23
159#define	CS_MRU_ENABLED		24
160#define	CS_MRU_DEPTH		25
161#define	CS_MRU_DEEPEST		26
162#define	CS_MRU_MINDEPTH		27
163#define	CS_MRU_MAXAGE		28
164#define	CS_MRU_MAXDEPTH		29
165#define	CS_MRU_MEM		30
166#define	CS_MRU_MAXMEM		31
167#define	CS_SS_UPTIME		32
168#define	CS_SS_RESET		33
169#define	CS_SS_RECEIVED		34
170#define	CS_SS_THISVER		35
171#define	CS_SS_OLDVER		36
172#define	CS_SS_BADFORMAT		37
173#define	CS_SS_BADAUTH		38
174#define	CS_SS_DECLINED		39
175#define	CS_SS_RESTRICTED	40
176#define	CS_SS_LIMITED		41
177#define	CS_SS_KODSENT		42
178#define	CS_SS_PROCESSED		43
179#define	CS_SS_LAMPORT		44
180#define	CS_SS_TSROUNDING	45
181#define	CS_PEERADR		46
182#define	CS_PEERMODE		47
183#define	CS_BCASTDELAY		48
184#define	CS_AUTHDELAY		49
185#define	CS_AUTHKEYS		50
186#define	CS_AUTHFREEK		51
187#define	CS_AUTHKLOOKUPS		52
188#define	CS_AUTHKNOTFOUND	53
189#define	CS_AUTHKUNCACHED	54
190#define	CS_AUTHKEXPIRED		55
191#define	CS_AUTHENCRYPTS		56
192#define	CS_AUTHDECRYPTS		57
193#define	CS_AUTHRESET		58
194#define	CS_K_OFFSET		59
195#define	CS_K_FREQ		60
196#define	CS_K_MAXERR		61
197#define	CS_K_ESTERR		62
198#define	CS_K_STFLAGS		63
199#define	CS_K_TIMECONST		64
200#define	CS_K_PRECISION		65
201#define	CS_K_FREQTOL		66
202#define	CS_K_PPS_FREQ		67
203#define	CS_K_PPS_STABIL		68
204#define	CS_K_PPS_JITTER		69
205#define	CS_K_PPS_CALIBDUR	70
206#define	CS_K_PPS_CALIBS		71
207#define	CS_K_PPS_CALIBERRS	72
208#define	CS_K_PPS_JITEXC		73
209#define	CS_K_PPS_STBEXC		74
210#define	CS_KERN_FIRST		CS_K_OFFSET
211#define	CS_KERN_LAST		CS_K_PPS_STBEXC
212#define	CS_IOSTATS_RESET	75
213#define	CS_TOTAL_RBUF		76
214#define	CS_FREE_RBUF		77
215#define	CS_USED_RBUF		78
216#define	CS_RBUF_LOWATER		79
217#define	CS_IO_DROPPED		80
218#define	CS_IO_IGNORED		81
219#define	CS_IO_RECEIVED		82
220#define	CS_IO_SENT		83
221#define	CS_IO_SENDFAILED	84
222#define	CS_IO_WAKEUPS		85
223#define	CS_IO_GOODWAKEUPS	86
224#define	CS_TIMERSTATS_RESET	87
225#define	CS_TIMER_OVERRUNS	88
226#define	CS_TIMER_XMTS		89
227#define	CS_FUZZ			90
228#define	CS_WANDER_THRESH	91
229#define	CS_LEAPSMEARINTV	92
230#define	CS_LEAPSMEAROFFS	93
231#define	CS_MAX_NOAUTOKEY	CS_LEAPSMEAROFFS
232#ifdef AUTOKEY
233#define	CS_FLAGS		(1 + CS_MAX_NOAUTOKEY)
234#define	CS_HOST			(2 + CS_MAX_NOAUTOKEY)
235#define	CS_PUBLIC		(3 + CS_MAX_NOAUTOKEY)
236#define	CS_CERTIF		(4 + CS_MAX_NOAUTOKEY)
237#define	CS_SIGNATURE		(5 + CS_MAX_NOAUTOKEY)
238#define	CS_REVTIME		(6 + CS_MAX_NOAUTOKEY)
239#define	CS_IDENT		(7 + CS_MAX_NOAUTOKEY)
240#define	CS_DIGEST		(8 + CS_MAX_NOAUTOKEY)
241#define	CS_MAXCODE		CS_DIGEST
242#else	/* !AUTOKEY follows */
243#define	CS_MAXCODE		CS_MAX_NOAUTOKEY
244#endif	/* !AUTOKEY */
245
246/*
247 * Peer variables we understand
248 */
249#define	CP_CONFIG		1
250#define	CP_AUTHENABLE		2
251#define	CP_AUTHENTIC		3
252#define	CP_SRCADR		4
253#define	CP_SRCPORT		5
254#define	CP_DSTADR		6
255#define	CP_DSTPORT		7
256#define	CP_LEAP			8
257#define	CP_HMODE		9
258#define	CP_STRATUM		10
259#define	CP_PPOLL		11
260#define	CP_HPOLL		12
261#define	CP_PRECISION		13
262#define	CP_ROOTDELAY		14
263#define	CP_ROOTDISPERSION	15
264#define	CP_REFID		16
265#define	CP_REFTIME		17
266#define	CP_ORG			18
267#define	CP_REC			19
268#define	CP_XMT			20
269#define	CP_REACH		21
270#define	CP_UNREACH		22
271#define	CP_TIMER		23
272#define	CP_DELAY		24
273#define	CP_OFFSET		25
274#define	CP_JITTER		26
275#define	CP_DISPERSION		27
276#define	CP_KEYID		28
277#define	CP_FILTDELAY		29
278#define	CP_FILTOFFSET		30
279#define	CP_PMODE		31
280#define	CP_RECEIVED		32
281#define	CP_SENT			33
282#define	CP_FILTERROR		34
283#define	CP_FLASH		35
284#define	CP_TTL			36
285#define	CP_VARLIST		37
286#define	CP_IN			38
287#define	CP_OUT			39
288#define	CP_RATE			40
289#define	CP_BIAS			41
290#define	CP_SRCHOST		42
291#define	CP_TIMEREC		43
292#define	CP_TIMEREACH		44
293#define	CP_BADAUTH		45
294#define	CP_BOGUSORG		46
295#define	CP_OLDPKT		47
296#define	CP_SELDISP		48
297#define	CP_SELBROKEN		49
298#define	CP_CANDIDATE		50
299#define	CP_MAX_NOAUTOKEY	CP_CANDIDATE
300#ifdef AUTOKEY
301#define	CP_FLAGS		(1 + CP_MAX_NOAUTOKEY)
302#define	CP_HOST			(2 + CP_MAX_NOAUTOKEY)
303#define	CP_VALID		(3 + CP_MAX_NOAUTOKEY)
304#define	CP_INITSEQ		(4 + CP_MAX_NOAUTOKEY)
305#define	CP_INITKEY		(5 + CP_MAX_NOAUTOKEY)
306#define	CP_INITTSP		(6 + CP_MAX_NOAUTOKEY)
307#define	CP_SIGNATURE		(7 + CP_MAX_NOAUTOKEY)
308#define	CP_IDENT		(8 + CP_MAX_NOAUTOKEY)
309#define	CP_MAXCODE		CP_IDENT
310#else	/* !AUTOKEY follows */
311#define	CP_MAXCODE		CP_MAX_NOAUTOKEY
312#endif	/* !AUTOKEY */
313
314/*
315 * Clock variables we understand
316 */
317#define	CC_TYPE		1
318#define	CC_TIMECODE	2
319#define	CC_POLL		3
320#define	CC_NOREPLY	4
321#define	CC_BADFORMAT	5
322#define	CC_BADDATA	6
323#define	CC_FUDGETIME1	7
324#define	CC_FUDGETIME2	8
325#define	CC_FUDGEVAL1	9
326#define	CC_FUDGEVAL2	10
327#define	CC_FLAGS	11
328#define	CC_DEVICE	12
329#define	CC_VARLIST	13
330#define	CC_MAXCODE	CC_VARLIST
331
332/*
333 * System variable values. The array can be indexed by the variable
334 * index to find the textual name.
335 */
336static const struct ctl_var sys_var[] = {
337	{ 0,		PADDING, "" },		/* 0 */
338	{ CS_LEAP,	RW, "leap" },		/* 1 */
339	{ CS_STRATUM,	RO, "stratum" },	/* 2 */
340	{ CS_PRECISION, RO, "precision" },	/* 3 */
341	{ CS_ROOTDELAY, RO, "rootdelay" },	/* 4 */
342	{ CS_ROOTDISPERSION, RO, "rootdisp" },	/* 5 */
343	{ CS_REFID,	RO, "refid" },		/* 6 */
344	{ CS_REFTIME,	RO, "reftime" },	/* 7 */
345	{ CS_POLL,	RO, "tc" },		/* 8 */
346	{ CS_PEERID,	RO, "peer" },		/* 9 */
347	{ CS_OFFSET,	RO, "offset" },		/* 10 */
348	{ CS_DRIFT,	RO, "frequency" },	/* 11 */
349	{ CS_JITTER,	RO, "sys_jitter" },	/* 12 */
350	{ CS_ERROR,	RO, "clk_jitter" },	/* 13 */
351	{ CS_CLOCK,	RO, "clock" },		/* 14 */
352	{ CS_PROCESSOR, RO, "processor" },	/* 15 */
353	{ CS_SYSTEM,	RO, "system" },		/* 16 */
354	{ CS_VERSION,	RO, "version" },	/* 17 */
355	{ CS_STABIL,	RO, "clk_wander" },	/* 18 */
356	{ CS_VARLIST,	RO, "sys_var_list" },	/* 19 */
357	{ CS_TAI,	RO, "tai" },		/* 20 */
358	{ CS_LEAPTAB,	RO, "leapsec" },	/* 21 */
359	{ CS_LEAPEND,	RO, "expire" },		/* 22 */
360	{ CS_RATE,	RO, "mintc" },		/* 23 */
361	{ CS_MRU_ENABLED,	RO, "mru_enabled" },	/* 24 */
362	{ CS_MRU_DEPTH,		RO, "mru_depth" },	/* 25 */
363	{ CS_MRU_DEEPEST,	RO, "mru_deepest" },	/* 26 */
364	{ CS_MRU_MINDEPTH,	RO, "mru_mindepth" },	/* 27 */
365	{ CS_MRU_MAXAGE,	RO, "mru_maxage" },	/* 28 */
366	{ CS_MRU_MAXDEPTH,	RO, "mru_maxdepth" },	/* 29 */
367	{ CS_MRU_MEM,		RO, "mru_mem" },	/* 30 */
368	{ CS_MRU_MAXMEM,	RO, "mru_maxmem" },	/* 31 */
369	{ CS_SS_UPTIME,		RO, "ss_uptime" },	/* 32 */
370	{ CS_SS_RESET,		RO, "ss_reset" },	/* 33 */
371	{ CS_SS_RECEIVED,	RO, "ss_received" },	/* 34 */
372	{ CS_SS_THISVER,	RO, "ss_thisver" },	/* 35 */
373	{ CS_SS_OLDVER,		RO, "ss_oldver" },	/* 36 */
374	{ CS_SS_BADFORMAT,	RO, "ss_badformat" },	/* 37 */
375	{ CS_SS_BADAUTH,	RO, "ss_badauth" },	/* 38 */
376	{ CS_SS_DECLINED,	RO, "ss_declined" },	/* 39 */
377	{ CS_SS_RESTRICTED,	RO, "ss_restricted" },	/* 40 */
378	{ CS_SS_LIMITED,	RO, "ss_limited" },	/* 41 */
379	{ CS_SS_KODSENT,	RO, "ss_kodsent" },	/* 42 */
380	{ CS_SS_PROCESSED,	RO, "ss_processed" },	/* 43 */
381	{ CS_SS_LAMPORT,	RO, "ss_lamport" },	/* 44 */
382	{ CS_SS_TSROUNDING,	RO, "ss_tsrounding" },	/* 45 */
383	{ CS_PEERADR,		RO, "peeradr" },	/* 46 */
384	{ CS_PEERMODE,		RO, "peermode" },	/* 47 */
385	{ CS_BCASTDELAY,	RO, "bcastdelay" },	/* 48 */
386	{ CS_AUTHDELAY,		RO, "authdelay" },	/* 49 */
387	{ CS_AUTHKEYS,		RO, "authkeys" },	/* 50 */
388	{ CS_AUTHFREEK,		RO, "authfreek" },	/* 51 */
389	{ CS_AUTHKLOOKUPS,	RO, "authklookups" },	/* 52 */
390	{ CS_AUTHKNOTFOUND,	RO, "authknotfound" },	/* 53 */
391	{ CS_AUTHKUNCACHED,	RO, "authkuncached" },	/* 54 */
392	{ CS_AUTHKEXPIRED,	RO, "authkexpired" },	/* 55 */
393	{ CS_AUTHENCRYPTS,	RO, "authencrypts" },	/* 56 */
394	{ CS_AUTHDECRYPTS,	RO, "authdecrypts" },	/* 57 */
395	{ CS_AUTHRESET,		RO, "authreset" },	/* 58 */
396	{ CS_K_OFFSET,		RO, "koffset" },	/* 59 */
397	{ CS_K_FREQ,		RO, "kfreq" },		/* 60 */
398	{ CS_K_MAXERR,		RO, "kmaxerr" },	/* 61 */
399	{ CS_K_ESTERR,		RO, "kesterr" },	/* 62 */
400	{ CS_K_STFLAGS,		RO, "kstflags" },	/* 63 */
401	{ CS_K_TIMECONST,	RO, "ktimeconst" },	/* 64 */
402	{ CS_K_PRECISION,	RO, "kprecis" },	/* 65 */
403	{ CS_K_FREQTOL,		RO, "kfreqtol" },	/* 66 */
404	{ CS_K_PPS_FREQ,	RO, "kppsfreq" },	/* 67 */
405	{ CS_K_PPS_STABIL,	RO, "kppsstab" },	/* 68 */
406	{ CS_K_PPS_JITTER,	RO, "kppsjitter" },	/* 69 */
407	{ CS_K_PPS_CALIBDUR,	RO, "kppscalibdur" },	/* 70 */
408	{ CS_K_PPS_CALIBS,	RO, "kppscalibs" },	/* 71 */
409	{ CS_K_PPS_CALIBERRS,	RO, "kppscaliberrs" },	/* 72 */
410	{ CS_K_PPS_JITEXC,	RO, "kppsjitexc" },	/* 73 */
411	{ CS_K_PPS_STBEXC,	RO, "kppsstbexc" },	/* 74 */
412	{ CS_IOSTATS_RESET,	RO, "iostats_reset" },	/* 75 */
413	{ CS_TOTAL_RBUF,	RO, "total_rbuf" },	/* 76 */
414	{ CS_FREE_RBUF,		RO, "free_rbuf" },	/* 77 */
415	{ CS_USED_RBUF,		RO, "used_rbuf" },	/* 78 */
416	{ CS_RBUF_LOWATER,	RO, "rbuf_lowater" },	/* 79 */
417	{ CS_IO_DROPPED,	RO, "io_dropped" },	/* 80 */
418	{ CS_IO_IGNORED,	RO, "io_ignored" },	/* 81 */
419	{ CS_IO_RECEIVED,	RO, "io_received" },	/* 82 */
420	{ CS_IO_SENT,		RO, "io_sent" },	/* 83 */
421	{ CS_IO_SENDFAILED,	RO, "io_sendfailed" },	/* 84 */
422	{ CS_IO_WAKEUPS,	RO, "io_wakeups" },	/* 85 */
423	{ CS_IO_GOODWAKEUPS,	RO, "io_goodwakeups" },	/* 86 */
424	{ CS_TIMERSTATS_RESET,	RO, "timerstats_reset" },/* 87 */
425	{ CS_TIMER_OVERRUNS,	RO, "timer_overruns" },	/* 88 */
426	{ CS_TIMER_XMTS,	RO, "timer_xmts" },	/* 89 */
427	{ CS_FUZZ,		RO, "fuzz" },		/* 90 */
428	{ CS_WANDER_THRESH,	RO, "clk_wander_threshold" }, /* 91 */
429
430	{ CS_LEAPSMEARINTV,	RO, "leapsmearinterval" },    /* 92 */
431	{ CS_LEAPSMEAROFFS,	RO, "leapsmearoffset" },      /* 93 */
432
433#ifdef AUTOKEY
434	{ CS_FLAGS,	RO, "flags" },		/* 1 + CS_MAX_NOAUTOKEY */
435	{ CS_HOST,	RO, "host" },		/* 2 + CS_MAX_NOAUTOKEY */
436	{ CS_PUBLIC,	RO, "update" },		/* 3 + CS_MAX_NOAUTOKEY */
437	{ CS_CERTIF,	RO, "cert" },		/* 4 + CS_MAX_NOAUTOKEY */
438	{ CS_SIGNATURE,	RO, "signature" },	/* 5 + CS_MAX_NOAUTOKEY */
439	{ CS_REVTIME,	RO, "until" },		/* 6 + CS_MAX_NOAUTOKEY */
440	{ CS_IDENT,	RO, "ident" },		/* 7 + CS_MAX_NOAUTOKEY */
441	{ CS_DIGEST,	RO, "digest" },		/* 8 + CS_MAX_NOAUTOKEY */
442#endif	/* AUTOKEY */
443	{ 0,		EOV, "" }		/* 94/102 */
444};
445
446static struct ctl_var *ext_sys_var = NULL;
447
448/*
449 * System variables we print by default (in fuzzball order,
450 * more-or-less)
451 */
452static const u_char def_sys_var[] = {
453	CS_VERSION,
454	CS_PROCESSOR,
455	CS_SYSTEM,
456	CS_LEAP,
457	CS_STRATUM,
458	CS_PRECISION,
459	CS_ROOTDELAY,
460	CS_ROOTDISPERSION,
461	CS_REFID,
462	CS_REFTIME,
463	CS_CLOCK,
464	CS_PEERID,
465	CS_POLL,
466	CS_RATE,
467	CS_OFFSET,
468	CS_DRIFT,
469	CS_JITTER,
470	CS_ERROR,
471	CS_STABIL,
472	CS_TAI,
473	CS_LEAPTAB,
474	CS_LEAPEND,
475	CS_LEAPSMEARINTV,
476	CS_LEAPSMEAROFFS,
477#ifdef AUTOKEY
478	CS_HOST,
479	CS_IDENT,
480	CS_FLAGS,
481	CS_DIGEST,
482	CS_SIGNATURE,
483	CS_PUBLIC,
484	CS_CERTIF,
485#endif	/* AUTOKEY */
486	0
487};
488
489
490/*
491 * Peer variable list
492 */
493static const struct ctl_var peer_var[] = {
494	{ 0,		PADDING, "" },		/* 0 */
495	{ CP_CONFIG,	RO, "config" },		/* 1 */
496	{ CP_AUTHENABLE, RO,	"authenable" },	/* 2 */
497	{ CP_AUTHENTIC, RO, "authentic" },	/* 3 */
498	{ CP_SRCADR,	RO, "srcadr" },		/* 4 */
499	{ CP_SRCPORT,	RO, "srcport" },	/* 5 */
500	{ CP_DSTADR,	RO, "dstadr" },		/* 6 */
501	{ CP_DSTPORT,	RO, "dstport" },	/* 7 */
502	{ CP_LEAP,	RO, "leap" },		/* 8 */
503	{ CP_HMODE,	RO, "hmode" },		/* 9 */
504	{ CP_STRATUM,	RO, "stratum" },	/* 10 */
505	{ CP_PPOLL,	RO, "ppoll" },		/* 11 */
506	{ CP_HPOLL,	RO, "hpoll" },		/* 12 */
507	{ CP_PRECISION,	RO, "precision" },	/* 13 */
508	{ CP_ROOTDELAY,	RO, "rootdelay" },	/* 14 */
509	{ CP_ROOTDISPERSION, RO, "rootdisp" },	/* 15 */
510	{ CP_REFID,	RO, "refid" },		/* 16 */
511	{ CP_REFTIME,	RO, "reftime" },	/* 17 */
512	{ CP_ORG,	RO, "org" },		/* 18 */
513	{ CP_REC,	RO, "rec" },		/* 19 */
514	{ CP_XMT,	RO, "xleave" },		/* 20 */
515	{ CP_REACH,	RO, "reach" },		/* 21 */
516	{ CP_UNREACH,	RO, "unreach" },	/* 22 */
517	{ CP_TIMER,	RO, "timer" },		/* 23 */
518	{ CP_DELAY,	RO, "delay" },		/* 24 */
519	{ CP_OFFSET,	RO, "offset" },		/* 25 */
520	{ CP_JITTER,	RO, "jitter" },		/* 26 */
521	{ CP_DISPERSION, RO, "dispersion" },	/* 27 */
522	{ CP_KEYID,	RO, "keyid" },		/* 28 */
523	{ CP_FILTDELAY,	RO, "filtdelay" },	/* 29 */
524	{ CP_FILTOFFSET, RO, "filtoffset" },	/* 30 */
525	{ CP_PMODE,	RO, "pmode" },		/* 31 */
526	{ CP_RECEIVED,	RO, "received"},	/* 32 */
527	{ CP_SENT,	RO, "sent" },		/* 33 */
528	{ CP_FILTERROR,	RO, "filtdisp" },	/* 34 */
529	{ CP_FLASH,	RO, "flash" },		/* 35 */
530	{ CP_TTL,	RO, "ttl" },		/* 36 */
531	{ CP_VARLIST,	RO, "peer_var_list" },	/* 37 */
532	{ CP_IN,	RO, "in" },		/* 38 */
533	{ CP_OUT,	RO, "out" },		/* 39 */
534	{ CP_RATE,	RO, "headway" },	/* 40 */
535	{ CP_BIAS,	RO, "bias" },		/* 41 */
536	{ CP_SRCHOST,	RO, "srchost" },	/* 42 */
537	{ CP_TIMEREC,	RO, "timerec" },	/* 43 */
538	{ CP_TIMEREACH,	RO, "timereach" },	/* 44 */
539	{ CP_BADAUTH,	RO, "badauth" },	/* 45 */
540	{ CP_BOGUSORG,	RO, "bogusorg" },	/* 46 */
541	{ CP_OLDPKT,	RO, "oldpkt" },		/* 47 */
542	{ CP_SELDISP,	RO, "seldisp" },	/* 48 */
543	{ CP_SELBROKEN,	RO, "selbroken" },	/* 49 */
544	{ CP_CANDIDATE, RO, "candidate" },	/* 50 */
545#ifdef AUTOKEY
546	{ CP_FLAGS,	RO, "flags" },		/* 1 + CP_MAX_NOAUTOKEY */
547	{ CP_HOST,	RO, "host" },		/* 2 + CP_MAX_NOAUTOKEY */
548	{ CP_VALID,	RO, "valid" },		/* 3 + CP_MAX_NOAUTOKEY */
549	{ CP_INITSEQ,	RO, "initsequence" },	/* 4 + CP_MAX_NOAUTOKEY */
550	{ CP_INITKEY,	RO, "initkey" },	/* 5 + CP_MAX_NOAUTOKEY */
551	{ CP_INITTSP,	RO, "timestamp" },	/* 6 + CP_MAX_NOAUTOKEY */
552	{ CP_SIGNATURE,	RO, "signature" },	/* 7 + CP_MAX_NOAUTOKEY */
553	{ CP_IDENT,	RO, "ident" },		/* 8 + CP_MAX_NOAUTOKEY */
554#endif	/* AUTOKEY */
555	{ 0,		EOV, "" }		/* 50/58 */
556};
557
558
559/*
560 * Peer variables we print by default
561 */
562static const u_char def_peer_var[] = {
563	CP_SRCADR,
564	CP_SRCPORT,
565	CP_SRCHOST,
566	CP_DSTADR,
567	CP_DSTPORT,
568	CP_OUT,
569	CP_IN,
570	CP_LEAP,
571	CP_STRATUM,
572	CP_PRECISION,
573	CP_ROOTDELAY,
574	CP_ROOTDISPERSION,
575	CP_REFID,
576	CP_REFTIME,
577	CP_REC,
578	CP_REACH,
579	CP_UNREACH,
580	CP_HMODE,
581	CP_PMODE,
582	CP_HPOLL,
583	CP_PPOLL,
584	CP_RATE,
585	CP_FLASH,
586	CP_KEYID,
587	CP_TTL,
588	CP_OFFSET,
589	CP_DELAY,
590	CP_DISPERSION,
591	CP_JITTER,
592	CP_XMT,
593	CP_BIAS,
594	CP_FILTDELAY,
595	CP_FILTOFFSET,
596	CP_FILTERROR,
597#ifdef AUTOKEY
598	CP_HOST,
599	CP_FLAGS,
600	CP_SIGNATURE,
601	CP_VALID,
602	CP_INITSEQ,
603	CP_IDENT,
604#endif	/* AUTOKEY */
605	0
606};
607
608
609#ifdef REFCLOCK
610/*
611 * Clock variable list
612 */
613static const struct ctl_var clock_var[] = {
614	{ 0,		PADDING, "" },		/* 0 */
615	{ CC_TYPE,	RO, "type" },		/* 1 */
616	{ CC_TIMECODE,	RO, "timecode" },	/* 2 */
617	{ CC_POLL,	RO, "poll" },		/* 3 */
618	{ CC_NOREPLY,	RO, "noreply" },	/* 4 */
619	{ CC_BADFORMAT, RO, "badformat" },	/* 5 */
620	{ CC_BADDATA,	RO, "baddata" },	/* 6 */
621	{ CC_FUDGETIME1, RO, "fudgetime1" },	/* 7 */
622	{ CC_FUDGETIME2, RO, "fudgetime2" },	/* 8 */
623	{ CC_FUDGEVAL1, RO, "stratum" },	/* 9 */
624	{ CC_FUDGEVAL2, RO, "refid" },		/* 10 */
625	{ CC_FLAGS,	RO, "flags" },		/* 11 */
626	{ CC_DEVICE,	RO, "device" },		/* 12 */
627	{ CC_VARLIST,	RO, "clock_var_list" },	/* 13 */
628	{ 0,		EOV, ""  }		/* 14 */
629};
630
631
632/*
633 * Clock variables printed by default
634 */
635static const u_char def_clock_var[] = {
636	CC_DEVICE,
637	CC_TYPE,	/* won't be output if device = known */
638	CC_TIMECODE,
639	CC_POLL,
640	CC_NOREPLY,
641	CC_BADFORMAT,
642	CC_BADDATA,
643	CC_FUDGETIME1,
644	CC_FUDGETIME2,
645	CC_FUDGEVAL1,
646	CC_FUDGEVAL2,
647	CC_FLAGS,
648	0
649};
650#endif
651
652/*
653 * MRU string constants shared by send_mru_entry() and read_mru_list().
654 */
655static const char addr_fmt[] =		"addr.%d";
656static const char last_fmt[] =		"last.%d";
657
658/*
659 * System and processor definitions.
660 */
661#ifndef HAVE_UNAME
662# ifndef STR_SYSTEM
663#  define		STR_SYSTEM	"UNIX"
664# endif
665# ifndef STR_PROCESSOR
666#  define		STR_PROCESSOR	"unknown"
667# endif
668
669static const char str_system[] = STR_SYSTEM;
670static const char str_processor[] = STR_PROCESSOR;
671#else
672# include <sys/utsname.h>
673static struct utsname utsnamebuf;
674#endif /* HAVE_UNAME */
675
676/*
677 * Trap structures. We only allow a few of these, and send a copy of
678 * each async message to each live one. Traps time out after an hour, it
679 * is up to the trap receipient to keep resetting it to avoid being
680 * timed out.
681 */
682/* ntp_request.c */
683struct ctl_trap ctl_traps[CTL_MAXTRAPS];
684int num_ctl_traps;
685
686/*
687 * Type bits, for ctlsettrap() call.
688 */
689#define TRAP_TYPE_CONFIG	0	/* used by configuration code */
690#define TRAP_TYPE_PRIO		1	/* priority trap */
691#define TRAP_TYPE_NONPRIO	2	/* nonpriority trap */
692
693
694/*
695 * List relating reference clock types to control message time sources.
696 * Index by the reference clock type. This list will only be used iff
697 * the reference clock driver doesn't set peer->sstclktype to something
698 * different than CTL_SST_TS_UNSPEC.
699 */
700#ifdef REFCLOCK
701static const u_char clocktypes[] = {
702	CTL_SST_TS_NTP,		/* REFCLK_NONE (0) */
703	CTL_SST_TS_LOCAL,	/* REFCLK_LOCALCLOCK (1) */
704	CTL_SST_TS_UHF,		/* deprecated REFCLK_GPS_TRAK (2) */
705	CTL_SST_TS_HF,		/* REFCLK_WWV_PST (3) */
706	CTL_SST_TS_LF,		/* REFCLK_WWVB_SPECTRACOM (4) */
707	CTL_SST_TS_UHF,		/* REFCLK_TRUETIME (5) */
708	CTL_SST_TS_UHF,		/* REFCLK_IRIG_AUDIO (6) */
709	CTL_SST_TS_HF,		/* REFCLK_CHU (7) */
710	CTL_SST_TS_LF,		/* REFCLOCK_PARSE (default) (8) */
711	CTL_SST_TS_LF,		/* REFCLK_GPS_MX4200 (9) */
712	CTL_SST_TS_UHF,		/* REFCLK_GPS_AS2201 (10) */
713	CTL_SST_TS_UHF,		/* REFCLK_GPS_ARBITER (11) */
714	CTL_SST_TS_UHF,		/* REFCLK_IRIG_TPRO (12) */
715	CTL_SST_TS_ATOM,	/* REFCLK_ATOM_LEITCH (13) */
716	CTL_SST_TS_LF,		/* deprecated REFCLK_MSF_EES (14) */
717	CTL_SST_TS_NTP,		/* not used (15) */
718	CTL_SST_TS_UHF,		/* REFCLK_IRIG_BANCOMM (16) */
719	CTL_SST_TS_UHF,		/* REFCLK_GPS_DATU (17) */
720	CTL_SST_TS_TELEPHONE,	/* REFCLK_NIST_ACTS (18) */
721	CTL_SST_TS_HF,		/* REFCLK_WWV_HEATH (19) */
722	CTL_SST_TS_UHF,		/* REFCLK_GPS_NMEA (20) */
723	CTL_SST_TS_UHF,		/* REFCLK_GPS_VME (21) */
724	CTL_SST_TS_ATOM,	/* REFCLK_ATOM_PPS (22) */
725	CTL_SST_TS_NTP,		/* not used (23) */
726	CTL_SST_TS_NTP,		/* not used (24) */
727	CTL_SST_TS_NTP,		/* not used (25) */
728	CTL_SST_TS_UHF,		/* REFCLK_GPS_HP (26) */
729	CTL_SST_TS_LF,		/* REFCLK_ARCRON_MSF (27) */
730	CTL_SST_TS_UHF,		/* REFCLK_SHM (28) */
731	CTL_SST_TS_UHF,		/* REFCLK_PALISADE (29) */
732	CTL_SST_TS_UHF,		/* REFCLK_ONCORE (30) */
733	CTL_SST_TS_UHF,		/* REFCLK_JUPITER (31) */
734	CTL_SST_TS_LF,		/* REFCLK_CHRONOLOG (32) */
735	CTL_SST_TS_LF,		/* REFCLK_DUMBCLOCK (33) */
736	CTL_SST_TS_LF,		/* REFCLK_ULINK (34) */
737	CTL_SST_TS_LF,		/* REFCLK_PCF (35) */
738	CTL_SST_TS_HF,		/* REFCLK_WWV (36) */
739	CTL_SST_TS_LF,		/* REFCLK_FG (37) */
740	CTL_SST_TS_UHF,		/* REFCLK_HOPF_SERIAL (38) */
741	CTL_SST_TS_UHF,		/* REFCLK_HOPF_PCI (39) */
742	CTL_SST_TS_LF,		/* REFCLK_JJY (40) */
743	CTL_SST_TS_UHF,		/* REFCLK_TT560 (41) */
744	CTL_SST_TS_UHF,		/* REFCLK_ZYFER (42) */
745	CTL_SST_TS_UHF,		/* REFCLK_RIPENCC (43) */
746	CTL_SST_TS_UHF,		/* REFCLK_NEOCLOCK4X (44) */
747	CTL_SST_TS_UHF,		/* REFCLK_TSYNCPCI (45) */
748	CTL_SST_TS_UHF		/* REFCLK_GPSDJSON (46) */
749};
750#endif  /* REFCLOCK */
751
752
753/*
754 * Keyid used for authenticating write requests.
755 */
756keyid_t ctl_auth_keyid;
757
758/*
759 * We keep track of the last error reported by the system internally
760 */
761static	u_char ctl_sys_last_event;
762static	u_char ctl_sys_num_events;
763
764
765/*
766 * Statistic counters to keep track of requests and responses.
767 */
768u_long ctltimereset;		/* time stats reset */
769u_long numctlreq;		/* number of requests we've received */
770u_long numctlbadpkts;		/* number of bad control packets */
771u_long numctlresponses;		/* number of resp packets sent with data */
772u_long numctlfrags;		/* number of fragments sent */
773u_long numctlerrors;		/* number of error responses sent */
774u_long numctltooshort;		/* number of too short input packets */
775u_long numctlinputresp;		/* number of responses on input */
776u_long numctlinputfrag;		/* number of fragments on input */
777u_long numctlinputerr;		/* number of input pkts with err bit set */
778u_long numctlbadoffset;		/* number of input pkts with nonzero offset */
779u_long numctlbadversion;	/* number of input pkts with unknown version */
780u_long numctldatatooshort;	/* data too short for count */
781u_long numctlbadop;		/* bad op code found in packet */
782u_long numasyncmsgs;		/* number of async messages we've sent */
783
784/*
785 * Response packet used by these routines. Also some state information
786 * so that we can handle packet formatting within a common set of
787 * subroutines.  Note we try to enter data in place whenever possible,
788 * but the need to set the more bit correctly means we occasionally
789 * use the extra buffer and copy.
790 */
791static struct ntp_control rpkt;
792static u_char	res_version;
793static u_char	res_opcode;
794static associd_t res_associd;
795static u_short	res_frags;	/* datagrams in this response */
796static int	res_offset;	/* offset of payload in response */
797static u_char * datapt;
798static u_char * dataend;
799static int	datalinelen;
800static int	datasent;	/* flag to avoid initial ", " */
801static int	datanotbinflag;
802static sockaddr_u *rmt_addr;
803static struct interface *lcl_inter;
804
805static u_char	res_authenticate;
806static u_char	res_authokay;
807static keyid_t	res_keyid;
808
809#define MAXDATALINELEN	(72)
810
811static u_char	res_async;	/* sending async trap response? */
812
813/*
814 * Pointers for saving state when decoding request packets
815 */
816static	char *reqpt;
817static	char *reqend;
818
819#ifndef MIN
820#define MIN(a, b) (((a) <= (b)) ? (a) : (b))
821#endif
822
823/*
824 * init_control - initialize request data
825 */
826void
827init_control(void)
828{
829	size_t i;
830
831#ifdef HAVE_UNAME
832	uname(&utsnamebuf);
833#endif /* HAVE_UNAME */
834
835	ctl_clr_stats();
836
837	ctl_auth_keyid = 0;
838	ctl_sys_last_event = EVNT_UNSPEC;
839	ctl_sys_num_events = 0;
840
841	num_ctl_traps = 0;
842	for (i = 0; i < COUNTOF(ctl_traps); i++)
843		ctl_traps[i].tr_flags = 0;
844}
845
846
847/*
848 * ctl_error - send an error response for the current request
849 */
850static void
851ctl_error(
852	u_char errcode
853	)
854{
855	size_t		maclen;
856
857	numctlerrors++;
858	DPRINTF(3, ("sending control error %u\n", errcode));
859
860	/*
861	 * Fill in the fields. We assume rpkt.sequence and rpkt.associd
862	 * have already been filled in.
863	 */
864	rpkt.r_m_e_op = (u_char)CTL_RESPONSE | CTL_ERROR |
865			(res_opcode & CTL_OP_MASK);
866	rpkt.status = htons((u_short)(errcode << 8) & 0xff00);
867	rpkt.count = 0;
868
869	/*
870	 * send packet and bump counters
871	 */
872	if (res_authenticate && sys_authenticate) {
873		maclen = authencrypt(res_keyid, (u_int32 *)&rpkt,
874				     CTL_HEADER_LEN);
875		sendpkt(rmt_addr, lcl_inter, -2, (void *)&rpkt,
876			CTL_HEADER_LEN + maclen);
877	} else
878		sendpkt(rmt_addr, lcl_inter, -3, (void *)&rpkt,
879			CTL_HEADER_LEN);
880}
881
882int/*BOOL*/
883is_safe_filename(const char * name)
884{
885	/* We need a strict validation of filenames we should write: The
886	 * daemon might run with special permissions and is remote
887	 * controllable, so we better take care what we allow as file
888	 * name!
889	 *
890	 * The first character must be digit or a letter from the ASCII
891	 * base plane or a '_' ([_A-Za-z0-9]), the following characters
892	 * must be from [-._+A-Za-z0-9].
893	 *
894	 * We do not trust the character classification much here: Since
895	 * the NTP protocol makes no provisions for UTF-8 or local code
896	 * pages, we strictly require the 7bit ASCII code page.
897	 *
898	 * The following table is a packed bit field of 128 two-bit
899	 * groups. The LSB in each group tells us if a character is
900	 * acceptable at the first position, the MSB if the character is
901	 * accepted at any other position.
902	 *
903	 * This does not ensure that the file name is syntactically
904	 * correct (multiple dots will not work with VMS...) but it will
905	 * exclude potential globbing bombs and directory traversal. It
906	 * also rules out drive selection. (For systems that have this
907	 * notion, like Windows or VMS.)
908	 */
909	static const uint32_t chclass[8] = {
910		0x00000000, 0x00000000,
911		0x28800000, 0x000FFFFF,
912		0xFFFFFFFC, 0xC03FFFFF,
913		0xFFFFFFFC, 0x003FFFFF
914	};
915
916	u_int widx, bidx, mask;
917	if ( ! (name && *name))
918		return FALSE;
919
920	mask = 1u;
921	while (0 != (widx = (u_char)*name++)) {
922		bidx = (widx & 15) << 1;
923		widx = widx >> 4;
924		if (widx >= sizeof(chclass)/sizeof(chclass[0]))
925			return FALSE;
926		if (0 == ((chclass[widx] >> bidx) & mask))
927			return FALSE;
928		mask = 2u;
929	}
930	return TRUE;
931}
932
933
934/*
935 * save_config - Implements ntpq -c "saveconfig <filename>"
936 *		 Writes current configuration including any runtime
937 *		 changes by ntpq's :config or config-from-file
938 *
939 * Note: There should be no buffer overflow or truncation in the
940 * processing of file names -- both cause security problems. This is bit
941 * painful to code but essential here.
942 */
943void
944save_config(
945	struct recvbuf *rbufp,
946	int restrict_mask
947	)
948{
949	/* block directory traversal by searching for characters that
950	 * indicate directory components in a file path.
951	 *
952	 * Conceptually we should be searching for DIRSEP in filename,
953	 * however Windows actually recognizes both forward and
954	 * backslashes as equivalent directory separators at the API
955	 * level.  On POSIX systems we could allow '\\' but such
956	 * filenames are tricky to manipulate from a shell, so just
957	 * reject both types of slashes on all platforms.
958	 */
959	/* TALOS-CAN-0062: block directory traversal for VMS, too */
960	static const char * illegal_in_filename =
961#if defined(VMS)
962	    ":[]"	/* do not allow drive and path components here */
963#elif defined(SYS_WINNT)
964	    ":\\/"	/* path and drive separators */
965#else
966	    "\\/"	/* separator and critical char for POSIX */
967#endif
968	    ;
969	char reply[128];
970#ifdef SAVECONFIG
971	static const char savedconfig_eq[] = "savedconfig=";
972
973	/* Build a safe open mode from the available mode flags. We want
974	 * to create a new file and write it in text mode (when
975	 * applicable -- only Windows does this...)
976	 */
977	static const int openmode = O_CREAT | O_TRUNC | O_WRONLY
978#  if defined(O_EXCL)		/* posix, vms */
979	    | O_EXCL
980#  elif defined(_O_EXCL)	/* windows is alway very special... */
981	    | _O_EXCL
982#  endif
983#  if defined(_O_TEXT)		/* windows, again */
984	    | _O_TEXT
985#endif
986	    ;
987
988	char filespec[128];
989	char filename[128];
990	char fullpath[512];
991	char savedconfig[sizeof(savedconfig_eq) + sizeof(filename)];
992	time_t now;
993	int fd;
994	FILE *fptr;
995	int prc;
996	size_t reqlen;
997#endif
998
999	if (RES_NOMODIFY & restrict_mask) {
1000		ctl_printf("%s", "saveconfig prohibited by restrict ... nomodify");
1001		ctl_flushpkt(0);
1002		NLOG(NLOG_SYSINFO)
1003			msyslog(LOG_NOTICE,
1004				"saveconfig from %s rejected due to nomodify restriction",
1005				stoa(&rbufp->recv_srcadr));
1006		sys_restricted++;
1007		return;
1008	}
1009
1010#ifdef SAVECONFIG
1011	if (NULL == saveconfigdir) {
1012		ctl_printf("%s", "saveconfig prohibited, no saveconfigdir configured");
1013		ctl_flushpkt(0);
1014		NLOG(NLOG_SYSINFO)
1015			msyslog(LOG_NOTICE,
1016				"saveconfig from %s rejected, no saveconfigdir",
1017				stoa(&rbufp->recv_srcadr));
1018		return;
1019	}
1020
1021	/* The length checking stuff gets serious. Do not assume a NUL
1022	 * byte can be found, but if so, use it to calculate the needed
1023	 * buffer size. If the available buffer is too short, bail out;
1024	 * likewise if there is no file spec. (The latter will not
1025	 * happen when using NTPQ, but there are other ways to craft a
1026	 * network packet!)
1027	 */
1028	reqlen = (size_t)(reqend - reqpt);
1029	if (0 != reqlen) {
1030		char * nulpos = (char*)memchr(reqpt, 0, reqlen);
1031		if (NULL != nulpos)
1032			reqlen = (size_t)(nulpos - reqpt);
1033	}
1034	if (0 == reqlen)
1035		return;
1036	if (reqlen >= sizeof(filespec)) {
1037		ctl_printf("saveconfig exceeded maximum raw name length (%u)",
1038			   (u_int)sizeof(filespec));
1039		ctl_flushpkt(0);
1040		msyslog(LOG_NOTICE,
1041			"saveconfig exceeded maximum raw name length from %s",
1042			stoa(&rbufp->recv_srcadr));
1043		return;
1044	}
1045
1046	/* copy data directly as we exactly know the size */
1047	memcpy(filespec, reqpt, reqlen);
1048	filespec[reqlen] = '\0';
1049
1050	/*
1051	 * allow timestamping of the saved config filename with
1052	 * strftime() format such as:
1053	 *   ntpq -c "saveconfig ntp-%Y%m%d-%H%M%S.conf"
1054	 * XXX: Nice feature, but not too safe.
1055	 * YYY: The check for permitted characters in file names should
1056	 *      weed out the worst. Let's hope 'strftime()' does not
1057	 *      develop pathological problems.
1058	 */
1059	time(&now);
1060	if (0 == strftime(filename, sizeof(filename), filespec,
1061			  localtime(&now)))
1062	{
1063		/*
1064		 * If we arrive here, 'strftime()' balked; most likely
1065		 * the buffer was too short. (Or it encounterd an empty
1066		 * format, or just a format that expands to an empty
1067		 * string.) We try to use the original name, though this
1068		 * is very likely to fail later if there are format
1069		 * specs in the string. Note that truncation cannot
1070		 * happen here as long as both buffers have the same
1071		 * size!
1072		 */
1073		strlcpy(filename, filespec, sizeof(filename));
1074	}
1075
1076	/*
1077	 * Check the file name for sanity. This might/will rule out file
1078	 * names that would be legal but problematic, and it blocks
1079	 * directory traversal.
1080	 */
1081	if (!is_safe_filename(filename)) {
1082		ctl_printf("saveconfig rejects unsafe file name '%s'",
1083			   filename);
1084		ctl_flushpkt(0);
1085		msyslog(LOG_NOTICE,
1086			"saveconfig rejects unsafe file name from %s",
1087			stoa(&rbufp->recv_srcadr));
1088		return;
1089	}
1090
1091	/*
1092	 * XXX: This next test may not be needed with is_safe_filename()
1093	 */
1094
1095	/* block directory/drive traversal */
1096	/* TALOS-CAN-0062: block directory traversal for VMS, too */
1097	if (NULL != strpbrk(filename, illegal_in_filename)) {
1098		snprintf(reply, sizeof(reply),
1099			 "saveconfig does not allow directory in filename");
1100		ctl_putdata(reply, strlen(reply), 0);
1101		ctl_flushpkt(0);
1102		msyslog(LOG_NOTICE,
1103			"saveconfig rejects unsafe file name from %s",
1104			stoa(&rbufp->recv_srcadr));
1105		return;
1106	}
1107
1108	/* concatenation of directory and path can cause another
1109	 * truncation...
1110	 */
1111	prc = snprintf(fullpath, sizeof(fullpath), "%s%s",
1112		       saveconfigdir, filename);
1113	if (prc < 0 || (size_t)prc >= sizeof(fullpath)) {
1114		ctl_printf("saveconfig exceeded maximum path length (%u)",
1115			   (u_int)sizeof(fullpath));
1116		ctl_flushpkt(0);
1117		msyslog(LOG_NOTICE,
1118			"saveconfig exceeded maximum path length from %s",
1119			stoa(&rbufp->recv_srcadr));
1120		return;
1121	}
1122
1123	fd = open(fullpath, openmode, S_IRUSR | S_IWUSR);
1124	if (-1 == fd)
1125		fptr = NULL;
1126	else
1127		fptr = fdopen(fd, "w");
1128
1129	if (NULL == fptr || -1 == dump_all_config_trees(fptr, 1)) {
1130		ctl_printf("Unable to save configuration to file '%s': %s",
1131			   filename, strerror(errno));
1132		msyslog(LOG_ERR,
1133			"saveconfig %s from %s failed", filename,
1134			stoa(&rbufp->recv_srcadr));
1135	} else {
1136		ctl_printf("Configuration saved to '%s'", filename);
1137		msyslog(LOG_NOTICE,
1138			"Configuration saved to '%s' (requested by %s)",
1139			fullpath, stoa(&rbufp->recv_srcadr));
1140		/*
1141		 * save the output filename in system variable
1142		 * savedconfig, retrieved with:
1143		 *   ntpq -c "rv 0 savedconfig"
1144		 * Note: the way 'savedconfig' is defined makes overflow
1145		 * checks unnecessary here.
1146		 */
1147		snprintf(savedconfig, sizeof(savedconfig), "%s%s",
1148			 savedconfig_eq, filename);
1149		set_sys_var(savedconfig, strlen(savedconfig) + 1, RO);
1150	}
1151
1152	if (NULL != fptr)
1153		fclose(fptr);
1154#else	/* !SAVECONFIG follows */
1155	ctl_printf("%s",
1156		   "saveconfig unavailable, configured with --disable-saveconfig");
1157#endif
1158	ctl_flushpkt(0);
1159}
1160
1161
1162/*
1163 * process_control - process an incoming control message
1164 */
1165void
1166process_control(
1167	struct recvbuf *rbufp,
1168	int restrict_mask
1169	)
1170{
1171	struct ntp_control *pkt;
1172	int req_count;
1173	int req_data;
1174	const struct ctl_proc *cc;
1175	keyid_t *pkid;
1176	int properlen;
1177	size_t maclen;
1178
1179	DPRINTF(3, ("in process_control()\n"));
1180
1181	/*
1182	 * Save the addresses for error responses
1183	 */
1184	numctlreq++;
1185	rmt_addr = &rbufp->recv_srcadr;
1186	lcl_inter = rbufp->dstadr;
1187	pkt = (struct ntp_control *)&rbufp->recv_pkt;
1188
1189	/*
1190	 * If the length is less than required for the header, or
1191	 * it is a response or a fragment, ignore this.
1192	 */
1193	if (rbufp->recv_length < (int)CTL_HEADER_LEN
1194	    || (CTL_RESPONSE | CTL_MORE | CTL_ERROR) & pkt->r_m_e_op
1195	    || pkt->offset != 0) {
1196		DPRINTF(1, ("invalid format in control packet\n"));
1197		if (rbufp->recv_length < (int)CTL_HEADER_LEN)
1198			numctltooshort++;
1199		if (CTL_RESPONSE & pkt->r_m_e_op)
1200			numctlinputresp++;
1201		if (CTL_MORE & pkt->r_m_e_op)
1202			numctlinputfrag++;
1203		if (CTL_ERROR & pkt->r_m_e_op)
1204			numctlinputerr++;
1205		if (pkt->offset != 0)
1206			numctlbadoffset++;
1207		return;
1208	}
1209	res_version = PKT_VERSION(pkt->li_vn_mode);
1210	if (res_version > NTP_VERSION || res_version < NTP_OLDVERSION) {
1211		DPRINTF(1, ("unknown version %d in control packet\n",
1212			    res_version));
1213		numctlbadversion++;
1214		return;
1215	}
1216
1217	/*
1218	 * Pull enough data from the packet to make intelligent
1219	 * responses
1220	 */
1221	rpkt.li_vn_mode = PKT_LI_VN_MODE(sys_leap, res_version,
1222					 MODE_CONTROL);
1223	res_opcode = pkt->r_m_e_op;
1224	rpkt.sequence = pkt->sequence;
1225	rpkt.associd = pkt->associd;
1226	rpkt.status = 0;
1227	res_frags = 1;
1228	res_offset = 0;
1229	res_associd = htons(pkt->associd);
1230	res_async = FALSE;
1231	res_authenticate = FALSE;
1232	res_keyid = 0;
1233	res_authokay = FALSE;
1234	req_count = (int)ntohs(pkt->count);
1235	datanotbinflag = FALSE;
1236	datalinelen = 0;
1237	datasent = 0;
1238	datapt = rpkt.u.data;
1239	dataend = &rpkt.u.data[CTL_MAX_DATA_LEN];
1240
1241	if ((rbufp->recv_length & 0x3) != 0)
1242		DPRINTF(3, ("Control packet length %d unrounded\n",
1243			    rbufp->recv_length));
1244
1245	/*
1246	 * We're set up now. Make sure we've got at least enough
1247	 * incoming data space to match the count.
1248	 */
1249	req_data = rbufp->recv_length - CTL_HEADER_LEN;
1250	if (req_data < req_count || rbufp->recv_length & 0x3) {
1251		ctl_error(CERR_BADFMT);
1252		numctldatatooshort++;
1253		return;
1254	}
1255
1256	properlen = req_count + CTL_HEADER_LEN;
1257	/* round up proper len to a 8 octet boundary */
1258
1259	properlen = (properlen + 7) & ~7;
1260	maclen = rbufp->recv_length - properlen;
1261	if ((rbufp->recv_length & 3) == 0 &&
1262	    maclen >= MIN_MAC_LEN && maclen <= MAX_MAC_LEN &&
1263	    sys_authenticate) {
1264		res_authenticate = TRUE;
1265		pkid = (void *)((char *)pkt + properlen);
1266		res_keyid = ntohl(*pkid);
1267		DPRINTF(3, ("recv_len %d, properlen %d, wants auth with keyid %08x, MAC length=%zu\n",
1268			    rbufp->recv_length, properlen, res_keyid,
1269			    maclen));
1270
1271		if (!authistrustedip(res_keyid, &rbufp->recv_srcadr))
1272			DPRINTF(3, ("invalid keyid %08x\n", res_keyid));
1273		else if (authdecrypt(res_keyid, (u_int32 *)pkt,
1274				     rbufp->recv_length - maclen,
1275				     maclen)) {
1276			res_authokay = TRUE;
1277			DPRINTF(3, ("authenticated okay\n"));
1278		} else {
1279			res_keyid = 0;
1280			DPRINTF(3, ("authentication failed\n"));
1281		}
1282	}
1283
1284	/*
1285	 * Set up translate pointers
1286	 */
1287	reqpt = (char *)pkt->u.data;
1288	reqend = reqpt + req_count;
1289
1290	/*
1291	 * Look for the opcode processor
1292	 */
1293	for (cc = control_codes; cc->control_code != NO_REQUEST; cc++) {
1294		if (cc->control_code == res_opcode) {
1295			DPRINTF(3, ("opcode %d, found command handler\n",
1296				    res_opcode));
1297			if (cc->flags == AUTH
1298			    && (!res_authokay
1299				|| res_keyid != ctl_auth_keyid)) {
1300				ctl_error(CERR_PERMISSION);
1301				return;
1302			}
1303			(cc->handler)(rbufp, restrict_mask);
1304			return;
1305		}
1306	}
1307
1308	/*
1309	 * Can't find this one, return an error.
1310	 */
1311	numctlbadop++;
1312	ctl_error(CERR_BADOP);
1313	return;
1314}
1315
1316
1317/*
1318 * ctlpeerstatus - return a status word for this peer
1319 */
1320u_short
1321ctlpeerstatus(
1322	register struct peer *p
1323	)
1324{
1325	u_short status;
1326
1327	status = p->status;
1328	if (FLAG_CONFIG & p->flags)
1329		status |= CTL_PST_CONFIG;
1330	if (p->keyid)
1331		status |= CTL_PST_AUTHENABLE;
1332	if (FLAG_AUTHENTIC & p->flags)
1333		status |= CTL_PST_AUTHENTIC;
1334	if (p->reach)
1335		status |= CTL_PST_REACH;
1336	if (MDF_TXONLY_MASK & p->cast_flags)
1337		status |= CTL_PST_BCAST;
1338
1339	return CTL_PEER_STATUS(status, p->num_events, p->last_event);
1340}
1341
1342
1343/*
1344 * ctlclkstatus - return a status word for this clock
1345 */
1346#ifdef REFCLOCK
1347static u_short
1348ctlclkstatus(
1349	struct refclockstat *pcs
1350	)
1351{
1352	return CTL_PEER_STATUS(0, pcs->lastevent, pcs->currentstatus);
1353}
1354#endif
1355
1356
1357/*
1358 * ctlsysstatus - return the system status word
1359 */
1360u_short
1361ctlsysstatus(void)
1362{
1363	register u_char this_clock;
1364
1365	this_clock = CTL_SST_TS_UNSPEC;
1366#ifdef REFCLOCK
1367	if (sys_peer != NULL) {
1368		if (CTL_SST_TS_UNSPEC != sys_peer->sstclktype)
1369			this_clock = sys_peer->sstclktype;
1370		else if (sys_peer->refclktype < COUNTOF(clocktypes))
1371			this_clock = clocktypes[sys_peer->refclktype];
1372	}
1373#else /* REFCLOCK */
1374	if (sys_peer != 0)
1375		this_clock = CTL_SST_TS_NTP;
1376#endif /* REFCLOCK */
1377	return CTL_SYS_STATUS(sys_leap, this_clock, ctl_sys_num_events,
1378			      ctl_sys_last_event);
1379}
1380
1381
1382/*
1383 * ctl_flushpkt - write out the current packet and prepare
1384 *		  another if necessary.
1385 */
1386static void
1387ctl_flushpkt(
1388	u_char more
1389	)
1390{
1391	size_t i;
1392	size_t dlen;
1393	size_t sendlen;
1394	size_t maclen;
1395	size_t totlen;
1396	keyid_t keyid;
1397
1398	dlen = datapt - rpkt.u.data;
1399	if (!more && datanotbinflag && dlen + 2 < CTL_MAX_DATA_LEN) {
1400		/*
1401		 * Big hack, output a trailing \r\n
1402		 */
1403		*datapt++ = '\r';
1404		*datapt++ = '\n';
1405		dlen += 2;
1406	}
1407	sendlen = dlen + CTL_HEADER_LEN;
1408
1409	/*
1410	 * Pad to a multiple of 32 bits
1411	 */
1412	while (sendlen & 0x3) {
1413		*datapt++ = '\0';
1414		sendlen++;
1415	}
1416
1417	/*
1418	 * Fill in the packet with the current info
1419	 */
1420	rpkt.r_m_e_op = CTL_RESPONSE | more |
1421			(res_opcode & CTL_OP_MASK);
1422	rpkt.count = htons((u_short)dlen);
1423	rpkt.offset = htons((u_short)res_offset);
1424	if (res_async) {
1425		for (i = 0; i < COUNTOF(ctl_traps); i++) {
1426			if (TRAP_INUSE & ctl_traps[i].tr_flags) {
1427				rpkt.li_vn_mode =
1428				    PKT_LI_VN_MODE(
1429					sys_leap,
1430					ctl_traps[i].tr_version,
1431					MODE_CONTROL);
1432				rpkt.sequence =
1433				    htons(ctl_traps[i].tr_sequence);
1434				sendpkt(&ctl_traps[i].tr_addr,
1435					ctl_traps[i].tr_localaddr, -4,
1436					(struct pkt *)&rpkt, sendlen);
1437				if (!more)
1438					ctl_traps[i].tr_sequence++;
1439				numasyncmsgs++;
1440			}
1441		}
1442	} else {
1443		if (res_authenticate && sys_authenticate) {
1444			totlen = sendlen;
1445			/*
1446			 * If we are going to authenticate, then there
1447			 * is an additional requirement that the MAC
1448			 * begin on a 64 bit boundary.
1449			 */
1450			while (totlen & 7) {
1451				*datapt++ = '\0';
1452				totlen++;
1453			}
1454			keyid = htonl(res_keyid);
1455			memcpy(datapt, &keyid, sizeof(keyid));
1456			maclen = authencrypt(res_keyid,
1457					     (u_int32 *)&rpkt, totlen);
1458			sendpkt(rmt_addr, lcl_inter, -5,
1459				(struct pkt *)&rpkt, totlen + maclen);
1460		} else {
1461			sendpkt(rmt_addr, lcl_inter, -6,
1462				(struct pkt *)&rpkt, sendlen);
1463		}
1464		if (more)
1465			numctlfrags++;
1466		else
1467			numctlresponses++;
1468	}
1469
1470	/*
1471	 * Set us up for another go around.
1472	 */
1473	res_frags++;
1474	res_offset += dlen;
1475	datapt = rpkt.u.data;
1476}
1477
1478
1479/* --------------------------------------------------------------------
1480 * block transfer API -- stream string/data fragments into xmit buffer
1481 * without additional copying
1482 */
1483
1484/* buffer descriptor: address & size of fragment
1485 * 'buf' may only be NULL when 'len' is zero!
1486 */
1487typedef struct {
1488	const void  *buf;
1489	size_t       len;
1490} CtlMemBufT;
1491
1492/* put ctl data in a gather-style operation */
1493static void
1494ctl_putdata_ex(
1495	const CtlMemBufT * argv,
1496	size_t             argc,
1497	int/*BOOL*/        bin		/* set to 1 when data is binary */
1498	)
1499{
1500	const char * src_ptr;
1501	size_t       src_len, cur_len, add_len, argi;
1502
1503	/* text / binary preprocessing, possibly create new linefeed */
1504	if (bin) {
1505		add_len = 0;
1506	} else {
1507		datanotbinflag = TRUE;
1508		add_len = 3;
1509
1510		if (datasent) {
1511			*datapt++ = ',';
1512			datalinelen++;
1513
1514			/* sum up total length */
1515			for (argi = 0, src_len = 0; argi < argc; ++argi)
1516				src_len += argv[argi].len;
1517			/* possibly start a new line, assume no size_t overflow */
1518			if ((src_len + datalinelen + 1) >= MAXDATALINELEN) {
1519				*datapt++ = '\r';
1520				*datapt++ = '\n';
1521				datalinelen = 0;
1522			} else {
1523				*datapt++ = ' ';
1524				datalinelen++;
1525			}
1526		}
1527	}
1528
1529	/* now stream out all buffers */
1530	for (argi = 0; argi < argc; ++argi) {
1531		src_ptr = argv[argi].buf;
1532		src_len = argv[argi].len;
1533
1534		if ( ! (src_ptr && src_len))
1535			continue;
1536
1537		cur_len = (size_t)(dataend - datapt);
1538		while ((src_len + add_len) > cur_len) {
1539			/* Not enough room in this one, flush it out. */
1540			if (src_len < cur_len)
1541				cur_len = src_len;
1542
1543			memcpy(datapt, src_ptr, cur_len);
1544			datapt      += cur_len;
1545			datalinelen += cur_len;
1546
1547			src_ptr     += cur_len;
1548			src_len     -= cur_len;
1549
1550			ctl_flushpkt(CTL_MORE);
1551			cur_len = (size_t)(dataend - datapt);
1552		}
1553
1554		memcpy(datapt, src_ptr, src_len);
1555		datapt      += src_len;
1556		datalinelen += src_len;
1557
1558		datasent = TRUE;
1559	}
1560}
1561
1562/*
1563 * ctl_putdata - write data into the packet, fragmenting and starting
1564 * another if this one is full.
1565 */
1566static void
1567ctl_putdata(
1568	const char *dp,
1569	unsigned int dlen,
1570	int bin			/* set to 1 when data is binary */
1571	)
1572{
1573	CtlMemBufT args[1];
1574
1575	args[0].buf = dp;
1576	args[0].len = dlen;
1577	ctl_putdata_ex(args, 1, bin);
1578}
1579
1580/*
1581 * ctl_putstr - write a tagged string into the response packet
1582 *		in the form:
1583 *
1584 *		tag="data"
1585 *
1586 *		len is the data length excluding the NUL terminator,
1587 *		as in ctl_putstr("var", "value", strlen("value"));
1588 */
1589static void
1590ctl_putstr(
1591	const char *	tag,
1592	const char *	data,
1593	size_t		len
1594	)
1595{
1596	CtlMemBufT args[4];
1597
1598	args[0].buf = tag;
1599	args[0].len = strlen(tag);
1600	if (data && len) {
1601	    args[1].buf = "=\"";
1602	    args[1].len = 2;
1603	    args[2].buf = data;
1604	    args[2].len = len;
1605	    args[3].buf = "\"";
1606	    args[3].len = 1;
1607	    ctl_putdata_ex(args, 4, FALSE);
1608	} else {
1609	    args[1].buf = "=\"\"";
1610	    args[1].len = 3;
1611	    ctl_putdata_ex(args, 2, FALSE);
1612	}
1613}
1614
1615
1616/*
1617 * ctl_putunqstr - write a tagged string into the response packet
1618 *		   in the form:
1619 *
1620 *		   tag=data
1621 *
1622 *	len is the data length excluding the NUL terminator.
1623 *	data must not contain a comma or whitespace.
1624 */
1625static void
1626ctl_putunqstr(
1627	const char *	tag,
1628	const char *	data,
1629	size_t		len
1630	)
1631{
1632	CtlMemBufT args[3];
1633
1634	args[0].buf = tag;
1635	args[0].len = strlen(tag);
1636	args[1].buf = "=";
1637	args[1].len = 1;
1638	if (data && len) {
1639		args[2].buf = data;
1640		args[2].len = len;
1641		ctl_putdata_ex(args, 3, FALSE);
1642	} else {
1643		ctl_putdata_ex(args, 2, FALSE);
1644	}
1645}
1646
1647
1648/*
1649 * ctl_putdblf - write a tagged, signed double into the response packet
1650 */
1651static void
1652ctl_putdblf(
1653	const char *	tag,
1654	int		use_f,
1655	int		precision,
1656	double		d
1657	)
1658{
1659	char buffer[40];
1660	int  rc;
1661
1662	rc = snprintf(buffer, sizeof(buffer),
1663		      (use_f ? "%.*f" : "%.*g"),
1664		      precision, d);
1665	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1666	ctl_putunqstr(tag, buffer, rc);
1667}
1668
1669/*
1670 * ctl_putuint - write a tagged unsigned integer into the response
1671 */
1672static void
1673ctl_putuint(
1674	const char *tag,
1675	u_long uval
1676	)
1677{
1678	char buffer[24]; /* needs to fit for 64 bits! */
1679	int  rc;
1680
1681	rc = snprintf(buffer, sizeof(buffer), "%lu", uval);
1682	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1683	ctl_putunqstr(tag, buffer, rc);
1684}
1685
1686/*
1687 * ctl_putcal - write a decoded calendar data into the response.
1688 * only used with AUTOKEY currently, so compiled conditional
1689 */
1690#ifdef AUTOKEY
1691static void
1692ctl_putcal(
1693	const char *tag,
1694	const struct calendar *pcal
1695	)
1696{
1697	char buffer[16];
1698	int  rc;
1699
1700	rc = snprintf(buffer, sizeof(buffer),
1701		      "%04d%02d%02d%02d%02d",
1702		      pcal->year, pcal->month, pcal->monthday,
1703		      pcal->hour, pcal->minute
1704		);
1705	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1706	ctl_putunqstr(tag, buffer, rc);
1707}
1708#endif
1709
1710/*
1711 * ctl_putfs - write a decoded filestamp into the response
1712 */
1713static void
1714ctl_putfs(
1715	const char *tag,
1716	tstamp_t uval
1717	)
1718{
1719	char buffer[16];
1720	int  rc;
1721
1722	time_t fstamp = (time_t)uval - JAN_1970;
1723	struct tm *tm = gmtime(&fstamp);
1724
1725	if (NULL == tm)
1726		return;
1727
1728	rc = snprintf(buffer, sizeof(buffer),
1729		      "%04d%02d%02d%02d%02d",
1730		      tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday,
1731		      tm->tm_hour, tm->tm_min);
1732	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1733	ctl_putunqstr(tag, buffer, rc);
1734}
1735
1736
1737/*
1738 * ctl_puthex - write a tagged unsigned integer, in hex, into the
1739 * response
1740 */
1741static void
1742ctl_puthex(
1743	const char *tag,
1744	u_long uval
1745	)
1746{
1747	char buffer[24];	/* must fit 64bit int! */
1748	int  rc;
1749
1750	rc = snprintf(buffer, sizeof(buffer), "0x%lx", uval);
1751	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1752	ctl_putunqstr(tag, buffer, rc);
1753}
1754
1755
1756/*
1757 * ctl_putint - write a tagged signed integer into the response
1758 */
1759static void
1760ctl_putint(
1761	const char *tag,
1762	long ival
1763	)
1764{
1765	char buffer[24];	/*must fit 64bit int */
1766	int  rc;
1767
1768	rc = snprintf(buffer, sizeof(buffer), "%ld", ival);
1769	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1770	ctl_putunqstr(tag, buffer, rc);
1771}
1772
1773
1774/*
1775 * ctl_putts - write a tagged timestamp, in hex, into the response
1776 */
1777static void
1778ctl_putts(
1779	const char *tag,
1780	l_fp *ts
1781	)
1782{
1783	char buffer[24];
1784	int  rc;
1785
1786	rc = snprintf(buffer, sizeof(buffer),
1787		      "0x%08lx.%08lx",
1788		      (u_long)ts->l_ui, (u_long)ts->l_uf);
1789	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1790	ctl_putunqstr(tag, buffer, rc);
1791}
1792
1793
1794/*
1795 * ctl_putadr - write an IP address into the response
1796 */
1797static void
1798ctl_putadr(
1799	const char *tag,
1800	u_int32 addr32,
1801	sockaddr_u *addr
1802	)
1803{
1804	const char *cq;
1805
1806	if (NULL == addr)
1807		cq = numtoa(addr32);
1808	else
1809		cq = stoa(addr);
1810	ctl_putunqstr(tag, cq, strlen(cq));
1811}
1812
1813
1814/*
1815 * ctl_putrefid - send a u_int32 refid as printable text
1816 */
1817static void
1818ctl_putrefid(
1819	const char *	tag,
1820	u_int32		refid
1821	)
1822{
1823	size_t nc;
1824
1825	union {
1826		uint32_t w;
1827		uint8_t  b[sizeof(uint32_t)];
1828	} bytes;
1829
1830	bytes.w = refid;
1831	for (nc = 0; nc < sizeof(bytes.b) && bytes.b[nc]; ++nc)
1832		if (  !isprint(bytes.b[nc])
1833		    || isspace(bytes.b[nc])
1834		    || bytes.b[nc] == ','  )
1835			bytes.b[nc] = '.';
1836	ctl_putunqstr(tag, (const char*)bytes.b, nc);
1837}
1838
1839
1840/*
1841 * ctl_putarray - write a tagged eight element double array into the response
1842 */
1843static void
1844ctl_putarray(
1845	const char *tag,
1846	double *arr,
1847	int start
1848	)
1849{
1850	char *cp, *ep;
1851	char buffer[200];
1852	int  i, rc;
1853
1854	cp = buffer;
1855	ep = buffer + sizeof(buffer);
1856	i  = start;
1857	do {
1858		if (i == 0)
1859			i = NTP_SHIFT;
1860		i--;
1861		rc = snprintf(cp, (size_t)(ep - cp), " %.2f", arr[i] * 1e3);
1862		INSIST(rc >= 0 && (size_t)rc < (size_t)(ep - cp));
1863		cp += rc;
1864	} while (i != start);
1865	ctl_putunqstr(tag, buffer, (size_t)(cp - buffer));
1866}
1867
1868/*
1869 * ctl_printf - put a formatted string into the data buffer
1870 */
1871static void
1872ctl_printf(
1873	const char * fmt,
1874	...
1875	)
1876{
1877	static const char * ellipsis = "[...]";
1878	va_list va;
1879	char    fmtbuf[128];
1880	int     rc;
1881
1882	va_start(va, fmt);
1883	rc = vsnprintf(fmtbuf, sizeof(fmtbuf), fmt, va);
1884	va_end(va);
1885	if (rc < 0 || (size_t)rc >= sizeof(fmtbuf))
1886		strcpy(fmtbuf + sizeof(fmtbuf) - strlen(ellipsis) - 1,
1887		       ellipsis);
1888	ctl_putdata(fmtbuf, strlen(fmtbuf), 0);
1889}
1890
1891
1892/*
1893 * ctl_putsys - output a system variable
1894 */
1895static void
1896ctl_putsys(
1897	int varid
1898	)
1899{
1900	l_fp tmp;
1901	char str[256];
1902	u_int u;
1903	double kb;
1904	double dtemp;
1905	const char *ss;
1906#ifdef AUTOKEY
1907	struct cert_info *cp;
1908#endif	/* AUTOKEY */
1909#ifdef KERNEL_PLL
1910	static struct timex ntx;
1911	static u_long ntp_adjtime_time;
1912
1913	static const double to_ms_usec =
1914		1.0e-3; /* usec to msec */
1915	static const double to_ms_nusec =
1916# ifdef STA_NANO
1917		1.0e-6; /* nsec to msec */
1918# else
1919		to_ms_usec;
1920# endif
1921
1922	/*
1923	 * CS_K_* variables depend on up-to-date output of ntp_adjtime()
1924	 */
1925	if (CS_KERN_FIRST <= varid && varid <= CS_KERN_LAST &&
1926	    current_time != ntp_adjtime_time) {
1927		ZERO(ntx);
1928		if (ntp_adjtime(&ntx) < 0)
1929			msyslog(LOG_ERR, "ntp_adjtime() for mode 6 query failed: %m");
1930		else
1931			ntp_adjtime_time = current_time;
1932	}
1933#endif	/* KERNEL_PLL */
1934
1935	switch (varid) {
1936
1937	case CS_LEAP:
1938		ctl_putuint(sys_var[CS_LEAP].text, sys_leap);
1939		break;
1940
1941	case CS_STRATUM:
1942		ctl_putuint(sys_var[CS_STRATUM].text, sys_stratum);
1943		break;
1944
1945	case CS_PRECISION:
1946		ctl_putint(sys_var[CS_PRECISION].text, sys_precision);
1947		break;
1948
1949	case CS_ROOTDELAY:
1950		ctl_putdbl(sys_var[CS_ROOTDELAY].text, sys_rootdelay *
1951			   1e3);
1952		break;
1953
1954	case CS_ROOTDISPERSION:
1955		ctl_putdbl(sys_var[CS_ROOTDISPERSION].text,
1956			   sys_rootdisp * 1e3);
1957		break;
1958
1959	case CS_REFID:
1960		if (REFID_ISTEXT(sys_stratum))
1961			ctl_putrefid(sys_var[varid].text, sys_refid);
1962		else
1963			ctl_putadr(sys_var[varid].text, sys_refid, NULL);
1964		break;
1965
1966	case CS_REFTIME:
1967		ctl_putts(sys_var[CS_REFTIME].text, &sys_reftime);
1968		break;
1969
1970	case CS_POLL:
1971		ctl_putuint(sys_var[CS_POLL].text, sys_poll);
1972		break;
1973
1974	case CS_PEERID:
1975		if (sys_peer == NULL)
1976			ctl_putuint(sys_var[CS_PEERID].text, 0);
1977		else
1978			ctl_putuint(sys_var[CS_PEERID].text,
1979				    sys_peer->associd);
1980		break;
1981
1982	case CS_PEERADR:
1983		if (sys_peer != NULL && sys_peer->dstadr != NULL)
1984			ss = sptoa(&sys_peer->srcadr);
1985		else
1986			ss = "0.0.0.0:0";
1987		ctl_putunqstr(sys_var[CS_PEERADR].text, ss, strlen(ss));
1988		break;
1989
1990	case CS_PEERMODE:
1991		u = (sys_peer != NULL)
1992			? sys_peer->hmode
1993			: MODE_UNSPEC;
1994		ctl_putuint(sys_var[CS_PEERMODE].text, u);
1995		break;
1996
1997	case CS_OFFSET:
1998		ctl_putdbl6(sys_var[CS_OFFSET].text, last_offset * 1e3);
1999		break;
2000
2001	case CS_DRIFT:
2002		ctl_putdbl(sys_var[CS_DRIFT].text, drift_comp * 1e6);
2003		break;
2004
2005	case CS_JITTER:
2006		ctl_putdbl6(sys_var[CS_JITTER].text, sys_jitter * 1e3);
2007		break;
2008
2009	case CS_ERROR:
2010		ctl_putdbl(sys_var[CS_ERROR].text, clock_jitter * 1e3);
2011		break;
2012
2013	case CS_CLOCK:
2014		get_systime(&tmp);
2015		ctl_putts(sys_var[CS_CLOCK].text, &tmp);
2016		break;
2017
2018	case CS_PROCESSOR:
2019#ifndef HAVE_UNAME
2020		ctl_putstr(sys_var[CS_PROCESSOR].text, str_processor,
2021			   sizeof(str_processor) - 1);
2022#else
2023		ctl_putstr(sys_var[CS_PROCESSOR].text,
2024			   utsnamebuf.machine, strlen(utsnamebuf.machine));
2025#endif /* HAVE_UNAME */
2026		break;
2027
2028	case CS_SYSTEM:
2029#ifndef HAVE_UNAME
2030		ctl_putstr(sys_var[CS_SYSTEM].text, str_system,
2031			   sizeof(str_system) - 1);
2032#else
2033		snprintf(str, sizeof(str), "%s/%s", utsnamebuf.sysname,
2034			 utsnamebuf.release);
2035		ctl_putstr(sys_var[CS_SYSTEM].text, str, strlen(str));
2036#endif /* HAVE_UNAME */
2037		break;
2038
2039	case CS_VERSION:
2040		ctl_putstr(sys_var[CS_VERSION].text, Version,
2041			   strlen(Version));
2042		break;
2043
2044	case CS_STABIL:
2045		ctl_putdbl(sys_var[CS_STABIL].text, clock_stability *
2046			   1e6);
2047		break;
2048
2049	case CS_VARLIST:
2050	{
2051		char buf[CTL_MAX_DATA_LEN];
2052		//buffPointer, firstElementPointer, buffEndPointer
2053		char *buffp, *buffend;
2054		int firstVarName;
2055		const char *ss1;
2056		int len;
2057		const struct ctl_var *k;
2058
2059		buffp = buf;
2060		buffend = buf + sizeof(buf);
2061		if (strlen(sys_var[CS_VARLIST].text) > (sizeof(buf) - 4))
2062			break;	/* really long var name */
2063
2064		snprintf(buffp, sizeof(buf), "%s=\"",sys_var[CS_VARLIST].text);
2065		buffp += strlen(buffp);
2066		firstVarName = TRUE;
2067		for (k = sys_var; !(k->flags & EOV); k++) {
2068			if (k->flags & PADDING)
2069				continue;
2070			len = strlen(k->text);
2071			if (len + 1 >= buffend - buffp)
2072				break;
2073			if (!firstVarName)
2074				*buffp++ = ',';
2075			else
2076				firstVarName = FALSE;
2077			memcpy(buffp, k->text, len);
2078			buffp += len;
2079		}
2080
2081		for (k = ext_sys_var; k && !(k->flags & EOV); k++) {
2082			if (k->flags & PADDING)
2083				continue;
2084			if (NULL == k->text)
2085				continue;
2086			ss1 = strchr(k->text, '=');
2087			if (NULL == ss1)
2088				len = strlen(k->text);
2089			else
2090				len = ss1 - k->text;
2091			if (len + 1 >= buffend - buffp)
2092				break;
2093			if (firstVarName) {
2094				*buffp++ = ',';
2095				firstVarName = FALSE;
2096			}
2097			memcpy(buffp, k->text,(unsigned)len);
2098			buffp += len;
2099		}
2100		if (2 >= buffend - buffp)
2101			break;
2102
2103		*buffp++ = '"';
2104		*buffp = '\0';
2105
2106		ctl_putdata(buf, (unsigned)( buffp - buf ), 0);
2107		break;
2108	}
2109
2110	case CS_TAI:
2111		if (sys_tai > 0)
2112			ctl_putuint(sys_var[CS_TAI].text, sys_tai);
2113		break;
2114
2115	case CS_LEAPTAB:
2116	{
2117		leap_signature_t lsig;
2118		leapsec_getsig(&lsig);
2119		if (lsig.ttime > 0)
2120			ctl_putfs(sys_var[CS_LEAPTAB].text, lsig.ttime);
2121		break;
2122	}
2123
2124	case CS_LEAPEND:
2125	{
2126		leap_signature_t lsig;
2127		leapsec_getsig(&lsig);
2128		if (lsig.etime > 0)
2129			ctl_putfs(sys_var[CS_LEAPEND].text, lsig.etime);
2130		break;
2131	}
2132
2133#ifdef LEAP_SMEAR
2134	case CS_LEAPSMEARINTV:
2135		if (leap_smear_intv > 0)
2136			ctl_putuint(sys_var[CS_LEAPSMEARINTV].text, leap_smear_intv);
2137		break;
2138
2139	case CS_LEAPSMEAROFFS:
2140		if (leap_smear_intv > 0)
2141			ctl_putdbl(sys_var[CS_LEAPSMEAROFFS].text,
2142				   leap_smear.doffset * 1e3);
2143		break;
2144#endif	/* LEAP_SMEAR */
2145
2146	case CS_RATE:
2147		ctl_putuint(sys_var[CS_RATE].text, ntp_minpoll);
2148		break;
2149
2150	case CS_MRU_ENABLED:
2151		ctl_puthex(sys_var[varid].text, mon_enabled);
2152		break;
2153
2154	case CS_MRU_DEPTH:
2155		ctl_putuint(sys_var[varid].text, mru_entries);
2156		break;
2157
2158	case CS_MRU_MEM:
2159		kb = mru_entries * (sizeof(mon_entry) / 1024.);
2160		u = (u_int)kb;
2161		if (kb - u >= 0.5)
2162			u++;
2163		ctl_putuint(sys_var[varid].text, u);
2164		break;
2165
2166	case CS_MRU_DEEPEST:
2167		ctl_putuint(sys_var[varid].text, mru_peakentries);
2168		break;
2169
2170	case CS_MRU_MINDEPTH:
2171		ctl_putuint(sys_var[varid].text, mru_mindepth);
2172		break;
2173
2174	case CS_MRU_MAXAGE:
2175		ctl_putint(sys_var[varid].text, mru_maxage);
2176		break;
2177
2178	case CS_MRU_MAXDEPTH:
2179		ctl_putuint(sys_var[varid].text, mru_maxdepth);
2180		break;
2181
2182	case CS_MRU_MAXMEM:
2183		kb = mru_maxdepth * (sizeof(mon_entry) / 1024.);
2184		u = (u_int)kb;
2185		if (kb - u >= 0.5)
2186			u++;
2187		ctl_putuint(sys_var[varid].text, u);
2188		break;
2189
2190	case CS_SS_UPTIME:
2191		ctl_putuint(sys_var[varid].text, current_time);
2192		break;
2193
2194	case CS_SS_RESET:
2195		ctl_putuint(sys_var[varid].text,
2196			    current_time - sys_stattime);
2197		break;
2198
2199	case CS_SS_RECEIVED:
2200		ctl_putuint(sys_var[varid].text, sys_received);
2201		break;
2202
2203	case CS_SS_THISVER:
2204		ctl_putuint(sys_var[varid].text, sys_newversion);
2205		break;
2206
2207	case CS_SS_OLDVER:
2208		ctl_putuint(sys_var[varid].text, sys_oldversion);
2209		break;
2210
2211	case CS_SS_BADFORMAT:
2212		ctl_putuint(sys_var[varid].text, sys_badlength);
2213		break;
2214
2215	case CS_SS_BADAUTH:
2216		ctl_putuint(sys_var[varid].text, sys_badauth);
2217		break;
2218
2219	case CS_SS_DECLINED:
2220		ctl_putuint(sys_var[varid].text, sys_declined);
2221		break;
2222
2223	case CS_SS_RESTRICTED:
2224		ctl_putuint(sys_var[varid].text, sys_restricted);
2225		break;
2226
2227	case CS_SS_LIMITED:
2228		ctl_putuint(sys_var[varid].text, sys_limitrejected);
2229		break;
2230
2231	case CS_SS_LAMPORT:
2232		ctl_putuint(sys_var[varid].text, sys_lamport);
2233		break;
2234
2235	case CS_SS_TSROUNDING:
2236		ctl_putuint(sys_var[varid].text, sys_tsrounding);
2237		break;
2238
2239	case CS_SS_KODSENT:
2240		ctl_putuint(sys_var[varid].text, sys_kodsent);
2241		break;
2242
2243	case CS_SS_PROCESSED:
2244		ctl_putuint(sys_var[varid].text, sys_processed);
2245		break;
2246
2247	case CS_BCASTDELAY:
2248		ctl_putdbl(sys_var[varid].text, sys_bdelay * 1e3);
2249		break;
2250
2251	case CS_AUTHDELAY:
2252		LFPTOD(&sys_authdelay, dtemp);
2253		ctl_putdbl(sys_var[varid].text, dtemp * 1e3);
2254		break;
2255
2256	case CS_AUTHKEYS:
2257		ctl_putuint(sys_var[varid].text, authnumkeys);
2258		break;
2259
2260	case CS_AUTHFREEK:
2261		ctl_putuint(sys_var[varid].text, authnumfreekeys);
2262		break;
2263
2264	case CS_AUTHKLOOKUPS:
2265		ctl_putuint(sys_var[varid].text, authkeylookups);
2266		break;
2267
2268	case CS_AUTHKNOTFOUND:
2269		ctl_putuint(sys_var[varid].text, authkeynotfound);
2270		break;
2271
2272	case CS_AUTHKUNCACHED:
2273		ctl_putuint(sys_var[varid].text, authkeyuncached);
2274		break;
2275
2276	case CS_AUTHKEXPIRED:
2277		ctl_putuint(sys_var[varid].text, authkeyexpired);
2278		break;
2279
2280	case CS_AUTHENCRYPTS:
2281		ctl_putuint(sys_var[varid].text, authencryptions);
2282		break;
2283
2284	case CS_AUTHDECRYPTS:
2285		ctl_putuint(sys_var[varid].text, authdecryptions);
2286		break;
2287
2288	case CS_AUTHRESET:
2289		ctl_putuint(sys_var[varid].text,
2290			    current_time - auth_timereset);
2291		break;
2292
2293		/*
2294		 * CTL_IF_KERNLOOP() puts a zero if the kernel loop is
2295		 * unavailable, otherwise calls putfunc with args.
2296		 */
2297#ifndef KERNEL_PLL
2298# define	CTL_IF_KERNLOOP(putfunc, args)	\
2299		ctl_putint(sys_var[varid].text, 0)
2300#else
2301# define	CTL_IF_KERNLOOP(putfunc, args)	\
2302		putfunc args
2303#endif
2304
2305		/*
2306		 * CTL_IF_KERNPPS() puts a zero if either the kernel
2307		 * loop is unavailable, or kernel hard PPS is not
2308		 * active, otherwise calls putfunc with args.
2309		 */
2310#ifndef KERNEL_PLL
2311# define	CTL_IF_KERNPPS(putfunc, args)	\
2312		ctl_putint(sys_var[varid].text, 0)
2313#else
2314# define	CTL_IF_KERNPPS(putfunc, args)			\
2315		if (0 == ntx.shift)				\
2316			ctl_putint(sys_var[varid].text, 0);	\
2317		else						\
2318			putfunc args	/* no trailing ; */
2319#endif
2320
2321	case CS_K_OFFSET:
2322		CTL_IF_KERNLOOP(
2323			ctl_putdblf,
2324			(sys_var[varid].text, 0, -1, to_ms_nusec * ntx.offset)
2325		);
2326		break;
2327
2328	case CS_K_FREQ:
2329		CTL_IF_KERNLOOP(
2330			ctl_putsfp,
2331			(sys_var[varid].text, ntx.freq)
2332		);
2333		break;
2334
2335	case CS_K_MAXERR:
2336		CTL_IF_KERNLOOP(
2337			ctl_putdblf,
2338			(sys_var[varid].text, 0, 6,
2339			 to_ms_usec * ntx.maxerror)
2340		);
2341		break;
2342
2343	case CS_K_ESTERR:
2344		CTL_IF_KERNLOOP(
2345			ctl_putdblf,
2346			(sys_var[varid].text, 0, 6,
2347			 to_ms_usec * ntx.esterror)
2348		);
2349		break;
2350
2351	case CS_K_STFLAGS:
2352#ifndef KERNEL_PLL
2353		ss = "";
2354#else
2355		ss = k_st_flags(ntx.status);
2356#endif
2357		ctl_putstr(sys_var[varid].text, ss, strlen(ss));
2358		break;
2359
2360	case CS_K_TIMECONST:
2361		CTL_IF_KERNLOOP(
2362			ctl_putint,
2363			(sys_var[varid].text, ntx.constant)
2364		);
2365		break;
2366
2367	case CS_K_PRECISION:
2368		CTL_IF_KERNLOOP(
2369			ctl_putdblf,
2370			(sys_var[varid].text, 0, 6,
2371			    to_ms_usec * ntx.precision)
2372		);
2373		break;
2374
2375	case CS_K_FREQTOL:
2376		CTL_IF_KERNLOOP(
2377			ctl_putsfp,
2378			(sys_var[varid].text, ntx.tolerance)
2379		);
2380		break;
2381
2382	case CS_K_PPS_FREQ:
2383		CTL_IF_KERNPPS(
2384			ctl_putsfp,
2385			(sys_var[varid].text, ntx.ppsfreq)
2386		);
2387		break;
2388
2389	case CS_K_PPS_STABIL:
2390		CTL_IF_KERNPPS(
2391			ctl_putsfp,
2392			(sys_var[varid].text, ntx.stabil)
2393		);
2394		break;
2395
2396	case CS_K_PPS_JITTER:
2397		CTL_IF_KERNPPS(
2398			ctl_putdbl,
2399			(sys_var[varid].text, to_ms_nusec * ntx.jitter)
2400		);
2401		break;
2402
2403	case CS_K_PPS_CALIBDUR:
2404		CTL_IF_KERNPPS(
2405			ctl_putint,
2406			(sys_var[varid].text, 1 << ntx.shift)
2407		);
2408		break;
2409
2410	case CS_K_PPS_CALIBS:
2411		CTL_IF_KERNPPS(
2412			ctl_putint,
2413			(sys_var[varid].text, ntx.calcnt)
2414		);
2415		break;
2416
2417	case CS_K_PPS_CALIBERRS:
2418		CTL_IF_KERNPPS(
2419			ctl_putint,
2420			(sys_var[varid].text, ntx.errcnt)
2421		);
2422		break;
2423
2424	case CS_K_PPS_JITEXC:
2425		CTL_IF_KERNPPS(
2426			ctl_putint,
2427			(sys_var[varid].text, ntx.jitcnt)
2428		);
2429		break;
2430
2431	case CS_K_PPS_STBEXC:
2432		CTL_IF_KERNPPS(
2433			ctl_putint,
2434			(sys_var[varid].text, ntx.stbcnt)
2435		);
2436		break;
2437
2438	case CS_IOSTATS_RESET:
2439		ctl_putuint(sys_var[varid].text,
2440			    current_time - io_timereset);
2441		break;
2442
2443	case CS_TOTAL_RBUF:
2444		ctl_putuint(sys_var[varid].text, total_recvbuffs());
2445		break;
2446
2447	case CS_FREE_RBUF:
2448		ctl_putuint(sys_var[varid].text, free_recvbuffs());
2449		break;
2450
2451	case CS_USED_RBUF:
2452		ctl_putuint(sys_var[varid].text, full_recvbuffs());
2453		break;
2454
2455	case CS_RBUF_LOWATER:
2456		ctl_putuint(sys_var[varid].text, lowater_additions());
2457		break;
2458
2459	case CS_IO_DROPPED:
2460		ctl_putuint(sys_var[varid].text, packets_dropped);
2461		break;
2462
2463	case CS_IO_IGNORED:
2464		ctl_putuint(sys_var[varid].text, packets_ignored);
2465		break;
2466
2467	case CS_IO_RECEIVED:
2468		ctl_putuint(sys_var[varid].text, packets_received);
2469		break;
2470
2471	case CS_IO_SENT:
2472		ctl_putuint(sys_var[varid].text, packets_sent);
2473		break;
2474
2475	case CS_IO_SENDFAILED:
2476		ctl_putuint(sys_var[varid].text, packets_notsent);
2477		break;
2478
2479	case CS_IO_WAKEUPS:
2480		ctl_putuint(sys_var[varid].text, handler_calls);
2481		break;
2482
2483	case CS_IO_GOODWAKEUPS:
2484		ctl_putuint(sys_var[varid].text, handler_pkts);
2485		break;
2486
2487	case CS_TIMERSTATS_RESET:
2488		ctl_putuint(sys_var[varid].text,
2489			    current_time - timer_timereset);
2490		break;
2491
2492	case CS_TIMER_OVERRUNS:
2493		ctl_putuint(sys_var[varid].text, alarm_overflow);
2494		break;
2495
2496	case CS_TIMER_XMTS:
2497		ctl_putuint(sys_var[varid].text, timer_xmtcalls);
2498		break;
2499
2500	case CS_FUZZ:
2501		ctl_putdbl(sys_var[varid].text, sys_fuzz * 1e3);
2502		break;
2503	case CS_WANDER_THRESH:
2504		ctl_putdbl(sys_var[varid].text, wander_threshold * 1e6);
2505		break;
2506#ifdef AUTOKEY
2507	case CS_FLAGS:
2508		if (crypto_flags)
2509			ctl_puthex(sys_var[CS_FLAGS].text,
2510			    crypto_flags);
2511		break;
2512
2513	case CS_DIGEST:
2514		if (crypto_flags) {
2515			strlcpy(str, OBJ_nid2ln(crypto_nid),
2516			    COUNTOF(str));
2517			ctl_putstr(sys_var[CS_DIGEST].text, str,
2518			    strlen(str));
2519		}
2520		break;
2521
2522	case CS_SIGNATURE:
2523		if (crypto_flags) {
2524			const EVP_MD *dp;
2525
2526			dp = EVP_get_digestbynid(crypto_flags >> 16);
2527			strlcpy(str, OBJ_nid2ln(EVP_MD_pkey_type(dp)),
2528			    COUNTOF(str));
2529			ctl_putstr(sys_var[CS_SIGNATURE].text, str,
2530			    strlen(str));
2531		}
2532		break;
2533
2534	case CS_HOST:
2535		if (hostval.ptr != NULL)
2536			ctl_putstr(sys_var[CS_HOST].text, hostval.ptr,
2537			    strlen(hostval.ptr));
2538		break;
2539
2540	case CS_IDENT:
2541		if (sys_ident != NULL)
2542			ctl_putstr(sys_var[CS_IDENT].text, sys_ident,
2543			    strlen(sys_ident));
2544		break;
2545
2546	case CS_CERTIF:
2547		for (cp = cinfo; cp != NULL; cp = cp->link) {
2548			snprintf(str, sizeof(str), "%s %s 0x%x",
2549			    cp->subject, cp->issuer, cp->flags);
2550			ctl_putstr(sys_var[CS_CERTIF].text, str,
2551			    strlen(str));
2552			ctl_putcal(sys_var[CS_REVTIME].text, &(cp->last));
2553		}
2554		break;
2555
2556	case CS_PUBLIC:
2557		if (hostval.tstamp != 0)
2558			ctl_putfs(sys_var[CS_PUBLIC].text,
2559			    ntohl(hostval.tstamp));
2560		break;
2561#endif	/* AUTOKEY */
2562
2563	default:
2564		break;
2565	}
2566}
2567
2568
2569/*
2570 * ctl_putpeer - output a peer variable
2571 */
2572static void
2573ctl_putpeer(
2574	int id,
2575	struct peer *p
2576	)
2577{
2578	char buf[CTL_MAX_DATA_LEN];
2579	char *s;
2580	char *t;
2581	char *be;
2582	int i;
2583	const struct ctl_var *k;
2584#ifdef AUTOKEY
2585	struct autokey *ap;
2586	const EVP_MD *dp;
2587	const char *str;
2588#endif	/* AUTOKEY */
2589
2590	switch (id) {
2591
2592	case CP_CONFIG:
2593		ctl_putuint(peer_var[id].text,
2594			    !(FLAG_PREEMPT & p->flags));
2595		break;
2596
2597	case CP_AUTHENABLE:
2598		ctl_putuint(peer_var[id].text, !(p->keyid));
2599		break;
2600
2601	case CP_AUTHENTIC:
2602		ctl_putuint(peer_var[id].text,
2603			    !!(FLAG_AUTHENTIC & p->flags));
2604		break;
2605
2606	case CP_SRCADR:
2607		ctl_putadr(peer_var[id].text, 0, &p->srcadr);
2608		break;
2609
2610	case CP_SRCPORT:
2611		ctl_putuint(peer_var[id].text, SRCPORT(&p->srcadr));
2612		break;
2613
2614	case CP_SRCHOST:
2615		if (p->hostname != NULL)
2616			ctl_putstr(peer_var[id].text, p->hostname,
2617				   strlen(p->hostname));
2618		break;
2619
2620	case CP_DSTADR:
2621		ctl_putadr(peer_var[id].text, 0,
2622			   (p->dstadr != NULL)
2623				? &p->dstadr->sin
2624				: NULL);
2625		break;
2626
2627	case CP_DSTPORT:
2628		ctl_putuint(peer_var[id].text,
2629			    (p->dstadr != NULL)
2630				? SRCPORT(&p->dstadr->sin)
2631				: 0);
2632		break;
2633
2634	case CP_IN:
2635		if (p->r21 > 0.)
2636			ctl_putdbl(peer_var[id].text, p->r21 / 1e3);
2637		break;
2638
2639	case CP_OUT:
2640		if (p->r34 > 0.)
2641			ctl_putdbl(peer_var[id].text, p->r34 / 1e3);
2642		break;
2643
2644	case CP_RATE:
2645		ctl_putuint(peer_var[id].text, p->throttle);
2646		break;
2647
2648	case CP_LEAP:
2649		ctl_putuint(peer_var[id].text, p->leap);
2650		break;
2651
2652	case CP_HMODE:
2653		ctl_putuint(peer_var[id].text, p->hmode);
2654		break;
2655
2656	case CP_STRATUM:
2657		ctl_putuint(peer_var[id].text, p->stratum);
2658		break;
2659
2660	case CP_PPOLL:
2661		ctl_putuint(peer_var[id].text, p->ppoll);
2662		break;
2663
2664	case CP_HPOLL:
2665		ctl_putuint(peer_var[id].text, p->hpoll);
2666		break;
2667
2668	case CP_PRECISION:
2669		ctl_putint(peer_var[id].text, p->precision);
2670		break;
2671
2672	case CP_ROOTDELAY:
2673		ctl_putdbl(peer_var[id].text, p->rootdelay * 1e3);
2674		break;
2675
2676	case CP_ROOTDISPERSION:
2677		ctl_putdbl(peer_var[id].text, p->rootdisp * 1e3);
2678		break;
2679
2680	case CP_REFID:
2681#ifdef REFCLOCK
2682		if (p->flags & FLAG_REFCLOCK) {
2683			ctl_putrefid(peer_var[id].text, p->refid);
2684			break;
2685		}
2686#endif
2687		if (REFID_ISTEXT(p->stratum))
2688			ctl_putrefid(peer_var[id].text, p->refid);
2689		else
2690			ctl_putadr(peer_var[id].text, p->refid, NULL);
2691		break;
2692
2693	case CP_REFTIME:
2694		ctl_putts(peer_var[id].text, &p->reftime);
2695		break;
2696
2697	case CP_ORG:
2698		ctl_putts(peer_var[id].text, &p->aorg);
2699		break;
2700
2701	case CP_REC:
2702		ctl_putts(peer_var[id].text, &p->dst);
2703		break;
2704
2705	case CP_XMT:
2706		if (p->xleave)
2707			ctl_putdbl(peer_var[id].text, p->xleave * 1e3);
2708		break;
2709
2710	case CP_BIAS:
2711		if (p->bias != 0.)
2712			ctl_putdbl(peer_var[id].text, p->bias * 1e3);
2713		break;
2714
2715	case CP_REACH:
2716		ctl_puthex(peer_var[id].text, p->reach);
2717		break;
2718
2719	case CP_FLASH:
2720		ctl_puthex(peer_var[id].text, p->flash);
2721		break;
2722
2723	case CP_TTL:
2724#ifdef REFCLOCK
2725		if (p->flags & FLAG_REFCLOCK) {
2726			ctl_putuint(peer_var[id].text, p->ttl);
2727			break;
2728		}
2729#endif
2730		if (p->ttl > 0 && p->ttl < COUNTOF(sys_ttl))
2731			ctl_putint(peer_var[id].text,
2732				   sys_ttl[p->ttl]);
2733		break;
2734
2735	case CP_UNREACH:
2736		ctl_putuint(peer_var[id].text, p->unreach);
2737		break;
2738
2739	case CP_TIMER:
2740		ctl_putuint(peer_var[id].text,
2741			    p->nextdate - current_time);
2742		break;
2743
2744	case CP_DELAY:
2745		ctl_putdbl(peer_var[id].text, p->delay * 1e3);
2746		break;
2747
2748	case CP_OFFSET:
2749		ctl_putdbl(peer_var[id].text, p->offset * 1e3);
2750		break;
2751
2752	case CP_JITTER:
2753		ctl_putdbl(peer_var[id].text, p->jitter * 1e3);
2754		break;
2755
2756	case CP_DISPERSION:
2757		ctl_putdbl(peer_var[id].text, p->disp * 1e3);
2758		break;
2759
2760	case CP_KEYID:
2761		if (p->keyid > NTP_MAXKEY)
2762			ctl_puthex(peer_var[id].text, p->keyid);
2763		else
2764			ctl_putuint(peer_var[id].text, p->keyid);
2765		break;
2766
2767	case CP_FILTDELAY:
2768		ctl_putarray(peer_var[id].text, p->filter_delay,
2769			     p->filter_nextpt);
2770		break;
2771
2772	case CP_FILTOFFSET:
2773		ctl_putarray(peer_var[id].text, p->filter_offset,
2774			     p->filter_nextpt);
2775		break;
2776
2777	case CP_FILTERROR:
2778		ctl_putarray(peer_var[id].text, p->filter_disp,
2779			     p->filter_nextpt);
2780		break;
2781
2782	case CP_PMODE:
2783		ctl_putuint(peer_var[id].text, p->pmode);
2784		break;
2785
2786	case CP_RECEIVED:
2787		ctl_putuint(peer_var[id].text, p->received);
2788		break;
2789
2790	case CP_SENT:
2791		ctl_putuint(peer_var[id].text, p->sent);
2792		break;
2793
2794	case CP_VARLIST:
2795		s = buf;
2796		be = buf + sizeof(buf);
2797		if (strlen(peer_var[id].text) + 4 > sizeof(buf))
2798			break;	/* really long var name */
2799
2800		snprintf(s, sizeof(buf), "%s=\"", peer_var[id].text);
2801		s += strlen(s);
2802		t = s;
2803		for (k = peer_var; !(EOV & k->flags); k++) {
2804			if (PADDING & k->flags)
2805				continue;
2806			i = strlen(k->text);
2807			if (s + i + 1 >= be)
2808				break;
2809			if (s != t)
2810				*s++ = ',';
2811			memcpy(s, k->text, i);
2812			s += i;
2813		}
2814		if (s + 2 < be) {
2815			*s++ = '"';
2816			*s = '\0';
2817			ctl_putdata(buf, (u_int)(s - buf), 0);
2818		}
2819		break;
2820
2821	case CP_TIMEREC:
2822		ctl_putuint(peer_var[id].text,
2823			    current_time - p->timereceived);
2824		break;
2825
2826	case CP_TIMEREACH:
2827		ctl_putuint(peer_var[id].text,
2828			    current_time - p->timereachable);
2829		break;
2830
2831	case CP_BADAUTH:
2832		ctl_putuint(peer_var[id].text, p->badauth);
2833		break;
2834
2835	case CP_BOGUSORG:
2836		ctl_putuint(peer_var[id].text, p->bogusorg);
2837		break;
2838
2839	case CP_OLDPKT:
2840		ctl_putuint(peer_var[id].text, p->oldpkt);
2841		break;
2842
2843	case CP_SELDISP:
2844		ctl_putuint(peer_var[id].text, p->seldisptoolarge);
2845		break;
2846
2847	case CP_SELBROKEN:
2848		ctl_putuint(peer_var[id].text, p->selbroken);
2849		break;
2850
2851	case CP_CANDIDATE:
2852		ctl_putuint(peer_var[id].text, p->status);
2853		break;
2854#ifdef AUTOKEY
2855	case CP_FLAGS:
2856		if (p->crypto)
2857			ctl_puthex(peer_var[id].text, p->crypto);
2858		break;
2859
2860	case CP_SIGNATURE:
2861		if (p->crypto) {
2862			dp = EVP_get_digestbynid(p->crypto >> 16);
2863			str = OBJ_nid2ln(EVP_MD_pkey_type(dp));
2864			ctl_putstr(peer_var[id].text, str, strlen(str));
2865		}
2866		break;
2867
2868	case CP_HOST:
2869		if (p->subject != NULL)
2870			ctl_putstr(peer_var[id].text, p->subject,
2871			    strlen(p->subject));
2872		break;
2873
2874	case CP_VALID:		/* not used */
2875		break;
2876
2877	case CP_INITSEQ:
2878		if (NULL == (ap = p->recval.ptr))
2879			break;
2880
2881		ctl_putint(peer_var[CP_INITSEQ].text, ap->seq);
2882		ctl_puthex(peer_var[CP_INITKEY].text, ap->key);
2883		ctl_putfs(peer_var[CP_INITTSP].text,
2884			  ntohl(p->recval.tstamp));
2885		break;
2886
2887	case CP_IDENT:
2888		if (p->ident != NULL)
2889			ctl_putstr(peer_var[id].text, p->ident,
2890			    strlen(p->ident));
2891		break;
2892
2893
2894#endif	/* AUTOKEY */
2895	}
2896}
2897
2898
2899#ifdef REFCLOCK
2900/*
2901 * ctl_putclock - output clock variables
2902 */
2903static void
2904ctl_putclock(
2905	int id,
2906	struct refclockstat *pcs,
2907	int mustput
2908	)
2909{
2910	char buf[CTL_MAX_DATA_LEN];
2911	char *s, *t, *be;
2912	const char *ss;
2913	int i;
2914	const struct ctl_var *k;
2915
2916	switch (id) {
2917
2918	case CC_TYPE:
2919		if (mustput || pcs->clockdesc == NULL
2920		    || *(pcs->clockdesc) == '\0') {
2921			ctl_putuint(clock_var[id].text, pcs->type);
2922		}
2923		break;
2924	case CC_TIMECODE:
2925		ctl_putstr(clock_var[id].text,
2926			   pcs->p_lastcode,
2927			   (unsigned)pcs->lencode);
2928		break;
2929
2930	case CC_POLL:
2931		ctl_putuint(clock_var[id].text, pcs->polls);
2932		break;
2933
2934	case CC_NOREPLY:
2935		ctl_putuint(clock_var[id].text,
2936			    pcs->noresponse);
2937		break;
2938
2939	case CC_BADFORMAT:
2940		ctl_putuint(clock_var[id].text,
2941			    pcs->badformat);
2942		break;
2943
2944	case CC_BADDATA:
2945		ctl_putuint(clock_var[id].text,
2946			    pcs->baddata);
2947		break;
2948
2949	case CC_FUDGETIME1:
2950		if (mustput || (pcs->haveflags & CLK_HAVETIME1))
2951			ctl_putdbl(clock_var[id].text,
2952				   pcs->fudgetime1 * 1e3);
2953		break;
2954
2955	case CC_FUDGETIME2:
2956		if (mustput || (pcs->haveflags & CLK_HAVETIME2))
2957			ctl_putdbl(clock_var[id].text,
2958				   pcs->fudgetime2 * 1e3);
2959		break;
2960
2961	case CC_FUDGEVAL1:
2962		if (mustput || (pcs->haveflags & CLK_HAVEVAL1))
2963			ctl_putint(clock_var[id].text,
2964				   pcs->fudgeval1);
2965		break;
2966
2967	case CC_FUDGEVAL2:
2968		if (mustput || (pcs->haveflags & CLK_HAVEVAL2)) {
2969			if (pcs->fudgeval1 > 1)
2970				ctl_putadr(clock_var[id].text,
2971					   pcs->fudgeval2, NULL);
2972			else
2973				ctl_putrefid(clock_var[id].text,
2974					     pcs->fudgeval2);
2975		}
2976		break;
2977
2978	case CC_FLAGS:
2979		ctl_putuint(clock_var[id].text, pcs->flags);
2980		break;
2981
2982	case CC_DEVICE:
2983		if (pcs->clockdesc == NULL ||
2984		    *(pcs->clockdesc) == '\0') {
2985			if (mustput)
2986				ctl_putstr(clock_var[id].text,
2987					   "", 0);
2988		} else {
2989			ctl_putstr(clock_var[id].text,
2990				   pcs->clockdesc,
2991				   strlen(pcs->clockdesc));
2992		}
2993		break;
2994
2995	case CC_VARLIST:
2996		s = buf;
2997		be = buf + sizeof(buf);
2998		if (strlen(clock_var[CC_VARLIST].text) + 4 >
2999		    sizeof(buf))
3000			break;	/* really long var name */
3001
3002		snprintf(s, sizeof(buf), "%s=\"",
3003			 clock_var[CC_VARLIST].text);
3004		s += strlen(s);
3005		t = s;
3006
3007		for (k = clock_var; !(EOV & k->flags); k++) {
3008			if (PADDING & k->flags)
3009				continue;
3010
3011			i = strlen(k->text);
3012			if (s + i + 1 >= be)
3013				break;
3014
3015			if (s != t)
3016				*s++ = ',';
3017			memcpy(s, k->text, i);
3018			s += i;
3019		}
3020
3021		for (k = pcs->kv_list; k && !(EOV & k->flags); k++) {
3022			if (PADDING & k->flags)
3023				continue;
3024
3025			ss = k->text;
3026			if (NULL == ss)
3027				continue;
3028
3029			while (*ss && *ss != '=')
3030				ss++;
3031			i = ss - k->text;
3032			if (s + i + 1 >= be)
3033				break;
3034
3035			if (s != t)
3036				*s++ = ',';
3037			memcpy(s, k->text, (unsigned)i);
3038			s += i;
3039			*s = '\0';
3040		}
3041		if (s + 2 >= be)
3042			break;
3043
3044		*s++ = '"';
3045		*s = '\0';
3046		ctl_putdata(buf, (unsigned)(s - buf), 0);
3047		break;
3048	}
3049}
3050#endif
3051
3052
3053
3054/*
3055 * ctl_getitem - get the next data item from the incoming packet
3056 */
3057static const struct ctl_var *
3058ctl_getitem(
3059	const struct ctl_var *var_list,
3060	char **data
3061	)
3062{
3063	/* [Bug 3008] First check the packet data sanity, then search
3064	 * the key. This improves the consistency of result values: If
3065	 * the result is NULL once, it will never be EOV again for this
3066	 * packet; If it's EOV, it will never be NULL again until the
3067	 * variable is found and processed in a given 'var_list'. (That
3068	 * is, a result is returned that is neither NULL nor EOV).
3069	 */
3070	static const struct ctl_var eol = { 0, EOV, NULL };
3071	static char buf[128];
3072	static u_long quiet_until;
3073	const struct ctl_var *v;
3074	char *cp;
3075	char *tp;
3076
3077	/*
3078	 * Part One: Validate the packet state
3079	 */
3080
3081	/* Delete leading commas and white space */
3082	while (reqpt < reqend && (*reqpt == ',' ||
3083				  isspace((unsigned char)*reqpt)))
3084		reqpt++;
3085	if (reqpt >= reqend)
3086		return NULL;
3087
3088	/* Scan the string in the packet until we hit comma or
3089	 * EoB. Register position of first '=' on the fly. */
3090	for (tp = NULL, cp = reqpt; cp != reqend; ++cp) {
3091		if (*cp == '=' && tp == NULL)
3092			tp = cp;
3093		if (*cp == ',')
3094			break;
3095	}
3096
3097	/* Process payload, if any. */
3098	*data = NULL;
3099	if (NULL != tp) {
3100		/* eventually strip white space from argument. */
3101		const char *plhead = tp + 1; /* skip the '=' */
3102		const char *pltail = cp;
3103		size_t      plsize;
3104
3105		while (plhead != pltail && isspace((u_char)plhead[0]))
3106			++plhead;
3107		while (plhead != pltail && isspace((u_char)pltail[-1]))
3108			--pltail;
3109
3110		/* check payload size, terminate packet on overflow */
3111		plsize = (size_t)(pltail - plhead);
3112		if (plsize >= sizeof(buf))
3113			goto badpacket;
3114
3115		/* copy data, NUL terminate, and set result data ptr */
3116		memcpy(buf, plhead, plsize);
3117		buf[plsize] = '\0';
3118		*data = buf;
3119	} else {
3120		/* no payload, current end --> current name termination */
3121		tp = cp;
3122	}
3123
3124	/* Part Two
3125	 *
3126	 * Now we're sure that the packet data itself is sane. Scan the
3127	 * list now. Make sure a NULL list is properly treated by
3128	 * returning a synthetic End-Of-Values record. We must not
3129	 * return NULL pointers after this point, or the behaviour would
3130	 * become inconsistent if called several times with different
3131	 * variable lists after an EoV was returned.  (Such a behavior
3132	 * actually caused Bug 3008.)
3133	 */
3134
3135	if (NULL == var_list)
3136		return &eol;
3137
3138	for (v = var_list; !(EOV & v->flags); ++v)
3139		if (!(PADDING & v->flags)) {
3140			/* Check if the var name matches the buffer. The
3141			 * name is bracketed by [reqpt..tp] and not NUL
3142			 * terminated, and it contains no '=' char. The
3143			 * lookup value IS NUL-terminated but might
3144			 * include a '='... We have to look out for
3145			 * that!
3146			 */
3147			const char *sp1 = reqpt;
3148			const char *sp2 = v->text;
3149
3150			/* [Bug 3412] do not compare past NUL byte in name */
3151			while (   (sp1 != tp)
3152			       && ('\0' != *sp2) && (*sp1 == *sp2)) {
3153				++sp1;
3154				++sp2;
3155			}
3156			if (sp1 == tp && (*sp2 == '\0' || *sp2 == '='))
3157				break;
3158		}
3159
3160	/* See if we have found a valid entry or not. If found, advance
3161	 * the request pointer for the next round; if not, clear the
3162	 * data pointer so we have no dangling garbage here.
3163	 */
3164	if (EOV & v->flags)
3165		*data = NULL;
3166	else
3167		reqpt = cp + (cp != reqend);
3168	return v;
3169
3170  badpacket:
3171	/*TODO? somehow indicate this packet was bad, apart from syslog? */
3172	numctlbadpkts++;
3173	NLOG(NLOG_SYSEVENT)
3174	    if (quiet_until <= current_time) {
3175		    quiet_until = current_time + 300;
3176		    msyslog(LOG_WARNING,
3177			    "Possible 'ntpdx' exploit from %s#%u (possibly spoofed)",
3178			    stoa(rmt_addr), SRCPORT(rmt_addr));
3179	    }
3180	reqpt = reqend; /* never again for this packet! */
3181	return NULL;
3182}
3183
3184
3185/*
3186 * control_unspec - response to an unspecified op-code
3187 */
3188/*ARGSUSED*/
3189static void
3190control_unspec(
3191	struct recvbuf *rbufp,
3192	int restrict_mask
3193	)
3194{
3195	struct peer *peer;
3196
3197	/*
3198	 * What is an appropriate response to an unspecified op-code?
3199	 * I return no errors and no data, unless a specified assocation
3200	 * doesn't exist.
3201	 */
3202	if (res_associd) {
3203		peer = findpeerbyassoc(res_associd);
3204		if (NULL == peer) {
3205			ctl_error(CERR_BADASSOC);
3206			return;
3207		}
3208		rpkt.status = htons(ctlpeerstatus(peer));
3209	} else
3210		rpkt.status = htons(ctlsysstatus());
3211	ctl_flushpkt(0);
3212}
3213
3214
3215/*
3216 * read_status - return either a list of associd's, or a particular
3217 * peer's status.
3218 */
3219/*ARGSUSED*/
3220static void
3221read_status(
3222	struct recvbuf *rbufp,
3223	int restrict_mask
3224	)
3225{
3226	struct peer *peer;
3227	const u_char *cp;
3228	size_t n;
3229	/* a_st holds association ID, status pairs alternating */
3230	u_short a_st[CTL_MAX_DATA_LEN / sizeof(u_short)];
3231
3232#ifdef DEBUG
3233	if (debug > 2)
3234		printf("read_status: ID %d\n", res_associd);
3235#endif
3236	/*
3237	 * Two choices here. If the specified association ID is
3238	 * zero we return all known assocation ID's.  Otherwise
3239	 * we return a bunch of stuff about the particular peer.
3240	 */
3241	if (res_associd) {
3242		peer = findpeerbyassoc(res_associd);
3243		if (NULL == peer) {
3244			ctl_error(CERR_BADASSOC);
3245			return;
3246		}
3247		rpkt.status = htons(ctlpeerstatus(peer));
3248		if (res_authokay)
3249			peer->num_events = 0;
3250		/*
3251		 * For now, output everything we know about the
3252		 * peer. May be more selective later.
3253		 */
3254		for (cp = def_peer_var; *cp != 0; cp++)
3255			ctl_putpeer((int)*cp, peer);
3256		ctl_flushpkt(0);
3257		return;
3258	}
3259	n = 0;
3260	rpkt.status = htons(ctlsysstatus());
3261	for (peer = peer_list; peer != NULL; peer = peer->p_link) {
3262		a_st[n++] = htons(peer->associd);
3263		a_st[n++] = htons(ctlpeerstatus(peer));
3264		/* two entries each loop iteration, so n + 1 */
3265		if (n + 1 >= COUNTOF(a_st)) {
3266			ctl_putdata((void *)a_st, n * sizeof(a_st[0]),
3267				    1);
3268			n = 0;
3269		}
3270	}
3271	if (n)
3272		ctl_putdata((void *)a_st, n * sizeof(a_st[0]), 1);
3273	ctl_flushpkt(0);
3274}
3275
3276
3277/*
3278 * read_peervars - half of read_variables() implementation
3279 */
3280static void
3281read_peervars(void)
3282{
3283	const struct ctl_var *v;
3284	struct peer *peer;
3285	const u_char *cp;
3286	size_t i;
3287	char *	valuep;
3288	u_char	wants[CP_MAXCODE + 1];
3289	u_int	gotvar;
3290
3291	/*
3292	 * Wants info for a particular peer. See if we know
3293	 * the guy.
3294	 */
3295	peer = findpeerbyassoc(res_associd);
3296	if (NULL == peer) {
3297		ctl_error(CERR_BADASSOC);
3298		return;
3299	}
3300	rpkt.status = htons(ctlpeerstatus(peer));
3301	if (res_authokay)
3302		peer->num_events = 0;
3303	ZERO(wants);
3304	gotvar = 0;
3305	while (NULL != (v = ctl_getitem(peer_var, &valuep))) {
3306		if (v->flags & EOV) {
3307			ctl_error(CERR_UNKNOWNVAR);
3308			return;
3309		}
3310		INSIST(v->code < COUNTOF(wants));
3311		wants[v->code] = 1;
3312		gotvar = 1;
3313	}
3314	if (gotvar) {
3315		for (i = 1; i < COUNTOF(wants); i++)
3316			if (wants[i])
3317				ctl_putpeer(i, peer);
3318	} else
3319		for (cp = def_peer_var; *cp != 0; cp++)
3320			ctl_putpeer((int)*cp, peer);
3321	ctl_flushpkt(0);
3322}
3323
3324
3325/*
3326 * read_sysvars - half of read_variables() implementation
3327 */
3328static void
3329read_sysvars(void)
3330{
3331	const struct ctl_var *v;
3332	struct ctl_var *kv;
3333	u_int	n;
3334	u_int	gotvar;
3335	const u_char *cs;
3336	char *	valuep;
3337	const char * pch;
3338	u_char *wants;
3339	size_t	wants_count;
3340
3341	/*
3342	 * Wants system variables. Figure out which he wants
3343	 * and give them to him.
3344	 */
3345	rpkt.status = htons(ctlsysstatus());
3346	if (res_authokay)
3347		ctl_sys_num_events = 0;
3348	wants_count = CS_MAXCODE + 1 + count_var(ext_sys_var);
3349	wants = emalloc_zero(wants_count);
3350	gotvar = 0;
3351	while (NULL != (v = ctl_getitem(sys_var, &valuep))) {
3352		if (!(EOV & v->flags)) {
3353			INSIST(v->code < wants_count);
3354			wants[v->code] = 1;
3355			gotvar = 1;
3356		} else {
3357			v = ctl_getitem(ext_sys_var, &valuep);
3358			if (NULL == v) {
3359				ctl_error(CERR_BADVALUE);
3360				free(wants);
3361				return;
3362			}
3363			if (EOV & v->flags) {
3364				ctl_error(CERR_UNKNOWNVAR);
3365				free(wants);
3366				return;
3367			}
3368			n = v->code + CS_MAXCODE + 1;
3369			INSIST(n < wants_count);
3370			wants[n] = 1;
3371			gotvar = 1;
3372		}
3373	}
3374	if (gotvar) {
3375		for (n = 1; n <= CS_MAXCODE; n++)
3376			if (wants[n])
3377				ctl_putsys(n);
3378		for (n = 0; n + CS_MAXCODE + 1 < wants_count; n++)
3379			if (wants[n + CS_MAXCODE + 1]) {
3380				pch = ext_sys_var[n].text;
3381				ctl_putdata(pch, strlen(pch), 0);
3382			}
3383	} else {
3384		for (cs = def_sys_var; *cs != 0; cs++)
3385			ctl_putsys((int)*cs);
3386		for (kv = ext_sys_var; kv && !(EOV & kv->flags); kv++)
3387			if (DEF & kv->flags)
3388				ctl_putdata(kv->text, strlen(kv->text),
3389					    0);
3390	}
3391	free(wants);
3392	ctl_flushpkt(0);
3393}
3394
3395
3396/*
3397 * read_variables - return the variables the caller asks for
3398 */
3399/*ARGSUSED*/
3400static void
3401read_variables(
3402	struct recvbuf *rbufp,
3403	int restrict_mask
3404	)
3405{
3406	if (res_associd)
3407		read_peervars();
3408	else
3409		read_sysvars();
3410}
3411
3412
3413/*
3414 * write_variables - write into variables. We only allow leap bit
3415 * writing this way.
3416 */
3417/*ARGSUSED*/
3418static void
3419write_variables(
3420	struct recvbuf *rbufp,
3421	int restrict_mask
3422	)
3423{
3424	const struct ctl_var *v;
3425	int ext_var;
3426	char *valuep;
3427	long val;
3428	size_t octets;
3429	char *vareqv;
3430	const char *t;
3431	char *tt;
3432
3433	val = 0;
3434	/*
3435	 * If he's trying to write into a peer tell him no way
3436	 */
3437	if (res_associd != 0) {
3438		ctl_error(CERR_PERMISSION);
3439		return;
3440	}
3441
3442	/*
3443	 * Set status
3444	 */
3445	rpkt.status = htons(ctlsysstatus());
3446
3447	/*
3448	 * Look through the variables. Dump out at the first sign of
3449	 * trouble.
3450	 */
3451	while ((v = ctl_getitem(sys_var, &valuep)) != NULL) {
3452		ext_var = 0;
3453		if (v->flags & EOV) {
3454			v = ctl_getitem(ext_sys_var, &valuep);
3455			if (v != NULL) {
3456				if (v->flags & EOV) {
3457					ctl_error(CERR_UNKNOWNVAR);
3458					return;
3459				}
3460				ext_var = 1;
3461			} else {
3462				break;
3463			}
3464		}
3465		if (!(v->flags & CAN_WRITE)) {
3466			ctl_error(CERR_PERMISSION);
3467			return;
3468		}
3469		/* [bug 3565] writing makes sense only if we *have* a
3470		 * value in the packet!
3471		 */
3472		if (valuep == NULL) {
3473			ctl_error(CERR_BADFMT);
3474			return;
3475		}
3476		if (!ext_var) {
3477			if ( !(*valuep && atoint(valuep, &val))) {
3478				ctl_error(CERR_BADFMT);
3479				return;
3480			}
3481			if ((val & ~LEAP_NOTINSYNC) != 0) {
3482				ctl_error(CERR_BADVALUE);
3483				return;
3484			}
3485		}
3486
3487		if (ext_var) {
3488			octets = strlen(v->text) + strlen(valuep) + 2;
3489			vareqv = emalloc(octets);
3490			tt = vareqv;
3491			t = v->text;
3492			while (*t && *t != '=')
3493				*tt++ = *t++;
3494			*tt++ = '=';
3495			memcpy(tt, valuep, 1 + strlen(valuep));
3496			set_sys_var(vareqv, 1 + strlen(vareqv), v->flags);
3497			free(vareqv);
3498		} else {
3499			ctl_error(CERR_UNSPEC); /* really */
3500			return;
3501		}
3502	}
3503
3504	/*
3505	 * If we got anything, do it. xxx nothing to do ***
3506	 */
3507	/*
3508	  if (leapind != ~0 || leapwarn != ~0) {
3509	  if (!leap_setleap((int)leapind, (int)leapwarn)) {
3510	  ctl_error(CERR_PERMISSION);
3511	  return;
3512	  }
3513	  }
3514	*/
3515	ctl_flushpkt(0);
3516}
3517
3518
3519/*
3520 * configure() processes ntpq :config/config-from-file, allowing
3521 *		generic runtime reconfiguration.
3522 */
3523static void configure(
3524	struct recvbuf *rbufp,
3525	int restrict_mask
3526	)
3527{
3528	size_t data_count;
3529	int retval;
3530
3531	/* I haven't yet implemented changes to an existing association.
3532	 * Hence check if the association id is 0
3533	 */
3534	if (res_associd != 0) {
3535		ctl_error(CERR_BADVALUE);
3536		return;
3537	}
3538
3539	if (RES_NOMODIFY & restrict_mask) {
3540		snprintf(remote_config.err_msg,
3541			 sizeof(remote_config.err_msg),
3542			 "runtime configuration prohibited by restrict ... nomodify");
3543		ctl_putdata(remote_config.err_msg,
3544			    strlen(remote_config.err_msg), 0);
3545		ctl_flushpkt(0);
3546		NLOG(NLOG_SYSINFO)
3547			msyslog(LOG_NOTICE,
3548				"runtime config from %s rejected due to nomodify restriction",
3549				stoa(&rbufp->recv_srcadr));
3550		sys_restricted++;
3551		return;
3552	}
3553
3554	/* Initialize the remote config buffer */
3555	data_count = remoteconfig_cmdlength(reqpt, reqend);
3556
3557	if (data_count > sizeof(remote_config.buffer) - 2) {
3558		snprintf(remote_config.err_msg,
3559			 sizeof(remote_config.err_msg),
3560			 "runtime configuration failed: request too long");
3561		ctl_putdata(remote_config.err_msg,
3562			    strlen(remote_config.err_msg), 0);
3563		ctl_flushpkt(0);
3564		msyslog(LOG_NOTICE,
3565			"runtime config from %s rejected: request too long",
3566			stoa(&rbufp->recv_srcadr));
3567		return;
3568	}
3569	/* Bug 2853 -- check if all characters were acceptable */
3570	if (data_count != (size_t)(reqend - reqpt)) {
3571		snprintf(remote_config.err_msg,
3572			 sizeof(remote_config.err_msg),
3573			 "runtime configuration failed: request contains an unprintable character");
3574		ctl_putdata(remote_config.err_msg,
3575			    strlen(remote_config.err_msg), 0);
3576		ctl_flushpkt(0);
3577		msyslog(LOG_NOTICE,
3578			"runtime config from %s rejected: request contains an unprintable character: %0x",
3579			stoa(&rbufp->recv_srcadr),
3580			reqpt[data_count]);
3581		return;
3582	}
3583
3584	memcpy(remote_config.buffer, reqpt, data_count);
3585	/* The buffer has no trailing linefeed or NUL right now. For
3586	 * logging, we do not want a newline, so we do that first after
3587	 * adding the necessary NUL byte.
3588	 */
3589	remote_config.buffer[data_count] = '\0';
3590	DPRINTF(1, ("Got Remote Configuration Command: %s\n",
3591		remote_config.buffer));
3592	msyslog(LOG_NOTICE, "%s config: %s",
3593		stoa(&rbufp->recv_srcadr),
3594		remote_config.buffer);
3595
3596	/* Now we have to make sure there is a NL/NUL sequence at the
3597	 * end of the buffer before we parse it.
3598	 */
3599	remote_config.buffer[data_count++] = '\n';
3600	remote_config.buffer[data_count] = '\0';
3601	remote_config.pos = 0;
3602	remote_config.err_pos = 0;
3603	remote_config.no_errors = 0;
3604	config_remotely(&rbufp->recv_srcadr);
3605
3606	/*
3607	 * Check if errors were reported. If not, output 'Config
3608	 * Succeeded'.  Else output the error count.  It would be nice
3609	 * to output any parser error messages.
3610	 */
3611	if (0 == remote_config.no_errors) {
3612		retval = snprintf(remote_config.err_msg,
3613				  sizeof(remote_config.err_msg),
3614				  "Config Succeeded");
3615		if (retval > 0)
3616			remote_config.err_pos += retval;
3617	}
3618
3619	ctl_putdata(remote_config.err_msg, remote_config.err_pos, 0);
3620	ctl_flushpkt(0);
3621
3622	DPRINTF(1, ("Reply: %s\n", remote_config.err_msg));
3623
3624	if (remote_config.no_errors > 0)
3625		msyslog(LOG_NOTICE, "%d error in %s config",
3626			remote_config.no_errors,
3627			stoa(&rbufp->recv_srcadr));
3628}
3629
3630
3631/*
3632 * derive_nonce - generate client-address-specific nonce value
3633 *		  associated with a given timestamp.
3634 */
3635static u_int32 derive_nonce(
3636	sockaddr_u *	addr,
3637	u_int32		ts_i,
3638	u_int32		ts_f
3639	)
3640{
3641	static u_int32	salt[4];
3642	static u_long	last_salt_update;
3643	union d_tag {
3644		u_char	digest[EVP_MAX_MD_SIZE];
3645		u_int32 extract;
3646	}		d;
3647	EVP_MD_CTX	*ctx;
3648	u_int		len;
3649
3650	while (!salt[0] || current_time - last_salt_update >= 3600) {
3651		salt[0] = ntp_random();
3652		salt[1] = ntp_random();
3653		salt[2] = ntp_random();
3654		salt[3] = ntp_random();
3655		last_salt_update = current_time;
3656	}
3657
3658	ctx = EVP_MD_CTX_new();
3659#   if defined(OPENSSL) && defined(EVP_MD_CTX_FLAG_NON_FIPS_ALLOW)
3660	/* [Bug 3457] set flags and don't kill them again */
3661	EVP_MD_CTX_set_flags(ctx, EVP_MD_CTX_FLAG_NON_FIPS_ALLOW);
3662	EVP_DigestInit_ex(ctx, EVP_get_digestbynid(NID_md5), NULL);
3663#   else
3664	EVP_DigestInit(ctx, EVP_get_digestbynid(NID_md5));
3665#   endif
3666	EVP_DigestUpdate(ctx, salt, sizeof(salt));
3667	EVP_DigestUpdate(ctx, &ts_i, sizeof(ts_i));
3668	EVP_DigestUpdate(ctx, &ts_f, sizeof(ts_f));
3669	if (IS_IPV4(addr))
3670		EVP_DigestUpdate(ctx, &SOCK_ADDR4(addr),
3671			         sizeof(SOCK_ADDR4(addr)));
3672	else
3673		EVP_DigestUpdate(ctx, &SOCK_ADDR6(addr),
3674			         sizeof(SOCK_ADDR6(addr)));
3675	EVP_DigestUpdate(ctx, &NSRCPORT(addr), sizeof(NSRCPORT(addr)));
3676	EVP_DigestUpdate(ctx, salt, sizeof(salt));
3677	EVP_DigestFinal(ctx, d.digest, &len);
3678	EVP_MD_CTX_free(ctx);
3679
3680	return d.extract;
3681}
3682
3683
3684/*
3685 * generate_nonce - generate client-address-specific nonce string.
3686 */
3687static void generate_nonce(
3688	struct recvbuf *	rbufp,
3689	char *			nonce,
3690	size_t			nonce_octets
3691	)
3692{
3693	u_int32 derived;
3694
3695	derived = derive_nonce(&rbufp->recv_srcadr,
3696			       rbufp->recv_time.l_ui,
3697			       rbufp->recv_time.l_uf);
3698	snprintf(nonce, nonce_octets, "%08x%08x%08x",
3699		 rbufp->recv_time.l_ui, rbufp->recv_time.l_uf, derived);
3700}
3701
3702
3703/*
3704 * validate_nonce - validate client-address-specific nonce string.
3705 *
3706 * Returns TRUE if the local calculation of the nonce matches the
3707 * client-provided value and the timestamp is recent enough.
3708 */
3709static int validate_nonce(
3710	const char *		pnonce,
3711	struct recvbuf *	rbufp
3712	)
3713{
3714	u_int	ts_i;
3715	u_int	ts_f;
3716	l_fp	ts;
3717	l_fp	now_delta;
3718	u_int	supposed;
3719	u_int	derived;
3720
3721	if (3 != sscanf(pnonce, "%08x%08x%08x", &ts_i, &ts_f, &supposed))
3722		return FALSE;
3723
3724	ts.l_ui = (u_int32)ts_i;
3725	ts.l_uf = (u_int32)ts_f;
3726	derived = derive_nonce(&rbufp->recv_srcadr, ts.l_ui, ts.l_uf);
3727	get_systime(&now_delta);
3728	L_SUB(&now_delta, &ts);
3729
3730	return (supposed == derived && now_delta.l_ui < 16);
3731}
3732
3733
3734/*
3735 * send_random_tag_value - send a randomly-generated three character
3736 *			   tag prefix, a '.', an index, a '=' and a
3737 *			   random integer value.
3738 *
3739 * To try to force clients to ignore unrecognized tags in mrulist,
3740 * reslist, and ifstats responses, the first and last rows are spiced
3741 * with randomly-generated tag names with correct .# index.  Make it
3742 * three characters knowing that none of the currently-used subscripted
3743 * tags have that length, avoiding the need to test for
3744 * tag collision.
3745 */
3746static void
3747send_random_tag_value(
3748	int	indx
3749	)
3750{
3751	int	noise;
3752	char	buf[32];
3753
3754	noise = rand() ^ (rand() << 16);
3755	buf[0] = 'a' + noise % 26;
3756	noise >>= 5;
3757	buf[1] = 'a' + noise % 26;
3758	noise >>= 5;
3759	buf[2] = 'a' + noise % 26;
3760	noise >>= 5;
3761	buf[3] = '.';
3762	snprintf(&buf[4], sizeof(buf) - 4, "%d", indx);
3763	ctl_putuint(buf, noise);
3764}
3765
3766
3767/*
3768 * Send a MRU list entry in response to a "ntpq -c mrulist" operation.
3769 *
3770 * To keep clients honest about not depending on the order of values,
3771 * and thereby avoid being locked into ugly workarounds to maintain
3772 * backward compatibility later as new fields are added to the response,
3773 * the order is random.
3774 */
3775static void
3776send_mru_entry(
3777	mon_entry *	mon,
3778	int		count
3779	)
3780{
3781	const char first_fmt[] =	"first.%d";
3782	const char ct_fmt[] =		"ct.%d";
3783	const char mv_fmt[] =		"mv.%d";
3784	const char rs_fmt[] =		"rs.%d";
3785	char	tag[32];
3786	u_char	sent[6]; /* 6 tag=value pairs */
3787	u_int32 noise;
3788	u_int	which;
3789	u_int	remaining;
3790	const char * pch;
3791
3792	remaining = COUNTOF(sent);
3793	ZERO(sent);
3794	noise = (u_int32)(rand() ^ (rand() << 16));
3795	while (remaining > 0) {
3796		which = (noise & 7) % COUNTOF(sent);
3797		noise >>= 3;
3798		while (sent[which])
3799			which = (which + 1) % COUNTOF(sent);
3800
3801		switch (which) {
3802
3803		case 0:
3804			snprintf(tag, sizeof(tag), addr_fmt, count);
3805			pch = sptoa(&mon->rmtadr);
3806			ctl_putunqstr(tag, pch, strlen(pch));
3807			break;
3808
3809		case 1:
3810			snprintf(tag, sizeof(tag), last_fmt, count);
3811			ctl_putts(tag, &mon->last);
3812			break;
3813
3814		case 2:
3815			snprintf(tag, sizeof(tag), first_fmt, count);
3816			ctl_putts(tag, &mon->first);
3817			break;
3818
3819		case 3:
3820			snprintf(tag, sizeof(tag), ct_fmt, count);
3821			ctl_putint(tag, mon->count);
3822			break;
3823
3824		case 4:
3825			snprintf(tag, sizeof(tag), mv_fmt, count);
3826			ctl_putuint(tag, mon->vn_mode);
3827			break;
3828
3829		case 5:
3830			snprintf(tag, sizeof(tag), rs_fmt, count);
3831			ctl_puthex(tag, mon->flags);
3832			break;
3833		}
3834		sent[which] = TRUE;
3835		remaining--;
3836	}
3837}
3838
3839
3840/*
3841 * read_mru_list - supports ntpq's mrulist command.
3842 *
3843 * The challenge here is to match ntpdc's monlist functionality without
3844 * being limited to hundreds of entries returned total, and without
3845 * requiring state on the server.  If state were required, ntpq's
3846 * mrulist command would require authentication.
3847 *
3848 * The approach was suggested by Ry Jones.  A finite and variable number
3849 * of entries are retrieved per request, to avoid having responses with
3850 * such large numbers of packets that socket buffers are overflowed and
3851 * packets lost.  The entries are retrieved oldest-first, taking into
3852 * account that the MRU list will be changing between each request.  We
3853 * can expect to see duplicate entries for addresses updated in the MRU
3854 * list during the fetch operation.  In the end, the client can assemble
3855 * a close approximation of the MRU list at the point in time the last
3856 * response was sent by ntpd.  The only difference is it may be longer,
3857 * containing some number of oldest entries which have since been
3858 * reclaimed.  If necessary, the protocol could be extended to zap those
3859 * from the client snapshot at the end, but so far that doesn't seem
3860 * useful.
3861 *
3862 * To accomodate the changing MRU list, the starting point for requests
3863 * after the first request is supplied as a series of last seen
3864 * timestamps and associated addresses, the newest ones the client has
3865 * received.  As long as at least one of those entries hasn't been
3866 * bumped to the head of the MRU list, ntpd can pick up at that point.
3867 * Otherwise, the request is failed and it is up to ntpq to back up and
3868 * provide the next newest entry's timestamps and addresses, conceivably
3869 * backing up all the way to the starting point.
3870 *
3871 * input parameters:
3872 *	nonce=		Regurgitated nonce retrieved by the client
3873 *			previously using CTL_OP_REQ_NONCE, demonstrating
3874 *			ability to receive traffic sent to its address.
3875 *	frags=		Limit on datagrams (fragments) in response.  Used
3876 *			by newer ntpq versions instead of limit= when
3877 *			retrieving multiple entries.
3878 *	limit=		Limit on MRU entries returned.  One of frags= or
3879 *			limit= must be provided.
3880 *			limit=1 is a special case:  Instead of fetching
3881 *			beginning with the supplied starting point's
3882 *			newer neighbor, fetch the supplied entry, and
3883 *			in that case the #.last timestamp can be zero.
3884 *			This enables fetching a single entry by IP
3885 *			address.  When limit is not one and frags= is
3886 *			provided, the fragment limit controls.
3887 *	mincount=	(decimal) Return entries with count >= mincount.
3888 *	laddr=		Return entries associated with the server's IP
3889 *			address given.  No port specification is needed,
3890 *			and any supplied is ignored.
3891 *	resall=		0x-prefixed hex restrict bits which must all be
3892 *			lit for an MRU entry to be included.
3893 *			Has precedence over any resany=.
3894 *	resany=		0x-prefixed hex restrict bits, at least one of
3895 *			which must be list for an MRU entry to be
3896 *			included.
3897 *	last.0=		0x-prefixed hex l_fp timestamp of newest entry
3898 *			which client previously received.
3899 *	addr.0=		text of newest entry's IP address and port,
3900 *			IPv6 addresses in bracketed form: [::]:123
3901 *	last.1=		timestamp of 2nd newest entry client has.
3902 *	addr.1=		address of 2nd newest entry.
3903 *	[...]
3904 *
3905 * ntpq provides as many last/addr pairs as will fit in a single request
3906 * packet, except for the first request in a MRU fetch operation.
3907 *
3908 * The response begins with a new nonce value to be used for any
3909 * followup request.  Following the nonce is the next newer entry than
3910 * referred to by last.0 and addr.0, if the "0" entry has not been
3911 * bumped to the front.  If it has, the first entry returned will be the
3912 * next entry newer than referred to by last.1 and addr.1, and so on.
3913 * If none of the referenced entries remain unchanged, the request fails
3914 * and ntpq backs up to the next earlier set of entries to resync.
3915 *
3916 * Except for the first response, the response begins with confirmation
3917 * of the entry that precedes the first additional entry provided:
3918 *
3919 *	last.older=	hex l_fp timestamp matching one of the input
3920 *			.last timestamps, which entry now precedes the
3921 *			response 0. entry in the MRU list.
3922 *	addr.older=	text of address corresponding to older.last.
3923 *
3924 * And in any case, a successful response contains sets of values
3925 * comprising entries, with the oldest numbered 0 and incrementing from
3926 * there:
3927 *
3928 *	addr.#		text of IPv4 or IPv6 address and port
3929 *	last.#		hex l_fp timestamp of last receipt
3930 *	first.#		hex l_fp timestamp of first receipt
3931 *	ct.#		count of packets received
3932 *	mv.#		mode and version
3933 *	rs.#		restriction mask (RES_* bits)
3934 *
3935 * Note the code currently assumes there are no valid three letter
3936 * tags sent with each row, and needs to be adjusted if that changes.
3937 *
3938 * The client should accept the values in any order, and ignore .#
3939 * values which it does not understand, to allow a smooth path to
3940 * future changes without requiring a new opcode.  Clients can rely
3941 * on all *.0 values preceding any *.1 values, that is all values for
3942 * a given index number are together in the response.
3943 *
3944 * The end of the response list is noted with one or two tag=value
3945 * pairs.  Unconditionally:
3946 *
3947 *	now=		0x-prefixed l_fp timestamp at the server marking
3948 *			the end of the operation.
3949 *
3950 * If any entries were returned, now= is followed by:
3951 *
3952 *	last.newest=	hex l_fp identical to last.# of the prior
3953 *			entry.
3954 */
3955static void read_mru_list(
3956	struct recvbuf *rbufp,
3957	int restrict_mask
3958	)
3959{
3960	static const char	nulltxt[1] = 		{ '\0' };
3961	static const char	nonce_text[] =		"nonce";
3962	static const char	frags_text[] =		"frags";
3963	static const char	limit_text[] =		"limit";
3964	static const char	mincount_text[] =	"mincount";
3965	static const char	resall_text[] =		"resall";
3966	static const char	resany_text[] =		"resany";
3967	static const char	maxlstint_text[] =	"maxlstint";
3968	static const char	laddr_text[] =		"laddr";
3969	static const char	resaxx_fmt[] =		"0x%hx";
3970
3971	u_int			limit;
3972	u_short			frags;
3973	u_short			resall;
3974	u_short			resany;
3975	int			mincount;
3976	u_int			maxlstint;
3977	sockaddr_u		laddr;
3978	struct interface *	lcladr;
3979	u_int			count;
3980	u_int			ui;
3981	u_int			uf;
3982	l_fp			last[16];
3983	sockaddr_u		addr[COUNTOF(last)];
3984	char			buf[128];
3985	struct ctl_var *	in_parms;
3986	const struct ctl_var *	v;
3987	const char *		val;
3988	const char *		pch;
3989	char *			pnonce;
3990	int			nonce_valid;
3991	size_t			i;
3992	int			priors;
3993	u_short			hash;
3994	mon_entry *		mon;
3995	mon_entry *		prior_mon;
3996	l_fp			now;
3997
3998	if (RES_NOMRULIST & restrict_mask) {
3999		ctl_error(CERR_PERMISSION);
4000		NLOG(NLOG_SYSINFO)
4001			msyslog(LOG_NOTICE,
4002				"mrulist from %s rejected due to nomrulist restriction",
4003				stoa(&rbufp->recv_srcadr));
4004		sys_restricted++;
4005		return;
4006	}
4007	/*
4008	 * fill in_parms var list with all possible input parameters.
4009	 */
4010	in_parms = NULL;
4011	set_var(&in_parms, nonce_text, sizeof(nonce_text), 0);
4012	set_var(&in_parms, frags_text, sizeof(frags_text), 0);
4013	set_var(&in_parms, limit_text, sizeof(limit_text), 0);
4014	set_var(&in_parms, mincount_text, sizeof(mincount_text), 0);
4015	set_var(&in_parms, resall_text, sizeof(resall_text), 0);
4016	set_var(&in_parms, resany_text, sizeof(resany_text), 0);
4017	set_var(&in_parms, maxlstint_text, sizeof(maxlstint_text), 0);
4018	set_var(&in_parms, laddr_text, sizeof(laddr_text), 0);
4019	for (i = 0; i < COUNTOF(last); i++) {
4020		snprintf(buf, sizeof(buf), last_fmt, (int)i);
4021		set_var(&in_parms, buf, strlen(buf) + 1, 0);
4022		snprintf(buf, sizeof(buf), addr_fmt, (int)i);
4023		set_var(&in_parms, buf, strlen(buf) + 1, 0);
4024	}
4025
4026	/* decode input parms */
4027	pnonce = NULL;
4028	frags = 0;
4029	limit = 0;
4030	mincount = 0;
4031	resall = 0;
4032	resany = 0;
4033	maxlstint = 0;
4034	lcladr = NULL;
4035	priors = 0;
4036	ZERO(last);
4037	ZERO(addr);
4038
4039	/* have to go through '(void*)' to drop 'const' property from pointer.
4040	 * ctl_getitem()' needs some cleanup, too.... perlinger@ntp.org
4041	 */
4042	while (NULL != (v = ctl_getitem(in_parms, (void*)&val)) &&
4043	       !(EOV & v->flags)) {
4044		int si;
4045
4046		if (NULL == val)
4047			val = nulltxt;
4048
4049		if (!strcmp(nonce_text, v->text)) {
4050			free(pnonce);
4051			pnonce = (*val) ? estrdup(val) : NULL;
4052		} else if (!strcmp(frags_text, v->text)) {
4053			if (1 != sscanf(val, "%hu", &frags))
4054				goto blooper;
4055		} else if (!strcmp(limit_text, v->text)) {
4056			if (1 != sscanf(val, "%u", &limit))
4057				goto blooper;
4058		} else if (!strcmp(mincount_text, v->text)) {
4059			if (1 != sscanf(val, "%d", &mincount))
4060				goto blooper;
4061			if (mincount < 0)
4062				mincount = 0;
4063		} else if (!strcmp(resall_text, v->text)) {
4064			if (1 != sscanf(val, resaxx_fmt, &resall))
4065				goto blooper;
4066		} else if (!strcmp(resany_text, v->text)) {
4067			if (1 != sscanf(val, resaxx_fmt, &resany))
4068				goto blooper;
4069		} else if (!strcmp(maxlstint_text, v->text)) {
4070			if (1 != sscanf(val, "%u", &maxlstint))
4071				goto blooper;
4072		} else if (!strcmp(laddr_text, v->text)) {
4073			if (!decodenetnum(val, &laddr))
4074				goto blooper;
4075			lcladr = getinterface(&laddr, 0);
4076		} else if (1 == sscanf(v->text, last_fmt, &si) &&
4077			   (size_t)si < COUNTOF(last)) {
4078			if (2 != sscanf(val, "0x%08x.%08x", &ui, &uf))
4079				goto blooper;
4080			last[si].l_ui = ui;
4081			last[si].l_uf = uf;
4082			if (!SOCK_UNSPEC(&addr[si]) && si == priors)
4083				priors++;
4084		} else if (1 == sscanf(v->text, addr_fmt, &si) &&
4085			   (size_t)si < COUNTOF(addr)) {
4086			if (!decodenetnum(val, &addr[si]))
4087				goto blooper;
4088			if (last[si].l_ui && last[si].l_uf && si == priors)
4089				priors++;
4090		} else {
4091			DPRINTF(1, ("read_mru_list: invalid key item: '%s' (ignored)\n",
4092				    v->text));
4093			continue;
4094
4095		blooper:
4096			DPRINTF(1, ("read_mru_list: invalid param for '%s': '%s' (bailing)\n",
4097				    v->text, val));
4098			free(pnonce);
4099			pnonce = NULL;
4100			break;
4101		}
4102	}
4103	free_varlist(in_parms);
4104	in_parms = NULL;
4105
4106	/* return no responses until the nonce is validated */
4107	if (NULL == pnonce)
4108		return;
4109
4110	nonce_valid = validate_nonce(pnonce, rbufp);
4111	free(pnonce);
4112	if (!nonce_valid)
4113		return;
4114
4115	if ((0 == frags && !(0 < limit && limit <= MRU_ROW_LIMIT)) ||
4116	    frags > MRU_FRAGS_LIMIT) {
4117		ctl_error(CERR_BADVALUE);
4118		return;
4119	}
4120
4121	/*
4122	 * If either frags or limit is not given, use the max.
4123	 */
4124	if (0 != frags && 0 == limit)
4125		limit = UINT_MAX;
4126	else if (0 != limit && 0 == frags)
4127		frags = MRU_FRAGS_LIMIT;
4128
4129	/*
4130	 * Find the starting point if one was provided.
4131	 */
4132	mon = NULL;
4133	for (i = 0; i < (size_t)priors; i++) {
4134		hash = MON_HASH(&addr[i]);
4135		for (mon = mon_hash[hash];
4136		     mon != NULL;
4137		     mon = mon->hash_next)
4138			if (ADDR_PORT_EQ(&mon->rmtadr, &addr[i]))
4139				break;
4140		if (mon != NULL) {
4141			if (L_ISEQU(&mon->last, &last[i]))
4142				break;
4143			mon = NULL;
4144		}
4145	}
4146
4147	/* If a starting point was provided... */
4148	if (priors) {
4149		/* and none could be found unmodified... */
4150		if (NULL == mon) {
4151			/* tell ntpq to try again with older entries */
4152			ctl_error(CERR_UNKNOWNVAR);
4153			return;
4154		}
4155		/* confirm the prior entry used as starting point */
4156		ctl_putts("last.older", &mon->last);
4157		pch = sptoa(&mon->rmtadr);
4158		ctl_putunqstr("addr.older", pch, strlen(pch));
4159
4160		/*
4161		 * Move on to the first entry the client doesn't have,
4162		 * except in the special case of a limit of one.  In
4163		 * that case return the starting point entry.
4164		 */
4165		if (limit > 1)
4166			mon = PREV_DLIST(mon_mru_list, mon, mru);
4167	} else {	/* start with the oldest */
4168		mon = TAIL_DLIST(mon_mru_list, mru);
4169	}
4170
4171	/*
4172	 * send up to limit= entries in up to frags= datagrams
4173	 */
4174	get_systime(&now);
4175	generate_nonce(rbufp, buf, sizeof(buf));
4176	ctl_putunqstr("nonce", buf, strlen(buf));
4177	prior_mon = NULL;
4178	for (count = 0;
4179	     mon != NULL && res_frags < frags && count < limit;
4180	     mon = PREV_DLIST(mon_mru_list, mon, mru)) {
4181
4182		if (mon->count < mincount)
4183			continue;
4184		if (resall && resall != (resall & mon->flags))
4185			continue;
4186		if (resany && !(resany & mon->flags))
4187			continue;
4188		if (maxlstint > 0 && now.l_ui - mon->last.l_ui >
4189		    maxlstint)
4190			continue;
4191		if (lcladr != NULL && mon->lcladr != lcladr)
4192			continue;
4193
4194		send_mru_entry(mon, count);
4195		if (!count)
4196			send_random_tag_value(0);
4197		count++;
4198		prior_mon = mon;
4199	}
4200
4201	/*
4202	 * If this batch completes the MRU list, say so explicitly with
4203	 * a now= l_fp timestamp.
4204	 */
4205	if (NULL == mon) {
4206		if (count > 1)
4207			send_random_tag_value(count - 1);
4208		ctl_putts("now", &now);
4209		/* if any entries were returned confirm the last */
4210		if (prior_mon != NULL)
4211			ctl_putts("last.newest", &prior_mon->last);
4212	}
4213	ctl_flushpkt(0);
4214}
4215
4216
4217/*
4218 * Send a ifstats entry in response to a "ntpq -c ifstats" request.
4219 *
4220 * To keep clients honest about not depending on the order of values,
4221 * and thereby avoid being locked into ugly workarounds to maintain
4222 * backward compatibility later as new fields are added to the response,
4223 * the order is random.
4224 */
4225static void
4226send_ifstats_entry(
4227	endpt *	la,
4228	u_int	ifnum
4229	)
4230{
4231	const char addr_fmtu[] =	"addr.%u";
4232	const char bcast_fmt[] =	"bcast.%u";
4233	const char en_fmt[] =		"en.%u";	/* enabled */
4234	const char name_fmt[] =		"name.%u";
4235	const char flags_fmt[] =	"flags.%u";
4236	const char tl_fmt[] =		"tl.%u";	/* ttl */
4237	const char mc_fmt[] =		"mc.%u";	/* mcast count */
4238	const char rx_fmt[] =		"rx.%u";
4239	const char tx_fmt[] =		"tx.%u";
4240	const char txerr_fmt[] =	"txerr.%u";
4241	const char pc_fmt[] =		"pc.%u";	/* peer count */
4242	const char up_fmt[] =		"up.%u";	/* uptime */
4243	char	tag[32];
4244	u_char	sent[IFSTATS_FIELDS]; /* 12 tag=value pairs */
4245	int	noisebits;
4246	u_int32 noise;
4247	u_int	which;
4248	u_int	remaining;
4249	const char *pch;
4250
4251	remaining = COUNTOF(sent);
4252	ZERO(sent);
4253	noise = 0;
4254	noisebits = 0;
4255	while (remaining > 0) {
4256		if (noisebits < 4) {
4257			noise = rand() ^ (rand() << 16);
4258			noisebits = 31;
4259		}
4260		which = (noise & 0xf) % COUNTOF(sent);
4261		noise >>= 4;
4262		noisebits -= 4;
4263
4264		while (sent[which])
4265			which = (which + 1) % COUNTOF(sent);
4266
4267		switch (which) {
4268
4269		case 0:
4270			snprintf(tag, sizeof(tag), addr_fmtu, ifnum);
4271			pch = sptoa(&la->sin);
4272			ctl_putunqstr(tag, pch, strlen(pch));
4273			break;
4274
4275		case 1:
4276			snprintf(tag, sizeof(tag), bcast_fmt, ifnum);
4277			if (INT_BCASTOPEN & la->flags)
4278				pch = sptoa(&la->bcast);
4279			else
4280				pch = "";
4281			ctl_putunqstr(tag, pch, strlen(pch));
4282			break;
4283
4284		case 2:
4285			snprintf(tag, sizeof(tag), en_fmt, ifnum);
4286			ctl_putint(tag, !la->ignore_packets);
4287			break;
4288
4289		case 3:
4290			snprintf(tag, sizeof(tag), name_fmt, ifnum);
4291			ctl_putstr(tag, la->name, strlen(la->name));
4292			break;
4293
4294		case 4:
4295			snprintf(tag, sizeof(tag), flags_fmt, ifnum);
4296			ctl_puthex(tag, (u_int)la->flags);
4297			break;
4298
4299		case 5:
4300			snprintf(tag, sizeof(tag), tl_fmt, ifnum);
4301			ctl_putint(tag, la->last_ttl);
4302			break;
4303
4304		case 6:
4305			snprintf(tag, sizeof(tag), mc_fmt, ifnum);
4306			ctl_putint(tag, la->num_mcast);
4307			break;
4308
4309		case 7:
4310			snprintf(tag, sizeof(tag), rx_fmt, ifnum);
4311			ctl_putint(tag, la->received);
4312			break;
4313
4314		case 8:
4315			snprintf(tag, sizeof(tag), tx_fmt, ifnum);
4316			ctl_putint(tag, la->sent);
4317			break;
4318
4319		case 9:
4320			snprintf(tag, sizeof(tag), txerr_fmt, ifnum);
4321			ctl_putint(tag, la->notsent);
4322			break;
4323
4324		case 10:
4325			snprintf(tag, sizeof(tag), pc_fmt, ifnum);
4326			ctl_putuint(tag, la->peercnt);
4327			break;
4328
4329		case 11:
4330			snprintf(tag, sizeof(tag), up_fmt, ifnum);
4331			ctl_putuint(tag, current_time - la->starttime);
4332			break;
4333		}
4334		sent[which] = TRUE;
4335		remaining--;
4336	}
4337	send_random_tag_value((int)ifnum);
4338}
4339
4340
4341/*
4342 * read_ifstats - send statistics for each local address, exposed by
4343 *		  ntpq -c ifstats
4344 */
4345static void
4346read_ifstats(
4347	struct recvbuf *	rbufp
4348	)
4349{
4350	u_int	ifidx;
4351	endpt *	la;
4352
4353	/*
4354	 * loop over [0..sys_ifnum] searching ep_list for each
4355	 * ifnum in turn.
4356	 */
4357	for (ifidx = 0; ifidx < sys_ifnum; ifidx++) {
4358		for (la = ep_list; la != NULL; la = la->elink)
4359			if (ifidx == la->ifnum)
4360				break;
4361		if (NULL == la)
4362			continue;
4363		/* return stats for one local address */
4364		send_ifstats_entry(la, ifidx);
4365	}
4366	ctl_flushpkt(0);
4367}
4368
4369static void
4370sockaddrs_from_restrict_u(
4371	sockaddr_u *	psaA,
4372	sockaddr_u *	psaM,
4373	restrict_u *	pres,
4374	int		ipv6
4375	)
4376{
4377	ZERO(*psaA);
4378	ZERO(*psaM);
4379	if (!ipv6) {
4380		psaA->sa.sa_family = AF_INET;
4381		psaA->sa4.sin_addr.s_addr = htonl(pres->u.v4.addr);
4382		psaM->sa.sa_family = AF_INET;
4383		psaM->sa4.sin_addr.s_addr = htonl(pres->u.v4.mask);
4384	} else {
4385		psaA->sa.sa_family = AF_INET6;
4386		memcpy(&psaA->sa6.sin6_addr, &pres->u.v6.addr,
4387		       sizeof(psaA->sa6.sin6_addr));
4388		psaM->sa.sa_family = AF_INET6;
4389		memcpy(&psaM->sa6.sin6_addr, &pres->u.v6.mask,
4390		       sizeof(psaA->sa6.sin6_addr));
4391	}
4392}
4393
4394
4395/*
4396 * Send a restrict entry in response to a "ntpq -c reslist" request.
4397 *
4398 * To keep clients honest about not depending on the order of values,
4399 * and thereby avoid being locked into ugly workarounds to maintain
4400 * backward compatibility later as new fields are added to the response,
4401 * the order is random.
4402 */
4403static void
4404send_restrict_entry(
4405	restrict_u *	pres,
4406	int		ipv6,
4407	u_int		idx
4408	)
4409{
4410	const char addr_fmtu[] =	"addr.%u";
4411	const char mask_fmtu[] =	"mask.%u";
4412	const char hits_fmt[] =		"hits.%u";
4413	const char flags_fmt[] =	"flags.%u";
4414	char		tag[32];
4415	u_char		sent[RESLIST_FIELDS]; /* 4 tag=value pairs */
4416	int		noisebits;
4417	u_int32		noise;
4418	u_int		which;
4419	u_int		remaining;
4420	sockaddr_u	addr;
4421	sockaddr_u	mask;
4422	const char *	pch;
4423	char *		buf;
4424	const char *	match_str;
4425	const char *	access_str;
4426
4427	sockaddrs_from_restrict_u(&addr, &mask, pres, ipv6);
4428	remaining = COUNTOF(sent);
4429	ZERO(sent);
4430	noise = 0;
4431	noisebits = 0;
4432	while (remaining > 0) {
4433		if (noisebits < 2) {
4434			noise = rand() ^ (rand() << 16);
4435			noisebits = 31;
4436		}
4437		which = (noise & 0x3) % COUNTOF(sent);
4438		noise >>= 2;
4439		noisebits -= 2;
4440
4441		while (sent[which])
4442			which = (which + 1) % COUNTOF(sent);
4443
4444		/* XXX: Numbers?  Really? */
4445		switch (which) {
4446
4447		case 0:
4448			snprintf(tag, sizeof(tag), addr_fmtu, idx);
4449			pch = stoa(&addr);
4450			ctl_putunqstr(tag, pch, strlen(pch));
4451			break;
4452
4453		case 1:
4454			snprintf(tag, sizeof(tag), mask_fmtu, idx);
4455			pch = stoa(&mask);
4456			ctl_putunqstr(tag, pch, strlen(pch));
4457			break;
4458
4459		case 2:
4460			snprintf(tag, sizeof(tag), hits_fmt, idx);
4461			ctl_putuint(tag, pres->count);
4462			break;
4463
4464		case 3:
4465			snprintf(tag, sizeof(tag), flags_fmt, idx);
4466			match_str = res_match_flags(pres->mflags);
4467			access_str = res_access_flags(pres->rflags);
4468			if ('\0' == match_str[0]) {
4469				pch = access_str;
4470			} else {
4471				LIB_GETBUF(buf);
4472				snprintf(buf, LIB_BUFLENGTH, "%s %s",
4473					 match_str, access_str);
4474				pch = buf;
4475			}
4476			ctl_putunqstr(tag, pch, strlen(pch));
4477			break;
4478		}
4479		sent[which] = TRUE;
4480		remaining--;
4481	}
4482	send_random_tag_value((int)idx);
4483}
4484
4485
4486static void
4487send_restrict_list(
4488	restrict_u *	pres,
4489	int		ipv6,
4490	u_int *		pidx
4491	)
4492{
4493	for ( ; pres != NULL; pres = pres->link) {
4494		send_restrict_entry(pres, ipv6, *pidx);
4495		(*pidx)++;
4496	}
4497}
4498
4499
4500/*
4501 * read_addr_restrictions - returns IPv4 and IPv6 access control lists
4502 */
4503static void
4504read_addr_restrictions(
4505	struct recvbuf *	rbufp
4506)
4507{
4508	u_int idx;
4509
4510	idx = 0;
4511	send_restrict_list(restrictlist4, FALSE, &idx);
4512	send_restrict_list(restrictlist6, TRUE, &idx);
4513	ctl_flushpkt(0);
4514}
4515
4516
4517/*
4518 * read_ordlist - CTL_OP_READ_ORDLIST_A for ntpq -c ifstats & reslist
4519 */
4520static void
4521read_ordlist(
4522	struct recvbuf *	rbufp,
4523	int			restrict_mask
4524	)
4525{
4526	const char ifstats_s[] = "ifstats";
4527	const size_t ifstats_chars = COUNTOF(ifstats_s) - 1;
4528	const char addr_rst_s[] = "addr_restrictions";
4529	const size_t a_r_chars = COUNTOF(addr_rst_s) - 1;
4530	struct ntp_control *	cpkt;
4531	u_short			qdata_octets;
4532
4533	/*
4534	 * CTL_OP_READ_ORDLIST_A was first named CTL_OP_READ_IFSTATS and
4535	 * used only for ntpq -c ifstats.  With the addition of reslist
4536	 * the same opcode was generalized to retrieve ordered lists
4537	 * which require authentication.  The request data is empty or
4538	 * contains "ifstats" (not null terminated) to retrieve local
4539	 * addresses and associated stats.  It is "addr_restrictions"
4540	 * to retrieve the IPv4 then IPv6 remote address restrictions,
4541	 * which are access control lists.  Other request data return
4542	 * CERR_UNKNOWNVAR.
4543	 */
4544	cpkt = (struct ntp_control *)&rbufp->recv_pkt;
4545	qdata_octets = ntohs(cpkt->count);
4546	if (0 == qdata_octets || (ifstats_chars == qdata_octets &&
4547	    !memcmp(ifstats_s, cpkt->u.data, ifstats_chars))) {
4548		read_ifstats(rbufp);
4549		return;
4550	}
4551	if (a_r_chars == qdata_octets &&
4552	    !memcmp(addr_rst_s, cpkt->u.data, a_r_chars)) {
4553		read_addr_restrictions(rbufp);
4554		return;
4555	}
4556	ctl_error(CERR_UNKNOWNVAR);
4557}
4558
4559
4560/*
4561 * req_nonce - CTL_OP_REQ_NONCE for ntpq -c mrulist prerequisite.
4562 */
4563static void req_nonce(
4564	struct recvbuf *	rbufp,
4565	int			restrict_mask
4566	)
4567{
4568	char	buf[64];
4569
4570	generate_nonce(rbufp, buf, sizeof(buf));
4571	ctl_putunqstr("nonce", buf, strlen(buf));
4572	ctl_flushpkt(0);
4573}
4574
4575
4576/*
4577 * read_clockstatus - return clock radio status
4578 */
4579/*ARGSUSED*/
4580static void
4581read_clockstatus(
4582	struct recvbuf *rbufp,
4583	int restrict_mask
4584	)
4585{
4586#ifndef REFCLOCK
4587	/*
4588	 * If no refclock support, no data to return
4589	 */
4590	ctl_error(CERR_BADASSOC);
4591#else
4592	const struct ctl_var *	v;
4593	int			i;
4594	struct peer *		peer;
4595	char *			valuep;
4596	u_char *		wants;
4597	size_t			wants_alloc;
4598	int			gotvar;
4599	const u_char *		cc;
4600	struct ctl_var *	kv;
4601	struct refclockstat	cs;
4602
4603	if (res_associd != 0) {
4604		peer = findpeerbyassoc(res_associd);
4605	} else {
4606		/*
4607		 * Find a clock for this jerk.	If the system peer
4608		 * is a clock use it, else search peer_list for one.
4609		 */
4610		if (sys_peer != NULL && (FLAG_REFCLOCK &
4611		    sys_peer->flags))
4612			peer = sys_peer;
4613		else
4614			for (peer = peer_list;
4615			     peer != NULL;
4616			     peer = peer->p_link)
4617				if (FLAG_REFCLOCK & peer->flags)
4618					break;
4619	}
4620	if (NULL == peer || !(FLAG_REFCLOCK & peer->flags)) {
4621		ctl_error(CERR_BADASSOC);
4622		return;
4623	}
4624	/*
4625	 * If we got here we have a peer which is a clock. Get his
4626	 * status.
4627	 */
4628	cs.kv_list = NULL;
4629	refclock_control(&peer->srcadr, NULL, &cs);
4630	kv = cs.kv_list;
4631	/*
4632	 * Look for variables in the packet.
4633	 */
4634	rpkt.status = htons(ctlclkstatus(&cs));
4635	wants_alloc = CC_MAXCODE + 1 + count_var(kv);
4636	wants = emalloc_zero(wants_alloc);
4637	gotvar = FALSE;
4638	while (NULL != (v = ctl_getitem(clock_var, &valuep))) {
4639		if (!(EOV & v->flags)) {
4640			wants[v->code] = TRUE;
4641			gotvar = TRUE;
4642		} else {
4643			v = ctl_getitem(kv, &valuep);
4644			if (NULL == v) {
4645				ctl_error(CERR_BADVALUE);
4646				free(wants);
4647				free_varlist(cs.kv_list);
4648				return;
4649			}
4650			if (EOV & v->flags) {
4651				ctl_error(CERR_UNKNOWNVAR);
4652				free(wants);
4653				free_varlist(cs.kv_list);
4654				return;
4655			}
4656			wants[CC_MAXCODE + 1 + v->code] = TRUE;
4657			gotvar = TRUE;
4658		}
4659	}
4660
4661	if (gotvar) {
4662		for (i = 1; i <= CC_MAXCODE; i++)
4663			if (wants[i])
4664				ctl_putclock(i, &cs, TRUE);
4665		if (kv != NULL)
4666			for (i = 0; !(EOV & kv[i].flags); i++)
4667				if (wants[i + CC_MAXCODE + 1])
4668					ctl_putdata(kv[i].text,
4669						    strlen(kv[i].text),
4670						    FALSE);
4671	} else {
4672		for (cc = def_clock_var; *cc != 0; cc++)
4673			ctl_putclock((int)*cc, &cs, FALSE);
4674		for ( ; kv != NULL && !(EOV & kv->flags); kv++)
4675			if (DEF & kv->flags)
4676				ctl_putdata(kv->text, strlen(kv->text),
4677					    FALSE);
4678	}
4679
4680	free(wants);
4681	free_varlist(cs.kv_list);
4682
4683	ctl_flushpkt(0);
4684#endif
4685}
4686
4687
4688/*
4689 * write_clockstatus - we don't do this
4690 */
4691/*ARGSUSED*/
4692static void
4693write_clockstatus(
4694	struct recvbuf *rbufp,
4695	int restrict_mask
4696	)
4697{
4698	ctl_error(CERR_PERMISSION);
4699}
4700
4701/*
4702 * Trap support from here on down. We send async trap messages when the
4703 * upper levels report trouble. Traps can by set either by control
4704 * messages or by configuration.
4705 */
4706/*
4707 * set_trap - set a trap in response to a control message
4708 */
4709static void
4710set_trap(
4711	struct recvbuf *rbufp,
4712	int restrict_mask
4713	)
4714{
4715	int traptype;
4716
4717	/*
4718	 * See if this guy is allowed
4719	 */
4720	if (restrict_mask & RES_NOTRAP) {
4721		ctl_error(CERR_PERMISSION);
4722		return;
4723	}
4724
4725	/*
4726	 * Determine his allowed trap type.
4727	 */
4728	traptype = TRAP_TYPE_PRIO;
4729	if (restrict_mask & RES_LPTRAP)
4730		traptype = TRAP_TYPE_NONPRIO;
4731
4732	/*
4733	 * Call ctlsettrap() to do the work.  Return
4734	 * an error if it can't assign the trap.
4735	 */
4736	if (!ctlsettrap(&rbufp->recv_srcadr, rbufp->dstadr, traptype,
4737			(int)res_version))
4738		ctl_error(CERR_NORESOURCE);
4739	ctl_flushpkt(0);
4740}
4741
4742
4743/*
4744 * unset_trap - unset a trap in response to a control message
4745 */
4746static void
4747unset_trap(
4748	struct recvbuf *rbufp,
4749	int restrict_mask
4750	)
4751{
4752	int traptype;
4753
4754	/*
4755	 * We don't prevent anyone from removing his own trap unless the
4756	 * trap is configured. Note we also must be aware of the
4757	 * possibility that restriction flags were changed since this
4758	 * guy last set his trap. Set the trap type based on this.
4759	 */
4760	traptype = TRAP_TYPE_PRIO;
4761	if (restrict_mask & RES_LPTRAP)
4762		traptype = TRAP_TYPE_NONPRIO;
4763
4764	/*
4765	 * Call ctlclrtrap() to clear this out.
4766	 */
4767	if (!ctlclrtrap(&rbufp->recv_srcadr, rbufp->dstadr, traptype))
4768		ctl_error(CERR_BADASSOC);
4769	ctl_flushpkt(0);
4770}
4771
4772
4773/*
4774 * ctlsettrap - called to set a trap
4775 */
4776int
4777ctlsettrap(
4778	sockaddr_u *raddr,
4779	struct interface *linter,
4780	int traptype,
4781	int version
4782	)
4783{
4784	size_t n;
4785	struct ctl_trap *tp;
4786	struct ctl_trap *tptouse;
4787
4788	/*
4789	 * See if we can find this trap.  If so, we only need update
4790	 * the flags and the time.
4791	 */
4792	if ((tp = ctlfindtrap(raddr, linter)) != NULL) {
4793		switch (traptype) {
4794
4795		case TRAP_TYPE_CONFIG:
4796			tp->tr_flags = TRAP_INUSE|TRAP_CONFIGURED;
4797			break;
4798
4799		case TRAP_TYPE_PRIO:
4800			if (tp->tr_flags & TRAP_CONFIGURED)
4801				return (1); /* don't change anything */
4802			tp->tr_flags = TRAP_INUSE;
4803			break;
4804
4805		case TRAP_TYPE_NONPRIO:
4806			if (tp->tr_flags & TRAP_CONFIGURED)
4807				return (1); /* don't change anything */
4808			tp->tr_flags = TRAP_INUSE|TRAP_NONPRIO;
4809			break;
4810		}
4811		tp->tr_settime = current_time;
4812		tp->tr_resets++;
4813		return (1);
4814	}
4815
4816	/*
4817	 * First we heard of this guy.	Try to find a trap structure
4818	 * for him to use, clearing out lesser priority guys if we
4819	 * have to. Clear out anyone who's expired while we're at it.
4820	 */
4821	tptouse = NULL;
4822	for (n = 0; n < COUNTOF(ctl_traps); n++) {
4823		tp = &ctl_traps[n];
4824		if ((TRAP_INUSE & tp->tr_flags) &&
4825		    !(TRAP_CONFIGURED & tp->tr_flags) &&
4826		    ((tp->tr_settime + CTL_TRAPTIME) > current_time)) {
4827			tp->tr_flags = 0;
4828			num_ctl_traps--;
4829		}
4830		if (!(TRAP_INUSE & tp->tr_flags)) {
4831			tptouse = tp;
4832		} else if (!(TRAP_CONFIGURED & tp->tr_flags)) {
4833			switch (traptype) {
4834
4835			case TRAP_TYPE_CONFIG:
4836				if (tptouse == NULL) {
4837					tptouse = tp;
4838					break;
4839				}
4840				if ((TRAP_NONPRIO & tptouse->tr_flags) &&
4841				    !(TRAP_NONPRIO & tp->tr_flags))
4842					break;
4843
4844				if (!(TRAP_NONPRIO & tptouse->tr_flags)
4845				    && (TRAP_NONPRIO & tp->tr_flags)) {
4846					tptouse = tp;
4847					break;
4848				}
4849				if (tptouse->tr_origtime <
4850				    tp->tr_origtime)
4851					tptouse = tp;
4852				break;
4853
4854			case TRAP_TYPE_PRIO:
4855				if ( TRAP_NONPRIO & tp->tr_flags) {
4856					if (tptouse == NULL ||
4857					    ((TRAP_INUSE &
4858					      tptouse->tr_flags) &&
4859					     tptouse->tr_origtime <
4860					     tp->tr_origtime))
4861						tptouse = tp;
4862				}
4863				break;
4864
4865			case TRAP_TYPE_NONPRIO:
4866				break;
4867			}
4868		}
4869	}
4870
4871	/*
4872	 * If we don't have room for him return an error.
4873	 */
4874	if (tptouse == NULL)
4875		return (0);
4876
4877	/*
4878	 * Set up this structure for him.
4879	 */
4880	tptouse->tr_settime = tptouse->tr_origtime = current_time;
4881	tptouse->tr_count = tptouse->tr_resets = 0;
4882	tptouse->tr_sequence = 1;
4883	tptouse->tr_addr = *raddr;
4884	tptouse->tr_localaddr = linter;
4885	tptouse->tr_version = (u_char) version;
4886	tptouse->tr_flags = TRAP_INUSE;
4887	if (traptype == TRAP_TYPE_CONFIG)
4888		tptouse->tr_flags |= TRAP_CONFIGURED;
4889	else if (traptype == TRAP_TYPE_NONPRIO)
4890		tptouse->tr_flags |= TRAP_NONPRIO;
4891	num_ctl_traps++;
4892	return (1);
4893}
4894
4895
4896/*
4897 * ctlclrtrap - called to clear a trap
4898 */
4899int
4900ctlclrtrap(
4901	sockaddr_u *raddr,
4902	struct interface *linter,
4903	int traptype
4904	)
4905{
4906	register struct ctl_trap *tp;
4907
4908	if ((tp = ctlfindtrap(raddr, linter)) == NULL)
4909		return (0);
4910
4911	if (tp->tr_flags & TRAP_CONFIGURED
4912	    && traptype != TRAP_TYPE_CONFIG)
4913		return (0);
4914
4915	tp->tr_flags = 0;
4916	num_ctl_traps--;
4917	return (1);
4918}
4919
4920
4921/*
4922 * ctlfindtrap - find a trap given the remote and local addresses
4923 */
4924static struct ctl_trap *
4925ctlfindtrap(
4926	sockaddr_u *raddr,
4927	struct interface *linter
4928	)
4929{
4930	size_t	n;
4931
4932	for (n = 0; n < COUNTOF(ctl_traps); n++)
4933		if ((ctl_traps[n].tr_flags & TRAP_INUSE)
4934		    && ADDR_PORT_EQ(raddr, &ctl_traps[n].tr_addr)
4935		    && (linter == ctl_traps[n].tr_localaddr))
4936			return &ctl_traps[n];
4937
4938	return NULL;
4939}
4940
4941
4942/*
4943 * report_event - report an event to the trappers
4944 */
4945void
4946report_event(
4947	int	err,		/* error code */
4948	struct peer *peer,	/* peer structure pointer */
4949	const char *str		/* protostats string */
4950	)
4951{
4952	char	statstr[NTP_MAXSTRLEN];
4953	int	i;
4954	size_t	len;
4955
4956	/*
4957	 * Report the error to the protostats file, system log and
4958	 * trappers.
4959	 */
4960	if (peer == NULL) {
4961
4962		/*
4963		 * Discard a system report if the number of reports of
4964		 * the same type exceeds the maximum.
4965		 */
4966		if (ctl_sys_last_event != (u_char)err)
4967			ctl_sys_num_events= 0;
4968		if (ctl_sys_num_events >= CTL_SYS_MAXEVENTS)
4969			return;
4970
4971		ctl_sys_last_event = (u_char)err;
4972		ctl_sys_num_events++;
4973		snprintf(statstr, sizeof(statstr),
4974		    "0.0.0.0 %04x %02x %s",
4975		    ctlsysstatus(), err, eventstr(err));
4976		if (str != NULL) {
4977			len = strlen(statstr);
4978			snprintf(statstr + len, sizeof(statstr) - len,
4979			    " %s", str);
4980		}
4981		NLOG(NLOG_SYSEVENT)
4982			msyslog(LOG_INFO, "%s", statstr);
4983	} else {
4984
4985		/*
4986		 * Discard a peer report if the number of reports of
4987		 * the same type exceeds the maximum for that peer.
4988		 */
4989		const char *	src;
4990		u_char		errlast;
4991
4992		errlast = (u_char)err & ~PEER_EVENT;
4993		if (peer->last_event != errlast)
4994			peer->num_events = 0;
4995		if (peer->num_events >= CTL_PEER_MAXEVENTS)
4996			return;
4997
4998		peer->last_event = errlast;
4999		peer->num_events++;
5000		if (ISREFCLOCKADR(&peer->srcadr))
5001			src = refnumtoa(&peer->srcadr);
5002		else
5003			src = stoa(&peer->srcadr);
5004
5005		snprintf(statstr, sizeof(statstr),
5006		    "%s %04x %02x %s", src,
5007		    ctlpeerstatus(peer), err, eventstr(err));
5008		if (str != NULL) {
5009			len = strlen(statstr);
5010			snprintf(statstr + len, sizeof(statstr) - len,
5011			    " %s", str);
5012		}
5013		NLOG(NLOG_PEEREVENT)
5014			msyslog(LOG_INFO, "%s", statstr);
5015	}
5016	record_proto_stats(statstr);
5017#if DEBUG
5018	if (debug)
5019		printf("event at %lu %s\n", current_time, statstr);
5020#endif
5021
5022	/*
5023	 * If no trappers, return.
5024	 */
5025	if (num_ctl_traps <= 0)
5026		return;
5027
5028	/* [Bug 3119]
5029	 * Peer Events should be associated with a peer -- hence the
5030	 * name. But there are instances where this function is called
5031	 * *without* a valid peer. This happens e.g. with an unsolicited
5032	 * CryptoNAK, or when a leap second alarm is going off while
5033	 * currently without a system peer.
5034	 *
5035	 * The most sensible approach to this seems to bail out here if
5036	 * this happens. Avoiding to call this function would also
5037	 * bypass the log reporting in the first part of this function,
5038	 * and this is probably not the best of all options.
5039	 *   -*-perlinger@ntp.org-*-
5040	 */
5041	if ((err & PEER_EVENT) && !peer)
5042		return;
5043
5044	/*
5045	 * Set up the outgoing packet variables
5046	 */
5047	res_opcode = CTL_OP_ASYNCMSG;
5048	res_offset = 0;
5049	res_async = TRUE;
5050	res_authenticate = FALSE;
5051	datapt = rpkt.u.data;
5052	dataend = &rpkt.u.data[CTL_MAX_DATA_LEN];
5053	if (!(err & PEER_EVENT)) {
5054		rpkt.associd = 0;
5055		rpkt.status = htons(ctlsysstatus());
5056
5057		/* Include the core system variables and the list. */
5058		for (i = 1; i <= CS_VARLIST; i++)
5059			ctl_putsys(i);
5060	} else if (NULL != peer) { /* paranoia -- skip output */
5061		rpkt.associd = htons(peer->associd);
5062		rpkt.status = htons(ctlpeerstatus(peer));
5063
5064		/* Dump it all. Later, maybe less. */
5065		for (i = 1; i <= CP_MAX_NOAUTOKEY; i++)
5066			ctl_putpeer(i, peer);
5067#	    ifdef REFCLOCK
5068		/*
5069		 * for clock exception events: add clock variables to
5070		 * reflect info on exception
5071		 */
5072		if (err == PEVNT_CLOCK) {
5073			struct refclockstat cs;
5074			struct ctl_var *kv;
5075
5076			cs.kv_list = NULL;
5077			refclock_control(&peer->srcadr, NULL, &cs);
5078
5079			ctl_puthex("refclockstatus",
5080				   ctlclkstatus(&cs));
5081
5082			for (i = 1; i <= CC_MAXCODE; i++)
5083				ctl_putclock(i, &cs, FALSE);
5084			for (kv = cs.kv_list;
5085			     kv != NULL && !(EOV & kv->flags);
5086			     kv++)
5087				if (DEF & kv->flags)
5088					ctl_putdata(kv->text,
5089						    strlen(kv->text),
5090						    FALSE);
5091			free_varlist(cs.kv_list);
5092		}
5093#	    endif /* REFCLOCK */
5094	}
5095
5096	/*
5097	 * We're done, return.
5098	 */
5099	ctl_flushpkt(0);
5100}
5101
5102
5103/*
5104 * mprintf_event - printf-style varargs variant of report_event()
5105 */
5106int
5107mprintf_event(
5108	int		evcode,		/* event code */
5109	struct peer *	p,		/* may be NULL */
5110	const char *	fmt,		/* msnprintf format */
5111	...
5112	)
5113{
5114	va_list	ap;
5115	int	rc;
5116	char	msg[512];
5117
5118	va_start(ap, fmt);
5119	rc = mvsnprintf(msg, sizeof(msg), fmt, ap);
5120	va_end(ap);
5121	report_event(evcode, p, msg);
5122
5123	return rc;
5124}
5125
5126
5127/*
5128 * ctl_clr_stats - clear stat counters
5129 */
5130void
5131ctl_clr_stats(void)
5132{
5133	ctltimereset = current_time;
5134	numctlreq = 0;
5135	numctlbadpkts = 0;
5136	numctlresponses = 0;
5137	numctlfrags = 0;
5138	numctlerrors = 0;
5139	numctlfrags = 0;
5140	numctltooshort = 0;
5141	numctlinputresp = 0;
5142	numctlinputfrag = 0;
5143	numctlinputerr = 0;
5144	numctlbadoffset = 0;
5145	numctlbadversion = 0;
5146	numctldatatooshort = 0;
5147	numctlbadop = 0;
5148	numasyncmsgs = 0;
5149}
5150
5151static u_short
5152count_var(
5153	const struct ctl_var *k
5154	)
5155{
5156	u_int c;
5157
5158	if (NULL == k)
5159		return 0;
5160
5161	c = 0;
5162	while (!(EOV & (k++)->flags))
5163		c++;
5164
5165	ENSURE(c <= USHRT_MAX);
5166	return (u_short)c;
5167}
5168
5169
5170char *
5171add_var(
5172	struct ctl_var **kv,
5173	u_long size,
5174	u_short def
5175	)
5176{
5177	u_short		c;
5178	struct ctl_var *k;
5179	char *		buf;
5180
5181	c = count_var(*kv);
5182	*kv  = erealloc(*kv, (c + 2) * sizeof(**kv));
5183	k = *kv;
5184	buf = emalloc(size);
5185	k[c].code  = c;
5186	k[c].text  = buf;
5187	k[c].flags = def;
5188	k[c + 1].code  = 0;
5189	k[c + 1].text  = NULL;
5190	k[c + 1].flags = EOV;
5191
5192	return buf;
5193}
5194
5195
5196void
5197set_var(
5198	struct ctl_var **kv,
5199	const char *data,
5200	u_long size,
5201	u_short def
5202	)
5203{
5204	struct ctl_var *k;
5205	const char *s;
5206	const char *t;
5207	char *td;
5208
5209	if (NULL == data || !size)
5210		return;
5211
5212	k = *kv;
5213	if (k != NULL) {
5214		while (!(EOV & k->flags)) {
5215			if (NULL == k->text)	{
5216				td = emalloc(size);
5217				memcpy(td, data, size);
5218				k->text = td;
5219				k->flags = def;
5220				return;
5221			} else {
5222				s = data;
5223				t = k->text;
5224				while (*t != '=' && *s == *t) {
5225					s++;
5226					t++;
5227				}
5228				if (*s == *t && ((*t == '=') || !*t)) {
5229					td = erealloc((void *)(intptr_t)k->text, size);
5230					memcpy(td, data, size);
5231					k->text = td;
5232					k->flags = def;
5233					return;
5234				}
5235			}
5236			k++;
5237		}
5238	}
5239	td = add_var(kv, size, def);
5240	memcpy(td, data, size);
5241}
5242
5243
5244void
5245set_sys_var(
5246	const char *data,
5247	u_long size,
5248	u_short def
5249	)
5250{
5251	set_var(&ext_sys_var, data, size, def);
5252}
5253
5254
5255/*
5256 * get_ext_sys_var() retrieves the value of a user-defined variable or
5257 * NULL if the variable has not been setvar'd.
5258 */
5259const char *
5260get_ext_sys_var(const char *tag)
5261{
5262	struct ctl_var *	v;
5263	size_t			c;
5264	const char *		val;
5265
5266	val = NULL;
5267	c = strlen(tag);
5268	for (v = ext_sys_var; !(EOV & v->flags); v++) {
5269		if (NULL != v->text && !memcmp(tag, v->text, c)) {
5270			if ('=' == v->text[c]) {
5271				val = v->text + c + 1;
5272				break;
5273			} else if ('\0' == v->text[c]) {
5274				val = "";
5275				break;
5276			}
5277		}
5278	}
5279
5280	return val;
5281}
5282
5283
5284void
5285free_varlist(
5286	struct ctl_var *kv
5287	)
5288{
5289	struct ctl_var *k;
5290	if (kv) {
5291		for (k = kv; !(k->flags & EOV); k++)
5292			free((void *)(intptr_t)k->text);
5293		free((void *)kv);
5294	}
5295}
5296