1/*
2 * ntp_fp.h - definitions for NTP fixed/floating-point arithmetic
3 */
4
5#ifndef NTP_FP_H
6#define NTP_FP_H
7
8#include "ntp_types.h"
9
10/*
11 * NTP uses two fixed point formats.  The first (l_fp) is the "long"
12 * format and is 64 bits long with the decimal between bits 31 and 32.
13 * This is used for time stamps in the NTP packet header (in network
14 * byte order) and for internal computations of offsets (in local host
15 * byte order). We use the same structure for both signed and unsigned
16 * values, which is a big hack but saves rewriting all the operators
17 * twice. Just to confuse this, we also sometimes just carry the
18 * fractional part in calculations, in both signed and unsigned forms.
19 * Anyway, an l_fp looks like:
20 *
21 *    0			  1		      2			  3
22 *    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
23 *   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
24 *   |			       Integral Part			     |
25 *   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
26 *   |			       Fractional Part			     |
27 *   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
28 *
29 */
30typedef struct {
31	union {
32		u_int32 Xl_ui;
33		int32 Xl_i;
34	} Ul_i;
35	u_int32	l_uf;
36} l_fp;
37
38#define l_ui	Ul_i.Xl_ui		/* unsigned integral part */
39#define	l_i	Ul_i.Xl_i		/* signed integral part */
40
41/*
42 * Fractional precision (of an l_fp) is actually the number of
43 * bits in a long.
44 */
45#define	FRACTION_PREC	(32)
46
47
48/*
49 * The second fixed point format is 32 bits, with the decimal between
50 * bits 15 and 16.  There is a signed version (s_fp) and an unsigned
51 * version (u_fp).  This is used to represent synchronizing distance
52 * and synchronizing dispersion in the NTP packet header (again, in
53 * network byte order) and internally to hold both distance and
54 * dispersion values (in local byte order).  In network byte order
55 * it looks like:
56 *
57 *    0			  1		      2			  3
58 *    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
59 *   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
60 *   |		  Integer Part	     |	   Fraction Part	     |
61 *   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
62 *
63 */
64typedef int32 s_fp;
65typedef u_int32 u_fp;
66
67/*
68 * A unit second in fp format.	Actually 2**(half_the_bits_in_a_long)
69 */
70#define	FP_SECOND	(0x10000)
71
72/*
73 * Byte order conversions
74 */
75#define	HTONS_FP(x)	(htonl(x))
76#define	NTOHS_FP(x)	(ntohl(x))
77
78#define	NTOHL_MFP(ni, nf, hi, hf)				\
79	do {							\
80		(hi) = ntohl(ni);				\
81		(hf) = ntohl(nf);				\
82	} while (FALSE)
83
84#define	HTONL_MFP(hi, hf, ni, nf)				\
85	do {							\
86		(ni) = htonl(hi);				\
87		(nf) = htonl(hf);				\
88	} while (FALSE)
89
90#define HTONL_FP(h, n)						\
91	HTONL_MFP((h)->l_ui, (h)->l_uf, (n)->l_ui, (n)->l_uf)
92
93#define NTOHL_FP(n, h)						\
94	NTOHL_MFP((n)->l_ui, (n)->l_uf, (h)->l_ui, (h)->l_uf)
95
96/* Convert unsigned ts fraction to net order ts */
97#define	HTONL_UF(uf, nts)					\
98	do {							\
99		(nts)->l_ui = 0;				\
100		(nts)->l_uf = htonl(uf);			\
101	} while (FALSE)
102
103/*
104 * Conversions between the two fixed point types
105 */
106#define	MFPTOFP(x_i, x_f)	(((x_i) >= 0x00010000) ? 0x7fffffff : \
107				(((x_i) <= -0x00010000) ? 0x80000000 : \
108				(((x_i)<<16) | (((x_f)>>16)&0xffff))))
109#define	LFPTOFP(v)		MFPTOFP((v)->l_i, (v)->l_uf)
110
111#define UFPTOLFP(x, v) ((v)->l_ui = (u_fp)(x)>>16, (v)->l_uf = (x)<<16)
112#define FPTOLFP(x, v)  (UFPTOLFP((x), (v)), (x) < 0 ? (v)->l_ui -= 0x10000 : 0)
113
114#define MAXLFP(v) ((v)->l_ui = 0x7fffffffu, (v)->l_uf = 0xffffffffu)
115#define MINLFP(v) ((v)->l_ui = 0x80000000u, (v)->l_uf = 0u)
116
117/*
118 * Primitive operations on long fixed point values.  If these are
119 * reminiscent of assembler op codes it's only because some may
120 * be replaced by inline assembler for particular machines someday.
121 * These are the (kind of inefficient) run-anywhere versions.
122 */
123#define	M_NEG(v_i, v_f)		/* v = -v */ \
124	do { \
125		(v_f) = ~(v_f) + 1u; \
126		(v_i) = ~(v_i) + ((v_f) == 0); \
127	} while (FALSE)
128
129#define	M_NEGM(r_i, r_f, a_i, a_f)	/* r = -a */ \
130	do { \
131		(r_f) = ~(a_f) + 1u; \
132		(r_i) = ~(a_i) + ((r_f) == 0); \
133	} while (FALSE)
134
135#define M_ADD(r_i, r_f, a_i, a_f)	/* r += a */ \
136	do { \
137		u_int32 add_t = (r_f); \
138		(r_f) += (a_f); \
139		(r_i) += (a_i) + ((u_int32)(r_f) < add_t); \
140	} while (FALSE)
141
142#define M_ADD3(r_o, r_i, r_f, a_o, a_i, a_f) /* r += a, three word */ \
143	do { \
144		u_int32 add_t, add_c; \
145		add_t  = (r_f); \
146		(r_f) += (a_f); \
147		add_c  = ((u_int32)(r_f) < add_t); \
148		(r_i) += add_c; \
149		add_c  = ((u_int32)(r_i) < add_c); \
150		add_t  = (r_i); \
151		(r_i) += (a_i); \
152		add_c |= ((u_int32)(r_i) < add_t); \
153		(r_o) += (a_o) + add_c; \
154	} while (FALSE)
155
156#define M_SUB(r_i, r_f, a_i, a_f)	/* r -= a */ \
157	do { \
158		u_int32 sub_t = (r_f); \
159		(r_f) -= (a_f); \
160		(r_i) -= (a_i) + ((u_int32)(r_f) > sub_t); \
161	} while (FALSE)
162
163#define	M_RSHIFTU(v_i, v_f)		/* v >>= 1, v is unsigned */ \
164	do { \
165		(v_f) = ((u_int32)(v_f) >> 1) | ((u_int32)(v_i) << 31);	\
166		(v_i) = ((u_int32)(v_i) >> 1); \
167	} while (FALSE)
168
169#define	M_RSHIFT(v_i, v_f)		/* v >>= 1, v is signed */ \
170	do { \
171		(v_f) = ((u_int32)(v_f) >> 1) | ((u_int32)(v_i) << 31);	\
172		(v_i) = ((u_int32)(v_i) >> 1) | ((u_int32)(v_i) & 0x80000000);	\
173	} while (FALSE)
174
175#define	M_LSHIFT(v_i, v_f)		/* v <<= 1 */ \
176	do { \
177		(v_i) = ((u_int32)(v_i) << 1) | ((u_int32)(v_f) >> 31);	\
178		(v_f) = ((u_int32)(v_f) << 1); \
179	} while (FALSE)
180
181#define	M_LSHIFT3(v_o, v_i, v_f)	/* v <<= 1, with overflow */ \
182	do { \
183		(v_o) = ((u_int32)(v_o) << 1) | ((u_int32)(v_i) >> 31);	\
184		(v_i) = ((u_int32)(v_i) << 1) | ((u_int32)(v_f) >> 31);	\
185		(v_f) = ((u_int32)(v_f) << 1); \
186	} while (FALSE)
187
188#define	M_ADDUF(r_i, r_f, uf)		/* r += uf, uf is u_int32 fraction */ \
189	M_ADD((r_i), (r_f), 0, (uf))	/* let optimizer worry about it */
190
191#define	M_SUBUF(r_i, r_f, uf)		/* r -= uf, uf is u_int32 fraction */ \
192	M_SUB((r_i), (r_f), 0, (uf))	/* let optimizer worry about it */
193
194#define	M_ADDF(r_i, r_f, f)		/* r += f, f is a int32 fraction */ \
195	do { \
196		int32 add_f = (int32)(f); \
197		if (add_f >= 0) \
198			M_ADD((r_i), (r_f), 0, (uint32)( add_f)); \
199		else \
200			M_SUB((r_i), (r_f), 0, (uint32)(-add_f)); \
201	} while(0)
202
203#define	M_ISNEG(v_i)			/* v < 0 */ \
204	(((v_i) & 0x80000000) != 0)
205
206#define	M_ISGT(a_i, a_f, b_i, b_f)	/* a > b signed */ \
207	(((u_int32)((a_i) ^ 0x80000000) > (u_int32)((b_i) ^ 0x80000000)) || \
208	  ((a_i) == (b_i) && ((u_int32)(a_f)) > ((u_int32)(b_f))))
209
210#define	M_ISGTU(a_i, a_f, b_i, b_f)	/* a > b unsigned */ \
211	(((u_int32)(a_i)) > ((u_int32)(b_i)) || \
212	  ((a_i) == (b_i) && ((u_int32)(a_f)) > ((u_int32)(b_f))))
213
214#define	M_ISHIS(a_i, a_f, b_i, b_f)	/* a >= b unsigned */ \
215	(((u_int32)(a_i)) > ((u_int32)(b_i)) || \
216	  ((a_i) == (b_i) && ((u_int32)(a_f)) >= ((u_int32)(b_f))))
217
218#define	M_ISGEQ(a_i, a_f, b_i, b_f)	/* a >= b signed */ \
219	(((u_int32)((a_i) ^ 0x80000000) > (u_int32)((b_i) ^ 0x80000000)) || \
220	  ((a_i) == (b_i) && (u_int32)(a_f) >= (u_int32)(b_f)))
221
222#define	M_ISEQU(a_i, a_f, b_i, b_f)	/* a == b unsigned */ \
223	((u_int32)(a_i) == (u_int32)(b_i) && (u_int32)(a_f) == (u_int32)(b_f))
224
225/*
226 * Operations on the long fp format
227 */
228#define	L_ADD(r, a)	M_ADD((r)->l_ui, (r)->l_uf, (a)->l_ui, (a)->l_uf)
229#define	L_SUB(r, a)	M_SUB((r)->l_ui, (r)->l_uf, (a)->l_ui, (a)->l_uf)
230#define	L_NEG(v)	M_NEG((v)->l_ui, (v)->l_uf)
231#define L_ADDUF(r, uf)	M_ADDUF((r)->l_ui, (r)->l_uf, (uf))
232#define L_SUBUF(r, uf)	M_SUBUF((r)->l_ui, (r)->l_uf, (uf))
233#define	L_ADDF(r, f)	M_ADDF((r)->l_ui, (r)->l_uf, (f))
234#define	L_RSHIFT(v)	M_RSHIFT((v)->l_i, (v)->l_uf)
235#define	L_RSHIFTU(v)	M_RSHIFTU((v)->l_ui, (v)->l_uf)
236#define	L_LSHIFT(v)	M_LSHIFT((v)->l_ui, (v)->l_uf)
237#define	L_CLR(v)	((v)->l_ui = (v)->l_uf = 0)
238
239#define	L_ISNEG(v)	M_ISNEG((v)->l_ui)
240#define L_ISZERO(v)	(((v)->l_ui | (v)->l_uf) == 0)
241#define	L_ISGT(a, b)	M_ISGT((a)->l_i, (a)->l_uf, (b)->l_i, (b)->l_uf)
242#define	L_ISGTU(a, b)	M_ISGTU((a)->l_ui, (a)->l_uf, (b)->l_ui, (b)->l_uf)
243#define	L_ISHIS(a, b)	M_ISHIS((a)->l_ui, (a)->l_uf, (b)->l_ui, (b)->l_uf)
244#define	L_ISGEQ(a, b)	M_ISGEQ((a)->l_ui, (a)->l_uf, (b)->l_ui, (b)->l_uf)
245#define	L_ISEQU(a, b)	M_ISEQU((a)->l_ui, (a)->l_uf, (b)->l_ui, (b)->l_uf)
246
247/*
248 * s_fp/double and u_fp/double conversions
249 */
250#define FRIC		65536.0			/* 2^16 as a double */
251#define DTOFP(r)	((s_fp)((r) * FRIC))
252#define DTOUFP(r)	((u_fp)((r) * FRIC))
253#define FPTOD(r)	((double)(r) / FRIC)
254
255/*
256 * l_fp/double conversions
257 */
258#define FRAC		4294967296.0 		/* 2^32 as a double */
259
260/*
261 * Use 64 bit integers if available.  Solaris on SPARC has a problem
262 * compiling parsesolaris.c if ntp_fp.h includes math.h, due to
263 * archaic gets() and printf() prototypes used in Solaris kernel
264 * headers.  So far the problem has only been seen with gcc, but it
265 * may also affect Sun compilers, in which case the defined(__GNUC__)
266 * term should be removed.
267 * XSCALE also generates bad code for these, at least with GCC 3.3.5.
268 * This is unrelated to math.h, but the same solution applies.
269 */
270#if defined(HAVE_U_INT64) && \
271    !(defined(__SVR4) && defined(__sun) && \
272      defined(sparc) && defined(__GNUC__) || \
273      defined(__arm__) && defined(__XSCALE__) && defined(__GNUC__))
274
275#include <math.h>	/* ldexp() */
276
277#define M_DTOLFP(d, r_ui, r_uf)		/* double to l_fp */	\
278	do {							\
279		double	d_tmp;					\
280		u_int64	q_tmp;					\
281		int	M_isneg;					\
282								\
283		d_tmp = (d);					\
284		M_isneg = (d_tmp < 0.);				\
285		if (M_isneg) {					\
286			d_tmp = -d_tmp;				\
287		}						\
288		q_tmp = (u_int64)ldexp(d_tmp, 32);		\
289		if (M_isneg) {					\
290			q_tmp = ~q_tmp + 1;			\
291		}						\
292		(r_uf) = (u_int32)q_tmp;			\
293		(r_ui) = (u_int32)(q_tmp >> 32);		\
294	} while (FALSE)
295
296#define M_LFPTOD(r_ui, r_uf, d) 	/* l_fp to double */	\
297	do {							\
298		double	d_tmp;					\
299		u_int64	q_tmp;					\
300		int	M_isneg;				\
301								\
302		q_tmp = ((u_int64)(r_ui) << 32) + (r_uf);	\
303		M_isneg = M_ISNEG(r_ui);			\
304		if (M_isneg) {					\
305			q_tmp = ~q_tmp + 1;			\
306		}						\
307		d_tmp = ldexp((double)q_tmp, -32);		\
308		if (M_isneg) {					\
309			d_tmp = -d_tmp;				\
310		}						\
311		(d) = d_tmp;					\
312	} while (FALSE)
313
314#else /* use only 32 bit unsigned values */
315
316#define M_DTOLFP(d, r_ui, r_uf) 		/* double to l_fp */ \
317	do { \
318		double d_tmp; \
319		if ((d_tmp = (d)) < 0) { \
320			(r_ui) = (u_int32)(-d_tmp); \
321			(r_uf) = (u_int32)(-(d_tmp + (double)(r_ui)) * FRAC); \
322			M_NEG((r_ui), (r_uf)); \
323		} else { \
324			(r_ui) = (u_int32)d_tmp; \
325			(r_uf) = (u_int32)((d_tmp - (double)(r_ui)) * FRAC); \
326		} \
327	} while (0)
328#define M_LFPTOD(r_ui, r_uf, d) 		/* l_fp to double */ \
329	do { \
330		u_int32 l_thi, l_tlo; \
331		l_thi = (r_ui); l_tlo = (r_uf); \
332		if (M_ISNEG(l_thi)) { \
333			M_NEG(l_thi, l_tlo); \
334			(d) = -((double)l_thi + (double)l_tlo / FRAC); \
335		} else { \
336			(d) = (double)l_thi + (double)l_tlo / FRAC; \
337		} \
338	} while (0)
339#endif
340
341#define DTOLFP(d, v) 	M_DTOLFP((d), (v)->l_ui, (v)->l_uf)
342#define LFPTOD(v, d) 	M_LFPTOD((v)->l_ui, (v)->l_uf, (d))
343
344/*
345 * Prototypes
346 */
347extern	char *	dofptoa		(u_fp, char, short, int);
348extern	char *	dolfptoa	(u_int32, u_int32, char, short, int);
349
350extern	int	atolfp		(const char *, l_fp *);
351extern	int	buftvtots	(const char *, l_fp *);
352extern	char *	fptoa		(s_fp, short);
353extern	char *	fptoms		(s_fp, short);
354extern	int	hextolfp	(const char *, l_fp *);
355extern  void	gpstolfp	(u_int, u_int, unsigned long, l_fp *);
356extern	int	mstolfp		(const char *, l_fp *);
357extern	char *	prettydate	(l_fp *);
358extern	char *	gmprettydate	(l_fp *);
359extern	char *	uglydate	(l_fp *);
360extern  void	mfp_mul		(int32 *, u_int32 *, int32, u_int32, int32, u_int32);
361
362extern	void	set_sys_fuzz	(double);
363extern	void	init_systime	(void);
364extern	void	get_systime	(l_fp *);
365extern	int	step_systime	(double);
366extern	int	adj_systime	(double);
367extern	int	clamp_systime	(void);
368
369extern	struct tm * ntp2unix_tm (u_int32 ntp, int local);
370
371#define	lfptoa(fpv, ndec)	mfptoa((fpv)->l_ui, (fpv)->l_uf, (ndec))
372#define	lfptoms(fpv, ndec)	mfptoms((fpv)->l_ui, (fpv)->l_uf, (ndec))
373
374#define stoa(addr)		socktoa(addr)
375#define	ntoa(addr)		stoa(addr)
376#define sptoa(addr)		sockporttoa(addr)
377#define stohost(addr)		socktohost(addr)
378
379#define	ufptoa(fpv, ndec)	dofptoa((fpv), 0, (ndec), 0)
380#define	ufptoms(fpv, ndec)	dofptoa((fpv), 0, (ndec), 1)
381#define	ulfptoa(fpv, ndec)	dolfptoa((fpv)->l_ui, (fpv)->l_uf, 0, (ndec), 0)
382#define	ulfptoms(fpv, ndec)	dolfptoa((fpv)->l_ui, (fpv)->l_uf, 0, (ndec), 1)
383#define	umfptoa(fpi, fpf, ndec) dolfptoa((fpi), (fpf), 0, (ndec), 0)
384
385/*
386 * Optional callback from libntp step_systime() to ntpd.  Optional
387*  because other libntp clients like ntpdate don't use it.
388 */
389typedef void (*time_stepped_callback)(void);
390extern time_stepped_callback	step_callback;
391
392/*
393 * Multi-thread locking for get_systime()
394 *
395 * On most systems, get_systime() is used solely by the main ntpd
396 * thread, but on Windows it's also used by the dedicated I/O thread.
397 * The [Bug 2037] changes to get_systime() have it keep state between
398 * calls to ensure time moves in only one direction, which means its
399 * use on Windows needs to be protected against simultaneous execution
400 * to avoid falsely detecting Lamport violations by ensuring only one
401 * thread at a time is in get_systime().
402 */
403#ifdef SYS_WINNT
404extern CRITICAL_SECTION get_systime_cs;
405# define INIT_GET_SYSTIME_CRITSEC()				\
406		InitializeCriticalSection(&get_systime_cs)
407# define ENTER_GET_SYSTIME_CRITSEC()				\
408		EnterCriticalSection(&get_systime_cs)
409# define LEAVE_GET_SYSTIME_CRITSEC()				\
410		LeaveCriticalSection(&get_systime_cs)
411# define INIT_WIN_PRECISE_TIME()				\
412		init_win_precise_time()
413#else	/* !SYS_WINNT follows */
414# define INIT_GET_SYSTIME_CRITSEC()			\
415		do {} while (FALSE)
416# define ENTER_GET_SYSTIME_CRITSEC()			\
417		do {} while (FALSE)
418# define LEAVE_GET_SYSTIME_CRITSEC()			\
419		do {} while (FALSE)
420# define INIT_WIN_PRECISE_TIME()			\
421		do {} while (FALSE)
422#endif
423
424#endif /* NTP_FP_H */
425