ntp_control.c revision 338530
1/*
2 * ntp_control.c - respond to mode 6 control messages and send async
3 *		   traps.  Provides service to ntpq and others.
4 */
5
6#ifdef HAVE_CONFIG_H
7# include <config.h>
8#endif
9
10#include <stdio.h>
11#include <ctype.h>
12#include <signal.h>
13#include <sys/stat.h>
14#ifdef HAVE_NETINET_IN_H
15# include <netinet/in.h>
16#endif
17#include <arpa/inet.h>
18
19#include "ntpd.h"
20#include "ntp_io.h"
21#include "ntp_refclock.h"
22#include "ntp_control.h"
23#include "ntp_unixtime.h"
24#include "ntp_stdlib.h"
25#include "ntp_config.h"
26#include "ntp_crypto.h"
27#include "ntp_assert.h"
28#include "ntp_leapsec.h"
29#include "ntp_md5.h"	/* provides OpenSSL digest API */
30#include "lib_strbuf.h"
31#include <rc_cmdlength.h>
32#ifdef KERNEL_PLL
33# include "ntp_syscall.h"
34#endif
35
36/*
37 * Structure to hold request procedure information
38 */
39
40struct ctl_proc {
41	short control_code;		/* defined request code */
42#define NO_REQUEST	(-1)
43	u_short flags;			/* flags word */
44	/* Only one flag.  Authentication required or not. */
45#define NOAUTH	0
46#define AUTH	1
47	void (*handler) (struct recvbuf *, int); /* handle request */
48};
49
50
51/*
52 * Request processing routines
53 */
54static	void	ctl_error	(u_char);
55#ifdef REFCLOCK
56static	u_short ctlclkstatus	(struct refclockstat *);
57#endif
58static	void	ctl_flushpkt	(u_char);
59static	void	ctl_putdata	(const char *, unsigned int, int);
60static	void	ctl_putstr	(const char *, const char *, size_t);
61static	void	ctl_putdblf	(const char *, int, int, double);
62#define	ctl_putdbl(tag, d)	ctl_putdblf(tag, 1, 3, d)
63#define	ctl_putdbl6(tag, d)	ctl_putdblf(tag, 1, 6, d)
64#define	ctl_putsfp(tag, sfp)	ctl_putdblf(tag, 0, -1, \
65					    FPTOD(sfp))
66static	void	ctl_putuint	(const char *, u_long);
67static	void	ctl_puthex	(const char *, u_long);
68static	void	ctl_putint	(const char *, long);
69static	void	ctl_putts	(const char *, l_fp *);
70static	void	ctl_putadr	(const char *, u_int32,
71				 sockaddr_u *);
72static	void	ctl_putrefid	(const char *, u_int32);
73static	void	ctl_putarray	(const char *, double *, int);
74static	void	ctl_putsys	(int);
75static	void	ctl_putpeer	(int, struct peer *);
76static	void	ctl_putfs	(const char *, tstamp_t);
77static	void	ctl_printf	(const char *, ...) NTP_PRINTF(1, 2);
78#ifdef REFCLOCK
79static	void	ctl_putclock	(int, struct refclockstat *, int);
80#endif	/* REFCLOCK */
81static	const struct ctl_var *ctl_getitem(const struct ctl_var *,
82					  char **);
83static	u_short	count_var	(const struct ctl_var *);
84static	void	control_unspec	(struct recvbuf *, int);
85static	void	read_status	(struct recvbuf *, int);
86static	void	read_sysvars	(void);
87static	void	read_peervars	(void);
88static	void	read_variables	(struct recvbuf *, int);
89static	void	write_variables (struct recvbuf *, int);
90static	void	read_clockstatus(struct recvbuf *, int);
91static	void	write_clockstatus(struct recvbuf *, int);
92static	void	set_trap	(struct recvbuf *, int);
93static	void	save_config	(struct recvbuf *, int);
94static	void	configure	(struct recvbuf *, int);
95static	void	send_mru_entry	(mon_entry *, int);
96static	void	send_random_tag_value(int);
97static	void	read_mru_list	(struct recvbuf *, int);
98static	void	send_ifstats_entry(endpt *, u_int);
99static	void	read_ifstats	(struct recvbuf *);
100static	void	sockaddrs_from_restrict_u(sockaddr_u *,	sockaddr_u *,
101					  restrict_u *, int);
102static	void	send_restrict_entry(restrict_u *, int, u_int);
103static	void	send_restrict_list(restrict_u *, int, u_int *);
104static	void	read_addr_restrictions(struct recvbuf *);
105static	void	read_ordlist	(struct recvbuf *, int);
106static	u_int32	derive_nonce	(sockaddr_u *, u_int32, u_int32);
107static	void	generate_nonce	(struct recvbuf *, char *, size_t);
108static	int	validate_nonce	(const char *, struct recvbuf *);
109static	void	req_nonce	(struct recvbuf *, int);
110static	void	unset_trap	(struct recvbuf *, int);
111static	struct ctl_trap *ctlfindtrap(sockaddr_u *,
112				     struct interface *);
113
114int/*BOOL*/ is_safe_filename(const char * name);
115
116static const struct ctl_proc control_codes[] = {
117	{ CTL_OP_UNSPEC,		NOAUTH,	control_unspec },
118	{ CTL_OP_READSTAT,		NOAUTH,	read_status },
119	{ CTL_OP_READVAR,		NOAUTH,	read_variables },
120	{ CTL_OP_WRITEVAR,		AUTH,	write_variables },
121	{ CTL_OP_READCLOCK,		NOAUTH,	read_clockstatus },
122	{ CTL_OP_WRITECLOCK,		AUTH,	write_clockstatus },
123	{ CTL_OP_SETTRAP,		AUTH,	set_trap },
124	{ CTL_OP_CONFIGURE,		AUTH,	configure },
125	{ CTL_OP_SAVECONFIG,		AUTH,	save_config },
126	{ CTL_OP_READ_MRU,		NOAUTH,	read_mru_list },
127	{ CTL_OP_READ_ORDLIST_A,	AUTH,	read_ordlist },
128	{ CTL_OP_REQ_NONCE,		NOAUTH,	req_nonce },
129	{ CTL_OP_UNSETTRAP,		AUTH,	unset_trap },
130	{ NO_REQUEST,			0,	NULL }
131};
132
133/*
134 * System variables we understand
135 */
136#define	CS_LEAP			1
137#define	CS_STRATUM		2
138#define	CS_PRECISION		3
139#define	CS_ROOTDELAY		4
140#define	CS_ROOTDISPERSION	5
141#define	CS_REFID		6
142#define	CS_REFTIME		7
143#define	CS_POLL			8
144#define	CS_PEERID		9
145#define	CS_OFFSET		10
146#define	CS_DRIFT		11
147#define	CS_JITTER		12
148#define	CS_ERROR		13
149#define	CS_CLOCK		14
150#define	CS_PROCESSOR		15
151#define	CS_SYSTEM		16
152#define	CS_VERSION		17
153#define	CS_STABIL		18
154#define	CS_VARLIST		19
155#define	CS_TAI			20
156#define	CS_LEAPTAB		21
157#define	CS_LEAPEND		22
158#define	CS_RATE			23
159#define	CS_MRU_ENABLED		24
160#define	CS_MRU_DEPTH		25
161#define	CS_MRU_DEEPEST		26
162#define	CS_MRU_MINDEPTH		27
163#define	CS_MRU_MAXAGE		28
164#define	CS_MRU_MAXDEPTH		29
165#define	CS_MRU_MEM		30
166#define	CS_MRU_MAXMEM		31
167#define	CS_SS_UPTIME		32
168#define	CS_SS_RESET		33
169#define	CS_SS_RECEIVED		34
170#define	CS_SS_THISVER		35
171#define	CS_SS_OLDVER		36
172#define	CS_SS_BADFORMAT		37
173#define	CS_SS_BADAUTH		38
174#define	CS_SS_DECLINED		39
175#define	CS_SS_RESTRICTED	40
176#define	CS_SS_LIMITED		41
177#define	CS_SS_KODSENT		42
178#define	CS_SS_PROCESSED		43
179#define	CS_SS_LAMPORT		44
180#define	CS_SS_TSROUNDING	45
181#define	CS_PEERADR		46
182#define	CS_PEERMODE		47
183#define	CS_BCASTDELAY		48
184#define	CS_AUTHDELAY		49
185#define	CS_AUTHKEYS		50
186#define	CS_AUTHFREEK		51
187#define	CS_AUTHKLOOKUPS		52
188#define	CS_AUTHKNOTFOUND	53
189#define	CS_AUTHKUNCACHED	54
190#define	CS_AUTHKEXPIRED		55
191#define	CS_AUTHENCRYPTS		56
192#define	CS_AUTHDECRYPTS		57
193#define	CS_AUTHRESET		58
194#define	CS_K_OFFSET		59
195#define	CS_K_FREQ		60
196#define	CS_K_MAXERR		61
197#define	CS_K_ESTERR		62
198#define	CS_K_STFLAGS		63
199#define	CS_K_TIMECONST		64
200#define	CS_K_PRECISION		65
201#define	CS_K_FREQTOL		66
202#define	CS_K_PPS_FREQ		67
203#define	CS_K_PPS_STABIL		68
204#define	CS_K_PPS_JITTER		69
205#define	CS_K_PPS_CALIBDUR	70
206#define	CS_K_PPS_CALIBS		71
207#define	CS_K_PPS_CALIBERRS	72
208#define	CS_K_PPS_JITEXC		73
209#define	CS_K_PPS_STBEXC		74
210#define	CS_KERN_FIRST		CS_K_OFFSET
211#define	CS_KERN_LAST		CS_K_PPS_STBEXC
212#define	CS_IOSTATS_RESET	75
213#define	CS_TOTAL_RBUF		76
214#define	CS_FREE_RBUF		77
215#define	CS_USED_RBUF		78
216#define	CS_RBUF_LOWATER		79
217#define	CS_IO_DROPPED		80
218#define	CS_IO_IGNORED		81
219#define	CS_IO_RECEIVED		82
220#define	CS_IO_SENT		83
221#define	CS_IO_SENDFAILED	84
222#define	CS_IO_WAKEUPS		85
223#define	CS_IO_GOODWAKEUPS	86
224#define	CS_TIMERSTATS_RESET	87
225#define	CS_TIMER_OVERRUNS	88
226#define	CS_TIMER_XMTS		89
227#define	CS_FUZZ			90
228#define	CS_WANDER_THRESH	91
229#define	CS_LEAPSMEARINTV	92
230#define	CS_LEAPSMEAROFFS	93
231#define	CS_MAX_NOAUTOKEY	CS_LEAPSMEAROFFS
232#ifdef AUTOKEY
233#define	CS_FLAGS		(1 + CS_MAX_NOAUTOKEY)
234#define	CS_HOST			(2 + CS_MAX_NOAUTOKEY)
235#define	CS_PUBLIC		(3 + CS_MAX_NOAUTOKEY)
236#define	CS_CERTIF		(4 + CS_MAX_NOAUTOKEY)
237#define	CS_SIGNATURE		(5 + CS_MAX_NOAUTOKEY)
238#define	CS_REVTIME		(6 + CS_MAX_NOAUTOKEY)
239#define	CS_IDENT		(7 + CS_MAX_NOAUTOKEY)
240#define	CS_DIGEST		(8 + CS_MAX_NOAUTOKEY)
241#define	CS_MAXCODE		CS_DIGEST
242#else	/* !AUTOKEY follows */
243#define	CS_MAXCODE		CS_MAX_NOAUTOKEY
244#endif	/* !AUTOKEY */
245
246/*
247 * Peer variables we understand
248 */
249#define	CP_CONFIG		1
250#define	CP_AUTHENABLE		2
251#define	CP_AUTHENTIC		3
252#define	CP_SRCADR		4
253#define	CP_SRCPORT		5
254#define	CP_DSTADR		6
255#define	CP_DSTPORT		7
256#define	CP_LEAP			8
257#define	CP_HMODE		9
258#define	CP_STRATUM		10
259#define	CP_PPOLL		11
260#define	CP_HPOLL		12
261#define	CP_PRECISION		13
262#define	CP_ROOTDELAY		14
263#define	CP_ROOTDISPERSION	15
264#define	CP_REFID		16
265#define	CP_REFTIME		17
266#define	CP_ORG			18
267#define	CP_REC			19
268#define	CP_XMT			20
269#define	CP_REACH		21
270#define	CP_UNREACH		22
271#define	CP_TIMER		23
272#define	CP_DELAY		24
273#define	CP_OFFSET		25
274#define	CP_JITTER		26
275#define	CP_DISPERSION		27
276#define	CP_KEYID		28
277#define	CP_FILTDELAY		29
278#define	CP_FILTOFFSET		30
279#define	CP_PMODE		31
280#define	CP_RECEIVED		32
281#define	CP_SENT			33
282#define	CP_FILTERROR		34
283#define	CP_FLASH		35
284#define	CP_TTL			36
285#define	CP_VARLIST		37
286#define	CP_IN			38
287#define	CP_OUT			39
288#define	CP_RATE			40
289#define	CP_BIAS			41
290#define	CP_SRCHOST		42
291#define	CP_TIMEREC		43
292#define	CP_TIMEREACH		44
293#define	CP_BADAUTH		45
294#define	CP_BOGUSORG		46
295#define	CP_OLDPKT		47
296#define	CP_SELDISP		48
297#define	CP_SELBROKEN		49
298#define	CP_CANDIDATE		50
299#define	CP_MAX_NOAUTOKEY	CP_CANDIDATE
300#ifdef AUTOKEY
301#define	CP_FLAGS		(1 + CP_MAX_NOAUTOKEY)
302#define	CP_HOST			(2 + CP_MAX_NOAUTOKEY)
303#define	CP_VALID		(3 + CP_MAX_NOAUTOKEY)
304#define	CP_INITSEQ		(4 + CP_MAX_NOAUTOKEY)
305#define	CP_INITKEY		(5 + CP_MAX_NOAUTOKEY)
306#define	CP_INITTSP		(6 + CP_MAX_NOAUTOKEY)
307#define	CP_SIGNATURE		(7 + CP_MAX_NOAUTOKEY)
308#define	CP_IDENT		(8 + CP_MAX_NOAUTOKEY)
309#define	CP_MAXCODE		CP_IDENT
310#else	/* !AUTOKEY follows */
311#define	CP_MAXCODE		CP_MAX_NOAUTOKEY
312#endif	/* !AUTOKEY */
313
314/*
315 * Clock variables we understand
316 */
317#define	CC_TYPE		1
318#define	CC_TIMECODE	2
319#define	CC_POLL		3
320#define	CC_NOREPLY	4
321#define	CC_BADFORMAT	5
322#define	CC_BADDATA	6
323#define	CC_FUDGETIME1	7
324#define	CC_FUDGETIME2	8
325#define	CC_FUDGEVAL1	9
326#define	CC_FUDGEVAL2	10
327#define	CC_FLAGS	11
328#define	CC_DEVICE	12
329#define	CC_VARLIST	13
330#define	CC_MAXCODE	CC_VARLIST
331
332/*
333 * System variable values. The array can be indexed by the variable
334 * index to find the textual name.
335 */
336static const struct ctl_var sys_var[] = {
337	{ 0,		PADDING, "" },		/* 0 */
338	{ CS_LEAP,	RW, "leap" },		/* 1 */
339	{ CS_STRATUM,	RO, "stratum" },	/* 2 */
340	{ CS_PRECISION, RO, "precision" },	/* 3 */
341	{ CS_ROOTDELAY, RO, "rootdelay" },	/* 4 */
342	{ CS_ROOTDISPERSION, RO, "rootdisp" },	/* 5 */
343	{ CS_REFID,	RO, "refid" },		/* 6 */
344	{ CS_REFTIME,	RO, "reftime" },	/* 7 */
345	{ CS_POLL,	RO, "tc" },		/* 8 */
346	{ CS_PEERID,	RO, "peer" },		/* 9 */
347	{ CS_OFFSET,	RO, "offset" },		/* 10 */
348	{ CS_DRIFT,	RO, "frequency" },	/* 11 */
349	{ CS_JITTER,	RO, "sys_jitter" },	/* 12 */
350	{ CS_ERROR,	RO, "clk_jitter" },	/* 13 */
351	{ CS_CLOCK,	RO, "clock" },		/* 14 */
352	{ CS_PROCESSOR, RO, "processor" },	/* 15 */
353	{ CS_SYSTEM,	RO, "system" },		/* 16 */
354	{ CS_VERSION,	RO, "version" },	/* 17 */
355	{ CS_STABIL,	RO, "clk_wander" },	/* 18 */
356	{ CS_VARLIST,	RO, "sys_var_list" },	/* 19 */
357	{ CS_TAI,	RO, "tai" },		/* 20 */
358	{ CS_LEAPTAB,	RO, "leapsec" },	/* 21 */
359	{ CS_LEAPEND,	RO, "expire" },		/* 22 */
360	{ CS_RATE,	RO, "mintc" },		/* 23 */
361	{ CS_MRU_ENABLED,	RO, "mru_enabled" },	/* 24 */
362	{ CS_MRU_DEPTH,		RO, "mru_depth" },	/* 25 */
363	{ CS_MRU_DEEPEST,	RO, "mru_deepest" },	/* 26 */
364	{ CS_MRU_MINDEPTH,	RO, "mru_mindepth" },	/* 27 */
365	{ CS_MRU_MAXAGE,	RO, "mru_maxage" },	/* 28 */
366	{ CS_MRU_MAXDEPTH,	RO, "mru_maxdepth" },	/* 29 */
367	{ CS_MRU_MEM,		RO, "mru_mem" },	/* 30 */
368	{ CS_MRU_MAXMEM,	RO, "mru_maxmem" },	/* 31 */
369	{ CS_SS_UPTIME,		RO, "ss_uptime" },	/* 32 */
370	{ CS_SS_RESET,		RO, "ss_reset" },	/* 33 */
371	{ CS_SS_RECEIVED,	RO, "ss_received" },	/* 34 */
372	{ CS_SS_THISVER,	RO, "ss_thisver" },	/* 35 */
373	{ CS_SS_OLDVER,		RO, "ss_oldver" },	/* 36 */
374	{ CS_SS_BADFORMAT,	RO, "ss_badformat" },	/* 37 */
375	{ CS_SS_BADAUTH,	RO, "ss_badauth" },	/* 38 */
376	{ CS_SS_DECLINED,	RO, "ss_declined" },	/* 39 */
377	{ CS_SS_RESTRICTED,	RO, "ss_restricted" },	/* 40 */
378	{ CS_SS_LIMITED,	RO, "ss_limited" },	/* 41 */
379	{ CS_SS_KODSENT,	RO, "ss_kodsent" },	/* 42 */
380	{ CS_SS_PROCESSED,	RO, "ss_processed" },	/* 43 */
381	{ CS_SS_LAMPORT,	RO, "ss_lamport" },	/* 44 */
382	{ CS_SS_TSROUNDING,	RO, "ss_tsrounding" },	/* 45 */
383	{ CS_PEERADR,		RO, "peeradr" },	/* 46 */
384	{ CS_PEERMODE,		RO, "peermode" },	/* 47 */
385	{ CS_BCASTDELAY,	RO, "bcastdelay" },	/* 48 */
386	{ CS_AUTHDELAY,		RO, "authdelay" },	/* 49 */
387	{ CS_AUTHKEYS,		RO, "authkeys" },	/* 50 */
388	{ CS_AUTHFREEK,		RO, "authfreek" },	/* 51 */
389	{ CS_AUTHKLOOKUPS,	RO, "authklookups" },	/* 52 */
390	{ CS_AUTHKNOTFOUND,	RO, "authknotfound" },	/* 53 */
391	{ CS_AUTHKUNCACHED,	RO, "authkuncached" },	/* 54 */
392	{ CS_AUTHKEXPIRED,	RO, "authkexpired" },	/* 55 */
393	{ CS_AUTHENCRYPTS,	RO, "authencrypts" },	/* 56 */
394	{ CS_AUTHDECRYPTS,	RO, "authdecrypts" },	/* 57 */
395	{ CS_AUTHRESET,		RO, "authreset" },	/* 58 */
396	{ CS_K_OFFSET,		RO, "koffset" },	/* 59 */
397	{ CS_K_FREQ,		RO, "kfreq" },		/* 60 */
398	{ CS_K_MAXERR,		RO, "kmaxerr" },	/* 61 */
399	{ CS_K_ESTERR,		RO, "kesterr" },	/* 62 */
400	{ CS_K_STFLAGS,		RO, "kstflags" },	/* 63 */
401	{ CS_K_TIMECONST,	RO, "ktimeconst" },	/* 64 */
402	{ CS_K_PRECISION,	RO, "kprecis" },	/* 65 */
403	{ CS_K_FREQTOL,		RO, "kfreqtol" },	/* 66 */
404	{ CS_K_PPS_FREQ,	RO, "kppsfreq" },	/* 67 */
405	{ CS_K_PPS_STABIL,	RO, "kppsstab" },	/* 68 */
406	{ CS_K_PPS_JITTER,	RO, "kppsjitter" },	/* 69 */
407	{ CS_K_PPS_CALIBDUR,	RO, "kppscalibdur" },	/* 70 */
408	{ CS_K_PPS_CALIBS,	RO, "kppscalibs" },	/* 71 */
409	{ CS_K_PPS_CALIBERRS,	RO, "kppscaliberrs" },	/* 72 */
410	{ CS_K_PPS_JITEXC,	RO, "kppsjitexc" },	/* 73 */
411	{ CS_K_PPS_STBEXC,	RO, "kppsstbexc" },	/* 74 */
412	{ CS_IOSTATS_RESET,	RO, "iostats_reset" },	/* 75 */
413	{ CS_TOTAL_RBUF,	RO, "total_rbuf" },	/* 76 */
414	{ CS_FREE_RBUF,		RO, "free_rbuf" },	/* 77 */
415	{ CS_USED_RBUF,		RO, "used_rbuf" },	/* 78 */
416	{ CS_RBUF_LOWATER,	RO, "rbuf_lowater" },	/* 79 */
417	{ CS_IO_DROPPED,	RO, "io_dropped" },	/* 80 */
418	{ CS_IO_IGNORED,	RO, "io_ignored" },	/* 81 */
419	{ CS_IO_RECEIVED,	RO, "io_received" },	/* 82 */
420	{ CS_IO_SENT,		RO, "io_sent" },	/* 83 */
421	{ CS_IO_SENDFAILED,	RO, "io_sendfailed" },	/* 84 */
422	{ CS_IO_WAKEUPS,	RO, "io_wakeups" },	/* 85 */
423	{ CS_IO_GOODWAKEUPS,	RO, "io_goodwakeups" },	/* 86 */
424	{ CS_TIMERSTATS_RESET,	RO, "timerstats_reset" },/* 87 */
425	{ CS_TIMER_OVERRUNS,	RO, "timer_overruns" },	/* 88 */
426	{ CS_TIMER_XMTS,	RO, "timer_xmts" },	/* 89 */
427	{ CS_FUZZ,		RO, "fuzz" },		/* 90 */
428	{ CS_WANDER_THRESH,	RO, "clk_wander_threshold" }, /* 91 */
429
430	{ CS_LEAPSMEARINTV,	RO, "leapsmearinterval" },    /* 92 */
431	{ CS_LEAPSMEAROFFS,	RO, "leapsmearoffset" },      /* 93 */
432
433#ifdef AUTOKEY
434	{ CS_FLAGS,	RO, "flags" },		/* 1 + CS_MAX_NOAUTOKEY */
435	{ CS_HOST,	RO, "host" },		/* 2 + CS_MAX_NOAUTOKEY */
436	{ CS_PUBLIC,	RO, "update" },		/* 3 + CS_MAX_NOAUTOKEY */
437	{ CS_CERTIF,	RO, "cert" },		/* 4 + CS_MAX_NOAUTOKEY */
438	{ CS_SIGNATURE,	RO, "signature" },	/* 5 + CS_MAX_NOAUTOKEY */
439	{ CS_REVTIME,	RO, "until" },		/* 6 + CS_MAX_NOAUTOKEY */
440	{ CS_IDENT,	RO, "ident" },		/* 7 + CS_MAX_NOAUTOKEY */
441	{ CS_DIGEST,	RO, "digest" },		/* 8 + CS_MAX_NOAUTOKEY */
442#endif	/* AUTOKEY */
443	{ 0,		EOV, "" }		/* 94/102 */
444};
445
446static struct ctl_var *ext_sys_var = NULL;
447
448/*
449 * System variables we print by default (in fuzzball order,
450 * more-or-less)
451 */
452static const u_char def_sys_var[] = {
453	CS_VERSION,
454	CS_PROCESSOR,
455	CS_SYSTEM,
456	CS_LEAP,
457	CS_STRATUM,
458	CS_PRECISION,
459	CS_ROOTDELAY,
460	CS_ROOTDISPERSION,
461	CS_REFID,
462	CS_REFTIME,
463	CS_CLOCK,
464	CS_PEERID,
465	CS_POLL,
466	CS_RATE,
467	CS_OFFSET,
468	CS_DRIFT,
469	CS_JITTER,
470	CS_ERROR,
471	CS_STABIL,
472	CS_TAI,
473	CS_LEAPTAB,
474	CS_LEAPEND,
475	CS_LEAPSMEARINTV,
476	CS_LEAPSMEAROFFS,
477#ifdef AUTOKEY
478	CS_HOST,
479	CS_IDENT,
480	CS_FLAGS,
481	CS_DIGEST,
482	CS_SIGNATURE,
483	CS_PUBLIC,
484	CS_CERTIF,
485#endif	/* AUTOKEY */
486	0
487};
488
489
490/*
491 * Peer variable list
492 */
493static const struct ctl_var peer_var[] = {
494	{ 0,		PADDING, "" },		/* 0 */
495	{ CP_CONFIG,	RO, "config" },		/* 1 */
496	{ CP_AUTHENABLE, RO,	"authenable" },	/* 2 */
497	{ CP_AUTHENTIC, RO, "authentic" },	/* 3 */
498	{ CP_SRCADR,	RO, "srcadr" },		/* 4 */
499	{ CP_SRCPORT,	RO, "srcport" },	/* 5 */
500	{ CP_DSTADR,	RO, "dstadr" },		/* 6 */
501	{ CP_DSTPORT,	RO, "dstport" },	/* 7 */
502	{ CP_LEAP,	RO, "leap" },		/* 8 */
503	{ CP_HMODE,	RO, "hmode" },		/* 9 */
504	{ CP_STRATUM,	RO, "stratum" },	/* 10 */
505	{ CP_PPOLL,	RO, "ppoll" },		/* 11 */
506	{ CP_HPOLL,	RO, "hpoll" },		/* 12 */
507	{ CP_PRECISION,	RO, "precision" },	/* 13 */
508	{ CP_ROOTDELAY,	RO, "rootdelay" },	/* 14 */
509	{ CP_ROOTDISPERSION, RO, "rootdisp" },	/* 15 */
510	{ CP_REFID,	RO, "refid" },		/* 16 */
511	{ CP_REFTIME,	RO, "reftime" },	/* 17 */
512	{ CP_ORG,	RO, "org" },		/* 18 */
513	{ CP_REC,	RO, "rec" },		/* 19 */
514	{ CP_XMT,	RO, "xleave" },		/* 20 */
515	{ CP_REACH,	RO, "reach" },		/* 21 */
516	{ CP_UNREACH,	RO, "unreach" },	/* 22 */
517	{ CP_TIMER,	RO, "timer" },		/* 23 */
518	{ CP_DELAY,	RO, "delay" },		/* 24 */
519	{ CP_OFFSET,	RO, "offset" },		/* 25 */
520	{ CP_JITTER,	RO, "jitter" },		/* 26 */
521	{ CP_DISPERSION, RO, "dispersion" },	/* 27 */
522	{ CP_KEYID,	RO, "keyid" },		/* 28 */
523	{ CP_FILTDELAY,	RO, "filtdelay" },	/* 29 */
524	{ CP_FILTOFFSET, RO, "filtoffset" },	/* 30 */
525	{ CP_PMODE,	RO, "pmode" },		/* 31 */
526	{ CP_RECEIVED,	RO, "received"},	/* 32 */
527	{ CP_SENT,	RO, "sent" },		/* 33 */
528	{ CP_FILTERROR,	RO, "filtdisp" },	/* 34 */
529	{ CP_FLASH,	RO, "flash" },		/* 35 */
530	{ CP_TTL,	RO, "ttl" },		/* 36 */
531	{ CP_VARLIST,	RO, "peer_var_list" },	/* 37 */
532	{ CP_IN,	RO, "in" },		/* 38 */
533	{ CP_OUT,	RO, "out" },		/* 39 */
534	{ CP_RATE,	RO, "headway" },	/* 40 */
535	{ CP_BIAS,	RO, "bias" },		/* 41 */
536	{ CP_SRCHOST,	RO, "srchost" },	/* 42 */
537	{ CP_TIMEREC,	RO, "timerec" },	/* 43 */
538	{ CP_TIMEREACH,	RO, "timereach" },	/* 44 */
539	{ CP_BADAUTH,	RO, "badauth" },	/* 45 */
540	{ CP_BOGUSORG,	RO, "bogusorg" },	/* 46 */
541	{ CP_OLDPKT,	RO, "oldpkt" },		/* 47 */
542	{ CP_SELDISP,	RO, "seldisp" },	/* 48 */
543	{ CP_SELBROKEN,	RO, "selbroken" },	/* 49 */
544	{ CP_CANDIDATE, RO, "candidate" },	/* 50 */
545#ifdef AUTOKEY
546	{ CP_FLAGS,	RO, "flags" },		/* 1 + CP_MAX_NOAUTOKEY */
547	{ CP_HOST,	RO, "host" },		/* 2 + CP_MAX_NOAUTOKEY */
548	{ CP_VALID,	RO, "valid" },		/* 3 + CP_MAX_NOAUTOKEY */
549	{ CP_INITSEQ,	RO, "initsequence" },	/* 4 + CP_MAX_NOAUTOKEY */
550	{ CP_INITKEY,	RO, "initkey" },	/* 5 + CP_MAX_NOAUTOKEY */
551	{ CP_INITTSP,	RO, "timestamp" },	/* 6 + CP_MAX_NOAUTOKEY */
552	{ CP_SIGNATURE,	RO, "signature" },	/* 7 + CP_MAX_NOAUTOKEY */
553	{ CP_IDENT,	RO, "ident" },		/* 8 + CP_MAX_NOAUTOKEY */
554#endif	/* AUTOKEY */
555	{ 0,		EOV, "" }		/* 50/58 */
556};
557
558
559/*
560 * Peer variables we print by default
561 */
562static const u_char def_peer_var[] = {
563	CP_SRCADR,
564	CP_SRCPORT,
565	CP_SRCHOST,
566	CP_DSTADR,
567	CP_DSTPORT,
568	CP_OUT,
569	CP_IN,
570	CP_LEAP,
571	CP_STRATUM,
572	CP_PRECISION,
573	CP_ROOTDELAY,
574	CP_ROOTDISPERSION,
575	CP_REFID,
576	CP_REFTIME,
577	CP_REC,
578	CP_REACH,
579	CP_UNREACH,
580	CP_HMODE,
581	CP_PMODE,
582	CP_HPOLL,
583	CP_PPOLL,
584	CP_RATE,
585	CP_FLASH,
586	CP_KEYID,
587	CP_TTL,
588	CP_OFFSET,
589	CP_DELAY,
590	CP_DISPERSION,
591	CP_JITTER,
592	CP_XMT,
593	CP_BIAS,
594	CP_FILTDELAY,
595	CP_FILTOFFSET,
596	CP_FILTERROR,
597#ifdef AUTOKEY
598	CP_HOST,
599	CP_FLAGS,
600	CP_SIGNATURE,
601	CP_VALID,
602	CP_INITSEQ,
603	CP_IDENT,
604#endif	/* AUTOKEY */
605	0
606};
607
608
609#ifdef REFCLOCK
610/*
611 * Clock variable list
612 */
613static const struct ctl_var clock_var[] = {
614	{ 0,		PADDING, "" },		/* 0 */
615	{ CC_TYPE,	RO, "type" },		/* 1 */
616	{ CC_TIMECODE,	RO, "timecode" },	/* 2 */
617	{ CC_POLL,	RO, "poll" },		/* 3 */
618	{ CC_NOREPLY,	RO, "noreply" },	/* 4 */
619	{ CC_BADFORMAT, RO, "badformat" },	/* 5 */
620	{ CC_BADDATA,	RO, "baddata" },	/* 6 */
621	{ CC_FUDGETIME1, RO, "fudgetime1" },	/* 7 */
622	{ CC_FUDGETIME2, RO, "fudgetime2" },	/* 8 */
623	{ CC_FUDGEVAL1, RO, "stratum" },	/* 9 */
624	{ CC_FUDGEVAL2, RO, "refid" },		/* 10 */
625	{ CC_FLAGS,	RO, "flags" },		/* 11 */
626	{ CC_DEVICE,	RO, "device" },		/* 12 */
627	{ CC_VARLIST,	RO, "clock_var_list" },	/* 13 */
628	{ 0,		EOV, ""  }		/* 14 */
629};
630
631
632/*
633 * Clock variables printed by default
634 */
635static const u_char def_clock_var[] = {
636	CC_DEVICE,
637	CC_TYPE,	/* won't be output if device = known */
638	CC_TIMECODE,
639	CC_POLL,
640	CC_NOREPLY,
641	CC_BADFORMAT,
642	CC_BADDATA,
643	CC_FUDGETIME1,
644	CC_FUDGETIME2,
645	CC_FUDGEVAL1,
646	CC_FUDGEVAL2,
647	CC_FLAGS,
648	0
649};
650#endif
651
652/*
653 * MRU string constants shared by send_mru_entry() and read_mru_list().
654 */
655static const char addr_fmt[] =		"addr.%d";
656static const char last_fmt[] =		"last.%d";
657
658/*
659 * System and processor definitions.
660 */
661#ifndef HAVE_UNAME
662# ifndef STR_SYSTEM
663#  define		STR_SYSTEM	"UNIX"
664# endif
665# ifndef STR_PROCESSOR
666#  define		STR_PROCESSOR	"unknown"
667# endif
668
669static const char str_system[] = STR_SYSTEM;
670static const char str_processor[] = STR_PROCESSOR;
671#else
672# include <sys/utsname.h>
673static struct utsname utsnamebuf;
674#endif /* HAVE_UNAME */
675
676/*
677 * Trap structures. We only allow a few of these, and send a copy of
678 * each async message to each live one. Traps time out after an hour, it
679 * is up to the trap receipient to keep resetting it to avoid being
680 * timed out.
681 */
682/* ntp_request.c */
683struct ctl_trap ctl_traps[CTL_MAXTRAPS];
684int num_ctl_traps;
685
686/*
687 * Type bits, for ctlsettrap() call.
688 */
689#define TRAP_TYPE_CONFIG	0	/* used by configuration code */
690#define TRAP_TYPE_PRIO		1	/* priority trap */
691#define TRAP_TYPE_NONPRIO	2	/* nonpriority trap */
692
693
694/*
695 * List relating reference clock types to control message time sources.
696 * Index by the reference clock type. This list will only be used iff
697 * the reference clock driver doesn't set peer->sstclktype to something
698 * different than CTL_SST_TS_UNSPEC.
699 */
700#ifdef REFCLOCK
701static const u_char clocktypes[] = {
702	CTL_SST_TS_NTP,		/* REFCLK_NONE (0) */
703	CTL_SST_TS_LOCAL,	/* REFCLK_LOCALCLOCK (1) */
704	CTL_SST_TS_UHF,		/* deprecated REFCLK_GPS_TRAK (2) */
705	CTL_SST_TS_HF,		/* REFCLK_WWV_PST (3) */
706	CTL_SST_TS_LF,		/* REFCLK_WWVB_SPECTRACOM (4) */
707	CTL_SST_TS_UHF,		/* REFCLK_TRUETIME (5) */
708	CTL_SST_TS_UHF,		/* REFCLK_IRIG_AUDIO (6) */
709	CTL_SST_TS_HF,		/* REFCLK_CHU (7) */
710	CTL_SST_TS_LF,		/* REFCLOCK_PARSE (default) (8) */
711	CTL_SST_TS_LF,		/* REFCLK_GPS_MX4200 (9) */
712	CTL_SST_TS_UHF,		/* REFCLK_GPS_AS2201 (10) */
713	CTL_SST_TS_UHF,		/* REFCLK_GPS_ARBITER (11) */
714	CTL_SST_TS_UHF,		/* REFCLK_IRIG_TPRO (12) */
715	CTL_SST_TS_ATOM,	/* REFCLK_ATOM_LEITCH (13) */
716	CTL_SST_TS_LF,		/* deprecated REFCLK_MSF_EES (14) */
717	CTL_SST_TS_NTP,		/* not used (15) */
718	CTL_SST_TS_UHF,		/* REFCLK_IRIG_BANCOMM (16) */
719	CTL_SST_TS_UHF,		/* REFCLK_GPS_DATU (17) */
720	CTL_SST_TS_TELEPHONE,	/* REFCLK_NIST_ACTS (18) */
721	CTL_SST_TS_HF,		/* REFCLK_WWV_HEATH (19) */
722	CTL_SST_TS_UHF,		/* REFCLK_GPS_NMEA (20) */
723	CTL_SST_TS_UHF,		/* REFCLK_GPS_VME (21) */
724	CTL_SST_TS_ATOM,	/* REFCLK_ATOM_PPS (22) */
725	CTL_SST_TS_NTP,		/* not used (23) */
726	CTL_SST_TS_NTP,		/* not used (24) */
727	CTL_SST_TS_NTP,		/* not used (25) */
728	CTL_SST_TS_UHF,		/* REFCLK_GPS_HP (26) */
729	CTL_SST_TS_LF,		/* REFCLK_ARCRON_MSF (27) */
730	CTL_SST_TS_UHF,		/* REFCLK_SHM (28) */
731	CTL_SST_TS_UHF,		/* REFCLK_PALISADE (29) */
732	CTL_SST_TS_UHF,		/* REFCLK_ONCORE (30) */
733	CTL_SST_TS_UHF,		/* REFCLK_JUPITER (31) */
734	CTL_SST_TS_LF,		/* REFCLK_CHRONOLOG (32) */
735	CTL_SST_TS_LF,		/* REFCLK_DUMBCLOCK (33) */
736	CTL_SST_TS_LF,		/* REFCLK_ULINK (34) */
737	CTL_SST_TS_LF,		/* REFCLK_PCF (35) */
738	CTL_SST_TS_HF,		/* REFCLK_WWV (36) */
739	CTL_SST_TS_LF,		/* REFCLK_FG (37) */
740	CTL_SST_TS_UHF,		/* REFCLK_HOPF_SERIAL (38) */
741	CTL_SST_TS_UHF,		/* REFCLK_HOPF_PCI (39) */
742	CTL_SST_TS_LF,		/* REFCLK_JJY (40) */
743	CTL_SST_TS_UHF,		/* REFCLK_TT560 (41) */
744	CTL_SST_TS_UHF,		/* REFCLK_ZYFER (42) */
745	CTL_SST_TS_UHF,		/* REFCLK_RIPENCC (43) */
746	CTL_SST_TS_UHF,		/* REFCLK_NEOCLOCK4X (44) */
747	CTL_SST_TS_UHF,		/* REFCLK_TSYNCPCI (45) */
748	CTL_SST_TS_UHF		/* REFCLK_GPSDJSON (46) */
749};
750#endif  /* REFCLOCK */
751
752
753/*
754 * Keyid used for authenticating write requests.
755 */
756keyid_t ctl_auth_keyid;
757
758/*
759 * We keep track of the last error reported by the system internally
760 */
761static	u_char ctl_sys_last_event;
762static	u_char ctl_sys_num_events;
763
764
765/*
766 * Statistic counters to keep track of requests and responses.
767 */
768u_long ctltimereset;		/* time stats reset */
769u_long numctlreq;		/* number of requests we've received */
770u_long numctlbadpkts;		/* number of bad control packets */
771u_long numctlresponses;		/* number of resp packets sent with data */
772u_long numctlfrags;		/* number of fragments sent */
773u_long numctlerrors;		/* number of error responses sent */
774u_long numctltooshort;		/* number of too short input packets */
775u_long numctlinputresp;		/* number of responses on input */
776u_long numctlinputfrag;		/* number of fragments on input */
777u_long numctlinputerr;		/* number of input pkts with err bit set */
778u_long numctlbadoffset;		/* number of input pkts with nonzero offset */
779u_long numctlbadversion;	/* number of input pkts with unknown version */
780u_long numctldatatooshort;	/* data too short for count */
781u_long numctlbadop;		/* bad op code found in packet */
782u_long numasyncmsgs;		/* number of async messages we've sent */
783
784/*
785 * Response packet used by these routines. Also some state information
786 * so that we can handle packet formatting within a common set of
787 * subroutines.  Note we try to enter data in place whenever possible,
788 * but the need to set the more bit correctly means we occasionally
789 * use the extra buffer and copy.
790 */
791static struct ntp_control rpkt;
792static u_char	res_version;
793static u_char	res_opcode;
794static associd_t res_associd;
795static u_short	res_frags;	/* datagrams in this response */
796static int	res_offset;	/* offset of payload in response */
797static u_char * datapt;
798static u_char * dataend;
799static int	datalinelen;
800static int	datasent;	/* flag to avoid initial ", " */
801static int	datanotbinflag;
802static sockaddr_u *rmt_addr;
803static struct interface *lcl_inter;
804
805static u_char	res_authenticate;
806static u_char	res_authokay;
807static keyid_t	res_keyid;
808
809#define MAXDATALINELEN	(72)
810
811static u_char	res_async;	/* sending async trap response? */
812
813/*
814 * Pointers for saving state when decoding request packets
815 */
816static	char *reqpt;
817static	char *reqend;
818
819#ifndef MIN
820#define MIN(a, b) (((a) <= (b)) ? (a) : (b))
821#endif
822
823/*
824 * init_control - initialize request data
825 */
826void
827init_control(void)
828{
829	size_t i;
830
831#ifdef HAVE_UNAME
832	uname(&utsnamebuf);
833#endif /* HAVE_UNAME */
834
835	ctl_clr_stats();
836
837	ctl_auth_keyid = 0;
838	ctl_sys_last_event = EVNT_UNSPEC;
839	ctl_sys_num_events = 0;
840
841	num_ctl_traps = 0;
842	for (i = 0; i < COUNTOF(ctl_traps); i++)
843		ctl_traps[i].tr_flags = 0;
844}
845
846
847/*
848 * ctl_error - send an error response for the current request
849 */
850static void
851ctl_error(
852	u_char errcode
853	)
854{
855	size_t		maclen;
856
857	numctlerrors++;
858	DPRINTF(3, ("sending control error %u\n", errcode));
859
860	/*
861	 * Fill in the fields. We assume rpkt.sequence and rpkt.associd
862	 * have already been filled in.
863	 */
864	rpkt.r_m_e_op = (u_char)CTL_RESPONSE | CTL_ERROR |
865			(res_opcode & CTL_OP_MASK);
866	rpkt.status = htons((u_short)(errcode << 8) & 0xff00);
867	rpkt.count = 0;
868
869	/*
870	 * send packet and bump counters
871	 */
872	if (res_authenticate && sys_authenticate) {
873		maclen = authencrypt(res_keyid, (u_int32 *)&rpkt,
874				     CTL_HEADER_LEN);
875		sendpkt(rmt_addr, lcl_inter, -2, (void *)&rpkt,
876			CTL_HEADER_LEN + maclen);
877	} else
878		sendpkt(rmt_addr, lcl_inter, -3, (void *)&rpkt,
879			CTL_HEADER_LEN);
880}
881
882int/*BOOL*/
883is_safe_filename(const char * name)
884{
885	/* We need a strict validation of filenames we should write: The
886	 * daemon might run with special permissions and is remote
887	 * controllable, so we better take care what we allow as file
888	 * name!
889	 *
890	 * The first character must be digit or a letter from the ASCII
891	 * base plane or a '_' ([_A-Za-z0-9]), the following characters
892	 * must be from [-._+A-Za-z0-9].
893	 *
894	 * We do not trust the character classification much here: Since
895	 * the NTP protocol makes no provisions for UTF-8 or local code
896	 * pages, we strictly require the 7bit ASCII code page.
897	 *
898	 * The following table is a packed bit field of 128 two-bit
899	 * groups. The LSB in each group tells us if a character is
900	 * acceptable at the first position, the MSB if the character is
901	 * accepted at any other position.
902	 *
903	 * This does not ensure that the file name is syntactically
904	 * correct (multiple dots will not work with VMS...) but it will
905	 * exclude potential globbing bombs and directory traversal. It
906	 * also rules out drive selection. (For systems that have this
907	 * notion, like Windows or VMS.)
908	 */
909	static const uint32_t chclass[8] = {
910		0x00000000, 0x00000000,
911		0x28800000, 0x000FFFFF,
912		0xFFFFFFFC, 0xC03FFFFF,
913		0xFFFFFFFC, 0x003FFFFF
914	};
915
916	u_int widx, bidx, mask;
917	if ( ! (name && *name))
918		return FALSE;
919
920	mask = 1u;
921	while (0 != (widx = (u_char)*name++)) {
922		bidx = (widx & 15) << 1;
923		widx = widx >> 4;
924		if (widx >= sizeof(chclass)/sizeof(chclass[0]))
925			return FALSE;
926		if (0 == ((chclass[widx] >> bidx) & mask))
927			return FALSE;
928		mask = 2u;
929	}
930	return TRUE;
931}
932
933
934/*
935 * save_config - Implements ntpq -c "saveconfig <filename>"
936 *		 Writes current configuration including any runtime
937 *		 changes by ntpq's :config or config-from-file
938 *
939 * Note: There should be no buffer overflow or truncation in the
940 * processing of file names -- both cause security problems. This is bit
941 * painful to code but essential here.
942 */
943void
944save_config(
945	struct recvbuf *rbufp,
946	int restrict_mask
947	)
948{
949	/* block directory traversal by searching for characters that
950	 * indicate directory components in a file path.
951	 *
952	 * Conceptually we should be searching for DIRSEP in filename,
953	 * however Windows actually recognizes both forward and
954	 * backslashes as equivalent directory separators at the API
955	 * level.  On POSIX systems we could allow '\\' but such
956	 * filenames are tricky to manipulate from a shell, so just
957	 * reject both types of slashes on all platforms.
958	 */
959	/* TALOS-CAN-0062: block directory traversal for VMS, too */
960	static const char * illegal_in_filename =
961#if defined(VMS)
962	    ":[]"	/* do not allow drive and path components here */
963#elif defined(SYS_WINNT)
964	    ":\\/"	/* path and drive separators */
965#else
966	    "\\/"	/* separator and critical char for POSIX */
967#endif
968	    ;
969	char reply[128];
970#ifdef SAVECONFIG
971	static const char savedconfig_eq[] = "savedconfig=";
972
973	/* Build a safe open mode from the available mode flags. We want
974	 * to create a new file and write it in text mode (when
975	 * applicable -- only Windows does this...)
976	 */
977	static const int openmode = O_CREAT | O_TRUNC | O_WRONLY
978#  if defined(O_EXCL)		/* posix, vms */
979	    | O_EXCL
980#  elif defined(_O_EXCL)	/* windows is alway very special... */
981	    | _O_EXCL
982#  endif
983#  if defined(_O_TEXT)		/* windows, again */
984	    | _O_TEXT
985#endif
986	    ;
987
988	char filespec[128];
989	char filename[128];
990	char fullpath[512];
991	char savedconfig[sizeof(savedconfig_eq) + sizeof(filename)];
992	time_t now;
993	int fd;
994	FILE *fptr;
995	int prc;
996	size_t reqlen;
997#endif
998
999	if (RES_NOMODIFY & restrict_mask) {
1000		ctl_printf("%s", "saveconfig prohibited by restrict ... nomodify");
1001		ctl_flushpkt(0);
1002		NLOG(NLOG_SYSINFO)
1003			msyslog(LOG_NOTICE,
1004				"saveconfig from %s rejected due to nomodify restriction",
1005				stoa(&rbufp->recv_srcadr));
1006		sys_restricted++;
1007		return;
1008	}
1009
1010#ifdef SAVECONFIG
1011	if (NULL == saveconfigdir) {
1012		ctl_printf("%s", "saveconfig prohibited, no saveconfigdir configured");
1013		ctl_flushpkt(0);
1014		NLOG(NLOG_SYSINFO)
1015			msyslog(LOG_NOTICE,
1016				"saveconfig from %s rejected, no saveconfigdir",
1017				stoa(&rbufp->recv_srcadr));
1018		return;
1019	}
1020
1021	/* The length checking stuff gets serious. Do not assume a NUL
1022	 * byte can be found, but if so, use it to calculate the needed
1023	 * buffer size. If the available buffer is too short, bail out;
1024	 * likewise if there is no file spec. (The latter will not
1025	 * happen when using NTPQ, but there are other ways to craft a
1026	 * network packet!)
1027	 */
1028	reqlen = (size_t)(reqend - reqpt);
1029	if (0 != reqlen) {
1030		char * nulpos = (char*)memchr(reqpt, 0, reqlen);
1031		if (NULL != nulpos)
1032			reqlen = (size_t)(nulpos - reqpt);
1033	}
1034	if (0 == reqlen)
1035		return;
1036	if (reqlen >= sizeof(filespec)) {
1037		ctl_printf("saveconfig exceeded maximum raw name length (%u)",
1038			   (u_int)sizeof(filespec));
1039		ctl_flushpkt(0);
1040		msyslog(LOG_NOTICE,
1041			"saveconfig exceeded maximum raw name length from %s",
1042			stoa(&rbufp->recv_srcadr));
1043		return;
1044	}
1045
1046	/* copy data directly as we exactly know the size */
1047	memcpy(filespec, reqpt, reqlen);
1048	filespec[reqlen] = '\0';
1049
1050	/*
1051	 * allow timestamping of the saved config filename with
1052	 * strftime() format such as:
1053	 *   ntpq -c "saveconfig ntp-%Y%m%d-%H%M%S.conf"
1054	 * XXX: Nice feature, but not too safe.
1055	 * YYY: The check for permitted characters in file names should
1056	 *      weed out the worst. Let's hope 'strftime()' does not
1057	 *      develop pathological problems.
1058	 */
1059	time(&now);
1060	if (0 == strftime(filename, sizeof(filename), filespec,
1061			  localtime(&now)))
1062	{
1063		/*
1064		 * If we arrive here, 'strftime()' balked; most likely
1065		 * the buffer was too short. (Or it encounterd an empty
1066		 * format, or just a format that expands to an empty
1067		 * string.) We try to use the original name, though this
1068		 * is very likely to fail later if there are format
1069		 * specs in the string. Note that truncation cannot
1070		 * happen here as long as both buffers have the same
1071		 * size!
1072		 */
1073		strlcpy(filename, filespec, sizeof(filename));
1074	}
1075
1076	/*
1077	 * Check the file name for sanity. This might/will rule out file
1078	 * names that would be legal but problematic, and it blocks
1079	 * directory traversal.
1080	 */
1081	if (!is_safe_filename(filename)) {
1082		ctl_printf("saveconfig rejects unsafe file name '%s'",
1083			   filename);
1084		ctl_flushpkt(0);
1085		msyslog(LOG_NOTICE,
1086			"saveconfig rejects unsafe file name from %s",
1087			stoa(&rbufp->recv_srcadr));
1088		return;
1089	}
1090
1091	/*
1092	 * XXX: This next test may not be needed with is_safe_filename()
1093	 */
1094
1095	/* block directory/drive traversal */
1096	/* TALOS-CAN-0062: block directory traversal for VMS, too */
1097	if (NULL != strpbrk(filename, illegal_in_filename)) {
1098		snprintf(reply, sizeof(reply),
1099			 "saveconfig does not allow directory in filename");
1100		ctl_putdata(reply, strlen(reply), 0);
1101		ctl_flushpkt(0);
1102		msyslog(LOG_NOTICE,
1103			"saveconfig rejects unsafe file name from %s",
1104			stoa(&rbufp->recv_srcadr));
1105		return;
1106	}
1107
1108	/* concatenation of directory and path can cause another
1109	 * truncation...
1110	 */
1111	prc = snprintf(fullpath, sizeof(fullpath), "%s%s",
1112		       saveconfigdir, filename);
1113	if (prc < 0 || (size_t)prc >= sizeof(fullpath)) {
1114		ctl_printf("saveconfig exceeded maximum path length (%u)",
1115			   (u_int)sizeof(fullpath));
1116		ctl_flushpkt(0);
1117		msyslog(LOG_NOTICE,
1118			"saveconfig exceeded maximum path length from %s",
1119			stoa(&rbufp->recv_srcadr));
1120		return;
1121	}
1122
1123	fd = open(fullpath, openmode, S_IRUSR | S_IWUSR);
1124	if (-1 == fd)
1125		fptr = NULL;
1126	else
1127		fptr = fdopen(fd, "w");
1128
1129	if (NULL == fptr || -1 == dump_all_config_trees(fptr, 1)) {
1130		ctl_printf("Unable to save configuration to file '%s': %s",
1131			   filename, strerror(errno));
1132		msyslog(LOG_ERR,
1133			"saveconfig %s from %s failed", filename,
1134			stoa(&rbufp->recv_srcadr));
1135	} else {
1136		ctl_printf("Configuration saved to '%s'", filename);
1137		msyslog(LOG_NOTICE,
1138			"Configuration saved to '%s' (requested by %s)",
1139			fullpath, stoa(&rbufp->recv_srcadr));
1140		/*
1141		 * save the output filename in system variable
1142		 * savedconfig, retrieved with:
1143		 *   ntpq -c "rv 0 savedconfig"
1144		 * Note: the way 'savedconfig' is defined makes overflow
1145		 * checks unnecessary here.
1146		 */
1147		snprintf(savedconfig, sizeof(savedconfig), "%s%s",
1148			 savedconfig_eq, filename);
1149		set_sys_var(savedconfig, strlen(savedconfig) + 1, RO);
1150	}
1151
1152	if (NULL != fptr)
1153		fclose(fptr);
1154#else	/* !SAVECONFIG follows */
1155	ctl_printf("%s",
1156		   "saveconfig unavailable, configured with --disable-saveconfig");
1157#endif
1158	ctl_flushpkt(0);
1159}
1160
1161
1162/*
1163 * process_control - process an incoming control message
1164 */
1165void
1166process_control(
1167	struct recvbuf *rbufp,
1168	int restrict_mask
1169	)
1170{
1171	struct ntp_control *pkt;
1172	int req_count;
1173	int req_data;
1174	const struct ctl_proc *cc;
1175	keyid_t *pkid;
1176	int properlen;
1177	size_t maclen;
1178
1179	DPRINTF(3, ("in process_control()\n"));
1180
1181	/*
1182	 * Save the addresses for error responses
1183	 */
1184	numctlreq++;
1185	rmt_addr = &rbufp->recv_srcadr;
1186	lcl_inter = rbufp->dstadr;
1187	pkt = (struct ntp_control *)&rbufp->recv_pkt;
1188
1189	/*
1190	 * If the length is less than required for the header, or
1191	 * it is a response or a fragment, ignore this.
1192	 */
1193	if (rbufp->recv_length < (int)CTL_HEADER_LEN
1194	    || (CTL_RESPONSE | CTL_MORE | CTL_ERROR) & pkt->r_m_e_op
1195	    || pkt->offset != 0) {
1196		DPRINTF(1, ("invalid format in control packet\n"));
1197		if (rbufp->recv_length < (int)CTL_HEADER_LEN)
1198			numctltooshort++;
1199		if (CTL_RESPONSE & pkt->r_m_e_op)
1200			numctlinputresp++;
1201		if (CTL_MORE & pkt->r_m_e_op)
1202			numctlinputfrag++;
1203		if (CTL_ERROR & pkt->r_m_e_op)
1204			numctlinputerr++;
1205		if (pkt->offset != 0)
1206			numctlbadoffset++;
1207		return;
1208	}
1209	res_version = PKT_VERSION(pkt->li_vn_mode);
1210	if (res_version > NTP_VERSION || res_version < NTP_OLDVERSION) {
1211		DPRINTF(1, ("unknown version %d in control packet\n",
1212			    res_version));
1213		numctlbadversion++;
1214		return;
1215	}
1216
1217	/*
1218	 * Pull enough data from the packet to make intelligent
1219	 * responses
1220	 */
1221	rpkt.li_vn_mode = PKT_LI_VN_MODE(sys_leap, res_version,
1222					 MODE_CONTROL);
1223	res_opcode = pkt->r_m_e_op;
1224	rpkt.sequence = pkt->sequence;
1225	rpkt.associd = pkt->associd;
1226	rpkt.status = 0;
1227	res_frags = 1;
1228	res_offset = 0;
1229	res_associd = htons(pkt->associd);
1230	res_async = FALSE;
1231	res_authenticate = FALSE;
1232	res_keyid = 0;
1233	res_authokay = FALSE;
1234	req_count = (int)ntohs(pkt->count);
1235	datanotbinflag = FALSE;
1236	datalinelen = 0;
1237	datasent = 0;
1238	datapt = rpkt.u.data;
1239	dataend = &rpkt.u.data[CTL_MAX_DATA_LEN];
1240
1241	if ((rbufp->recv_length & 0x3) != 0)
1242		DPRINTF(3, ("Control packet length %d unrounded\n",
1243			    rbufp->recv_length));
1244
1245	/*
1246	 * We're set up now. Make sure we've got at least enough
1247	 * incoming data space to match the count.
1248	 */
1249	req_data = rbufp->recv_length - CTL_HEADER_LEN;
1250	if (req_data < req_count || rbufp->recv_length & 0x3) {
1251		ctl_error(CERR_BADFMT);
1252		numctldatatooshort++;
1253		return;
1254	}
1255
1256	properlen = req_count + CTL_HEADER_LEN;
1257	/* round up proper len to a 8 octet boundary */
1258
1259	properlen = (properlen + 7) & ~7;
1260	maclen = rbufp->recv_length - properlen;
1261	if ((rbufp->recv_length & 3) == 0 &&
1262	    maclen >= MIN_MAC_LEN && maclen <= MAX_MAC_LEN &&
1263	    sys_authenticate) {
1264		res_authenticate = TRUE;
1265		pkid = (void *)((char *)pkt + properlen);
1266		res_keyid = ntohl(*pkid);
1267		DPRINTF(3, ("recv_len %d, properlen %d, wants auth with keyid %08x, MAC length=%zu\n",
1268			    rbufp->recv_length, properlen, res_keyid,
1269			    maclen));
1270
1271		if (!authistrustedip(res_keyid, &rbufp->recv_srcadr))
1272			DPRINTF(3, ("invalid keyid %08x\n", res_keyid));
1273		else if (authdecrypt(res_keyid, (u_int32 *)pkt,
1274				     rbufp->recv_length - maclen,
1275				     maclen)) {
1276			res_authokay = TRUE;
1277			DPRINTF(3, ("authenticated okay\n"));
1278		} else {
1279			res_keyid = 0;
1280			DPRINTF(3, ("authentication failed\n"));
1281		}
1282	}
1283
1284	/*
1285	 * Set up translate pointers
1286	 */
1287	reqpt = (char *)pkt->u.data;
1288	reqend = reqpt + req_count;
1289
1290	/*
1291	 * Look for the opcode processor
1292	 */
1293	for (cc = control_codes; cc->control_code != NO_REQUEST; cc++) {
1294		if (cc->control_code == res_opcode) {
1295			DPRINTF(3, ("opcode %d, found command handler\n",
1296				    res_opcode));
1297			if (cc->flags == AUTH
1298			    && (!res_authokay
1299				|| res_keyid != ctl_auth_keyid)) {
1300				ctl_error(CERR_PERMISSION);
1301				return;
1302			}
1303			(cc->handler)(rbufp, restrict_mask);
1304			return;
1305		}
1306	}
1307
1308	/*
1309	 * Can't find this one, return an error.
1310	 */
1311	numctlbadop++;
1312	ctl_error(CERR_BADOP);
1313	return;
1314}
1315
1316
1317/*
1318 * ctlpeerstatus - return a status word for this peer
1319 */
1320u_short
1321ctlpeerstatus(
1322	register struct peer *p
1323	)
1324{
1325	u_short status;
1326
1327	status = p->status;
1328	if (FLAG_CONFIG & p->flags)
1329		status |= CTL_PST_CONFIG;
1330	if (p->keyid)
1331		status |= CTL_PST_AUTHENABLE;
1332	if (FLAG_AUTHENTIC & p->flags)
1333		status |= CTL_PST_AUTHENTIC;
1334	if (p->reach)
1335		status |= CTL_PST_REACH;
1336	if (MDF_TXONLY_MASK & p->cast_flags)
1337		status |= CTL_PST_BCAST;
1338
1339	return CTL_PEER_STATUS(status, p->num_events, p->last_event);
1340}
1341
1342
1343/*
1344 * ctlclkstatus - return a status word for this clock
1345 */
1346#ifdef REFCLOCK
1347static u_short
1348ctlclkstatus(
1349	struct refclockstat *pcs
1350	)
1351{
1352	return CTL_PEER_STATUS(0, pcs->lastevent, pcs->currentstatus);
1353}
1354#endif
1355
1356
1357/*
1358 * ctlsysstatus - return the system status word
1359 */
1360u_short
1361ctlsysstatus(void)
1362{
1363	register u_char this_clock;
1364
1365	this_clock = CTL_SST_TS_UNSPEC;
1366#ifdef REFCLOCK
1367	if (sys_peer != NULL) {
1368		if (CTL_SST_TS_UNSPEC != sys_peer->sstclktype)
1369			this_clock = sys_peer->sstclktype;
1370		else if (sys_peer->refclktype < COUNTOF(clocktypes))
1371			this_clock = clocktypes[sys_peer->refclktype];
1372	}
1373#else /* REFCLOCK */
1374	if (sys_peer != 0)
1375		this_clock = CTL_SST_TS_NTP;
1376#endif /* REFCLOCK */
1377	return CTL_SYS_STATUS(sys_leap, this_clock, ctl_sys_num_events,
1378			      ctl_sys_last_event);
1379}
1380
1381
1382/*
1383 * ctl_flushpkt - write out the current packet and prepare
1384 *		  another if necessary.
1385 */
1386static void
1387ctl_flushpkt(
1388	u_char more
1389	)
1390{
1391	size_t i;
1392	size_t dlen;
1393	size_t sendlen;
1394	size_t maclen;
1395	size_t totlen;
1396	keyid_t keyid;
1397
1398	dlen = datapt - rpkt.u.data;
1399	if (!more && datanotbinflag && dlen + 2 < CTL_MAX_DATA_LEN) {
1400		/*
1401		 * Big hack, output a trailing \r\n
1402		 */
1403		*datapt++ = '\r';
1404		*datapt++ = '\n';
1405		dlen += 2;
1406	}
1407	sendlen = dlen + CTL_HEADER_LEN;
1408
1409	/*
1410	 * Pad to a multiple of 32 bits
1411	 */
1412	while (sendlen & 0x3) {
1413		*datapt++ = '\0';
1414		sendlen++;
1415	}
1416
1417	/*
1418	 * Fill in the packet with the current info
1419	 */
1420	rpkt.r_m_e_op = CTL_RESPONSE | more |
1421			(res_opcode & CTL_OP_MASK);
1422	rpkt.count = htons((u_short)dlen);
1423	rpkt.offset = htons((u_short)res_offset);
1424	if (res_async) {
1425		for (i = 0; i < COUNTOF(ctl_traps); i++) {
1426			if (TRAP_INUSE & ctl_traps[i].tr_flags) {
1427				rpkt.li_vn_mode =
1428				    PKT_LI_VN_MODE(
1429					sys_leap,
1430					ctl_traps[i].tr_version,
1431					MODE_CONTROL);
1432				rpkt.sequence =
1433				    htons(ctl_traps[i].tr_sequence);
1434				sendpkt(&ctl_traps[i].tr_addr,
1435					ctl_traps[i].tr_localaddr, -4,
1436					(struct pkt *)&rpkt, sendlen);
1437				if (!more)
1438					ctl_traps[i].tr_sequence++;
1439				numasyncmsgs++;
1440			}
1441		}
1442	} else {
1443		if (res_authenticate && sys_authenticate) {
1444			totlen = sendlen;
1445			/*
1446			 * If we are going to authenticate, then there
1447			 * is an additional requirement that the MAC
1448			 * begin on a 64 bit boundary.
1449			 */
1450			while (totlen & 7) {
1451				*datapt++ = '\0';
1452				totlen++;
1453			}
1454			keyid = htonl(res_keyid);
1455			memcpy(datapt, &keyid, sizeof(keyid));
1456			maclen = authencrypt(res_keyid,
1457					     (u_int32 *)&rpkt, totlen);
1458			sendpkt(rmt_addr, lcl_inter, -5,
1459				(struct pkt *)&rpkt, totlen + maclen);
1460		} else {
1461			sendpkt(rmt_addr, lcl_inter, -6,
1462				(struct pkt *)&rpkt, sendlen);
1463		}
1464		if (more)
1465			numctlfrags++;
1466		else
1467			numctlresponses++;
1468	}
1469
1470	/*
1471	 * Set us up for another go around.
1472	 */
1473	res_frags++;
1474	res_offset += dlen;
1475	datapt = rpkt.u.data;
1476}
1477
1478
1479/* --------------------------------------------------------------------
1480 * block transfer API -- stream string/data fragments into xmit buffer
1481 * without additional copying
1482 */
1483
1484/* buffer descriptor: address & size of fragment
1485 * 'buf' may only be NULL when 'len' is zero!
1486 */
1487typedef struct {
1488	const void  *buf;
1489	size_t       len;
1490} CtlMemBufT;
1491
1492/* put ctl data in a gather-style operation */
1493static void
1494ctl_putdata_ex(
1495	const CtlMemBufT * argv,
1496	size_t             argc,
1497	int/*BOOL*/        bin		/* set to 1 when data is binary */
1498	)
1499{
1500	const char * src_ptr;
1501	size_t       src_len, cur_len, add_len, argi;
1502
1503	/* text / binary preprocessing, possibly create new linefeed */
1504	if (bin) {
1505		add_len = 0;
1506	} else {
1507		datanotbinflag = TRUE;
1508		add_len = 3;
1509
1510		if (datasent) {
1511			*datapt++ = ',';
1512			datalinelen++;
1513
1514			/* sum up total length */
1515			for (argi = 0, src_len = 0; argi < argc; ++argi)
1516				src_len += argv[argi].len;
1517			/* possibly start a new line, assume no size_t overflow */
1518			if ((src_len + datalinelen + 1) >= MAXDATALINELEN) {
1519				*datapt++ = '\r';
1520				*datapt++ = '\n';
1521				datalinelen = 0;
1522			} else {
1523				*datapt++ = ' ';
1524				datalinelen++;
1525			}
1526		}
1527	}
1528
1529	/* now stream out all buffers */
1530	for (argi = 0; argi < argc; ++argi) {
1531		src_ptr = argv[argi].buf;
1532		src_len = argv[argi].len;
1533
1534		if ( ! (src_ptr && src_len))
1535			continue;
1536
1537		cur_len = (size_t)(dataend - datapt);
1538		while ((src_len + add_len) > cur_len) {
1539			/* Not enough room in this one, flush it out. */
1540			if (src_len < cur_len)
1541				cur_len = src_len;
1542
1543			memcpy(datapt, src_ptr, cur_len);
1544			datapt      += cur_len;
1545			datalinelen += cur_len;
1546
1547			src_ptr     += cur_len;
1548			src_len     -= cur_len;
1549
1550			ctl_flushpkt(CTL_MORE);
1551			cur_len = (size_t)(dataend - datapt);
1552		}
1553
1554		memcpy(datapt, src_ptr, src_len);
1555		datapt      += src_len;
1556		datalinelen += src_len;
1557
1558		datasent = TRUE;
1559	}
1560}
1561
1562/*
1563 * ctl_putdata - write data into the packet, fragmenting and starting
1564 * another if this one is full.
1565 */
1566static void
1567ctl_putdata(
1568	const char *dp,
1569	unsigned int dlen,
1570	int bin			/* set to 1 when data is binary */
1571	)
1572{
1573	CtlMemBufT args[1];
1574
1575	args[0].buf = dp;
1576	args[0].len = dlen;
1577	ctl_putdata_ex(args, 1, bin);
1578}
1579
1580/*
1581 * ctl_putstr - write a tagged string into the response packet
1582 *		in the form:
1583 *
1584 *		tag="data"
1585 *
1586 *		len is the data length excluding the NUL terminator,
1587 *		as in ctl_putstr("var", "value", strlen("value"));
1588 */
1589static void
1590ctl_putstr(
1591	const char *	tag,
1592	const char *	data,
1593	size_t		len
1594	)
1595{
1596	CtlMemBufT args[4];
1597
1598	args[0].buf = tag;
1599	args[0].len = strlen(tag);
1600	if (data && len) {
1601	    args[1].buf = "=\"";
1602	    args[1].len = 2;
1603	    args[2].buf = data;
1604	    args[2].len = len;
1605	    args[3].buf = "\"";
1606	    args[3].len = 1;
1607	    ctl_putdata_ex(args, 4, FALSE);
1608	} else {
1609	    args[1].buf = "=\"\"";
1610	    args[1].len = 3;
1611	    ctl_putdata_ex(args, 2, FALSE);
1612	}
1613}
1614
1615
1616/*
1617 * ctl_putunqstr - write a tagged string into the response packet
1618 *		   in the form:
1619 *
1620 *		   tag=data
1621 *
1622 *	len is the data length excluding the NUL terminator.
1623 *	data must not contain a comma or whitespace.
1624 */
1625static void
1626ctl_putunqstr(
1627	const char *	tag,
1628	const char *	data,
1629	size_t		len
1630	)
1631{
1632	CtlMemBufT args[3];
1633
1634	args[0].buf = tag;
1635	args[0].len = strlen(tag);
1636	args[1].buf = "=";
1637	args[1].len = 1;
1638	if (data && len) {
1639		args[2].buf = data;
1640		args[2].len = len;
1641		ctl_putdata_ex(args, 3, FALSE);
1642	} else {
1643		ctl_putdata_ex(args, 2, FALSE);
1644	}
1645}
1646
1647
1648/*
1649 * ctl_putdblf - write a tagged, signed double into the response packet
1650 */
1651static void
1652ctl_putdblf(
1653	const char *	tag,
1654	int		use_f,
1655	int		precision,
1656	double		d
1657	)
1658{
1659	char buffer[40];
1660	int  rc;
1661
1662	rc = snprintf(buffer, sizeof(buffer),
1663		      (use_f ? "%.*f" : "%.*g"),
1664		      precision, d);
1665	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1666	ctl_putunqstr(tag, buffer, rc);
1667}
1668
1669/*
1670 * ctl_putuint - write a tagged unsigned integer into the response
1671 */
1672static void
1673ctl_putuint(
1674	const char *tag,
1675	u_long uval
1676	)
1677{
1678	char buffer[24]; /* needs to fit for 64 bits! */
1679	int  rc;
1680
1681	rc = snprintf(buffer, sizeof(buffer), "%lu", uval);
1682	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1683	ctl_putunqstr(tag, buffer, rc);
1684}
1685
1686/*
1687 * ctl_putcal - write a decoded calendar data into the response.
1688 * only used with AUTOKEY currently, so compiled conditional
1689 */
1690#ifdef AUTOKEY
1691static void
1692ctl_putcal(
1693	const char *tag,
1694	const struct calendar *pcal
1695	)
1696{
1697	char buffer[16];
1698	int  rc;
1699
1700	rc = snprintf(buffer, sizeof(buffer),
1701		      "%04d%02d%02d%02d%02d",
1702		      pcal->year, pcal->month, pcal->monthday,
1703		      pcal->hour, pcal->minute
1704		);
1705	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1706	ctl_putunqstr(tag, buffer, rc);
1707}
1708#endif
1709
1710/*
1711 * ctl_putfs - write a decoded filestamp into the response
1712 */
1713static void
1714ctl_putfs(
1715	const char *tag,
1716	tstamp_t uval
1717	)
1718{
1719	char buffer[16];
1720	int  rc;
1721
1722	time_t fstamp = (time_t)uval - JAN_1970;
1723	struct tm *tm = gmtime(&fstamp);
1724
1725	if (NULL == tm)
1726		return;
1727
1728	rc = snprintf(buffer, sizeof(buffer),
1729		      "%04d%02d%02d%02d%02d",
1730		      tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday,
1731		      tm->tm_hour, tm->tm_min);
1732	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1733	ctl_putunqstr(tag, buffer, rc);
1734}
1735
1736
1737/*
1738 * ctl_puthex - write a tagged unsigned integer, in hex, into the
1739 * response
1740 */
1741static void
1742ctl_puthex(
1743	const char *tag,
1744	u_long uval
1745	)
1746{
1747	char buffer[24];	/* must fit 64bit int! */
1748	int  rc;
1749
1750	rc = snprintf(buffer, sizeof(buffer), "0x%lx", uval);
1751	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1752	ctl_putunqstr(tag, buffer, rc);
1753}
1754
1755
1756/*
1757 * ctl_putint - write a tagged signed integer into the response
1758 */
1759static void
1760ctl_putint(
1761	const char *tag,
1762	long ival
1763	)
1764{
1765	char buffer[24];	/*must fit 64bit int */
1766	int  rc;
1767
1768	rc = snprintf(buffer, sizeof(buffer), "%ld", ival);
1769	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1770	ctl_putunqstr(tag, buffer, rc);
1771}
1772
1773
1774/*
1775 * ctl_putts - write a tagged timestamp, in hex, into the response
1776 */
1777static void
1778ctl_putts(
1779	const char *tag,
1780	l_fp *ts
1781	)
1782{
1783	char buffer[24];
1784	int  rc;
1785
1786	rc = snprintf(buffer, sizeof(buffer),
1787		      "0x%08lx.%08lx",
1788		      (u_long)ts->l_ui, (u_long)ts->l_uf);
1789	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1790	ctl_putunqstr(tag, buffer, rc);
1791}
1792
1793
1794/*
1795 * ctl_putadr - write an IP address into the response
1796 */
1797static void
1798ctl_putadr(
1799	const char *tag,
1800	u_int32 addr32,
1801	sockaddr_u *addr
1802	)
1803{
1804	const char *cq;
1805
1806	if (NULL == addr)
1807		cq = numtoa(addr32);
1808	else
1809		cq = stoa(addr);
1810	ctl_putunqstr(tag, cq, strlen(cq));
1811}
1812
1813
1814/*
1815 * ctl_putrefid - send a u_int32 refid as printable text
1816 */
1817static void
1818ctl_putrefid(
1819	const char *	tag,
1820	u_int32		refid
1821	)
1822{
1823	size_t nc;
1824
1825	union {
1826		uint32_t w;
1827		uint8_t  b[sizeof(uint32_t)];
1828	} bytes;
1829
1830	bytes.w = refid;
1831	for (nc = 0; nc < sizeof(bytes.b) && bytes.b[nc]; ++nc)
1832		if (  !isprint(bytes.b[nc])
1833		    || isspace(bytes.b[nc])
1834		    || bytes.b[nc] == ','  )
1835			bytes.b[nc] = '.';
1836	ctl_putunqstr(tag, (const char*)bytes.b, nc);
1837}
1838
1839
1840/*
1841 * ctl_putarray - write a tagged eight element double array into the response
1842 */
1843static void
1844ctl_putarray(
1845	const char *tag,
1846	double *arr,
1847	int start
1848	)
1849{
1850	char *cp, *ep;
1851	char buffer[200];
1852	int  i, rc;
1853
1854	cp = buffer;
1855	ep = buffer + sizeof(buffer);
1856	i  = start;
1857	do {
1858		if (i == 0)
1859			i = NTP_SHIFT;
1860		i--;
1861		rc = snprintf(cp, (size_t)(ep - cp), " %.2f", arr[i] * 1e3);
1862		INSIST(rc >= 0 && (size_t)rc < (size_t)(ep - cp));
1863		cp += rc;
1864	} while (i != start);
1865	ctl_putunqstr(tag, buffer, (size_t)(cp - buffer));
1866}
1867
1868/*
1869 * ctl_printf - put a formatted string into the data buffer
1870 */
1871static void
1872ctl_printf(
1873	const char * fmt,
1874	...
1875	)
1876{
1877	static const char * ellipsis = "[...]";
1878	va_list va;
1879	char    fmtbuf[128];
1880	int     rc;
1881
1882	va_start(va, fmt);
1883	rc = vsnprintf(fmtbuf, sizeof(fmtbuf), fmt, va);
1884	va_end(va);
1885	if (rc < 0 || (size_t)rc >= sizeof(fmtbuf))
1886		strcpy(fmtbuf + sizeof(fmtbuf) - strlen(ellipsis) - 1,
1887		       ellipsis);
1888	ctl_putdata(fmtbuf, strlen(fmtbuf), 0);
1889}
1890
1891
1892/*
1893 * ctl_putsys - output a system variable
1894 */
1895static void
1896ctl_putsys(
1897	int varid
1898	)
1899{
1900	l_fp tmp;
1901	char str[256];
1902	u_int u;
1903	double kb;
1904	double dtemp;
1905	const char *ss;
1906#ifdef AUTOKEY
1907	struct cert_info *cp;
1908#endif	/* AUTOKEY */
1909#ifdef KERNEL_PLL
1910	static struct timex ntx;
1911	static u_long ntp_adjtime_time;
1912
1913	static const double to_ms =
1914# ifdef STA_NANO
1915		1.0e-6; /* nsec to msec */
1916# else
1917		1.0e-3; /* usec to msec */
1918# endif
1919
1920	/*
1921	 * CS_K_* variables depend on up-to-date output of ntp_adjtime()
1922	 */
1923	if (CS_KERN_FIRST <= varid && varid <= CS_KERN_LAST &&
1924	    current_time != ntp_adjtime_time) {
1925		ZERO(ntx);
1926		if (ntp_adjtime(&ntx) < 0)
1927			msyslog(LOG_ERR, "ntp_adjtime() for mode 6 query failed: %m");
1928		else
1929			ntp_adjtime_time = current_time;
1930	}
1931#endif	/* KERNEL_PLL */
1932
1933	switch (varid) {
1934
1935	case CS_LEAP:
1936		ctl_putuint(sys_var[CS_LEAP].text, sys_leap);
1937		break;
1938
1939	case CS_STRATUM:
1940		ctl_putuint(sys_var[CS_STRATUM].text, sys_stratum);
1941		break;
1942
1943	case CS_PRECISION:
1944		ctl_putint(sys_var[CS_PRECISION].text, sys_precision);
1945		break;
1946
1947	case CS_ROOTDELAY:
1948		ctl_putdbl(sys_var[CS_ROOTDELAY].text, sys_rootdelay *
1949			   1e3);
1950		break;
1951
1952	case CS_ROOTDISPERSION:
1953		ctl_putdbl(sys_var[CS_ROOTDISPERSION].text,
1954			   sys_rootdisp * 1e3);
1955		break;
1956
1957	case CS_REFID:
1958		if (REFID_ISTEXT(sys_stratum))
1959			ctl_putrefid(sys_var[varid].text, sys_refid);
1960		else
1961			ctl_putadr(sys_var[varid].text, sys_refid, NULL);
1962		break;
1963
1964	case CS_REFTIME:
1965		ctl_putts(sys_var[CS_REFTIME].text, &sys_reftime);
1966		break;
1967
1968	case CS_POLL:
1969		ctl_putuint(sys_var[CS_POLL].text, sys_poll);
1970		break;
1971
1972	case CS_PEERID:
1973		if (sys_peer == NULL)
1974			ctl_putuint(sys_var[CS_PEERID].text, 0);
1975		else
1976			ctl_putuint(sys_var[CS_PEERID].text,
1977				    sys_peer->associd);
1978		break;
1979
1980	case CS_PEERADR:
1981		if (sys_peer != NULL && sys_peer->dstadr != NULL)
1982			ss = sptoa(&sys_peer->srcadr);
1983		else
1984			ss = "0.0.0.0:0";
1985		ctl_putunqstr(sys_var[CS_PEERADR].text, ss, strlen(ss));
1986		break;
1987
1988	case CS_PEERMODE:
1989		u = (sys_peer != NULL)
1990			? sys_peer->hmode
1991			: MODE_UNSPEC;
1992		ctl_putuint(sys_var[CS_PEERMODE].text, u);
1993		break;
1994
1995	case CS_OFFSET:
1996		ctl_putdbl6(sys_var[CS_OFFSET].text, last_offset * 1e3);
1997		break;
1998
1999	case CS_DRIFT:
2000		ctl_putdbl(sys_var[CS_DRIFT].text, drift_comp * 1e6);
2001		break;
2002
2003	case CS_JITTER:
2004		ctl_putdbl6(sys_var[CS_JITTER].text, sys_jitter * 1e3);
2005		break;
2006
2007	case CS_ERROR:
2008		ctl_putdbl(sys_var[CS_ERROR].text, clock_jitter * 1e3);
2009		break;
2010
2011	case CS_CLOCK:
2012		get_systime(&tmp);
2013		ctl_putts(sys_var[CS_CLOCK].text, &tmp);
2014		break;
2015
2016	case CS_PROCESSOR:
2017#ifndef HAVE_UNAME
2018		ctl_putstr(sys_var[CS_PROCESSOR].text, str_processor,
2019			   sizeof(str_processor) - 1);
2020#else
2021		ctl_putstr(sys_var[CS_PROCESSOR].text,
2022			   utsnamebuf.machine, strlen(utsnamebuf.machine));
2023#endif /* HAVE_UNAME */
2024		break;
2025
2026	case CS_SYSTEM:
2027#ifndef HAVE_UNAME
2028		ctl_putstr(sys_var[CS_SYSTEM].text, str_system,
2029			   sizeof(str_system) - 1);
2030#else
2031		snprintf(str, sizeof(str), "%s/%s", utsnamebuf.sysname,
2032			 utsnamebuf.release);
2033		ctl_putstr(sys_var[CS_SYSTEM].text, str, strlen(str));
2034#endif /* HAVE_UNAME */
2035		break;
2036
2037	case CS_VERSION:
2038		ctl_putstr(sys_var[CS_VERSION].text, Version,
2039			   strlen(Version));
2040		break;
2041
2042	case CS_STABIL:
2043		ctl_putdbl(sys_var[CS_STABIL].text, clock_stability *
2044			   1e6);
2045		break;
2046
2047	case CS_VARLIST:
2048	{
2049		char buf[CTL_MAX_DATA_LEN];
2050		//buffPointer, firstElementPointer, buffEndPointer
2051		char *buffp, *buffend;
2052		int firstVarName;
2053		const char *ss1;
2054		int len;
2055		const struct ctl_var *k;
2056
2057		buffp = buf;
2058		buffend = buf + sizeof(buf);
2059		if (strlen(sys_var[CS_VARLIST].text) > (sizeof(buf) - 4))
2060			break;	/* really long var name */
2061
2062		snprintf(buffp, sizeof(buf), "%s=\"",sys_var[CS_VARLIST].text);
2063		buffp += strlen(buffp);
2064		firstVarName = TRUE;
2065		for (k = sys_var; !(k->flags & EOV); k++) {
2066			if (k->flags & PADDING)
2067				continue;
2068			len = strlen(k->text);
2069			if (len + 1 >= buffend - buffp)
2070				break;
2071			if (!firstVarName)
2072				*buffp++ = ',';
2073			else
2074				firstVarName = FALSE;
2075			memcpy(buffp, k->text, len);
2076			buffp += len;
2077		}
2078
2079		for (k = ext_sys_var; k && !(k->flags & EOV); k++) {
2080			if (k->flags & PADDING)
2081				continue;
2082			if (NULL == k->text)
2083				continue;
2084			ss1 = strchr(k->text, '=');
2085			if (NULL == ss1)
2086				len = strlen(k->text);
2087			else
2088				len = ss1 - k->text;
2089			if (len + 1 >= buffend - buffp)
2090				break;
2091			if (firstVarName) {
2092				*buffp++ = ',';
2093				firstVarName = FALSE;
2094			}
2095			memcpy(buffp, k->text,(unsigned)len);
2096			buffp += len;
2097		}
2098		if (2 >= buffend - buffp)
2099			break;
2100
2101		*buffp++ = '"';
2102		*buffp = '\0';
2103
2104		ctl_putdata(buf, (unsigned)( buffp - buf ), 0);
2105		break;
2106	}
2107
2108	case CS_TAI:
2109		if (sys_tai > 0)
2110			ctl_putuint(sys_var[CS_TAI].text, sys_tai);
2111		break;
2112
2113	case CS_LEAPTAB:
2114	{
2115		leap_signature_t lsig;
2116		leapsec_getsig(&lsig);
2117		if (lsig.ttime > 0)
2118			ctl_putfs(sys_var[CS_LEAPTAB].text, lsig.ttime);
2119		break;
2120	}
2121
2122	case CS_LEAPEND:
2123	{
2124		leap_signature_t lsig;
2125		leapsec_getsig(&lsig);
2126		if (lsig.etime > 0)
2127			ctl_putfs(sys_var[CS_LEAPEND].text, lsig.etime);
2128		break;
2129	}
2130
2131#ifdef LEAP_SMEAR
2132	case CS_LEAPSMEARINTV:
2133		if (leap_smear_intv > 0)
2134			ctl_putuint(sys_var[CS_LEAPSMEARINTV].text, leap_smear_intv);
2135		break;
2136
2137	case CS_LEAPSMEAROFFS:
2138		if (leap_smear_intv > 0)
2139			ctl_putdbl(sys_var[CS_LEAPSMEAROFFS].text,
2140				   leap_smear.doffset * 1e3);
2141		break;
2142#endif	/* LEAP_SMEAR */
2143
2144	case CS_RATE:
2145		ctl_putuint(sys_var[CS_RATE].text, ntp_minpoll);
2146		break;
2147
2148	case CS_MRU_ENABLED:
2149		ctl_puthex(sys_var[varid].text, mon_enabled);
2150		break;
2151
2152	case CS_MRU_DEPTH:
2153		ctl_putuint(sys_var[varid].text, mru_entries);
2154		break;
2155
2156	case CS_MRU_MEM:
2157		kb = mru_entries * (sizeof(mon_entry) / 1024.);
2158		u = (u_int)kb;
2159		if (kb - u >= 0.5)
2160			u++;
2161		ctl_putuint(sys_var[varid].text, u);
2162		break;
2163
2164	case CS_MRU_DEEPEST:
2165		ctl_putuint(sys_var[varid].text, mru_peakentries);
2166		break;
2167
2168	case CS_MRU_MINDEPTH:
2169		ctl_putuint(sys_var[varid].text, mru_mindepth);
2170		break;
2171
2172	case CS_MRU_MAXAGE:
2173		ctl_putint(sys_var[varid].text, mru_maxage);
2174		break;
2175
2176	case CS_MRU_MAXDEPTH:
2177		ctl_putuint(sys_var[varid].text, mru_maxdepth);
2178		break;
2179
2180	case CS_MRU_MAXMEM:
2181		kb = mru_maxdepth * (sizeof(mon_entry) / 1024.);
2182		u = (u_int)kb;
2183		if (kb - u >= 0.5)
2184			u++;
2185		ctl_putuint(sys_var[varid].text, u);
2186		break;
2187
2188	case CS_SS_UPTIME:
2189		ctl_putuint(sys_var[varid].text, current_time);
2190		break;
2191
2192	case CS_SS_RESET:
2193		ctl_putuint(sys_var[varid].text,
2194			    current_time - sys_stattime);
2195		break;
2196
2197	case CS_SS_RECEIVED:
2198		ctl_putuint(sys_var[varid].text, sys_received);
2199		break;
2200
2201	case CS_SS_THISVER:
2202		ctl_putuint(sys_var[varid].text, sys_newversion);
2203		break;
2204
2205	case CS_SS_OLDVER:
2206		ctl_putuint(sys_var[varid].text, sys_oldversion);
2207		break;
2208
2209	case CS_SS_BADFORMAT:
2210		ctl_putuint(sys_var[varid].text, sys_badlength);
2211		break;
2212
2213	case CS_SS_BADAUTH:
2214		ctl_putuint(sys_var[varid].text, sys_badauth);
2215		break;
2216
2217	case CS_SS_DECLINED:
2218		ctl_putuint(sys_var[varid].text, sys_declined);
2219		break;
2220
2221	case CS_SS_RESTRICTED:
2222		ctl_putuint(sys_var[varid].text, sys_restricted);
2223		break;
2224
2225	case CS_SS_LIMITED:
2226		ctl_putuint(sys_var[varid].text, sys_limitrejected);
2227		break;
2228
2229	case CS_SS_LAMPORT:
2230		ctl_putuint(sys_var[varid].text, sys_lamport);
2231		break;
2232
2233	case CS_SS_TSROUNDING:
2234		ctl_putuint(sys_var[varid].text, sys_tsrounding);
2235		break;
2236
2237	case CS_SS_KODSENT:
2238		ctl_putuint(sys_var[varid].text, sys_kodsent);
2239		break;
2240
2241	case CS_SS_PROCESSED:
2242		ctl_putuint(sys_var[varid].text, sys_processed);
2243		break;
2244
2245	case CS_BCASTDELAY:
2246		ctl_putdbl(sys_var[varid].text, sys_bdelay * 1e3);
2247		break;
2248
2249	case CS_AUTHDELAY:
2250		LFPTOD(&sys_authdelay, dtemp);
2251		ctl_putdbl(sys_var[varid].text, dtemp * 1e3);
2252		break;
2253
2254	case CS_AUTHKEYS:
2255		ctl_putuint(sys_var[varid].text, authnumkeys);
2256		break;
2257
2258	case CS_AUTHFREEK:
2259		ctl_putuint(sys_var[varid].text, authnumfreekeys);
2260		break;
2261
2262	case CS_AUTHKLOOKUPS:
2263		ctl_putuint(sys_var[varid].text, authkeylookups);
2264		break;
2265
2266	case CS_AUTHKNOTFOUND:
2267		ctl_putuint(sys_var[varid].text, authkeynotfound);
2268		break;
2269
2270	case CS_AUTHKUNCACHED:
2271		ctl_putuint(sys_var[varid].text, authkeyuncached);
2272		break;
2273
2274	case CS_AUTHKEXPIRED:
2275		ctl_putuint(sys_var[varid].text, authkeyexpired);
2276		break;
2277
2278	case CS_AUTHENCRYPTS:
2279		ctl_putuint(sys_var[varid].text, authencryptions);
2280		break;
2281
2282	case CS_AUTHDECRYPTS:
2283		ctl_putuint(sys_var[varid].text, authdecryptions);
2284		break;
2285
2286	case CS_AUTHRESET:
2287		ctl_putuint(sys_var[varid].text,
2288			    current_time - auth_timereset);
2289		break;
2290
2291		/*
2292		 * CTL_IF_KERNLOOP() puts a zero if the kernel loop is
2293		 * unavailable, otherwise calls putfunc with args.
2294		 */
2295#ifndef KERNEL_PLL
2296# define	CTL_IF_KERNLOOP(putfunc, args)	\
2297		ctl_putint(sys_var[varid].text, 0)
2298#else
2299# define	CTL_IF_KERNLOOP(putfunc, args)	\
2300		putfunc args
2301#endif
2302
2303		/*
2304		 * CTL_IF_KERNPPS() puts a zero if either the kernel
2305		 * loop is unavailable, or kernel hard PPS is not
2306		 * active, otherwise calls putfunc with args.
2307		 */
2308#ifndef KERNEL_PLL
2309# define	CTL_IF_KERNPPS(putfunc, args)	\
2310		ctl_putint(sys_var[varid].text, 0)
2311#else
2312# define	CTL_IF_KERNPPS(putfunc, args)			\
2313		if (0 == ntx.shift)				\
2314			ctl_putint(sys_var[varid].text, 0);	\
2315		else						\
2316			putfunc args	/* no trailing ; */
2317#endif
2318
2319	case CS_K_OFFSET:
2320		CTL_IF_KERNLOOP(
2321			ctl_putdblf,
2322			(sys_var[varid].text, 0, -1, to_ms * ntx.offset)
2323		);
2324		break;
2325
2326	case CS_K_FREQ:
2327		CTL_IF_KERNLOOP(
2328			ctl_putsfp,
2329			(sys_var[varid].text, ntx.freq)
2330		);
2331		break;
2332
2333	case CS_K_MAXERR:
2334		CTL_IF_KERNLOOP(
2335			ctl_putdblf,
2336			(sys_var[varid].text, 0, 6,
2337			 to_ms * ntx.maxerror)
2338		);
2339		break;
2340
2341	case CS_K_ESTERR:
2342		CTL_IF_KERNLOOP(
2343			ctl_putdblf,
2344			(sys_var[varid].text, 0, 6,
2345			 to_ms * ntx.esterror)
2346		);
2347		break;
2348
2349	case CS_K_STFLAGS:
2350#ifndef KERNEL_PLL
2351		ss = "";
2352#else
2353		ss = k_st_flags(ntx.status);
2354#endif
2355		ctl_putstr(sys_var[varid].text, ss, strlen(ss));
2356		break;
2357
2358	case CS_K_TIMECONST:
2359		CTL_IF_KERNLOOP(
2360			ctl_putint,
2361			(sys_var[varid].text, ntx.constant)
2362		);
2363		break;
2364
2365	case CS_K_PRECISION:
2366		CTL_IF_KERNLOOP(
2367			ctl_putdblf,
2368			(sys_var[varid].text, 0, 6,
2369			    to_ms * ntx.precision)
2370		);
2371		break;
2372
2373	case CS_K_FREQTOL:
2374		CTL_IF_KERNLOOP(
2375			ctl_putsfp,
2376			(sys_var[varid].text, ntx.tolerance)
2377		);
2378		break;
2379
2380	case CS_K_PPS_FREQ:
2381		CTL_IF_KERNPPS(
2382			ctl_putsfp,
2383			(sys_var[varid].text, ntx.ppsfreq)
2384		);
2385		break;
2386
2387	case CS_K_PPS_STABIL:
2388		CTL_IF_KERNPPS(
2389			ctl_putsfp,
2390			(sys_var[varid].text, ntx.stabil)
2391		);
2392		break;
2393
2394	case CS_K_PPS_JITTER:
2395		CTL_IF_KERNPPS(
2396			ctl_putdbl,
2397			(sys_var[varid].text, to_ms * ntx.jitter)
2398		);
2399		break;
2400
2401	case CS_K_PPS_CALIBDUR:
2402		CTL_IF_KERNPPS(
2403			ctl_putint,
2404			(sys_var[varid].text, 1 << ntx.shift)
2405		);
2406		break;
2407
2408	case CS_K_PPS_CALIBS:
2409		CTL_IF_KERNPPS(
2410			ctl_putint,
2411			(sys_var[varid].text, ntx.calcnt)
2412		);
2413		break;
2414
2415	case CS_K_PPS_CALIBERRS:
2416		CTL_IF_KERNPPS(
2417			ctl_putint,
2418			(sys_var[varid].text, ntx.errcnt)
2419		);
2420		break;
2421
2422	case CS_K_PPS_JITEXC:
2423		CTL_IF_KERNPPS(
2424			ctl_putint,
2425			(sys_var[varid].text, ntx.jitcnt)
2426		);
2427		break;
2428
2429	case CS_K_PPS_STBEXC:
2430		CTL_IF_KERNPPS(
2431			ctl_putint,
2432			(sys_var[varid].text, ntx.stbcnt)
2433		);
2434		break;
2435
2436	case CS_IOSTATS_RESET:
2437		ctl_putuint(sys_var[varid].text,
2438			    current_time - io_timereset);
2439		break;
2440
2441	case CS_TOTAL_RBUF:
2442		ctl_putuint(sys_var[varid].text, total_recvbuffs());
2443		break;
2444
2445	case CS_FREE_RBUF:
2446		ctl_putuint(sys_var[varid].text, free_recvbuffs());
2447		break;
2448
2449	case CS_USED_RBUF:
2450		ctl_putuint(sys_var[varid].text, full_recvbuffs());
2451		break;
2452
2453	case CS_RBUF_LOWATER:
2454		ctl_putuint(sys_var[varid].text, lowater_additions());
2455		break;
2456
2457	case CS_IO_DROPPED:
2458		ctl_putuint(sys_var[varid].text, packets_dropped);
2459		break;
2460
2461	case CS_IO_IGNORED:
2462		ctl_putuint(sys_var[varid].text, packets_ignored);
2463		break;
2464
2465	case CS_IO_RECEIVED:
2466		ctl_putuint(sys_var[varid].text, packets_received);
2467		break;
2468
2469	case CS_IO_SENT:
2470		ctl_putuint(sys_var[varid].text, packets_sent);
2471		break;
2472
2473	case CS_IO_SENDFAILED:
2474		ctl_putuint(sys_var[varid].text, packets_notsent);
2475		break;
2476
2477	case CS_IO_WAKEUPS:
2478		ctl_putuint(sys_var[varid].text, handler_calls);
2479		break;
2480
2481	case CS_IO_GOODWAKEUPS:
2482		ctl_putuint(sys_var[varid].text, handler_pkts);
2483		break;
2484
2485	case CS_TIMERSTATS_RESET:
2486		ctl_putuint(sys_var[varid].text,
2487			    current_time - timer_timereset);
2488		break;
2489
2490	case CS_TIMER_OVERRUNS:
2491		ctl_putuint(sys_var[varid].text, alarm_overflow);
2492		break;
2493
2494	case CS_TIMER_XMTS:
2495		ctl_putuint(sys_var[varid].text, timer_xmtcalls);
2496		break;
2497
2498	case CS_FUZZ:
2499		ctl_putdbl(sys_var[varid].text, sys_fuzz * 1e3);
2500		break;
2501	case CS_WANDER_THRESH:
2502		ctl_putdbl(sys_var[varid].text, wander_threshold * 1e6);
2503		break;
2504#ifdef AUTOKEY
2505	case CS_FLAGS:
2506		if (crypto_flags)
2507			ctl_puthex(sys_var[CS_FLAGS].text,
2508			    crypto_flags);
2509		break;
2510
2511	case CS_DIGEST:
2512		if (crypto_flags) {
2513			strlcpy(str, OBJ_nid2ln(crypto_nid),
2514			    COUNTOF(str));
2515			ctl_putstr(sys_var[CS_DIGEST].text, str,
2516			    strlen(str));
2517		}
2518		break;
2519
2520	case CS_SIGNATURE:
2521		if (crypto_flags) {
2522			const EVP_MD *dp;
2523
2524			dp = EVP_get_digestbynid(crypto_flags >> 16);
2525			strlcpy(str, OBJ_nid2ln(EVP_MD_pkey_type(dp)),
2526			    COUNTOF(str));
2527			ctl_putstr(sys_var[CS_SIGNATURE].text, str,
2528			    strlen(str));
2529		}
2530		break;
2531
2532	case CS_HOST:
2533		if (hostval.ptr != NULL)
2534			ctl_putstr(sys_var[CS_HOST].text, hostval.ptr,
2535			    strlen(hostval.ptr));
2536		break;
2537
2538	case CS_IDENT:
2539		if (sys_ident != NULL)
2540			ctl_putstr(sys_var[CS_IDENT].text, sys_ident,
2541			    strlen(sys_ident));
2542		break;
2543
2544	case CS_CERTIF:
2545		for (cp = cinfo; cp != NULL; cp = cp->link) {
2546			snprintf(str, sizeof(str), "%s %s 0x%x",
2547			    cp->subject, cp->issuer, cp->flags);
2548			ctl_putstr(sys_var[CS_CERTIF].text, str,
2549			    strlen(str));
2550			ctl_putcal(sys_var[CS_REVTIME].text, &(cp->last));
2551		}
2552		break;
2553
2554	case CS_PUBLIC:
2555		if (hostval.tstamp != 0)
2556			ctl_putfs(sys_var[CS_PUBLIC].text,
2557			    ntohl(hostval.tstamp));
2558		break;
2559#endif	/* AUTOKEY */
2560
2561	default:
2562		break;
2563	}
2564}
2565
2566
2567/*
2568 * ctl_putpeer - output a peer variable
2569 */
2570static void
2571ctl_putpeer(
2572	int id,
2573	struct peer *p
2574	)
2575{
2576	char buf[CTL_MAX_DATA_LEN];
2577	char *s;
2578	char *t;
2579	char *be;
2580	int i;
2581	const struct ctl_var *k;
2582#ifdef AUTOKEY
2583	struct autokey *ap;
2584	const EVP_MD *dp;
2585	const char *str;
2586#endif	/* AUTOKEY */
2587
2588	switch (id) {
2589
2590	case CP_CONFIG:
2591		ctl_putuint(peer_var[id].text,
2592			    !(FLAG_PREEMPT & p->flags));
2593		break;
2594
2595	case CP_AUTHENABLE:
2596		ctl_putuint(peer_var[id].text, !(p->keyid));
2597		break;
2598
2599	case CP_AUTHENTIC:
2600		ctl_putuint(peer_var[id].text,
2601			    !!(FLAG_AUTHENTIC & p->flags));
2602		break;
2603
2604	case CP_SRCADR:
2605		ctl_putadr(peer_var[id].text, 0, &p->srcadr);
2606		break;
2607
2608	case CP_SRCPORT:
2609		ctl_putuint(peer_var[id].text, SRCPORT(&p->srcadr));
2610		break;
2611
2612	case CP_SRCHOST:
2613		if (p->hostname != NULL)
2614			ctl_putstr(peer_var[id].text, p->hostname,
2615				   strlen(p->hostname));
2616		break;
2617
2618	case CP_DSTADR:
2619		ctl_putadr(peer_var[id].text, 0,
2620			   (p->dstadr != NULL)
2621				? &p->dstadr->sin
2622				: NULL);
2623		break;
2624
2625	case CP_DSTPORT:
2626		ctl_putuint(peer_var[id].text,
2627			    (p->dstadr != NULL)
2628				? SRCPORT(&p->dstadr->sin)
2629				: 0);
2630		break;
2631
2632	case CP_IN:
2633		if (p->r21 > 0.)
2634			ctl_putdbl(peer_var[id].text, p->r21 / 1e3);
2635		break;
2636
2637	case CP_OUT:
2638		if (p->r34 > 0.)
2639			ctl_putdbl(peer_var[id].text, p->r34 / 1e3);
2640		break;
2641
2642	case CP_RATE:
2643		ctl_putuint(peer_var[id].text, p->throttle);
2644		break;
2645
2646	case CP_LEAP:
2647		ctl_putuint(peer_var[id].text, p->leap);
2648		break;
2649
2650	case CP_HMODE:
2651		ctl_putuint(peer_var[id].text, p->hmode);
2652		break;
2653
2654	case CP_STRATUM:
2655		ctl_putuint(peer_var[id].text, p->stratum);
2656		break;
2657
2658	case CP_PPOLL:
2659		ctl_putuint(peer_var[id].text, p->ppoll);
2660		break;
2661
2662	case CP_HPOLL:
2663		ctl_putuint(peer_var[id].text, p->hpoll);
2664		break;
2665
2666	case CP_PRECISION:
2667		ctl_putint(peer_var[id].text, p->precision);
2668		break;
2669
2670	case CP_ROOTDELAY:
2671		ctl_putdbl(peer_var[id].text, p->rootdelay * 1e3);
2672		break;
2673
2674	case CP_ROOTDISPERSION:
2675		ctl_putdbl(peer_var[id].text, p->rootdisp * 1e3);
2676		break;
2677
2678	case CP_REFID:
2679#ifdef REFCLOCK
2680		if (p->flags & FLAG_REFCLOCK) {
2681			ctl_putrefid(peer_var[id].text, p->refid);
2682			break;
2683		}
2684#endif
2685		if (REFID_ISTEXT(p->stratum))
2686			ctl_putrefid(peer_var[id].text, p->refid);
2687		else
2688			ctl_putadr(peer_var[id].text, p->refid, NULL);
2689		break;
2690
2691	case CP_REFTIME:
2692		ctl_putts(peer_var[id].text, &p->reftime);
2693		break;
2694
2695	case CP_ORG:
2696		ctl_putts(peer_var[id].text, &p->aorg);
2697		break;
2698
2699	case CP_REC:
2700		ctl_putts(peer_var[id].text, &p->dst);
2701		break;
2702
2703	case CP_XMT:
2704		if (p->xleave)
2705			ctl_putdbl(peer_var[id].text, p->xleave * 1e3);
2706		break;
2707
2708	case CP_BIAS:
2709		if (p->bias != 0.)
2710			ctl_putdbl(peer_var[id].text, p->bias * 1e3);
2711		break;
2712
2713	case CP_REACH:
2714		ctl_puthex(peer_var[id].text, p->reach);
2715		break;
2716
2717	case CP_FLASH:
2718		ctl_puthex(peer_var[id].text, p->flash);
2719		break;
2720
2721	case CP_TTL:
2722#ifdef REFCLOCK
2723		if (p->flags & FLAG_REFCLOCK) {
2724			ctl_putuint(peer_var[id].text, p->ttl);
2725			break;
2726		}
2727#endif
2728		if (p->ttl > 0 && p->ttl < COUNTOF(sys_ttl))
2729			ctl_putint(peer_var[id].text,
2730				   sys_ttl[p->ttl]);
2731		break;
2732
2733	case CP_UNREACH:
2734		ctl_putuint(peer_var[id].text, p->unreach);
2735		break;
2736
2737	case CP_TIMER:
2738		ctl_putuint(peer_var[id].text,
2739			    p->nextdate - current_time);
2740		break;
2741
2742	case CP_DELAY:
2743		ctl_putdbl(peer_var[id].text, p->delay * 1e3);
2744		break;
2745
2746	case CP_OFFSET:
2747		ctl_putdbl(peer_var[id].text, p->offset * 1e3);
2748		break;
2749
2750	case CP_JITTER:
2751		ctl_putdbl(peer_var[id].text, p->jitter * 1e3);
2752		break;
2753
2754	case CP_DISPERSION:
2755		ctl_putdbl(peer_var[id].text, p->disp * 1e3);
2756		break;
2757
2758	case CP_KEYID:
2759		if (p->keyid > NTP_MAXKEY)
2760			ctl_puthex(peer_var[id].text, p->keyid);
2761		else
2762			ctl_putuint(peer_var[id].text, p->keyid);
2763		break;
2764
2765	case CP_FILTDELAY:
2766		ctl_putarray(peer_var[id].text, p->filter_delay,
2767			     p->filter_nextpt);
2768		break;
2769
2770	case CP_FILTOFFSET:
2771		ctl_putarray(peer_var[id].text, p->filter_offset,
2772			     p->filter_nextpt);
2773		break;
2774
2775	case CP_FILTERROR:
2776		ctl_putarray(peer_var[id].text, p->filter_disp,
2777			     p->filter_nextpt);
2778		break;
2779
2780	case CP_PMODE:
2781		ctl_putuint(peer_var[id].text, p->pmode);
2782		break;
2783
2784	case CP_RECEIVED:
2785		ctl_putuint(peer_var[id].text, p->received);
2786		break;
2787
2788	case CP_SENT:
2789		ctl_putuint(peer_var[id].text, p->sent);
2790		break;
2791
2792	case CP_VARLIST:
2793		s = buf;
2794		be = buf + sizeof(buf);
2795		if (strlen(peer_var[id].text) + 4 > sizeof(buf))
2796			break;	/* really long var name */
2797
2798		snprintf(s, sizeof(buf), "%s=\"", peer_var[id].text);
2799		s += strlen(s);
2800		t = s;
2801		for (k = peer_var; !(EOV & k->flags); k++) {
2802			if (PADDING & k->flags)
2803				continue;
2804			i = strlen(k->text);
2805			if (s + i + 1 >= be)
2806				break;
2807			if (s != t)
2808				*s++ = ',';
2809			memcpy(s, k->text, i);
2810			s += i;
2811		}
2812		if (s + 2 < be) {
2813			*s++ = '"';
2814			*s = '\0';
2815			ctl_putdata(buf, (u_int)(s - buf), 0);
2816		}
2817		break;
2818
2819	case CP_TIMEREC:
2820		ctl_putuint(peer_var[id].text,
2821			    current_time - p->timereceived);
2822		break;
2823
2824	case CP_TIMEREACH:
2825		ctl_putuint(peer_var[id].text,
2826			    current_time - p->timereachable);
2827		break;
2828
2829	case CP_BADAUTH:
2830		ctl_putuint(peer_var[id].text, p->badauth);
2831		break;
2832
2833	case CP_BOGUSORG:
2834		ctl_putuint(peer_var[id].text, p->bogusorg);
2835		break;
2836
2837	case CP_OLDPKT:
2838		ctl_putuint(peer_var[id].text, p->oldpkt);
2839		break;
2840
2841	case CP_SELDISP:
2842		ctl_putuint(peer_var[id].text, p->seldisptoolarge);
2843		break;
2844
2845	case CP_SELBROKEN:
2846		ctl_putuint(peer_var[id].text, p->selbroken);
2847		break;
2848
2849	case CP_CANDIDATE:
2850		ctl_putuint(peer_var[id].text, p->status);
2851		break;
2852#ifdef AUTOKEY
2853	case CP_FLAGS:
2854		if (p->crypto)
2855			ctl_puthex(peer_var[id].text, p->crypto);
2856		break;
2857
2858	case CP_SIGNATURE:
2859		if (p->crypto) {
2860			dp = EVP_get_digestbynid(p->crypto >> 16);
2861			str = OBJ_nid2ln(EVP_MD_pkey_type(dp));
2862			ctl_putstr(peer_var[id].text, str, strlen(str));
2863		}
2864		break;
2865
2866	case CP_HOST:
2867		if (p->subject != NULL)
2868			ctl_putstr(peer_var[id].text, p->subject,
2869			    strlen(p->subject));
2870		break;
2871
2872	case CP_VALID:		/* not used */
2873		break;
2874
2875	case CP_INITSEQ:
2876		if (NULL == (ap = p->recval.ptr))
2877			break;
2878
2879		ctl_putint(peer_var[CP_INITSEQ].text, ap->seq);
2880		ctl_puthex(peer_var[CP_INITKEY].text, ap->key);
2881		ctl_putfs(peer_var[CP_INITTSP].text,
2882			  ntohl(p->recval.tstamp));
2883		break;
2884
2885	case CP_IDENT:
2886		if (p->ident != NULL)
2887			ctl_putstr(peer_var[id].text, p->ident,
2888			    strlen(p->ident));
2889		break;
2890
2891
2892#endif	/* AUTOKEY */
2893	}
2894}
2895
2896
2897#ifdef REFCLOCK
2898/*
2899 * ctl_putclock - output clock variables
2900 */
2901static void
2902ctl_putclock(
2903	int id,
2904	struct refclockstat *pcs,
2905	int mustput
2906	)
2907{
2908	char buf[CTL_MAX_DATA_LEN];
2909	char *s, *t, *be;
2910	const char *ss;
2911	int i;
2912	const struct ctl_var *k;
2913
2914	switch (id) {
2915
2916	case CC_TYPE:
2917		if (mustput || pcs->clockdesc == NULL
2918		    || *(pcs->clockdesc) == '\0') {
2919			ctl_putuint(clock_var[id].text, pcs->type);
2920		}
2921		break;
2922	case CC_TIMECODE:
2923		ctl_putstr(clock_var[id].text,
2924			   pcs->p_lastcode,
2925			   (unsigned)pcs->lencode);
2926		break;
2927
2928	case CC_POLL:
2929		ctl_putuint(clock_var[id].text, pcs->polls);
2930		break;
2931
2932	case CC_NOREPLY:
2933		ctl_putuint(clock_var[id].text,
2934			    pcs->noresponse);
2935		break;
2936
2937	case CC_BADFORMAT:
2938		ctl_putuint(clock_var[id].text,
2939			    pcs->badformat);
2940		break;
2941
2942	case CC_BADDATA:
2943		ctl_putuint(clock_var[id].text,
2944			    pcs->baddata);
2945		break;
2946
2947	case CC_FUDGETIME1:
2948		if (mustput || (pcs->haveflags & CLK_HAVETIME1))
2949			ctl_putdbl(clock_var[id].text,
2950				   pcs->fudgetime1 * 1e3);
2951		break;
2952
2953	case CC_FUDGETIME2:
2954		if (mustput || (pcs->haveflags & CLK_HAVETIME2))
2955			ctl_putdbl(clock_var[id].text,
2956				   pcs->fudgetime2 * 1e3);
2957		break;
2958
2959	case CC_FUDGEVAL1:
2960		if (mustput || (pcs->haveflags & CLK_HAVEVAL1))
2961			ctl_putint(clock_var[id].text,
2962				   pcs->fudgeval1);
2963		break;
2964
2965	case CC_FUDGEVAL2:
2966		if (mustput || (pcs->haveflags & CLK_HAVEVAL2)) {
2967			if (pcs->fudgeval1 > 1)
2968				ctl_putadr(clock_var[id].text,
2969					   pcs->fudgeval2, NULL);
2970			else
2971				ctl_putrefid(clock_var[id].text,
2972					     pcs->fudgeval2);
2973		}
2974		break;
2975
2976	case CC_FLAGS:
2977		ctl_putuint(clock_var[id].text, pcs->flags);
2978		break;
2979
2980	case CC_DEVICE:
2981		if (pcs->clockdesc == NULL ||
2982		    *(pcs->clockdesc) == '\0') {
2983			if (mustput)
2984				ctl_putstr(clock_var[id].text,
2985					   "", 0);
2986		} else {
2987			ctl_putstr(clock_var[id].text,
2988				   pcs->clockdesc,
2989				   strlen(pcs->clockdesc));
2990		}
2991		break;
2992
2993	case CC_VARLIST:
2994		s = buf;
2995		be = buf + sizeof(buf);
2996		if (strlen(clock_var[CC_VARLIST].text) + 4 >
2997		    sizeof(buf))
2998			break;	/* really long var name */
2999
3000		snprintf(s, sizeof(buf), "%s=\"",
3001			 clock_var[CC_VARLIST].text);
3002		s += strlen(s);
3003		t = s;
3004
3005		for (k = clock_var; !(EOV & k->flags); k++) {
3006			if (PADDING & k->flags)
3007				continue;
3008
3009			i = strlen(k->text);
3010			if (s + i + 1 >= be)
3011				break;
3012
3013			if (s != t)
3014				*s++ = ',';
3015			memcpy(s, k->text, i);
3016			s += i;
3017		}
3018
3019		for (k = pcs->kv_list; k && !(EOV & k->flags); k++) {
3020			if (PADDING & k->flags)
3021				continue;
3022
3023			ss = k->text;
3024			if (NULL == ss)
3025				continue;
3026
3027			while (*ss && *ss != '=')
3028				ss++;
3029			i = ss - k->text;
3030			if (s + i + 1 >= be)
3031				break;
3032
3033			if (s != t)
3034				*s++ = ',';
3035			memcpy(s, k->text, (unsigned)i);
3036			s += i;
3037			*s = '\0';
3038		}
3039		if (s + 2 >= be)
3040			break;
3041
3042		*s++ = '"';
3043		*s = '\0';
3044		ctl_putdata(buf, (unsigned)(s - buf), 0);
3045		break;
3046	}
3047}
3048#endif
3049
3050
3051
3052/*
3053 * ctl_getitem - get the next data item from the incoming packet
3054 */
3055static const struct ctl_var *
3056ctl_getitem(
3057	const struct ctl_var *var_list,
3058	char **data
3059	)
3060{
3061	/* [Bug 3008] First check the packet data sanity, then search
3062	 * the key. This improves the consistency of result values: If
3063	 * the result is NULL once, it will never be EOV again for this
3064	 * packet; If it's EOV, it will never be NULL again until the
3065	 * variable is found and processed in a given 'var_list'. (That
3066	 * is, a result is returned that is neither NULL nor EOV).
3067	 */
3068	static const struct ctl_var eol = { 0, EOV, NULL };
3069	static char buf[128];
3070	static u_long quiet_until;
3071	const struct ctl_var *v;
3072	char *cp;
3073	char *tp;
3074
3075	/*
3076	 * Part One: Validate the packet state
3077	 */
3078
3079	/* Delete leading commas and white space */
3080	while (reqpt < reqend && (*reqpt == ',' ||
3081				  isspace((unsigned char)*reqpt)))
3082		reqpt++;
3083	if (reqpt >= reqend)
3084		return NULL;
3085
3086	/* Scan the string in the packet until we hit comma or
3087	 * EoB. Register position of first '=' on the fly. */
3088	for (tp = NULL, cp = reqpt; cp != reqend; ++cp) {
3089		if (*cp == '=' && tp == NULL)
3090			tp = cp;
3091		if (*cp == ',')
3092			break;
3093	}
3094
3095	/* Process payload, if any. */
3096	*data = NULL;
3097	if (NULL != tp) {
3098		/* eventually strip white space from argument. */
3099		const char *plhead = tp + 1; /* skip the '=' */
3100		const char *pltail = cp;
3101		size_t      plsize;
3102
3103		while (plhead != pltail && isspace((u_char)plhead[0]))
3104			++plhead;
3105		while (plhead != pltail && isspace((u_char)pltail[-1]))
3106			--pltail;
3107
3108		/* check payload size, terminate packet on overflow */
3109		plsize = (size_t)(pltail - plhead);
3110		if (plsize >= sizeof(buf))
3111			goto badpacket;
3112
3113		/* copy data, NUL terminate, and set result data ptr */
3114		memcpy(buf, plhead, plsize);
3115		buf[plsize] = '\0';
3116		*data = buf;
3117	} else {
3118		/* no payload, current end --> current name termination */
3119		tp = cp;
3120	}
3121
3122	/* Part Two
3123	 *
3124	 * Now we're sure that the packet data itself is sane. Scan the
3125	 * list now. Make sure a NULL list is properly treated by
3126	 * returning a synthetic End-Of-Values record. We must not
3127	 * return NULL pointers after this point, or the behaviour would
3128	 * become inconsistent if called several times with different
3129	 * variable lists after an EoV was returned.  (Such a behavior
3130	 * actually caused Bug 3008.)
3131	 */
3132
3133	if (NULL == var_list)
3134		return &eol;
3135
3136	for (v = var_list; !(EOV & v->flags); ++v)
3137		if (!(PADDING & v->flags)) {
3138			/* Check if the var name matches the buffer. The
3139			 * name is bracketed by [reqpt..tp] and not NUL
3140			 * terminated, and it contains no '=' char. The
3141			 * lookup value IS NUL-terminated but might
3142			 * include a '='... We have to look out for
3143			 * that!
3144			 */
3145			const char *sp1 = reqpt;
3146			const char *sp2 = v->text;
3147
3148			/* [Bug 3412] do not compare past NUL byte in name */
3149			while (   (sp1 != tp)
3150			       && ('\0' != *sp2) && (*sp1 == *sp2)) {
3151				++sp1;
3152				++sp2;
3153			}
3154			if (sp1 == tp && (*sp2 == '\0' || *sp2 == '='))
3155				break;
3156		}
3157
3158	/* See if we have found a valid entry or not. If found, advance
3159	 * the request pointer for the next round; if not, clear the
3160	 * data pointer so we have no dangling garbage here.
3161	 */
3162	if (EOV & v->flags)
3163		*data = NULL;
3164	else
3165		reqpt = cp + (cp != reqend);
3166	return v;
3167
3168  badpacket:
3169	/*TODO? somehow indicate this packet was bad, apart from syslog? */
3170	numctlbadpkts++;
3171	NLOG(NLOG_SYSEVENT)
3172	    if (quiet_until <= current_time) {
3173		    quiet_until = current_time + 300;
3174		    msyslog(LOG_WARNING,
3175			    "Possible 'ntpdx' exploit from %s#%u (possibly spoofed)",
3176			    stoa(rmt_addr), SRCPORT(rmt_addr));
3177	    }
3178	reqpt = reqend; /* never again for this packet! */
3179	return NULL;
3180}
3181
3182
3183/*
3184 * control_unspec - response to an unspecified op-code
3185 */
3186/*ARGSUSED*/
3187static void
3188control_unspec(
3189	struct recvbuf *rbufp,
3190	int restrict_mask
3191	)
3192{
3193	struct peer *peer;
3194
3195	/*
3196	 * What is an appropriate response to an unspecified op-code?
3197	 * I return no errors and no data, unless a specified assocation
3198	 * doesn't exist.
3199	 */
3200	if (res_associd) {
3201		peer = findpeerbyassoc(res_associd);
3202		if (NULL == peer) {
3203			ctl_error(CERR_BADASSOC);
3204			return;
3205		}
3206		rpkt.status = htons(ctlpeerstatus(peer));
3207	} else
3208		rpkt.status = htons(ctlsysstatus());
3209	ctl_flushpkt(0);
3210}
3211
3212
3213/*
3214 * read_status - return either a list of associd's, or a particular
3215 * peer's status.
3216 */
3217/*ARGSUSED*/
3218static void
3219read_status(
3220	struct recvbuf *rbufp,
3221	int restrict_mask
3222	)
3223{
3224	struct peer *peer;
3225	const u_char *cp;
3226	size_t n;
3227	/* a_st holds association ID, status pairs alternating */
3228	u_short a_st[CTL_MAX_DATA_LEN / sizeof(u_short)];
3229
3230#ifdef DEBUG
3231	if (debug > 2)
3232		printf("read_status: ID %d\n", res_associd);
3233#endif
3234	/*
3235	 * Two choices here. If the specified association ID is
3236	 * zero we return all known assocation ID's.  Otherwise
3237	 * we return a bunch of stuff about the particular peer.
3238	 */
3239	if (res_associd) {
3240		peer = findpeerbyassoc(res_associd);
3241		if (NULL == peer) {
3242			ctl_error(CERR_BADASSOC);
3243			return;
3244		}
3245		rpkt.status = htons(ctlpeerstatus(peer));
3246		if (res_authokay)
3247			peer->num_events = 0;
3248		/*
3249		 * For now, output everything we know about the
3250		 * peer. May be more selective later.
3251		 */
3252		for (cp = def_peer_var; *cp != 0; cp++)
3253			ctl_putpeer((int)*cp, peer);
3254		ctl_flushpkt(0);
3255		return;
3256	}
3257	n = 0;
3258	rpkt.status = htons(ctlsysstatus());
3259	for (peer = peer_list; peer != NULL; peer = peer->p_link) {
3260		a_st[n++] = htons(peer->associd);
3261		a_st[n++] = htons(ctlpeerstatus(peer));
3262		/* two entries each loop iteration, so n + 1 */
3263		if (n + 1 >= COUNTOF(a_st)) {
3264			ctl_putdata((void *)a_st, n * sizeof(a_st[0]),
3265				    1);
3266			n = 0;
3267		}
3268	}
3269	if (n)
3270		ctl_putdata((void *)a_st, n * sizeof(a_st[0]), 1);
3271	ctl_flushpkt(0);
3272}
3273
3274
3275/*
3276 * read_peervars - half of read_variables() implementation
3277 */
3278static void
3279read_peervars(void)
3280{
3281	const struct ctl_var *v;
3282	struct peer *peer;
3283	const u_char *cp;
3284	size_t i;
3285	char *	valuep;
3286	u_char	wants[CP_MAXCODE + 1];
3287	u_int	gotvar;
3288
3289	/*
3290	 * Wants info for a particular peer. See if we know
3291	 * the guy.
3292	 */
3293	peer = findpeerbyassoc(res_associd);
3294	if (NULL == peer) {
3295		ctl_error(CERR_BADASSOC);
3296		return;
3297	}
3298	rpkt.status = htons(ctlpeerstatus(peer));
3299	if (res_authokay)
3300		peer->num_events = 0;
3301	ZERO(wants);
3302	gotvar = 0;
3303	while (NULL != (v = ctl_getitem(peer_var, &valuep))) {
3304		if (v->flags & EOV) {
3305			ctl_error(CERR_UNKNOWNVAR);
3306			return;
3307		}
3308		INSIST(v->code < COUNTOF(wants));
3309		wants[v->code] = 1;
3310		gotvar = 1;
3311	}
3312	if (gotvar) {
3313		for (i = 1; i < COUNTOF(wants); i++)
3314			if (wants[i])
3315				ctl_putpeer(i, peer);
3316	} else
3317		for (cp = def_peer_var; *cp != 0; cp++)
3318			ctl_putpeer((int)*cp, peer);
3319	ctl_flushpkt(0);
3320}
3321
3322
3323/*
3324 * read_sysvars - half of read_variables() implementation
3325 */
3326static void
3327read_sysvars(void)
3328{
3329	const struct ctl_var *v;
3330	struct ctl_var *kv;
3331	u_int	n;
3332	u_int	gotvar;
3333	const u_char *cs;
3334	char *	valuep;
3335	const char * pch;
3336	u_char *wants;
3337	size_t	wants_count;
3338
3339	/*
3340	 * Wants system variables. Figure out which he wants
3341	 * and give them to him.
3342	 */
3343	rpkt.status = htons(ctlsysstatus());
3344	if (res_authokay)
3345		ctl_sys_num_events = 0;
3346	wants_count = CS_MAXCODE + 1 + count_var(ext_sys_var);
3347	wants = emalloc_zero(wants_count);
3348	gotvar = 0;
3349	while (NULL != (v = ctl_getitem(sys_var, &valuep))) {
3350		if (!(EOV & v->flags)) {
3351			INSIST(v->code < wants_count);
3352			wants[v->code] = 1;
3353			gotvar = 1;
3354		} else {
3355			v = ctl_getitem(ext_sys_var, &valuep);
3356			if (NULL == v) {
3357				ctl_error(CERR_BADVALUE);
3358				free(wants);
3359				return;
3360			}
3361			if (EOV & v->flags) {
3362				ctl_error(CERR_UNKNOWNVAR);
3363				free(wants);
3364				return;
3365			}
3366			n = v->code + CS_MAXCODE + 1;
3367			INSIST(n < wants_count);
3368			wants[n] = 1;
3369			gotvar = 1;
3370		}
3371	}
3372	if (gotvar) {
3373		for (n = 1; n <= CS_MAXCODE; n++)
3374			if (wants[n])
3375				ctl_putsys(n);
3376		for (n = 0; n + CS_MAXCODE + 1 < wants_count; n++)
3377			if (wants[n + CS_MAXCODE + 1]) {
3378				pch = ext_sys_var[n].text;
3379				ctl_putdata(pch, strlen(pch), 0);
3380			}
3381	} else {
3382		for (cs = def_sys_var; *cs != 0; cs++)
3383			ctl_putsys((int)*cs);
3384		for (kv = ext_sys_var; kv && !(EOV & kv->flags); kv++)
3385			if (DEF & kv->flags)
3386				ctl_putdata(kv->text, strlen(kv->text),
3387					    0);
3388	}
3389	free(wants);
3390	ctl_flushpkt(0);
3391}
3392
3393
3394/*
3395 * read_variables - return the variables the caller asks for
3396 */
3397/*ARGSUSED*/
3398static void
3399read_variables(
3400	struct recvbuf *rbufp,
3401	int restrict_mask
3402	)
3403{
3404	if (res_associd)
3405		read_peervars();
3406	else
3407		read_sysvars();
3408}
3409
3410
3411/*
3412 * write_variables - write into variables. We only allow leap bit
3413 * writing this way.
3414 */
3415/*ARGSUSED*/
3416static void
3417write_variables(
3418	struct recvbuf *rbufp,
3419	int restrict_mask
3420	)
3421{
3422	const struct ctl_var *v;
3423	int ext_var;
3424	char *valuep;
3425	long val;
3426	size_t octets;
3427	char *vareqv;
3428	const char *t;
3429	char *tt;
3430
3431	val = 0;
3432	/*
3433	 * If he's trying to write into a peer tell him no way
3434	 */
3435	if (res_associd != 0) {
3436		ctl_error(CERR_PERMISSION);
3437		return;
3438	}
3439
3440	/*
3441	 * Set status
3442	 */
3443	rpkt.status = htons(ctlsysstatus());
3444
3445	/*
3446	 * Look through the variables. Dump out at the first sign of
3447	 * trouble.
3448	 */
3449	while ((v = ctl_getitem(sys_var, &valuep)) != 0) {
3450		ext_var = 0;
3451		if (v->flags & EOV) {
3452			if ((v = ctl_getitem(ext_sys_var, &valuep)) !=
3453			    0) {
3454				if (v->flags & EOV) {
3455					ctl_error(CERR_UNKNOWNVAR);
3456					return;
3457				}
3458				ext_var = 1;
3459			} else {
3460				break;
3461			}
3462		}
3463		if (!(v->flags & CAN_WRITE)) {
3464			ctl_error(CERR_PERMISSION);
3465			return;
3466		}
3467		if (!ext_var && (*valuep == '\0' || !atoint(valuep,
3468							    &val))) {
3469			ctl_error(CERR_BADFMT);
3470			return;
3471		}
3472		if (!ext_var && (val & ~LEAP_NOTINSYNC) != 0) {
3473			ctl_error(CERR_BADVALUE);
3474			return;
3475		}
3476
3477		if (ext_var) {
3478			octets = strlen(v->text) + strlen(valuep) + 2;
3479			vareqv = emalloc(octets);
3480			tt = vareqv;
3481			t = v->text;
3482			while (*t && *t != '=')
3483				*tt++ = *t++;
3484			*tt++ = '=';
3485			memcpy(tt, valuep, 1 + strlen(valuep));
3486			set_sys_var(vareqv, 1 + strlen(vareqv), v->flags);
3487			free(vareqv);
3488		} else {
3489			ctl_error(CERR_UNSPEC); /* really */
3490			return;
3491		}
3492	}
3493
3494	/*
3495	 * If we got anything, do it. xxx nothing to do ***
3496	 */
3497	/*
3498	  if (leapind != ~0 || leapwarn != ~0) {
3499	  if (!leap_setleap((int)leapind, (int)leapwarn)) {
3500	  ctl_error(CERR_PERMISSION);
3501	  return;
3502	  }
3503	  }
3504	*/
3505	ctl_flushpkt(0);
3506}
3507
3508
3509/*
3510 * configure() processes ntpq :config/config-from-file, allowing
3511 *		generic runtime reconfiguration.
3512 */
3513static void configure(
3514	struct recvbuf *rbufp,
3515	int restrict_mask
3516	)
3517{
3518	size_t data_count;
3519	int retval;
3520
3521	/* I haven't yet implemented changes to an existing association.
3522	 * Hence check if the association id is 0
3523	 */
3524	if (res_associd != 0) {
3525		ctl_error(CERR_BADVALUE);
3526		return;
3527	}
3528
3529	if (RES_NOMODIFY & restrict_mask) {
3530		snprintf(remote_config.err_msg,
3531			 sizeof(remote_config.err_msg),
3532			 "runtime configuration prohibited by restrict ... nomodify");
3533		ctl_putdata(remote_config.err_msg,
3534			    strlen(remote_config.err_msg), 0);
3535		ctl_flushpkt(0);
3536		NLOG(NLOG_SYSINFO)
3537			msyslog(LOG_NOTICE,
3538				"runtime config from %s rejected due to nomodify restriction",
3539				stoa(&rbufp->recv_srcadr));
3540		sys_restricted++;
3541		return;
3542	}
3543
3544	/* Initialize the remote config buffer */
3545	data_count = remoteconfig_cmdlength(reqpt, reqend);
3546
3547	if (data_count > sizeof(remote_config.buffer) - 2) {
3548		snprintf(remote_config.err_msg,
3549			 sizeof(remote_config.err_msg),
3550			 "runtime configuration failed: request too long");
3551		ctl_putdata(remote_config.err_msg,
3552			    strlen(remote_config.err_msg), 0);
3553		ctl_flushpkt(0);
3554		msyslog(LOG_NOTICE,
3555			"runtime config from %s rejected: request too long",
3556			stoa(&rbufp->recv_srcadr));
3557		return;
3558	}
3559	/* Bug 2853 -- check if all characters were acceptable */
3560	if (data_count != (size_t)(reqend - reqpt)) {
3561		snprintf(remote_config.err_msg,
3562			 sizeof(remote_config.err_msg),
3563			 "runtime configuration failed: request contains an unprintable character");
3564		ctl_putdata(remote_config.err_msg,
3565			    strlen(remote_config.err_msg), 0);
3566		ctl_flushpkt(0);
3567		msyslog(LOG_NOTICE,
3568			"runtime config from %s rejected: request contains an unprintable character: %0x",
3569			stoa(&rbufp->recv_srcadr),
3570			reqpt[data_count]);
3571		return;
3572	}
3573
3574	memcpy(remote_config.buffer, reqpt, data_count);
3575	/* The buffer has no trailing linefeed or NUL right now. For
3576	 * logging, we do not want a newline, so we do that first after
3577	 * adding the necessary NUL byte.
3578	 */
3579	remote_config.buffer[data_count] = '\0';
3580	DPRINTF(1, ("Got Remote Configuration Command: %s\n",
3581		remote_config.buffer));
3582	msyslog(LOG_NOTICE, "%s config: %s",
3583		stoa(&rbufp->recv_srcadr),
3584		remote_config.buffer);
3585
3586	/* Now we have to make sure there is a NL/NUL sequence at the
3587	 * end of the buffer before we parse it.
3588	 */
3589	remote_config.buffer[data_count++] = '\n';
3590	remote_config.buffer[data_count] = '\0';
3591	remote_config.pos = 0;
3592	remote_config.err_pos = 0;
3593	remote_config.no_errors = 0;
3594	config_remotely(&rbufp->recv_srcadr);
3595
3596	/*
3597	 * Check if errors were reported. If not, output 'Config
3598	 * Succeeded'.  Else output the error count.  It would be nice
3599	 * to output any parser error messages.
3600	 */
3601	if (0 == remote_config.no_errors) {
3602		retval = snprintf(remote_config.err_msg,
3603				  sizeof(remote_config.err_msg),
3604				  "Config Succeeded");
3605		if (retval > 0)
3606			remote_config.err_pos += retval;
3607	}
3608
3609	ctl_putdata(remote_config.err_msg, remote_config.err_pos, 0);
3610	ctl_flushpkt(0);
3611
3612	DPRINTF(1, ("Reply: %s\n", remote_config.err_msg));
3613
3614	if (remote_config.no_errors > 0)
3615		msyslog(LOG_NOTICE, "%d error in %s config",
3616			remote_config.no_errors,
3617			stoa(&rbufp->recv_srcadr));
3618}
3619
3620
3621/*
3622 * derive_nonce - generate client-address-specific nonce value
3623 *		  associated with a given timestamp.
3624 */
3625static u_int32 derive_nonce(
3626	sockaddr_u *	addr,
3627	u_int32		ts_i,
3628	u_int32		ts_f
3629	)
3630{
3631	static u_int32	salt[4];
3632	static u_long	last_salt_update;
3633	union d_tag {
3634		u_char	digest[EVP_MAX_MD_SIZE];
3635		u_int32 extract;
3636	}		d;
3637	EVP_MD_CTX	*ctx;
3638	u_int		len;
3639
3640	while (!salt[0] || current_time - last_salt_update >= 3600) {
3641		salt[0] = ntp_random();
3642		salt[1] = ntp_random();
3643		salt[2] = ntp_random();
3644		salt[3] = ntp_random();
3645		last_salt_update = current_time;
3646	}
3647
3648	ctx = EVP_MD_CTX_new();
3649#   if defined(OPENSSL) && defined(EVP_MD_CTX_FLAG_NON_FIPS_ALLOW)
3650	/* [Bug 3457] set flags and don't kill them again */
3651	EVP_MD_CTX_set_flags(ctx, EVP_MD_CTX_FLAG_NON_FIPS_ALLOW);
3652	EVP_DigestInit_ex(ctx, EVP_get_digestbynid(NID_md5), NULL);
3653#   else
3654	EVP_DigestInit(ctx, EVP_get_digestbynid(NID_md5));
3655#   endif
3656	EVP_DigestUpdate(ctx, salt, sizeof(salt));
3657	EVP_DigestUpdate(ctx, &ts_i, sizeof(ts_i));
3658	EVP_DigestUpdate(ctx, &ts_f, sizeof(ts_f));
3659	if (IS_IPV4(addr))
3660		EVP_DigestUpdate(ctx, &SOCK_ADDR4(addr),
3661			         sizeof(SOCK_ADDR4(addr)));
3662	else
3663		EVP_DigestUpdate(ctx, &SOCK_ADDR6(addr),
3664			         sizeof(SOCK_ADDR6(addr)));
3665	EVP_DigestUpdate(ctx, &NSRCPORT(addr), sizeof(NSRCPORT(addr)));
3666	EVP_DigestUpdate(ctx, salt, sizeof(salt));
3667	EVP_DigestFinal(ctx, d.digest, &len);
3668	EVP_MD_CTX_free(ctx);
3669
3670	return d.extract;
3671}
3672
3673
3674/*
3675 * generate_nonce - generate client-address-specific nonce string.
3676 */
3677static void generate_nonce(
3678	struct recvbuf *	rbufp,
3679	char *			nonce,
3680	size_t			nonce_octets
3681	)
3682{
3683	u_int32 derived;
3684
3685	derived = derive_nonce(&rbufp->recv_srcadr,
3686			       rbufp->recv_time.l_ui,
3687			       rbufp->recv_time.l_uf);
3688	snprintf(nonce, nonce_octets, "%08x%08x%08x",
3689		 rbufp->recv_time.l_ui, rbufp->recv_time.l_uf, derived);
3690}
3691
3692
3693/*
3694 * validate_nonce - validate client-address-specific nonce string.
3695 *
3696 * Returns TRUE if the local calculation of the nonce matches the
3697 * client-provided value and the timestamp is recent enough.
3698 */
3699static int validate_nonce(
3700	const char *		pnonce,
3701	struct recvbuf *	rbufp
3702	)
3703{
3704	u_int	ts_i;
3705	u_int	ts_f;
3706	l_fp	ts;
3707	l_fp	now_delta;
3708	u_int	supposed;
3709	u_int	derived;
3710
3711	if (3 != sscanf(pnonce, "%08x%08x%08x", &ts_i, &ts_f, &supposed))
3712		return FALSE;
3713
3714	ts.l_ui = (u_int32)ts_i;
3715	ts.l_uf = (u_int32)ts_f;
3716	derived = derive_nonce(&rbufp->recv_srcadr, ts.l_ui, ts.l_uf);
3717	get_systime(&now_delta);
3718	L_SUB(&now_delta, &ts);
3719
3720	return (supposed == derived && now_delta.l_ui < 16);
3721}
3722
3723
3724/*
3725 * send_random_tag_value - send a randomly-generated three character
3726 *			   tag prefix, a '.', an index, a '=' and a
3727 *			   random integer value.
3728 *
3729 * To try to force clients to ignore unrecognized tags in mrulist,
3730 * reslist, and ifstats responses, the first and last rows are spiced
3731 * with randomly-generated tag names with correct .# index.  Make it
3732 * three characters knowing that none of the currently-used subscripted
3733 * tags have that length, avoiding the need to test for
3734 * tag collision.
3735 */
3736static void
3737send_random_tag_value(
3738	int	indx
3739	)
3740{
3741	int	noise;
3742	char	buf[32];
3743
3744	noise = rand() ^ (rand() << 16);
3745	buf[0] = 'a' + noise % 26;
3746	noise >>= 5;
3747	buf[1] = 'a' + noise % 26;
3748	noise >>= 5;
3749	buf[2] = 'a' + noise % 26;
3750	noise >>= 5;
3751	buf[3] = '.';
3752	snprintf(&buf[4], sizeof(buf) - 4, "%d", indx);
3753	ctl_putuint(buf, noise);
3754}
3755
3756
3757/*
3758 * Send a MRU list entry in response to a "ntpq -c mrulist" operation.
3759 *
3760 * To keep clients honest about not depending on the order of values,
3761 * and thereby avoid being locked into ugly workarounds to maintain
3762 * backward compatibility later as new fields are added to the response,
3763 * the order is random.
3764 */
3765static void
3766send_mru_entry(
3767	mon_entry *	mon,
3768	int		count
3769	)
3770{
3771	const char first_fmt[] =	"first.%d";
3772	const char ct_fmt[] =		"ct.%d";
3773	const char mv_fmt[] =		"mv.%d";
3774	const char rs_fmt[] =		"rs.%d";
3775	char	tag[32];
3776	u_char	sent[6]; /* 6 tag=value pairs */
3777	u_int32 noise;
3778	u_int	which;
3779	u_int	remaining;
3780	const char * pch;
3781
3782	remaining = COUNTOF(sent);
3783	ZERO(sent);
3784	noise = (u_int32)(rand() ^ (rand() << 16));
3785	while (remaining > 0) {
3786		which = (noise & 7) % COUNTOF(sent);
3787		noise >>= 3;
3788		while (sent[which])
3789			which = (which + 1) % COUNTOF(sent);
3790
3791		switch (which) {
3792
3793		case 0:
3794			snprintf(tag, sizeof(tag), addr_fmt, count);
3795			pch = sptoa(&mon->rmtadr);
3796			ctl_putunqstr(tag, pch, strlen(pch));
3797			break;
3798
3799		case 1:
3800			snprintf(tag, sizeof(tag), last_fmt, count);
3801			ctl_putts(tag, &mon->last);
3802			break;
3803
3804		case 2:
3805			snprintf(tag, sizeof(tag), first_fmt, count);
3806			ctl_putts(tag, &mon->first);
3807			break;
3808
3809		case 3:
3810			snprintf(tag, sizeof(tag), ct_fmt, count);
3811			ctl_putint(tag, mon->count);
3812			break;
3813
3814		case 4:
3815			snprintf(tag, sizeof(tag), mv_fmt, count);
3816			ctl_putuint(tag, mon->vn_mode);
3817			break;
3818
3819		case 5:
3820			snprintf(tag, sizeof(tag), rs_fmt, count);
3821			ctl_puthex(tag, mon->flags);
3822			break;
3823		}
3824		sent[which] = TRUE;
3825		remaining--;
3826	}
3827}
3828
3829
3830/*
3831 * read_mru_list - supports ntpq's mrulist command.
3832 *
3833 * The challenge here is to match ntpdc's monlist functionality without
3834 * being limited to hundreds of entries returned total, and without
3835 * requiring state on the server.  If state were required, ntpq's
3836 * mrulist command would require authentication.
3837 *
3838 * The approach was suggested by Ry Jones.  A finite and variable number
3839 * of entries are retrieved per request, to avoid having responses with
3840 * such large numbers of packets that socket buffers are overflowed and
3841 * packets lost.  The entries are retrieved oldest-first, taking into
3842 * account that the MRU list will be changing between each request.  We
3843 * can expect to see duplicate entries for addresses updated in the MRU
3844 * list during the fetch operation.  In the end, the client can assemble
3845 * a close approximation of the MRU list at the point in time the last
3846 * response was sent by ntpd.  The only difference is it may be longer,
3847 * containing some number of oldest entries which have since been
3848 * reclaimed.  If necessary, the protocol could be extended to zap those
3849 * from the client snapshot at the end, but so far that doesn't seem
3850 * useful.
3851 *
3852 * To accomodate the changing MRU list, the starting point for requests
3853 * after the first request is supplied as a series of last seen
3854 * timestamps and associated addresses, the newest ones the client has
3855 * received.  As long as at least one of those entries hasn't been
3856 * bumped to the head of the MRU list, ntpd can pick up at that point.
3857 * Otherwise, the request is failed and it is up to ntpq to back up and
3858 * provide the next newest entry's timestamps and addresses, conceivably
3859 * backing up all the way to the starting point.
3860 *
3861 * input parameters:
3862 *	nonce=		Regurgitated nonce retrieved by the client
3863 *			previously using CTL_OP_REQ_NONCE, demonstrating
3864 *			ability to receive traffic sent to its address.
3865 *	frags=		Limit on datagrams (fragments) in response.  Used
3866 *			by newer ntpq versions instead of limit= when
3867 *			retrieving multiple entries.
3868 *	limit=		Limit on MRU entries returned.  One of frags= or
3869 *			limit= must be provided.
3870 *			limit=1 is a special case:  Instead of fetching
3871 *			beginning with the supplied starting point's
3872 *			newer neighbor, fetch the supplied entry, and
3873 *			in that case the #.last timestamp can be zero.
3874 *			This enables fetching a single entry by IP
3875 *			address.  When limit is not one and frags= is
3876 *			provided, the fragment limit controls.
3877 *	mincount=	(decimal) Return entries with count >= mincount.
3878 *	laddr=		Return entries associated with the server's IP
3879 *			address given.  No port specification is needed,
3880 *			and any supplied is ignored.
3881 *	resall=		0x-prefixed hex restrict bits which must all be
3882 *			lit for an MRU entry to be included.
3883 *			Has precedence over any resany=.
3884 *	resany=		0x-prefixed hex restrict bits, at least one of
3885 *			which must be list for an MRU entry to be
3886 *			included.
3887 *	last.0=		0x-prefixed hex l_fp timestamp of newest entry
3888 *			which client previously received.
3889 *	addr.0=		text of newest entry's IP address and port,
3890 *			IPv6 addresses in bracketed form: [::]:123
3891 *	last.1=		timestamp of 2nd newest entry client has.
3892 *	addr.1=		address of 2nd newest entry.
3893 *	[...]
3894 *
3895 * ntpq provides as many last/addr pairs as will fit in a single request
3896 * packet, except for the first request in a MRU fetch operation.
3897 *
3898 * The response begins with a new nonce value to be used for any
3899 * followup request.  Following the nonce is the next newer entry than
3900 * referred to by last.0 and addr.0, if the "0" entry has not been
3901 * bumped to the front.  If it has, the first entry returned will be the
3902 * next entry newer than referred to by last.1 and addr.1, and so on.
3903 * If none of the referenced entries remain unchanged, the request fails
3904 * and ntpq backs up to the next earlier set of entries to resync.
3905 *
3906 * Except for the first response, the response begins with confirmation
3907 * of the entry that precedes the first additional entry provided:
3908 *
3909 *	last.older=	hex l_fp timestamp matching one of the input
3910 *			.last timestamps, which entry now precedes the
3911 *			response 0. entry in the MRU list.
3912 *	addr.older=	text of address corresponding to older.last.
3913 *
3914 * And in any case, a successful response contains sets of values
3915 * comprising entries, with the oldest numbered 0 and incrementing from
3916 * there:
3917 *
3918 *	addr.#		text of IPv4 or IPv6 address and port
3919 *	last.#		hex l_fp timestamp of last receipt
3920 *	first.#		hex l_fp timestamp of first receipt
3921 *	ct.#		count of packets received
3922 *	mv.#		mode and version
3923 *	rs.#		restriction mask (RES_* bits)
3924 *
3925 * Note the code currently assumes there are no valid three letter
3926 * tags sent with each row, and needs to be adjusted if that changes.
3927 *
3928 * The client should accept the values in any order, and ignore .#
3929 * values which it does not understand, to allow a smooth path to
3930 * future changes without requiring a new opcode.  Clients can rely
3931 * on all *.0 values preceding any *.1 values, that is all values for
3932 * a given index number are together in the response.
3933 *
3934 * The end of the response list is noted with one or two tag=value
3935 * pairs.  Unconditionally:
3936 *
3937 *	now=		0x-prefixed l_fp timestamp at the server marking
3938 *			the end of the operation.
3939 *
3940 * If any entries were returned, now= is followed by:
3941 *
3942 *	last.newest=	hex l_fp identical to last.# of the prior
3943 *			entry.
3944 */
3945static void read_mru_list(
3946	struct recvbuf *rbufp,
3947	int restrict_mask
3948	)
3949{
3950	static const char	nulltxt[1] = 		{ '\0' };
3951	static const char	nonce_text[] =		"nonce";
3952	static const char	frags_text[] =		"frags";
3953	static const char	limit_text[] =		"limit";
3954	static const char	mincount_text[] =	"mincount";
3955	static const char	resall_text[] =		"resall";
3956	static const char	resany_text[] =		"resany";
3957	static const char	maxlstint_text[] =	"maxlstint";
3958	static const char	laddr_text[] =		"laddr";
3959	static const char	resaxx_fmt[] =		"0x%hx";
3960
3961	u_int			limit;
3962	u_short			frags;
3963	u_short			resall;
3964	u_short			resany;
3965	int			mincount;
3966	u_int			maxlstint;
3967	sockaddr_u		laddr;
3968	struct interface *	lcladr;
3969	u_int			count;
3970	u_int			ui;
3971	u_int			uf;
3972	l_fp			last[16];
3973	sockaddr_u		addr[COUNTOF(last)];
3974	char			buf[128];
3975	struct ctl_var *	in_parms;
3976	const struct ctl_var *	v;
3977	const char *		val;
3978	const char *		pch;
3979	char *			pnonce;
3980	int			nonce_valid;
3981	size_t			i;
3982	int			priors;
3983	u_short			hash;
3984	mon_entry *		mon;
3985	mon_entry *		prior_mon;
3986	l_fp			now;
3987
3988	if (RES_NOMRULIST & restrict_mask) {
3989		ctl_error(CERR_PERMISSION);
3990		NLOG(NLOG_SYSINFO)
3991			msyslog(LOG_NOTICE,
3992				"mrulist from %s rejected due to nomrulist restriction",
3993				stoa(&rbufp->recv_srcadr));
3994		sys_restricted++;
3995		return;
3996	}
3997	/*
3998	 * fill in_parms var list with all possible input parameters.
3999	 */
4000	in_parms = NULL;
4001	set_var(&in_parms, nonce_text, sizeof(nonce_text), 0);
4002	set_var(&in_parms, frags_text, sizeof(frags_text), 0);
4003	set_var(&in_parms, limit_text, sizeof(limit_text), 0);
4004	set_var(&in_parms, mincount_text, sizeof(mincount_text), 0);
4005	set_var(&in_parms, resall_text, sizeof(resall_text), 0);
4006	set_var(&in_parms, resany_text, sizeof(resany_text), 0);
4007	set_var(&in_parms, maxlstint_text, sizeof(maxlstint_text), 0);
4008	set_var(&in_parms, laddr_text, sizeof(laddr_text), 0);
4009	for (i = 0; i < COUNTOF(last); i++) {
4010		snprintf(buf, sizeof(buf), last_fmt, (int)i);
4011		set_var(&in_parms, buf, strlen(buf) + 1, 0);
4012		snprintf(buf, sizeof(buf), addr_fmt, (int)i);
4013		set_var(&in_parms, buf, strlen(buf) + 1, 0);
4014	}
4015
4016	/* decode input parms */
4017	pnonce = NULL;
4018	frags = 0;
4019	limit = 0;
4020	mincount = 0;
4021	resall = 0;
4022	resany = 0;
4023	maxlstint = 0;
4024	lcladr = NULL;
4025	priors = 0;
4026	ZERO(last);
4027	ZERO(addr);
4028
4029	/* have to go through '(void*)' to drop 'const' property from pointer.
4030	 * ctl_getitem()' needs some cleanup, too.... perlinger@ntp.org
4031	 */
4032	while (NULL != (v = ctl_getitem(in_parms, (void*)&val)) &&
4033	       !(EOV & v->flags)) {
4034		int si;
4035
4036		if (NULL == val)
4037			val = nulltxt;
4038
4039		if (!strcmp(nonce_text, v->text)) {
4040			free(pnonce);
4041			pnonce = (*val) ? estrdup(val) : NULL;
4042		} else if (!strcmp(frags_text, v->text)) {
4043			if (1 != sscanf(val, "%hu", &frags))
4044				goto blooper;
4045		} else if (!strcmp(limit_text, v->text)) {
4046			if (1 != sscanf(val, "%u", &limit))
4047				goto blooper;
4048		} else if (!strcmp(mincount_text, v->text)) {
4049			if (1 != sscanf(val, "%d", &mincount))
4050				goto blooper;
4051			if (mincount < 0)
4052				mincount = 0;
4053		} else if (!strcmp(resall_text, v->text)) {
4054			if (1 != sscanf(val, resaxx_fmt, &resall))
4055				goto blooper;
4056		} else if (!strcmp(resany_text, v->text)) {
4057			if (1 != sscanf(val, resaxx_fmt, &resany))
4058				goto blooper;
4059		} else if (!strcmp(maxlstint_text, v->text)) {
4060			if (1 != sscanf(val, "%u", &maxlstint))
4061				goto blooper;
4062		} else if (!strcmp(laddr_text, v->text)) {
4063			if (!decodenetnum(val, &laddr))
4064				goto blooper;
4065			lcladr = getinterface(&laddr, 0);
4066		} else if (1 == sscanf(v->text, last_fmt, &si) &&
4067			   (size_t)si < COUNTOF(last)) {
4068			if (2 != sscanf(val, "0x%08x.%08x", &ui, &uf))
4069				goto blooper;
4070			last[si].l_ui = ui;
4071			last[si].l_uf = uf;
4072			if (!SOCK_UNSPEC(&addr[si]) && si == priors)
4073				priors++;
4074		} else if (1 == sscanf(v->text, addr_fmt, &si) &&
4075			   (size_t)si < COUNTOF(addr)) {
4076			if (!decodenetnum(val, &addr[si]))
4077				goto blooper;
4078			if (last[si].l_ui && last[si].l_uf && si == priors)
4079				priors++;
4080		} else {
4081			DPRINTF(1, ("read_mru_list: invalid key item: '%s' (ignored)\n",
4082				    v->text));
4083			continue;
4084
4085		blooper:
4086			DPRINTF(1, ("read_mru_list: invalid param for '%s': '%s' (bailing)\n",
4087				    v->text, val));
4088			free(pnonce);
4089			pnonce = NULL;
4090			break;
4091		}
4092	}
4093	free_varlist(in_parms);
4094	in_parms = NULL;
4095
4096	/* return no responses until the nonce is validated */
4097	if (NULL == pnonce)
4098		return;
4099
4100	nonce_valid = validate_nonce(pnonce, rbufp);
4101	free(pnonce);
4102	if (!nonce_valid)
4103		return;
4104
4105	if ((0 == frags && !(0 < limit && limit <= MRU_ROW_LIMIT)) ||
4106	    frags > MRU_FRAGS_LIMIT) {
4107		ctl_error(CERR_BADVALUE);
4108		return;
4109	}
4110
4111	/*
4112	 * If either frags or limit is not given, use the max.
4113	 */
4114	if (0 != frags && 0 == limit)
4115		limit = UINT_MAX;
4116	else if (0 != limit && 0 == frags)
4117		frags = MRU_FRAGS_LIMIT;
4118
4119	/*
4120	 * Find the starting point if one was provided.
4121	 */
4122	mon = NULL;
4123	for (i = 0; i < (size_t)priors; i++) {
4124		hash = MON_HASH(&addr[i]);
4125		for (mon = mon_hash[hash];
4126		     mon != NULL;
4127		     mon = mon->hash_next)
4128			if (ADDR_PORT_EQ(&mon->rmtadr, &addr[i]))
4129				break;
4130		if (mon != NULL) {
4131			if (L_ISEQU(&mon->last, &last[i]))
4132				break;
4133			mon = NULL;
4134		}
4135	}
4136
4137	/* If a starting point was provided... */
4138	if (priors) {
4139		/* and none could be found unmodified... */
4140		if (NULL == mon) {
4141			/* tell ntpq to try again with older entries */
4142			ctl_error(CERR_UNKNOWNVAR);
4143			return;
4144		}
4145		/* confirm the prior entry used as starting point */
4146		ctl_putts("last.older", &mon->last);
4147		pch = sptoa(&mon->rmtadr);
4148		ctl_putunqstr("addr.older", pch, strlen(pch));
4149
4150		/*
4151		 * Move on to the first entry the client doesn't have,
4152		 * except in the special case of a limit of one.  In
4153		 * that case return the starting point entry.
4154		 */
4155		if (limit > 1)
4156			mon = PREV_DLIST(mon_mru_list, mon, mru);
4157	} else {	/* start with the oldest */
4158		mon = TAIL_DLIST(mon_mru_list, mru);
4159	}
4160
4161	/*
4162	 * send up to limit= entries in up to frags= datagrams
4163	 */
4164	get_systime(&now);
4165	generate_nonce(rbufp, buf, sizeof(buf));
4166	ctl_putunqstr("nonce", buf, strlen(buf));
4167	prior_mon = NULL;
4168	for (count = 0;
4169	     mon != NULL && res_frags < frags && count < limit;
4170	     mon = PREV_DLIST(mon_mru_list, mon, mru)) {
4171
4172		if (mon->count < mincount)
4173			continue;
4174		if (resall && resall != (resall & mon->flags))
4175			continue;
4176		if (resany && !(resany & mon->flags))
4177			continue;
4178		if (maxlstint > 0 && now.l_ui - mon->last.l_ui >
4179		    maxlstint)
4180			continue;
4181		if (lcladr != NULL && mon->lcladr != lcladr)
4182			continue;
4183
4184		send_mru_entry(mon, count);
4185		if (!count)
4186			send_random_tag_value(0);
4187		count++;
4188		prior_mon = mon;
4189	}
4190
4191	/*
4192	 * If this batch completes the MRU list, say so explicitly with
4193	 * a now= l_fp timestamp.
4194	 */
4195	if (NULL == mon) {
4196		if (count > 1)
4197			send_random_tag_value(count - 1);
4198		ctl_putts("now", &now);
4199		/* if any entries were returned confirm the last */
4200		if (prior_mon != NULL)
4201			ctl_putts("last.newest", &prior_mon->last);
4202	}
4203	ctl_flushpkt(0);
4204}
4205
4206
4207/*
4208 * Send a ifstats entry in response to a "ntpq -c ifstats" request.
4209 *
4210 * To keep clients honest about not depending on the order of values,
4211 * and thereby avoid being locked into ugly workarounds to maintain
4212 * backward compatibility later as new fields are added to the response,
4213 * the order is random.
4214 */
4215static void
4216send_ifstats_entry(
4217	endpt *	la,
4218	u_int	ifnum
4219	)
4220{
4221	const char addr_fmtu[] =	"addr.%u";
4222	const char bcast_fmt[] =	"bcast.%u";
4223	const char en_fmt[] =		"en.%u";	/* enabled */
4224	const char name_fmt[] =		"name.%u";
4225	const char flags_fmt[] =	"flags.%u";
4226	const char tl_fmt[] =		"tl.%u";	/* ttl */
4227	const char mc_fmt[] =		"mc.%u";	/* mcast count */
4228	const char rx_fmt[] =		"rx.%u";
4229	const char tx_fmt[] =		"tx.%u";
4230	const char txerr_fmt[] =	"txerr.%u";
4231	const char pc_fmt[] =		"pc.%u";	/* peer count */
4232	const char up_fmt[] =		"up.%u";	/* uptime */
4233	char	tag[32];
4234	u_char	sent[IFSTATS_FIELDS]; /* 12 tag=value pairs */
4235	int	noisebits;
4236	u_int32 noise;
4237	u_int	which;
4238	u_int	remaining;
4239	const char *pch;
4240
4241	remaining = COUNTOF(sent);
4242	ZERO(sent);
4243	noise = 0;
4244	noisebits = 0;
4245	while (remaining > 0) {
4246		if (noisebits < 4) {
4247			noise = rand() ^ (rand() << 16);
4248			noisebits = 31;
4249		}
4250		which = (noise & 0xf) % COUNTOF(sent);
4251		noise >>= 4;
4252		noisebits -= 4;
4253
4254		while (sent[which])
4255			which = (which + 1) % COUNTOF(sent);
4256
4257		switch (which) {
4258
4259		case 0:
4260			snprintf(tag, sizeof(tag), addr_fmtu, ifnum);
4261			pch = sptoa(&la->sin);
4262			ctl_putunqstr(tag, pch, strlen(pch));
4263			break;
4264
4265		case 1:
4266			snprintf(tag, sizeof(tag), bcast_fmt, ifnum);
4267			if (INT_BCASTOPEN & la->flags)
4268				pch = sptoa(&la->bcast);
4269			else
4270				pch = "";
4271			ctl_putunqstr(tag, pch, strlen(pch));
4272			break;
4273
4274		case 2:
4275			snprintf(tag, sizeof(tag), en_fmt, ifnum);
4276			ctl_putint(tag, !la->ignore_packets);
4277			break;
4278
4279		case 3:
4280			snprintf(tag, sizeof(tag), name_fmt, ifnum);
4281			ctl_putstr(tag, la->name, strlen(la->name));
4282			break;
4283
4284		case 4:
4285			snprintf(tag, sizeof(tag), flags_fmt, ifnum);
4286			ctl_puthex(tag, (u_int)la->flags);
4287			break;
4288
4289		case 5:
4290			snprintf(tag, sizeof(tag), tl_fmt, ifnum);
4291			ctl_putint(tag, la->last_ttl);
4292			break;
4293
4294		case 6:
4295			snprintf(tag, sizeof(tag), mc_fmt, ifnum);
4296			ctl_putint(tag, la->num_mcast);
4297			break;
4298
4299		case 7:
4300			snprintf(tag, sizeof(tag), rx_fmt, ifnum);
4301			ctl_putint(tag, la->received);
4302			break;
4303
4304		case 8:
4305			snprintf(tag, sizeof(tag), tx_fmt, ifnum);
4306			ctl_putint(tag, la->sent);
4307			break;
4308
4309		case 9:
4310			snprintf(tag, sizeof(tag), txerr_fmt, ifnum);
4311			ctl_putint(tag, la->notsent);
4312			break;
4313
4314		case 10:
4315			snprintf(tag, sizeof(tag), pc_fmt, ifnum);
4316			ctl_putuint(tag, la->peercnt);
4317			break;
4318
4319		case 11:
4320			snprintf(tag, sizeof(tag), up_fmt, ifnum);
4321			ctl_putuint(tag, current_time - la->starttime);
4322			break;
4323		}
4324		sent[which] = TRUE;
4325		remaining--;
4326	}
4327	send_random_tag_value((int)ifnum);
4328}
4329
4330
4331/*
4332 * read_ifstats - send statistics for each local address, exposed by
4333 *		  ntpq -c ifstats
4334 */
4335static void
4336read_ifstats(
4337	struct recvbuf *	rbufp
4338	)
4339{
4340	u_int	ifidx;
4341	endpt *	la;
4342
4343	/*
4344	 * loop over [0..sys_ifnum] searching ep_list for each
4345	 * ifnum in turn.
4346	 */
4347	for (ifidx = 0; ifidx < sys_ifnum; ifidx++) {
4348		for (la = ep_list; la != NULL; la = la->elink)
4349			if (ifidx == la->ifnum)
4350				break;
4351		if (NULL == la)
4352			continue;
4353		/* return stats for one local address */
4354		send_ifstats_entry(la, ifidx);
4355	}
4356	ctl_flushpkt(0);
4357}
4358
4359static void
4360sockaddrs_from_restrict_u(
4361	sockaddr_u *	psaA,
4362	sockaddr_u *	psaM,
4363	restrict_u *	pres,
4364	int		ipv6
4365	)
4366{
4367	ZERO(*psaA);
4368	ZERO(*psaM);
4369	if (!ipv6) {
4370		psaA->sa.sa_family = AF_INET;
4371		psaA->sa4.sin_addr.s_addr = htonl(pres->u.v4.addr);
4372		psaM->sa.sa_family = AF_INET;
4373		psaM->sa4.sin_addr.s_addr = htonl(pres->u.v4.mask);
4374	} else {
4375		psaA->sa.sa_family = AF_INET6;
4376		memcpy(&psaA->sa6.sin6_addr, &pres->u.v6.addr,
4377		       sizeof(psaA->sa6.sin6_addr));
4378		psaM->sa.sa_family = AF_INET6;
4379		memcpy(&psaM->sa6.sin6_addr, &pres->u.v6.mask,
4380		       sizeof(psaA->sa6.sin6_addr));
4381	}
4382}
4383
4384
4385/*
4386 * Send a restrict entry in response to a "ntpq -c reslist" request.
4387 *
4388 * To keep clients honest about not depending on the order of values,
4389 * and thereby avoid being locked into ugly workarounds to maintain
4390 * backward compatibility later as new fields are added to the response,
4391 * the order is random.
4392 */
4393static void
4394send_restrict_entry(
4395	restrict_u *	pres,
4396	int		ipv6,
4397	u_int		idx
4398	)
4399{
4400	const char addr_fmtu[] =	"addr.%u";
4401	const char mask_fmtu[] =	"mask.%u";
4402	const char hits_fmt[] =		"hits.%u";
4403	const char flags_fmt[] =	"flags.%u";
4404	char		tag[32];
4405	u_char		sent[RESLIST_FIELDS]; /* 4 tag=value pairs */
4406	int		noisebits;
4407	u_int32		noise;
4408	u_int		which;
4409	u_int		remaining;
4410	sockaddr_u	addr;
4411	sockaddr_u	mask;
4412	const char *	pch;
4413	char *		buf;
4414	const char *	match_str;
4415	const char *	access_str;
4416
4417	sockaddrs_from_restrict_u(&addr, &mask, pres, ipv6);
4418	remaining = COUNTOF(sent);
4419	ZERO(sent);
4420	noise = 0;
4421	noisebits = 0;
4422	while (remaining > 0) {
4423		if (noisebits < 2) {
4424			noise = rand() ^ (rand() << 16);
4425			noisebits = 31;
4426		}
4427		which = (noise & 0x3) % COUNTOF(sent);
4428		noise >>= 2;
4429		noisebits -= 2;
4430
4431		while (sent[which])
4432			which = (which + 1) % COUNTOF(sent);
4433
4434		/* XXX: Numbers?  Really? */
4435		switch (which) {
4436
4437		case 0:
4438			snprintf(tag, sizeof(tag), addr_fmtu, idx);
4439			pch = stoa(&addr);
4440			ctl_putunqstr(tag, pch, strlen(pch));
4441			break;
4442
4443		case 1:
4444			snprintf(tag, sizeof(tag), mask_fmtu, idx);
4445			pch = stoa(&mask);
4446			ctl_putunqstr(tag, pch, strlen(pch));
4447			break;
4448
4449		case 2:
4450			snprintf(tag, sizeof(tag), hits_fmt, idx);
4451			ctl_putuint(tag, pres->count);
4452			break;
4453
4454		case 3:
4455			snprintf(tag, sizeof(tag), flags_fmt, idx);
4456			match_str = res_match_flags(pres->mflags);
4457			access_str = res_access_flags(pres->rflags);
4458			if ('\0' == match_str[0]) {
4459				pch = access_str;
4460			} else {
4461				LIB_GETBUF(buf);
4462				snprintf(buf, LIB_BUFLENGTH, "%s %s",
4463					 match_str, access_str);
4464				pch = buf;
4465			}
4466			ctl_putunqstr(tag, pch, strlen(pch));
4467			break;
4468		}
4469		sent[which] = TRUE;
4470		remaining--;
4471	}
4472	send_random_tag_value((int)idx);
4473}
4474
4475
4476static void
4477send_restrict_list(
4478	restrict_u *	pres,
4479	int		ipv6,
4480	u_int *		pidx
4481	)
4482{
4483	for ( ; pres != NULL; pres = pres->link) {
4484		send_restrict_entry(pres, ipv6, *pidx);
4485		(*pidx)++;
4486	}
4487}
4488
4489
4490/*
4491 * read_addr_restrictions - returns IPv4 and IPv6 access control lists
4492 */
4493static void
4494read_addr_restrictions(
4495	struct recvbuf *	rbufp
4496)
4497{
4498	u_int idx;
4499
4500	idx = 0;
4501	send_restrict_list(restrictlist4, FALSE, &idx);
4502	send_restrict_list(restrictlist6, TRUE, &idx);
4503	ctl_flushpkt(0);
4504}
4505
4506
4507/*
4508 * read_ordlist - CTL_OP_READ_ORDLIST_A for ntpq -c ifstats & reslist
4509 */
4510static void
4511read_ordlist(
4512	struct recvbuf *	rbufp,
4513	int			restrict_mask
4514	)
4515{
4516	const char ifstats_s[] = "ifstats";
4517	const size_t ifstats_chars = COUNTOF(ifstats_s) - 1;
4518	const char addr_rst_s[] = "addr_restrictions";
4519	const size_t a_r_chars = COUNTOF(addr_rst_s) - 1;
4520	struct ntp_control *	cpkt;
4521	u_short			qdata_octets;
4522
4523	/*
4524	 * CTL_OP_READ_ORDLIST_A was first named CTL_OP_READ_IFSTATS and
4525	 * used only for ntpq -c ifstats.  With the addition of reslist
4526	 * the same opcode was generalized to retrieve ordered lists
4527	 * which require authentication.  The request data is empty or
4528	 * contains "ifstats" (not null terminated) to retrieve local
4529	 * addresses and associated stats.  It is "addr_restrictions"
4530	 * to retrieve the IPv4 then IPv6 remote address restrictions,
4531	 * which are access control lists.  Other request data return
4532	 * CERR_UNKNOWNVAR.
4533	 */
4534	cpkt = (struct ntp_control *)&rbufp->recv_pkt;
4535	qdata_octets = ntohs(cpkt->count);
4536	if (0 == qdata_octets || (ifstats_chars == qdata_octets &&
4537	    !memcmp(ifstats_s, cpkt->u.data, ifstats_chars))) {
4538		read_ifstats(rbufp);
4539		return;
4540	}
4541	if (a_r_chars == qdata_octets &&
4542	    !memcmp(addr_rst_s, cpkt->u.data, a_r_chars)) {
4543		read_addr_restrictions(rbufp);
4544		return;
4545	}
4546	ctl_error(CERR_UNKNOWNVAR);
4547}
4548
4549
4550/*
4551 * req_nonce - CTL_OP_REQ_NONCE for ntpq -c mrulist prerequisite.
4552 */
4553static void req_nonce(
4554	struct recvbuf *	rbufp,
4555	int			restrict_mask
4556	)
4557{
4558	char	buf[64];
4559
4560	generate_nonce(rbufp, buf, sizeof(buf));
4561	ctl_putunqstr("nonce", buf, strlen(buf));
4562	ctl_flushpkt(0);
4563}
4564
4565
4566/*
4567 * read_clockstatus - return clock radio status
4568 */
4569/*ARGSUSED*/
4570static void
4571read_clockstatus(
4572	struct recvbuf *rbufp,
4573	int restrict_mask
4574	)
4575{
4576#ifndef REFCLOCK
4577	/*
4578	 * If no refclock support, no data to return
4579	 */
4580	ctl_error(CERR_BADASSOC);
4581#else
4582	const struct ctl_var *	v;
4583	int			i;
4584	struct peer *		peer;
4585	char *			valuep;
4586	u_char *		wants;
4587	size_t			wants_alloc;
4588	int			gotvar;
4589	const u_char *		cc;
4590	struct ctl_var *	kv;
4591	struct refclockstat	cs;
4592
4593	if (res_associd != 0) {
4594		peer = findpeerbyassoc(res_associd);
4595	} else {
4596		/*
4597		 * Find a clock for this jerk.	If the system peer
4598		 * is a clock use it, else search peer_list for one.
4599		 */
4600		if (sys_peer != NULL && (FLAG_REFCLOCK &
4601		    sys_peer->flags))
4602			peer = sys_peer;
4603		else
4604			for (peer = peer_list;
4605			     peer != NULL;
4606			     peer = peer->p_link)
4607				if (FLAG_REFCLOCK & peer->flags)
4608					break;
4609	}
4610	if (NULL == peer || !(FLAG_REFCLOCK & peer->flags)) {
4611		ctl_error(CERR_BADASSOC);
4612		return;
4613	}
4614	/*
4615	 * If we got here we have a peer which is a clock. Get his
4616	 * status.
4617	 */
4618	cs.kv_list = NULL;
4619	refclock_control(&peer->srcadr, NULL, &cs);
4620	kv = cs.kv_list;
4621	/*
4622	 * Look for variables in the packet.
4623	 */
4624	rpkt.status = htons(ctlclkstatus(&cs));
4625	wants_alloc = CC_MAXCODE + 1 + count_var(kv);
4626	wants = emalloc_zero(wants_alloc);
4627	gotvar = FALSE;
4628	while (NULL != (v = ctl_getitem(clock_var, &valuep))) {
4629		if (!(EOV & v->flags)) {
4630			wants[v->code] = TRUE;
4631			gotvar = TRUE;
4632		} else {
4633			v = ctl_getitem(kv, &valuep);
4634			if (NULL == v) {
4635				ctl_error(CERR_BADVALUE);
4636				free(wants);
4637				free_varlist(cs.kv_list);
4638				return;
4639			}
4640			if (EOV & v->flags) {
4641				ctl_error(CERR_UNKNOWNVAR);
4642				free(wants);
4643				free_varlist(cs.kv_list);
4644				return;
4645			}
4646			wants[CC_MAXCODE + 1 + v->code] = TRUE;
4647			gotvar = TRUE;
4648		}
4649	}
4650
4651	if (gotvar) {
4652		for (i = 1; i <= CC_MAXCODE; i++)
4653			if (wants[i])
4654				ctl_putclock(i, &cs, TRUE);
4655		if (kv != NULL)
4656			for (i = 0; !(EOV & kv[i].flags); i++)
4657				if (wants[i + CC_MAXCODE + 1])
4658					ctl_putdata(kv[i].text,
4659						    strlen(kv[i].text),
4660						    FALSE);
4661	} else {
4662		for (cc = def_clock_var; *cc != 0; cc++)
4663			ctl_putclock((int)*cc, &cs, FALSE);
4664		for ( ; kv != NULL && !(EOV & kv->flags); kv++)
4665			if (DEF & kv->flags)
4666				ctl_putdata(kv->text, strlen(kv->text),
4667					    FALSE);
4668	}
4669
4670	free(wants);
4671	free_varlist(cs.kv_list);
4672
4673	ctl_flushpkt(0);
4674#endif
4675}
4676
4677
4678/*
4679 * write_clockstatus - we don't do this
4680 */
4681/*ARGSUSED*/
4682static void
4683write_clockstatus(
4684	struct recvbuf *rbufp,
4685	int restrict_mask
4686	)
4687{
4688	ctl_error(CERR_PERMISSION);
4689}
4690
4691/*
4692 * Trap support from here on down. We send async trap messages when the
4693 * upper levels report trouble. Traps can by set either by control
4694 * messages or by configuration.
4695 */
4696/*
4697 * set_trap - set a trap in response to a control message
4698 */
4699static void
4700set_trap(
4701	struct recvbuf *rbufp,
4702	int restrict_mask
4703	)
4704{
4705	int traptype;
4706
4707	/*
4708	 * See if this guy is allowed
4709	 */
4710	if (restrict_mask & RES_NOTRAP) {
4711		ctl_error(CERR_PERMISSION);
4712		return;
4713	}
4714
4715	/*
4716	 * Determine his allowed trap type.
4717	 */
4718	traptype = TRAP_TYPE_PRIO;
4719	if (restrict_mask & RES_LPTRAP)
4720		traptype = TRAP_TYPE_NONPRIO;
4721
4722	/*
4723	 * Call ctlsettrap() to do the work.  Return
4724	 * an error if it can't assign the trap.
4725	 */
4726	if (!ctlsettrap(&rbufp->recv_srcadr, rbufp->dstadr, traptype,
4727			(int)res_version))
4728		ctl_error(CERR_NORESOURCE);
4729	ctl_flushpkt(0);
4730}
4731
4732
4733/*
4734 * unset_trap - unset a trap in response to a control message
4735 */
4736static void
4737unset_trap(
4738	struct recvbuf *rbufp,
4739	int restrict_mask
4740	)
4741{
4742	int traptype;
4743
4744	/*
4745	 * We don't prevent anyone from removing his own trap unless the
4746	 * trap is configured. Note we also must be aware of the
4747	 * possibility that restriction flags were changed since this
4748	 * guy last set his trap. Set the trap type based on this.
4749	 */
4750	traptype = TRAP_TYPE_PRIO;
4751	if (restrict_mask & RES_LPTRAP)
4752		traptype = TRAP_TYPE_NONPRIO;
4753
4754	/*
4755	 * Call ctlclrtrap() to clear this out.
4756	 */
4757	if (!ctlclrtrap(&rbufp->recv_srcadr, rbufp->dstadr, traptype))
4758		ctl_error(CERR_BADASSOC);
4759	ctl_flushpkt(0);
4760}
4761
4762
4763/*
4764 * ctlsettrap - called to set a trap
4765 */
4766int
4767ctlsettrap(
4768	sockaddr_u *raddr,
4769	struct interface *linter,
4770	int traptype,
4771	int version
4772	)
4773{
4774	size_t n;
4775	struct ctl_trap *tp;
4776	struct ctl_trap *tptouse;
4777
4778	/*
4779	 * See if we can find this trap.  If so, we only need update
4780	 * the flags and the time.
4781	 */
4782	if ((tp = ctlfindtrap(raddr, linter)) != NULL) {
4783		switch (traptype) {
4784
4785		case TRAP_TYPE_CONFIG:
4786			tp->tr_flags = TRAP_INUSE|TRAP_CONFIGURED;
4787			break;
4788
4789		case TRAP_TYPE_PRIO:
4790			if (tp->tr_flags & TRAP_CONFIGURED)
4791				return (1); /* don't change anything */
4792			tp->tr_flags = TRAP_INUSE;
4793			break;
4794
4795		case TRAP_TYPE_NONPRIO:
4796			if (tp->tr_flags & TRAP_CONFIGURED)
4797				return (1); /* don't change anything */
4798			tp->tr_flags = TRAP_INUSE|TRAP_NONPRIO;
4799			break;
4800		}
4801		tp->tr_settime = current_time;
4802		tp->tr_resets++;
4803		return (1);
4804	}
4805
4806	/*
4807	 * First we heard of this guy.	Try to find a trap structure
4808	 * for him to use, clearing out lesser priority guys if we
4809	 * have to. Clear out anyone who's expired while we're at it.
4810	 */
4811	tptouse = NULL;
4812	for (n = 0; n < COUNTOF(ctl_traps); n++) {
4813		tp = &ctl_traps[n];
4814		if ((TRAP_INUSE & tp->tr_flags) &&
4815		    !(TRAP_CONFIGURED & tp->tr_flags) &&
4816		    ((tp->tr_settime + CTL_TRAPTIME) > current_time)) {
4817			tp->tr_flags = 0;
4818			num_ctl_traps--;
4819		}
4820		if (!(TRAP_INUSE & tp->tr_flags)) {
4821			tptouse = tp;
4822		} else if (!(TRAP_CONFIGURED & tp->tr_flags)) {
4823			switch (traptype) {
4824
4825			case TRAP_TYPE_CONFIG:
4826				if (tptouse == NULL) {
4827					tptouse = tp;
4828					break;
4829				}
4830				if ((TRAP_NONPRIO & tptouse->tr_flags) &&
4831				    !(TRAP_NONPRIO & tp->tr_flags))
4832					break;
4833
4834				if (!(TRAP_NONPRIO & tptouse->tr_flags)
4835				    && (TRAP_NONPRIO & tp->tr_flags)) {
4836					tptouse = tp;
4837					break;
4838				}
4839				if (tptouse->tr_origtime <
4840				    tp->tr_origtime)
4841					tptouse = tp;
4842				break;
4843
4844			case TRAP_TYPE_PRIO:
4845				if ( TRAP_NONPRIO & tp->tr_flags) {
4846					if (tptouse == NULL ||
4847					    ((TRAP_INUSE &
4848					      tptouse->tr_flags) &&
4849					     tptouse->tr_origtime <
4850					     tp->tr_origtime))
4851						tptouse = tp;
4852				}
4853				break;
4854
4855			case TRAP_TYPE_NONPRIO:
4856				break;
4857			}
4858		}
4859	}
4860
4861	/*
4862	 * If we don't have room for him return an error.
4863	 */
4864	if (tptouse == NULL)
4865		return (0);
4866
4867	/*
4868	 * Set up this structure for him.
4869	 */
4870	tptouse->tr_settime = tptouse->tr_origtime = current_time;
4871	tptouse->tr_count = tptouse->tr_resets = 0;
4872	tptouse->tr_sequence = 1;
4873	tptouse->tr_addr = *raddr;
4874	tptouse->tr_localaddr = linter;
4875	tptouse->tr_version = (u_char) version;
4876	tptouse->tr_flags = TRAP_INUSE;
4877	if (traptype == TRAP_TYPE_CONFIG)
4878		tptouse->tr_flags |= TRAP_CONFIGURED;
4879	else if (traptype == TRAP_TYPE_NONPRIO)
4880		tptouse->tr_flags |= TRAP_NONPRIO;
4881	num_ctl_traps++;
4882	return (1);
4883}
4884
4885
4886/*
4887 * ctlclrtrap - called to clear a trap
4888 */
4889int
4890ctlclrtrap(
4891	sockaddr_u *raddr,
4892	struct interface *linter,
4893	int traptype
4894	)
4895{
4896	register struct ctl_trap *tp;
4897
4898	if ((tp = ctlfindtrap(raddr, linter)) == NULL)
4899		return (0);
4900
4901	if (tp->tr_flags & TRAP_CONFIGURED
4902	    && traptype != TRAP_TYPE_CONFIG)
4903		return (0);
4904
4905	tp->tr_flags = 0;
4906	num_ctl_traps--;
4907	return (1);
4908}
4909
4910
4911/*
4912 * ctlfindtrap - find a trap given the remote and local addresses
4913 */
4914static struct ctl_trap *
4915ctlfindtrap(
4916	sockaddr_u *raddr,
4917	struct interface *linter
4918	)
4919{
4920	size_t	n;
4921
4922	for (n = 0; n < COUNTOF(ctl_traps); n++)
4923		if ((ctl_traps[n].tr_flags & TRAP_INUSE)
4924		    && ADDR_PORT_EQ(raddr, &ctl_traps[n].tr_addr)
4925		    && (linter == ctl_traps[n].tr_localaddr))
4926			return &ctl_traps[n];
4927
4928	return NULL;
4929}
4930
4931
4932/*
4933 * report_event - report an event to the trappers
4934 */
4935void
4936report_event(
4937	int	err,		/* error code */
4938	struct peer *peer,	/* peer structure pointer */
4939	const char *str		/* protostats string */
4940	)
4941{
4942	char	statstr[NTP_MAXSTRLEN];
4943	int	i;
4944	size_t	len;
4945
4946	/*
4947	 * Report the error to the protostats file, system log and
4948	 * trappers.
4949	 */
4950	if (peer == NULL) {
4951
4952		/*
4953		 * Discard a system report if the number of reports of
4954		 * the same type exceeds the maximum.
4955		 */
4956		if (ctl_sys_last_event != (u_char)err)
4957			ctl_sys_num_events= 0;
4958		if (ctl_sys_num_events >= CTL_SYS_MAXEVENTS)
4959			return;
4960
4961		ctl_sys_last_event = (u_char)err;
4962		ctl_sys_num_events++;
4963		snprintf(statstr, sizeof(statstr),
4964		    "0.0.0.0 %04x %02x %s",
4965		    ctlsysstatus(), err, eventstr(err));
4966		if (str != NULL) {
4967			len = strlen(statstr);
4968			snprintf(statstr + len, sizeof(statstr) - len,
4969			    " %s", str);
4970		}
4971		NLOG(NLOG_SYSEVENT)
4972			msyslog(LOG_INFO, "%s", statstr);
4973	} else {
4974
4975		/*
4976		 * Discard a peer report if the number of reports of
4977		 * the same type exceeds the maximum for that peer.
4978		 */
4979		const char *	src;
4980		u_char		errlast;
4981
4982		errlast = (u_char)err & ~PEER_EVENT;
4983		if (peer->last_event != errlast)
4984			peer->num_events = 0;
4985		if (peer->num_events >= CTL_PEER_MAXEVENTS)
4986			return;
4987
4988		peer->last_event = errlast;
4989		peer->num_events++;
4990		if (ISREFCLOCKADR(&peer->srcadr))
4991			src = refnumtoa(&peer->srcadr);
4992		else
4993			src = stoa(&peer->srcadr);
4994
4995		snprintf(statstr, sizeof(statstr),
4996		    "%s %04x %02x %s", src,
4997		    ctlpeerstatus(peer), err, eventstr(err));
4998		if (str != NULL) {
4999			len = strlen(statstr);
5000			snprintf(statstr + len, sizeof(statstr) - len,
5001			    " %s", str);
5002		}
5003		NLOG(NLOG_PEEREVENT)
5004			msyslog(LOG_INFO, "%s", statstr);
5005	}
5006	record_proto_stats(statstr);
5007#if DEBUG
5008	if (debug)
5009		printf("event at %lu %s\n", current_time, statstr);
5010#endif
5011
5012	/*
5013	 * If no trappers, return.
5014	 */
5015	if (num_ctl_traps <= 0)
5016		return;
5017
5018	/* [Bug 3119]
5019	 * Peer Events should be associated with a peer -- hence the
5020	 * name. But there are instances where this function is called
5021	 * *without* a valid peer. This happens e.g. with an unsolicited
5022	 * CryptoNAK, or when a leap second alarm is going off while
5023	 * currently without a system peer.
5024	 *
5025	 * The most sensible approach to this seems to bail out here if
5026	 * this happens. Avoiding to call this function would also
5027	 * bypass the log reporting in the first part of this function,
5028	 * and this is probably not the best of all options.
5029	 *   -*-perlinger@ntp.org-*-
5030	 */
5031	if ((err & PEER_EVENT) && !peer)
5032		return;
5033
5034	/*
5035	 * Set up the outgoing packet variables
5036	 */
5037	res_opcode = CTL_OP_ASYNCMSG;
5038	res_offset = 0;
5039	res_async = TRUE;
5040	res_authenticate = FALSE;
5041	datapt = rpkt.u.data;
5042	dataend = &rpkt.u.data[CTL_MAX_DATA_LEN];
5043	if (!(err & PEER_EVENT)) {
5044		rpkt.associd = 0;
5045		rpkt.status = htons(ctlsysstatus());
5046
5047		/* Include the core system variables and the list. */
5048		for (i = 1; i <= CS_VARLIST; i++)
5049			ctl_putsys(i);
5050	} else if (NULL != peer) { /* paranoia -- skip output */
5051		rpkt.associd = htons(peer->associd);
5052		rpkt.status = htons(ctlpeerstatus(peer));
5053
5054		/* Dump it all. Later, maybe less. */
5055		for (i = 1; i <= CP_MAX_NOAUTOKEY; i++)
5056			ctl_putpeer(i, peer);
5057#	    ifdef REFCLOCK
5058		/*
5059		 * for clock exception events: add clock variables to
5060		 * reflect info on exception
5061		 */
5062		if (err == PEVNT_CLOCK) {
5063			struct refclockstat cs;
5064			struct ctl_var *kv;
5065
5066			cs.kv_list = NULL;
5067			refclock_control(&peer->srcadr, NULL, &cs);
5068
5069			ctl_puthex("refclockstatus",
5070				   ctlclkstatus(&cs));
5071
5072			for (i = 1; i <= CC_MAXCODE; i++)
5073				ctl_putclock(i, &cs, FALSE);
5074			for (kv = cs.kv_list;
5075			     kv != NULL && !(EOV & kv->flags);
5076			     kv++)
5077				if (DEF & kv->flags)
5078					ctl_putdata(kv->text,
5079						    strlen(kv->text),
5080						    FALSE);
5081			free_varlist(cs.kv_list);
5082		}
5083#	    endif /* REFCLOCK */
5084	}
5085
5086	/*
5087	 * We're done, return.
5088	 */
5089	ctl_flushpkt(0);
5090}
5091
5092
5093/*
5094 * mprintf_event - printf-style varargs variant of report_event()
5095 */
5096int
5097mprintf_event(
5098	int		evcode,		/* event code */
5099	struct peer *	p,		/* may be NULL */
5100	const char *	fmt,		/* msnprintf format */
5101	...
5102	)
5103{
5104	va_list	ap;
5105	int	rc;
5106	char	msg[512];
5107
5108	va_start(ap, fmt);
5109	rc = mvsnprintf(msg, sizeof(msg), fmt, ap);
5110	va_end(ap);
5111	report_event(evcode, p, msg);
5112
5113	return rc;
5114}
5115
5116
5117/*
5118 * ctl_clr_stats - clear stat counters
5119 */
5120void
5121ctl_clr_stats(void)
5122{
5123	ctltimereset = current_time;
5124	numctlreq = 0;
5125	numctlbadpkts = 0;
5126	numctlresponses = 0;
5127	numctlfrags = 0;
5128	numctlerrors = 0;
5129	numctlfrags = 0;
5130	numctltooshort = 0;
5131	numctlinputresp = 0;
5132	numctlinputfrag = 0;
5133	numctlinputerr = 0;
5134	numctlbadoffset = 0;
5135	numctlbadversion = 0;
5136	numctldatatooshort = 0;
5137	numctlbadop = 0;
5138	numasyncmsgs = 0;
5139}
5140
5141static u_short
5142count_var(
5143	const struct ctl_var *k
5144	)
5145{
5146	u_int c;
5147
5148	if (NULL == k)
5149		return 0;
5150
5151	c = 0;
5152	while (!(EOV & (k++)->flags))
5153		c++;
5154
5155	ENSURE(c <= USHRT_MAX);
5156	return (u_short)c;
5157}
5158
5159
5160char *
5161add_var(
5162	struct ctl_var **kv,
5163	u_long size,
5164	u_short def
5165	)
5166{
5167	u_short		c;
5168	struct ctl_var *k;
5169	char *		buf;
5170
5171	c = count_var(*kv);
5172	*kv  = erealloc(*kv, (c + 2) * sizeof(**kv));
5173	k = *kv;
5174	buf = emalloc(size);
5175	k[c].code  = c;
5176	k[c].text  = buf;
5177	k[c].flags = def;
5178	k[c + 1].code  = 0;
5179	k[c + 1].text  = NULL;
5180	k[c + 1].flags = EOV;
5181
5182	return buf;
5183}
5184
5185
5186void
5187set_var(
5188	struct ctl_var **kv,
5189	const char *data,
5190	u_long size,
5191	u_short def
5192	)
5193{
5194	struct ctl_var *k;
5195	const char *s;
5196	const char *t;
5197	char *td;
5198
5199	if (NULL == data || !size)
5200		return;
5201
5202	k = *kv;
5203	if (k != NULL) {
5204		while (!(EOV & k->flags)) {
5205			if (NULL == k->text)	{
5206				td = emalloc(size);
5207				memcpy(td, data, size);
5208				k->text = td;
5209				k->flags = def;
5210				return;
5211			} else {
5212				s = data;
5213				t = k->text;
5214				while (*t != '=' && *s == *t) {
5215					s++;
5216					t++;
5217				}
5218				if (*s == *t && ((*t == '=') || !*t)) {
5219					td = erealloc((void *)(intptr_t)k->text, size);
5220					memcpy(td, data, size);
5221					k->text = td;
5222					k->flags = def;
5223					return;
5224				}
5225			}
5226			k++;
5227		}
5228	}
5229	td = add_var(kv, size, def);
5230	memcpy(td, data, size);
5231}
5232
5233
5234void
5235set_sys_var(
5236	const char *data,
5237	u_long size,
5238	u_short def
5239	)
5240{
5241	set_var(&ext_sys_var, data, size, def);
5242}
5243
5244
5245/*
5246 * get_ext_sys_var() retrieves the value of a user-defined variable or
5247 * NULL if the variable has not been setvar'd.
5248 */
5249const char *
5250get_ext_sys_var(const char *tag)
5251{
5252	struct ctl_var *	v;
5253	size_t			c;
5254	const char *		val;
5255
5256	val = NULL;
5257	c = strlen(tag);
5258	for (v = ext_sys_var; !(EOV & v->flags); v++) {
5259		if (NULL != v->text && !memcmp(tag, v->text, c)) {
5260			if ('=' == v->text[c]) {
5261				val = v->text + c + 1;
5262				break;
5263			} else if ('\0' == v->text[c]) {
5264				val = "";
5265				break;
5266			}
5267		}
5268	}
5269
5270	return val;
5271}
5272
5273
5274void
5275free_varlist(
5276	struct ctl_var *kv
5277	)
5278{
5279	struct ctl_var *k;
5280	if (kv) {
5281		for (k = kv; !(k->flags & EOV); k++)
5282			free((void *)(intptr_t)k->text);
5283		free((void *)kv);
5284	}
5285}
5286