z_Windows_NT_util.cpp revision 360784
1/*
2 * z_Windows_NT_util.cpp -- platform specific routines.
3 */
4
5//===----------------------------------------------------------------------===//
6//
7// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
8// See https://llvm.org/LICENSE.txt for license information.
9// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
10//
11//===----------------------------------------------------------------------===//
12
13#include "kmp.h"
14#include "kmp_affinity.h"
15#include "kmp_i18n.h"
16#include "kmp_io.h"
17#include "kmp_itt.h"
18#include "kmp_wait_release.h"
19
20/* This code is related to NtQuerySystemInformation() function. This function
21   is used in the Load balance algorithm for OMP_DYNAMIC=true to find the
22   number of running threads in the system. */
23
24#include <ntsecapi.h> // UNICODE_STRING
25#include <ntstatus.h>
26
27enum SYSTEM_INFORMATION_CLASS {
28  SystemProcessInformation = 5
29}; // SYSTEM_INFORMATION_CLASS
30
31struct CLIENT_ID {
32  HANDLE UniqueProcess;
33  HANDLE UniqueThread;
34}; // struct CLIENT_ID
35
36enum THREAD_STATE {
37  StateInitialized,
38  StateReady,
39  StateRunning,
40  StateStandby,
41  StateTerminated,
42  StateWait,
43  StateTransition,
44  StateUnknown
45}; // enum THREAD_STATE
46
47struct VM_COUNTERS {
48  SIZE_T PeakVirtualSize;
49  SIZE_T VirtualSize;
50  ULONG PageFaultCount;
51  SIZE_T PeakWorkingSetSize;
52  SIZE_T WorkingSetSize;
53  SIZE_T QuotaPeakPagedPoolUsage;
54  SIZE_T QuotaPagedPoolUsage;
55  SIZE_T QuotaPeakNonPagedPoolUsage;
56  SIZE_T QuotaNonPagedPoolUsage;
57  SIZE_T PagefileUsage;
58  SIZE_T PeakPagefileUsage;
59  SIZE_T PrivatePageCount;
60}; // struct VM_COUNTERS
61
62struct SYSTEM_THREAD {
63  LARGE_INTEGER KernelTime;
64  LARGE_INTEGER UserTime;
65  LARGE_INTEGER CreateTime;
66  ULONG WaitTime;
67  LPVOID StartAddress;
68  CLIENT_ID ClientId;
69  DWORD Priority;
70  LONG BasePriority;
71  ULONG ContextSwitchCount;
72  THREAD_STATE State;
73  ULONG WaitReason;
74}; // SYSTEM_THREAD
75
76KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, KernelTime) == 0);
77#if KMP_ARCH_X86
78KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, StartAddress) == 28);
79KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, State) == 52);
80#else
81KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, StartAddress) == 32);
82KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, State) == 68);
83#endif
84
85struct SYSTEM_PROCESS_INFORMATION {
86  ULONG NextEntryOffset;
87  ULONG NumberOfThreads;
88  LARGE_INTEGER Reserved[3];
89  LARGE_INTEGER CreateTime;
90  LARGE_INTEGER UserTime;
91  LARGE_INTEGER KernelTime;
92  UNICODE_STRING ImageName;
93  DWORD BasePriority;
94  HANDLE ProcessId;
95  HANDLE ParentProcessId;
96  ULONG HandleCount;
97  ULONG Reserved2[2];
98  VM_COUNTERS VMCounters;
99  IO_COUNTERS IOCounters;
100  SYSTEM_THREAD Threads[1];
101}; // SYSTEM_PROCESS_INFORMATION
102typedef SYSTEM_PROCESS_INFORMATION *PSYSTEM_PROCESS_INFORMATION;
103
104KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, NextEntryOffset) == 0);
105KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, CreateTime) == 32);
106KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, ImageName) == 56);
107#if KMP_ARCH_X86
108KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, ProcessId) == 68);
109KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, HandleCount) == 76);
110KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, VMCounters) == 88);
111KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, IOCounters) == 136);
112KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, Threads) == 184);
113#else
114KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, ProcessId) == 80);
115KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, HandleCount) == 96);
116KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, VMCounters) == 112);
117KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, IOCounters) == 208);
118KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, Threads) == 256);
119#endif
120
121typedef NTSTATUS(NTAPI *NtQuerySystemInformation_t)(SYSTEM_INFORMATION_CLASS,
122                                                    PVOID, ULONG, PULONG);
123NtQuerySystemInformation_t NtQuerySystemInformation = NULL;
124
125HMODULE ntdll = NULL;
126
127/* End of NtQuerySystemInformation()-related code */
128
129static HMODULE kernel32 = NULL;
130
131#if KMP_HANDLE_SIGNALS
132typedef void (*sig_func_t)(int);
133static sig_func_t __kmp_sighldrs[NSIG];
134static int __kmp_siginstalled[NSIG];
135#endif
136
137#if KMP_USE_MONITOR
138static HANDLE __kmp_monitor_ev;
139#endif
140static kmp_int64 __kmp_win32_time;
141double __kmp_win32_tick;
142
143int __kmp_init_runtime = FALSE;
144CRITICAL_SECTION __kmp_win32_section;
145
146void __kmp_win32_mutex_init(kmp_win32_mutex_t *mx) {
147  InitializeCriticalSection(&mx->cs);
148#if USE_ITT_BUILD
149  __kmp_itt_system_object_created(&mx->cs, "Critical Section");
150#endif /* USE_ITT_BUILD */
151}
152
153void __kmp_win32_mutex_destroy(kmp_win32_mutex_t *mx) {
154  DeleteCriticalSection(&mx->cs);
155}
156
157void __kmp_win32_mutex_lock(kmp_win32_mutex_t *mx) {
158  EnterCriticalSection(&mx->cs);
159}
160
161int __kmp_win32_mutex_trylock(kmp_win32_mutex_t *mx) {
162  return TryEnterCriticalSection(&mx->cs);
163}
164
165void __kmp_win32_mutex_unlock(kmp_win32_mutex_t *mx) {
166  LeaveCriticalSection(&mx->cs);
167}
168
169void __kmp_win32_cond_init(kmp_win32_cond_t *cv) {
170  cv->waiters_count_ = 0;
171  cv->wait_generation_count_ = 0;
172  cv->release_count_ = 0;
173
174  /* Initialize the critical section */
175  __kmp_win32_mutex_init(&cv->waiters_count_lock_);
176
177  /* Create a manual-reset event. */
178  cv->event_ = CreateEvent(NULL, // no security
179                           TRUE, // manual-reset
180                           FALSE, // non-signaled initially
181                           NULL); // unnamed
182#if USE_ITT_BUILD
183  __kmp_itt_system_object_created(cv->event_, "Event");
184#endif /* USE_ITT_BUILD */
185}
186
187void __kmp_win32_cond_destroy(kmp_win32_cond_t *cv) {
188  __kmp_win32_mutex_destroy(&cv->waiters_count_lock_);
189  __kmp_free_handle(cv->event_);
190  memset(cv, '\0', sizeof(*cv));
191}
192
193/* TODO associate cv with a team instead of a thread so as to optimize
194   the case where we wake up a whole team */
195
196template <class C>
197static void __kmp_win32_cond_wait(kmp_win32_cond_t *cv, kmp_win32_mutex_t *mx,
198                                  kmp_info_t *th, C *flag) {
199  int my_generation;
200  int last_waiter;
201
202  /* Avoid race conditions */
203  __kmp_win32_mutex_lock(&cv->waiters_count_lock_);
204
205  /* Increment count of waiters */
206  cv->waiters_count_++;
207
208  /* Store current generation in our activation record. */
209  my_generation = cv->wait_generation_count_;
210
211  __kmp_win32_mutex_unlock(&cv->waiters_count_lock_);
212  __kmp_win32_mutex_unlock(mx);
213
214  for (;;) {
215    int wait_done = 0;
216    DWORD res, timeout = 5000; // just tried to quess an appropriate number
217    /* Wait until the event is signaled */
218    res = WaitForSingleObject(cv->event_, timeout);
219
220    if (res == WAIT_OBJECT_0) {
221      // event signaled
222      __kmp_win32_mutex_lock(&cv->waiters_count_lock_);
223      /* Exit the loop when the <cv->event_> is signaled and there are still
224         waiting threads from this <wait_generation> that haven't been released
225         from this wait yet. */
226      wait_done = (cv->release_count_ > 0) &&
227                  (cv->wait_generation_count_ != my_generation);
228      __kmp_win32_mutex_unlock(&cv->waiters_count_lock_);
229    } else if (res == WAIT_TIMEOUT || res == WAIT_FAILED) {
230      // check if the flag and cv counters are in consistent state
231      // as MS sent us debug dump whith inconsistent state of data
232      __kmp_win32_mutex_lock(mx);
233      typename C::flag_t old_f = flag->set_sleeping();
234      if (!flag->done_check_val(old_f & ~KMP_BARRIER_SLEEP_STATE)) {
235        __kmp_win32_mutex_unlock(mx);
236        continue;
237      }
238      // condition fulfilled, exiting
239      old_f = flag->unset_sleeping();
240      KMP_DEBUG_ASSERT(old_f & KMP_BARRIER_SLEEP_STATE);
241      TCW_PTR(th->th.th_sleep_loc, NULL);
242      KF_TRACE(50, ("__kmp_win32_cond_wait: exiting, condition "
243                    "fulfilled: flag's loc(%p): %u => %u\n",
244                    flag->get(), old_f, *(flag->get())));
245
246      __kmp_win32_mutex_lock(&cv->waiters_count_lock_);
247      KMP_DEBUG_ASSERT(cv->waiters_count_ > 0);
248      cv->release_count_ = cv->waiters_count_;
249      cv->wait_generation_count_++;
250      wait_done = 1;
251      __kmp_win32_mutex_unlock(&cv->waiters_count_lock_);
252
253      __kmp_win32_mutex_unlock(mx);
254    }
255    /* there used to be a semicolon after the if statement, it looked like a
256       bug, so i removed it */
257    if (wait_done)
258      break;
259  }
260
261  __kmp_win32_mutex_lock(mx);
262  __kmp_win32_mutex_lock(&cv->waiters_count_lock_);
263
264  cv->waiters_count_--;
265  cv->release_count_--;
266
267  last_waiter = (cv->release_count_ == 0);
268
269  __kmp_win32_mutex_unlock(&cv->waiters_count_lock_);
270
271  if (last_waiter) {
272    /* We're the last waiter to be notified, so reset the manual event. */
273    ResetEvent(cv->event_);
274  }
275}
276
277void __kmp_win32_cond_broadcast(kmp_win32_cond_t *cv) {
278  __kmp_win32_mutex_lock(&cv->waiters_count_lock_);
279
280  if (cv->waiters_count_ > 0) {
281    SetEvent(cv->event_);
282    /* Release all the threads in this generation. */
283
284    cv->release_count_ = cv->waiters_count_;
285
286    /* Start a new generation. */
287    cv->wait_generation_count_++;
288  }
289
290  __kmp_win32_mutex_unlock(&cv->waiters_count_lock_);
291}
292
293void __kmp_win32_cond_signal(kmp_win32_cond_t *cv) {
294  __kmp_win32_cond_broadcast(cv);
295}
296
297void __kmp_enable(int new_state) {
298  if (__kmp_init_runtime)
299    LeaveCriticalSection(&__kmp_win32_section);
300}
301
302void __kmp_disable(int *old_state) {
303  *old_state = 0;
304
305  if (__kmp_init_runtime)
306    EnterCriticalSection(&__kmp_win32_section);
307}
308
309void __kmp_suspend_initialize(void) { /* do nothing */
310}
311
312void __kmp_suspend_initialize_thread(kmp_info_t *th) {
313  int old_value = KMP_ATOMIC_LD_RLX(&th->th.th_suspend_init);
314  int new_value = TRUE;
315  // Return if already initialized
316  if (old_value == new_value)
317    return;
318  // Wait, then return if being initialized
319  if (old_value == -1 ||
320      !__kmp_atomic_compare_store(&th->th.th_suspend_init, old_value, -1)) {
321    while (KMP_ATOMIC_LD_ACQ(&th->th.th_suspend_init) != new_value) {
322      KMP_CPU_PAUSE();
323    }
324  } else {
325    // Claim to be the initializer and do initializations
326    __kmp_win32_cond_init(&th->th.th_suspend_cv);
327    __kmp_win32_mutex_init(&th->th.th_suspend_mx);
328    KMP_ATOMIC_ST_REL(&th->th.th_suspend_init, new_value);
329  }
330}
331
332void __kmp_suspend_uninitialize_thread(kmp_info_t *th) {
333  if (KMP_ATOMIC_LD_ACQ(&th->th.th_suspend_init)) {
334    /* this means we have initialize the suspension pthread objects for this
335       thread in this instance of the process */
336    __kmp_win32_cond_destroy(&th->th.th_suspend_cv);
337    __kmp_win32_mutex_destroy(&th->th.th_suspend_mx);
338    KMP_ATOMIC_ST_REL(&th->th.th_suspend_init, FALSE);
339  }
340}
341
342int __kmp_try_suspend_mx(kmp_info_t *th) {
343  return __kmp_win32_mutex_trylock(&th->th.th_suspend_mx);
344}
345
346void __kmp_lock_suspend_mx(kmp_info_t *th) {
347  __kmp_win32_mutex_lock(&th->th.th_suspend_mx);
348}
349
350void __kmp_unlock_suspend_mx(kmp_info_t *th) {
351  __kmp_win32_mutex_unlock(&th->th.th_suspend_mx);
352}
353
354/* This routine puts the calling thread to sleep after setting the
355   sleep bit for the indicated flag variable to true. */
356template <class C>
357static inline void __kmp_suspend_template(int th_gtid, C *flag) {
358  kmp_info_t *th = __kmp_threads[th_gtid];
359  int status;
360  typename C::flag_t old_spin;
361
362  KF_TRACE(30, ("__kmp_suspend_template: T#%d enter for flag's loc(%p)\n",
363                th_gtid, flag->get()));
364
365  __kmp_suspend_initialize_thread(th);
366  __kmp_win32_mutex_lock(&th->th.th_suspend_mx);
367
368  KF_TRACE(10, ("__kmp_suspend_template: T#%d setting sleep bit for flag's"
369                " loc(%p)\n",
370                th_gtid, flag->get()));
371
372  /* TODO: shouldn't this use release semantics to ensure that
373     __kmp_suspend_initialize_thread gets called first? */
374  old_spin = flag->set_sleeping();
375  if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME &&
376      __kmp_pause_status != kmp_soft_paused) {
377    flag->unset_sleeping();
378    __kmp_win32_mutex_unlock(&th->th.th_suspend_mx);
379    return;
380  }
381
382  KF_TRACE(5, ("__kmp_suspend_template: T#%d set sleep bit for flag's"
383               " loc(%p)==%d\n",
384               th_gtid, flag->get(), *(flag->get())));
385
386  if (flag->done_check_val(old_spin)) {
387    old_spin = flag->unset_sleeping();
388    KF_TRACE(5, ("__kmp_suspend_template: T#%d false alarm, reset sleep bit "
389                 "for flag's loc(%p)\n",
390                 th_gtid, flag->get()));
391  } else {
392#ifdef DEBUG_SUSPEND
393    __kmp_suspend_count++;
394#endif
395    /* Encapsulate in a loop as the documentation states that this may "with
396       low probability" return when the condition variable has not been signaled
397       or broadcast */
398    int deactivated = FALSE;
399    TCW_PTR(th->th.th_sleep_loc, (void *)flag);
400    while (flag->is_sleeping()) {
401      KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform "
402                    "kmp_win32_cond_wait()\n",
403                    th_gtid));
404      // Mark the thread as no longer active (only in the first iteration of the
405      // loop).
406      if (!deactivated) {
407        th->th.th_active = FALSE;
408        if (th->th.th_active_in_pool) {
409          th->th.th_active_in_pool = FALSE;
410          KMP_ATOMIC_DEC(&__kmp_thread_pool_active_nth);
411          KMP_DEBUG_ASSERT(TCR_4(__kmp_thread_pool_active_nth) >= 0);
412        }
413        deactivated = TRUE;
414        __kmp_win32_cond_wait(&th->th.th_suspend_cv, &th->th.th_suspend_mx, th,
415                              flag);
416      } else {
417        __kmp_win32_cond_wait(&th->th.th_suspend_cv, &th->th.th_suspend_mx, th,
418                              flag);
419      }
420
421#ifdef KMP_DEBUG
422      if (flag->is_sleeping()) {
423        KF_TRACE(100,
424                 ("__kmp_suspend_template: T#%d spurious wakeup\n", th_gtid));
425      }
426#endif /* KMP_DEBUG */
427
428    } // while
429
430    // Mark the thread as active again (if it was previous marked as inactive)
431    if (deactivated) {
432      th->th.th_active = TRUE;
433      if (TCR_4(th->th.th_in_pool)) {
434        KMP_ATOMIC_INC(&__kmp_thread_pool_active_nth);
435        th->th.th_active_in_pool = TRUE;
436      }
437    }
438  }
439
440  __kmp_win32_mutex_unlock(&th->th.th_suspend_mx);
441
442  KF_TRACE(30, ("__kmp_suspend_template: T#%d exit\n", th_gtid));
443}
444
445void __kmp_suspend_32(int th_gtid, kmp_flag_32 *flag) {
446  __kmp_suspend_template(th_gtid, flag);
447}
448void __kmp_suspend_64(int th_gtid, kmp_flag_64 *flag) {
449  __kmp_suspend_template(th_gtid, flag);
450}
451void __kmp_suspend_oncore(int th_gtid, kmp_flag_oncore *flag) {
452  __kmp_suspend_template(th_gtid, flag);
453}
454
455/* This routine signals the thread specified by target_gtid to wake up
456   after setting the sleep bit indicated by the flag argument to FALSE */
457template <class C>
458static inline void __kmp_resume_template(int target_gtid, C *flag) {
459  kmp_info_t *th = __kmp_threads[target_gtid];
460  int status;
461
462#ifdef KMP_DEBUG
463  int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1;
464#endif
465
466  KF_TRACE(30, ("__kmp_resume_template: T#%d wants to wakeup T#%d enter\n",
467                gtid, target_gtid));
468
469  __kmp_suspend_initialize_thread(th);
470  __kmp_win32_mutex_lock(&th->th.th_suspend_mx);
471
472  if (!flag) { // coming from __kmp_null_resume_wrapper
473    flag = (C *)th->th.th_sleep_loc;
474  }
475
476  // First, check if the flag is null or its type has changed. If so, someone
477  // else woke it up.
478  if (!flag || flag->get_type() != flag->get_ptr_type()) { // get_ptr_type
479    // simply shows what
480    // flag was cast to
481    KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already "
482                 "awake: flag's loc(%p)\n",
483                 gtid, target_gtid, NULL));
484    __kmp_win32_mutex_unlock(&th->th.th_suspend_mx);
485    return;
486  } else {
487    typename C::flag_t old_spin = flag->unset_sleeping();
488    if (!flag->is_sleeping_val(old_spin)) {
489      KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already "
490                   "awake: flag's loc(%p): %u => %u\n",
491                   gtid, target_gtid, flag->get(), old_spin, *(flag->get())));
492      __kmp_win32_mutex_unlock(&th->th.th_suspend_mx);
493      return;
494    }
495  }
496  TCW_PTR(th->th.th_sleep_loc, NULL);
497  KF_TRACE(5, ("__kmp_resume_template: T#%d about to wakeup T#%d, reset sleep "
498               "bit for flag's loc(%p)\n",
499               gtid, target_gtid, flag->get()));
500
501  __kmp_win32_cond_signal(&th->th.th_suspend_cv);
502  __kmp_win32_mutex_unlock(&th->th.th_suspend_mx);
503
504  KF_TRACE(30, ("__kmp_resume_template: T#%d exiting after signaling wake up"
505                " for T#%d\n",
506                gtid, target_gtid));
507}
508
509void __kmp_resume_32(int target_gtid, kmp_flag_32 *flag) {
510  __kmp_resume_template(target_gtid, flag);
511}
512void __kmp_resume_64(int target_gtid, kmp_flag_64 *flag) {
513  __kmp_resume_template(target_gtid, flag);
514}
515void __kmp_resume_oncore(int target_gtid, kmp_flag_oncore *flag) {
516  __kmp_resume_template(target_gtid, flag);
517}
518
519void __kmp_yield() { Sleep(0); }
520
521void __kmp_gtid_set_specific(int gtid) {
522  if (__kmp_init_gtid) {
523    KA_TRACE(50, ("__kmp_gtid_set_specific: T#%d key:%d\n", gtid,
524                  __kmp_gtid_threadprivate_key));
525    if (!TlsSetValue(__kmp_gtid_threadprivate_key, (LPVOID)(gtid + 1)))
526      KMP_FATAL(TLSSetValueFailed);
527  } else {
528    KA_TRACE(50, ("__kmp_gtid_set_specific: runtime shutdown, returning\n"));
529  }
530}
531
532int __kmp_gtid_get_specific() {
533  int gtid;
534  if (!__kmp_init_gtid) {
535    KA_TRACE(50, ("__kmp_gtid_get_specific: runtime shutdown, returning "
536                  "KMP_GTID_SHUTDOWN\n"));
537    return KMP_GTID_SHUTDOWN;
538  }
539  gtid = (int)(kmp_intptr_t)TlsGetValue(__kmp_gtid_threadprivate_key);
540  if (gtid == 0) {
541    gtid = KMP_GTID_DNE;
542  } else {
543    gtid--;
544  }
545  KA_TRACE(50, ("__kmp_gtid_get_specific: key:%d gtid:%d\n",
546                __kmp_gtid_threadprivate_key, gtid));
547  return gtid;
548}
549
550void __kmp_affinity_bind_thread(int proc) {
551  if (__kmp_num_proc_groups > 1) {
552    // Form the GROUP_AFFINITY struct directly, rather than filling
553    // out a bit vector and calling __kmp_set_system_affinity().
554    GROUP_AFFINITY ga;
555    KMP_DEBUG_ASSERT((proc >= 0) && (proc < (__kmp_num_proc_groups * CHAR_BIT *
556                                             sizeof(DWORD_PTR))));
557    ga.Group = proc / (CHAR_BIT * sizeof(DWORD_PTR));
558    ga.Mask = (unsigned long long)1 << (proc % (CHAR_BIT * sizeof(DWORD_PTR)));
559    ga.Reserved[0] = ga.Reserved[1] = ga.Reserved[2] = 0;
560
561    KMP_DEBUG_ASSERT(__kmp_SetThreadGroupAffinity != NULL);
562    if (__kmp_SetThreadGroupAffinity(GetCurrentThread(), &ga, NULL) == 0) {
563      DWORD error = GetLastError();
564      if (__kmp_affinity_verbose) { // AC: continue silently if not verbose
565        kmp_msg_t err_code = KMP_ERR(error);
566        __kmp_msg(kmp_ms_warning, KMP_MSG(CantSetThreadAffMask), err_code,
567                  __kmp_msg_null);
568        if (__kmp_generate_warnings == kmp_warnings_off) {
569          __kmp_str_free(&err_code.str);
570        }
571      }
572    }
573  } else {
574    kmp_affin_mask_t *mask;
575    KMP_CPU_ALLOC_ON_STACK(mask);
576    KMP_CPU_ZERO(mask);
577    KMP_CPU_SET(proc, mask);
578    __kmp_set_system_affinity(mask, TRUE);
579    KMP_CPU_FREE_FROM_STACK(mask);
580  }
581}
582
583void __kmp_affinity_determine_capable(const char *env_var) {
584// All versions of Windows* OS (since Win '95) support SetThreadAffinityMask().
585
586#if KMP_GROUP_AFFINITY
587  KMP_AFFINITY_ENABLE(__kmp_num_proc_groups * sizeof(DWORD_PTR));
588#else
589  KMP_AFFINITY_ENABLE(sizeof(DWORD_PTR));
590#endif
591
592  KA_TRACE(10, ("__kmp_affinity_determine_capable: "
593                "Windows* OS affinity interface functional (mask size = "
594                "%" KMP_SIZE_T_SPEC ").\n",
595                __kmp_affin_mask_size));
596}
597
598double __kmp_read_cpu_time(void) {
599  FILETIME CreationTime, ExitTime, KernelTime, UserTime;
600  int status;
601  double cpu_time;
602
603  cpu_time = 0;
604
605  status = GetProcessTimes(GetCurrentProcess(), &CreationTime, &ExitTime,
606                           &KernelTime, &UserTime);
607
608  if (status) {
609    double sec = 0;
610
611    sec += KernelTime.dwHighDateTime;
612    sec += UserTime.dwHighDateTime;
613
614    /* Shift left by 32 bits */
615    sec *= (double)(1 << 16) * (double)(1 << 16);
616
617    sec += KernelTime.dwLowDateTime;
618    sec += UserTime.dwLowDateTime;
619
620    cpu_time += (sec * 100.0) / KMP_NSEC_PER_SEC;
621  }
622
623  return cpu_time;
624}
625
626int __kmp_read_system_info(struct kmp_sys_info *info) {
627  info->maxrss = 0; /* the maximum resident set size utilized (in kilobytes) */
628  info->minflt = 0; /* the number of page faults serviced without any I/O */
629  info->majflt = 0; /* the number of page faults serviced that required I/O */
630  info->nswap = 0; // the number of times a process was "swapped" out of memory
631  info->inblock = 0; // the number of times the file system had to perform input
632  info->oublock = 0; // number of times the file system had to perform output
633  info->nvcsw = 0; /* the number of times a context switch was voluntarily */
634  info->nivcsw = 0; /* the number of times a context switch was forced */
635
636  return 1;
637}
638
639void __kmp_runtime_initialize(void) {
640  SYSTEM_INFO info;
641  kmp_str_buf_t path;
642  UINT path_size;
643
644  if (__kmp_init_runtime) {
645    return;
646  }
647
648#if KMP_DYNAMIC_LIB
649  /* Pin dynamic library for the lifetime of application */
650  {
651    // First, turn off error message boxes
652    UINT err_mode = SetErrorMode(SEM_FAILCRITICALERRORS);
653    HMODULE h;
654    BOOL ret = GetModuleHandleEx(GET_MODULE_HANDLE_EX_FLAG_FROM_ADDRESS |
655                                     GET_MODULE_HANDLE_EX_FLAG_PIN,
656                                 (LPCTSTR)&__kmp_serial_initialize, &h);
657    KMP_DEBUG_ASSERT2(h && ret, "OpenMP RTL cannot find itself loaded");
658    SetErrorMode(err_mode); // Restore error mode
659    KA_TRACE(10, ("__kmp_runtime_initialize: dynamic library pinned\n"));
660  }
661#endif
662
663  InitializeCriticalSection(&__kmp_win32_section);
664#if USE_ITT_BUILD
665  __kmp_itt_system_object_created(&__kmp_win32_section, "Critical Section");
666#endif /* USE_ITT_BUILD */
667  __kmp_initialize_system_tick();
668
669#if (KMP_ARCH_X86 || KMP_ARCH_X86_64)
670  if (!__kmp_cpuinfo.initialized) {
671    __kmp_query_cpuid(&__kmp_cpuinfo);
672  }
673#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
674
675/* Set up minimum number of threads to switch to TLS gtid */
676#if KMP_OS_WINDOWS && !KMP_DYNAMIC_LIB
677  // Windows* OS, static library.
678  /* New thread may use stack space previously used by another thread,
679     currently terminated. On Windows* OS, in case of static linking, we do not
680     know the moment of thread termination, and our structures (__kmp_threads
681     and __kmp_root arrays) are still keep info about dead threads. This leads
682     to problem in __kmp_get_global_thread_id() function: it wrongly finds gtid
683     (by searching through stack addresses of all known threads) for
684     unregistered foreign tread.
685
686     Setting __kmp_tls_gtid_min to 0 workarounds this problem:
687     __kmp_get_global_thread_id() does not search through stacks, but get gtid
688     from TLS immediately.
689      --ln
690  */
691  __kmp_tls_gtid_min = 0;
692#else
693  __kmp_tls_gtid_min = KMP_TLS_GTID_MIN;
694#endif
695
696  /* for the static library */
697  if (!__kmp_gtid_threadprivate_key) {
698    __kmp_gtid_threadprivate_key = TlsAlloc();
699    if (__kmp_gtid_threadprivate_key == TLS_OUT_OF_INDEXES) {
700      KMP_FATAL(TLSOutOfIndexes);
701    }
702  }
703
704  // Load ntdll.dll.
705  /* Simple GetModuleHandle( "ntdll.dl" ) is not suitable due to security issue
706     (see http://www.microsoft.com/technet/security/advisory/2269637.mspx). We
707     have to specify full path to the library. */
708  __kmp_str_buf_init(&path);
709  path_size = GetSystemDirectory(path.str, path.size);
710  KMP_DEBUG_ASSERT(path_size > 0);
711  if (path_size >= path.size) {
712    // Buffer is too short.  Expand the buffer and try again.
713    __kmp_str_buf_reserve(&path, path_size);
714    path_size = GetSystemDirectory(path.str, path.size);
715    KMP_DEBUG_ASSERT(path_size > 0);
716  }
717  if (path_size > 0 && path_size < path.size) {
718    // Now we have system directory name in the buffer.
719    // Append backslash and name of dll to form full path,
720    path.used = path_size;
721    __kmp_str_buf_print(&path, "\\%s", "ntdll.dll");
722
723    // Now load ntdll using full path.
724    ntdll = GetModuleHandle(path.str);
725  }
726
727  KMP_DEBUG_ASSERT(ntdll != NULL);
728  if (ntdll != NULL) {
729    NtQuerySystemInformation = (NtQuerySystemInformation_t)GetProcAddress(
730        ntdll, "NtQuerySystemInformation");
731  }
732  KMP_DEBUG_ASSERT(NtQuerySystemInformation != NULL);
733
734#if KMP_GROUP_AFFINITY
735  // Load kernel32.dll.
736  // Same caveat - must use full system path name.
737  if (path_size > 0 && path_size < path.size) {
738    // Truncate the buffer back to just the system path length,
739    // discarding "\\ntdll.dll", and replacing it with "kernel32.dll".
740    path.used = path_size;
741    __kmp_str_buf_print(&path, "\\%s", "kernel32.dll");
742
743    // Load kernel32.dll using full path.
744    kernel32 = GetModuleHandle(path.str);
745    KA_TRACE(10, ("__kmp_runtime_initialize: kernel32.dll = %s\n", path.str));
746
747    // Load the function pointers to kernel32.dll routines
748    // that may or may not exist on this system.
749    if (kernel32 != NULL) {
750      __kmp_GetActiveProcessorCount =
751          (kmp_GetActiveProcessorCount_t)GetProcAddress(
752              kernel32, "GetActiveProcessorCount");
753      __kmp_GetActiveProcessorGroupCount =
754          (kmp_GetActiveProcessorGroupCount_t)GetProcAddress(
755              kernel32, "GetActiveProcessorGroupCount");
756      __kmp_GetThreadGroupAffinity =
757          (kmp_GetThreadGroupAffinity_t)GetProcAddress(
758              kernel32, "GetThreadGroupAffinity");
759      __kmp_SetThreadGroupAffinity =
760          (kmp_SetThreadGroupAffinity_t)GetProcAddress(
761              kernel32, "SetThreadGroupAffinity");
762
763      KA_TRACE(10, ("__kmp_runtime_initialize: __kmp_GetActiveProcessorCount"
764                    " = %p\n",
765                    __kmp_GetActiveProcessorCount));
766      KA_TRACE(10, ("__kmp_runtime_initialize: "
767                    "__kmp_GetActiveProcessorGroupCount = %p\n",
768                    __kmp_GetActiveProcessorGroupCount));
769      KA_TRACE(10, ("__kmp_runtime_initialize:__kmp_GetThreadGroupAffinity"
770                    " = %p\n",
771                    __kmp_GetThreadGroupAffinity));
772      KA_TRACE(10, ("__kmp_runtime_initialize: __kmp_SetThreadGroupAffinity"
773                    " = %p\n",
774                    __kmp_SetThreadGroupAffinity));
775      KA_TRACE(10, ("__kmp_runtime_initialize: sizeof(kmp_affin_mask_t) = %d\n",
776                    sizeof(kmp_affin_mask_t)));
777
778      // See if group affinity is supported on this system.
779      // If so, calculate the #groups and #procs.
780      //
781      // Group affinity was introduced with Windows* 7 OS and
782      // Windows* Server 2008 R2 OS.
783      if ((__kmp_GetActiveProcessorCount != NULL) &&
784          (__kmp_GetActiveProcessorGroupCount != NULL) &&
785          (__kmp_GetThreadGroupAffinity != NULL) &&
786          (__kmp_SetThreadGroupAffinity != NULL) &&
787          ((__kmp_num_proc_groups = __kmp_GetActiveProcessorGroupCount()) >
788           1)) {
789        // Calculate the total number of active OS procs.
790        int i;
791
792        KA_TRACE(10, ("__kmp_runtime_initialize: %d processor groups"
793                      " detected\n",
794                      __kmp_num_proc_groups));
795
796        __kmp_xproc = 0;
797
798        for (i = 0; i < __kmp_num_proc_groups; i++) {
799          DWORD size = __kmp_GetActiveProcessorCount(i);
800          __kmp_xproc += size;
801          KA_TRACE(10, ("__kmp_runtime_initialize: proc group %d size = %d\n",
802                        i, size));
803        }
804      } else {
805        KA_TRACE(10, ("__kmp_runtime_initialize: %d processor groups"
806                      " detected\n",
807                      __kmp_num_proc_groups));
808      }
809    }
810  }
811  if (__kmp_num_proc_groups <= 1) {
812    GetSystemInfo(&info);
813    __kmp_xproc = info.dwNumberOfProcessors;
814  }
815#else
816  GetSystemInfo(&info);
817  __kmp_xproc = info.dwNumberOfProcessors;
818#endif /* KMP_GROUP_AFFINITY */
819
820  // If the OS said there were 0 procs, take a guess and use a value of 2.
821  // This is done for Linux* OS, also.  Do we need error / warning?
822  if (__kmp_xproc <= 0) {
823    __kmp_xproc = 2;
824  }
825
826  KA_TRACE(5,
827           ("__kmp_runtime_initialize: total processors = %d\n", __kmp_xproc));
828
829  __kmp_str_buf_free(&path);
830
831#if USE_ITT_BUILD
832  __kmp_itt_initialize();
833#endif /* USE_ITT_BUILD */
834
835  __kmp_init_runtime = TRUE;
836} // __kmp_runtime_initialize
837
838void __kmp_runtime_destroy(void) {
839  if (!__kmp_init_runtime) {
840    return;
841  }
842
843#if USE_ITT_BUILD
844  __kmp_itt_destroy();
845#endif /* USE_ITT_BUILD */
846
847  /* we can't DeleteCriticalsection( & __kmp_win32_section ); */
848  /* due to the KX_TRACE() commands */
849  KA_TRACE(40, ("__kmp_runtime_destroy\n"));
850
851  if (__kmp_gtid_threadprivate_key) {
852    TlsFree(__kmp_gtid_threadprivate_key);
853    __kmp_gtid_threadprivate_key = 0;
854  }
855
856  __kmp_affinity_uninitialize();
857  DeleteCriticalSection(&__kmp_win32_section);
858
859  ntdll = NULL;
860  NtQuerySystemInformation = NULL;
861
862#if KMP_ARCH_X86_64
863  kernel32 = NULL;
864  __kmp_GetActiveProcessorCount = NULL;
865  __kmp_GetActiveProcessorGroupCount = NULL;
866  __kmp_GetThreadGroupAffinity = NULL;
867  __kmp_SetThreadGroupAffinity = NULL;
868#endif // KMP_ARCH_X86_64
869
870  __kmp_init_runtime = FALSE;
871}
872
873void __kmp_terminate_thread(int gtid) {
874  kmp_info_t *th = __kmp_threads[gtid];
875
876  if (!th)
877    return;
878
879  KA_TRACE(10, ("__kmp_terminate_thread: kill (%d)\n", gtid));
880
881  if (TerminateThread(th->th.th_info.ds.ds_thread, (DWORD)-1) == FALSE) {
882    /* It's OK, the thread may have exited already */
883  }
884  __kmp_free_handle(th->th.th_info.ds.ds_thread);
885}
886
887void __kmp_clear_system_time(void) {
888  BOOL status;
889  LARGE_INTEGER time;
890  status = QueryPerformanceCounter(&time);
891  __kmp_win32_time = (kmp_int64)time.QuadPart;
892}
893
894void __kmp_initialize_system_tick(void) {
895  {
896    BOOL status;
897    LARGE_INTEGER freq;
898
899    status = QueryPerformanceFrequency(&freq);
900    if (!status) {
901      DWORD error = GetLastError();
902      __kmp_fatal(KMP_MSG(FunctionError, "QueryPerformanceFrequency()"),
903                  KMP_ERR(error), __kmp_msg_null);
904
905    } else {
906      __kmp_win32_tick = ((double)1.0) / (double)freq.QuadPart;
907    }
908  }
909}
910
911/* Calculate the elapsed wall clock time for the user */
912
913void __kmp_elapsed(double *t) {
914  BOOL status;
915  LARGE_INTEGER now;
916  status = QueryPerformanceCounter(&now);
917  *t = ((double)now.QuadPart) * __kmp_win32_tick;
918}
919
920/* Calculate the elapsed wall clock tick for the user */
921
922void __kmp_elapsed_tick(double *t) { *t = __kmp_win32_tick; }
923
924void __kmp_read_system_time(double *delta) {
925  if (delta != NULL) {
926    BOOL status;
927    LARGE_INTEGER now;
928
929    status = QueryPerformanceCounter(&now);
930
931    *delta = ((double)(((kmp_int64)now.QuadPart) - __kmp_win32_time)) *
932             __kmp_win32_tick;
933  }
934}
935
936/* Return the current time stamp in nsec */
937kmp_uint64 __kmp_now_nsec() {
938  LARGE_INTEGER now;
939  QueryPerformanceCounter(&now);
940  return 1e9 * __kmp_win32_tick * now.QuadPart;
941}
942
943extern "C"
944void *__stdcall __kmp_launch_worker(void *arg) {
945  volatile void *stack_data;
946  void *exit_val;
947  void *padding = 0;
948  kmp_info_t *this_thr = (kmp_info_t *)arg;
949  int gtid;
950
951  gtid = this_thr->th.th_info.ds.ds_gtid;
952  __kmp_gtid_set_specific(gtid);
953#ifdef KMP_TDATA_GTID
954#error "This define causes problems with LoadLibrary() + declspec(thread) " \
955        "on Windows* OS.  See CQ50564, tests kmp_load_library*.c and this MSDN " \
956        "reference: http://support.microsoft.com/kb/118816"
957//__kmp_gtid = gtid;
958#endif
959
960#if USE_ITT_BUILD
961  __kmp_itt_thread_name(gtid);
962#endif /* USE_ITT_BUILD */
963
964  __kmp_affinity_set_init_mask(gtid, FALSE);
965
966#if KMP_ARCH_X86 || KMP_ARCH_X86_64
967  // Set FP control regs to be a copy of the parallel initialization thread's.
968  __kmp_clear_x87_fpu_status_word();
969  __kmp_load_x87_fpu_control_word(&__kmp_init_x87_fpu_control_word);
970  __kmp_load_mxcsr(&__kmp_init_mxcsr);
971#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
972
973  if (__kmp_stkoffset > 0 && gtid > 0) {
974    padding = KMP_ALLOCA(gtid * __kmp_stkoffset);
975  }
976
977  KMP_FSYNC_RELEASING(&this_thr->th.th_info.ds.ds_alive);
978  this_thr->th.th_info.ds.ds_thread_id = GetCurrentThreadId();
979  TCW_4(this_thr->th.th_info.ds.ds_alive, TRUE);
980
981  if (TCR_4(__kmp_gtid_mode) <
982      2) { // check stack only if it is used to get gtid
983    TCW_PTR(this_thr->th.th_info.ds.ds_stackbase, &stack_data);
984    KMP_ASSERT(this_thr->th.th_info.ds.ds_stackgrow == FALSE);
985    __kmp_check_stack_overlap(this_thr);
986  }
987  KMP_MB();
988  exit_val = __kmp_launch_thread(this_thr);
989  KMP_FSYNC_RELEASING(&this_thr->th.th_info.ds.ds_alive);
990  TCW_4(this_thr->th.th_info.ds.ds_alive, FALSE);
991  KMP_MB();
992  return exit_val;
993}
994
995#if KMP_USE_MONITOR
996/* The monitor thread controls all of the threads in the complex */
997
998void *__stdcall __kmp_launch_monitor(void *arg) {
999  DWORD wait_status;
1000  kmp_thread_t monitor;
1001  int status;
1002  int interval;
1003  kmp_info_t *this_thr = (kmp_info_t *)arg;
1004
1005  KMP_DEBUG_ASSERT(__kmp_init_monitor);
1006  TCW_4(__kmp_init_monitor, 2); // AC: Signal library that monitor has started
1007  // TODO: hide "2" in enum (like {true,false,started})
1008  this_thr->th.th_info.ds.ds_thread_id = GetCurrentThreadId();
1009  TCW_4(this_thr->th.th_info.ds.ds_alive, TRUE);
1010
1011  KMP_MB(); /* Flush all pending memory write invalidates.  */
1012  KA_TRACE(10, ("__kmp_launch_monitor: launched\n"));
1013
1014  monitor = GetCurrentThread();
1015
1016  /* set thread priority */
1017  status = SetThreadPriority(monitor, THREAD_PRIORITY_HIGHEST);
1018  if (!status) {
1019    DWORD error = GetLastError();
1020    __kmp_fatal(KMP_MSG(CantSetThreadPriority), KMP_ERR(error), __kmp_msg_null);
1021  }
1022
1023  /* register us as monitor */
1024  __kmp_gtid_set_specific(KMP_GTID_MONITOR);
1025#ifdef KMP_TDATA_GTID
1026#error "This define causes problems with LoadLibrary() + declspec(thread) " \
1027        "on Windows* OS.  See CQ50564, tests kmp_load_library*.c and this MSDN " \
1028        "reference: http://support.microsoft.com/kb/118816"
1029//__kmp_gtid = KMP_GTID_MONITOR;
1030#endif
1031
1032#if USE_ITT_BUILD
1033  __kmp_itt_thread_ignore(); // Instruct Intel(R) Threading Tools to ignore
1034// monitor thread.
1035#endif /* USE_ITT_BUILD */
1036
1037  KMP_MB(); /* Flush all pending memory write invalidates.  */
1038
1039  interval = (1000 / __kmp_monitor_wakeups); /* in milliseconds */
1040
1041  while (!TCR_4(__kmp_global.g.g_done)) {
1042    /*  This thread monitors the state of the system */
1043
1044    KA_TRACE(15, ("__kmp_launch_monitor: update\n"));
1045
1046    wait_status = WaitForSingleObject(__kmp_monitor_ev, interval);
1047
1048    if (wait_status == WAIT_TIMEOUT) {
1049      TCW_4(__kmp_global.g.g_time.dt.t_value,
1050            TCR_4(__kmp_global.g.g_time.dt.t_value) + 1);
1051    }
1052
1053    KMP_MB(); /* Flush all pending memory write invalidates.  */
1054  }
1055
1056  KA_TRACE(10, ("__kmp_launch_monitor: finished\n"));
1057
1058  status = SetThreadPriority(monitor, THREAD_PRIORITY_NORMAL);
1059  if (!status) {
1060    DWORD error = GetLastError();
1061    __kmp_fatal(KMP_MSG(CantSetThreadPriority), KMP_ERR(error), __kmp_msg_null);
1062  }
1063
1064  if (__kmp_global.g.g_abort != 0) {
1065    /* now we need to terminate the worker threads   */
1066    /* the value of t_abort is the signal we caught */
1067    int gtid;
1068
1069    KA_TRACE(10, ("__kmp_launch_monitor: terminate sig=%d\n",
1070                  (__kmp_global.g.g_abort)));
1071
1072    /* terminate the OpenMP worker threads */
1073    /* TODO this is not valid for sibling threads!!
1074     * the uber master might not be 0 anymore.. */
1075    for (gtid = 1; gtid < __kmp_threads_capacity; ++gtid)
1076      __kmp_terminate_thread(gtid);
1077
1078    __kmp_cleanup();
1079
1080    Sleep(0);
1081
1082    KA_TRACE(10,
1083             ("__kmp_launch_monitor: raise sig=%d\n", __kmp_global.g.g_abort));
1084
1085    if (__kmp_global.g.g_abort > 0) {
1086      raise(__kmp_global.g.g_abort);
1087    }
1088  }
1089
1090  TCW_4(this_thr->th.th_info.ds.ds_alive, FALSE);
1091
1092  KMP_MB();
1093  return arg;
1094}
1095#endif
1096
1097void __kmp_create_worker(int gtid, kmp_info_t *th, size_t stack_size) {
1098  kmp_thread_t handle;
1099  DWORD idThread;
1100
1101  KA_TRACE(10, ("__kmp_create_worker: try to create thread (%d)\n", gtid));
1102
1103  th->th.th_info.ds.ds_gtid = gtid;
1104
1105  if (KMP_UBER_GTID(gtid)) {
1106    int stack_data;
1107
1108    /* TODO: GetCurrentThread() returns a pseudo-handle that is unsuitable for
1109       other threads to use. Is it appropriate to just use GetCurrentThread?
1110       When should we close this handle?  When unregistering the root? */
1111    {
1112      BOOL rc;
1113      rc = DuplicateHandle(GetCurrentProcess(), GetCurrentThread(),
1114                           GetCurrentProcess(), &th->th.th_info.ds.ds_thread, 0,
1115                           FALSE, DUPLICATE_SAME_ACCESS);
1116      KMP_ASSERT(rc);
1117      KA_TRACE(10, (" __kmp_create_worker: ROOT Handle duplicated, th = %p, "
1118                    "handle = %" KMP_UINTPTR_SPEC "\n",
1119                    (LPVOID)th, th->th.th_info.ds.ds_thread));
1120      th->th.th_info.ds.ds_thread_id = GetCurrentThreadId();
1121    }
1122    if (TCR_4(__kmp_gtid_mode) < 2) { // check stack only if used to get gtid
1123      /* we will dynamically update the stack range if gtid_mode == 1 */
1124      TCW_PTR(th->th.th_info.ds.ds_stackbase, &stack_data);
1125      TCW_PTR(th->th.th_info.ds.ds_stacksize, 0);
1126      TCW_4(th->th.th_info.ds.ds_stackgrow, TRUE);
1127      __kmp_check_stack_overlap(th);
1128    }
1129  } else {
1130    KMP_MB(); /* Flush all pending memory write invalidates.  */
1131
1132    /* Set stack size for this thread now. */
1133    KA_TRACE(10,
1134             ("__kmp_create_worker: stack_size = %" KMP_SIZE_T_SPEC " bytes\n",
1135              stack_size));
1136
1137    stack_size += gtid * __kmp_stkoffset;
1138
1139    TCW_PTR(th->th.th_info.ds.ds_stacksize, stack_size);
1140    TCW_4(th->th.th_info.ds.ds_stackgrow, FALSE);
1141
1142    KA_TRACE(10,
1143             ("__kmp_create_worker: (before) stack_size = %" KMP_SIZE_T_SPEC
1144              " bytes, &__kmp_launch_worker = %p, th = %p, &idThread = %p\n",
1145              (SIZE_T)stack_size, (LPTHREAD_START_ROUTINE)&__kmp_launch_worker,
1146              (LPVOID)th, &idThread));
1147
1148    handle = CreateThread(
1149        NULL, (SIZE_T)stack_size, (LPTHREAD_START_ROUTINE)__kmp_launch_worker,
1150        (LPVOID)th, STACK_SIZE_PARAM_IS_A_RESERVATION, &idThread);
1151
1152    KA_TRACE(10,
1153             ("__kmp_create_worker: (after) stack_size = %" KMP_SIZE_T_SPEC
1154              " bytes, &__kmp_launch_worker = %p, th = %p, "
1155              "idThread = %u, handle = %" KMP_UINTPTR_SPEC "\n",
1156              (SIZE_T)stack_size, (LPTHREAD_START_ROUTINE)&__kmp_launch_worker,
1157              (LPVOID)th, idThread, handle));
1158
1159    if (handle == 0) {
1160      DWORD error = GetLastError();
1161      __kmp_fatal(KMP_MSG(CantCreateThread), KMP_ERR(error), __kmp_msg_null);
1162    } else {
1163      th->th.th_info.ds.ds_thread = handle;
1164    }
1165
1166    KMP_MB(); /* Flush all pending memory write invalidates.  */
1167  }
1168
1169  KA_TRACE(10, ("__kmp_create_worker: done creating thread (%d)\n", gtid));
1170}
1171
1172int __kmp_still_running(kmp_info_t *th) {
1173  return (WAIT_TIMEOUT == WaitForSingleObject(th->th.th_info.ds.ds_thread, 0));
1174}
1175
1176#if KMP_USE_MONITOR
1177void __kmp_create_monitor(kmp_info_t *th) {
1178  kmp_thread_t handle;
1179  DWORD idThread;
1180  int ideal, new_ideal;
1181
1182  if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) {
1183    // We don't need monitor thread in case of MAX_BLOCKTIME
1184    KA_TRACE(10, ("__kmp_create_monitor: skipping monitor thread because of "
1185                  "MAX blocktime\n"));
1186    th->th.th_info.ds.ds_tid = 0; // this makes reap_monitor no-op
1187    th->th.th_info.ds.ds_gtid = 0;
1188    TCW_4(__kmp_init_monitor, 2); // Signal to stop waiting for monitor creation
1189    return;
1190  }
1191  KA_TRACE(10, ("__kmp_create_monitor: try to create monitor\n"));
1192
1193  KMP_MB(); /* Flush all pending memory write invalidates.  */
1194
1195  __kmp_monitor_ev = CreateEvent(NULL, TRUE, FALSE, NULL);
1196  if (__kmp_monitor_ev == NULL) {
1197    DWORD error = GetLastError();
1198    __kmp_fatal(KMP_MSG(CantCreateEvent), KMP_ERR(error), __kmp_msg_null);
1199  }
1200#if USE_ITT_BUILD
1201  __kmp_itt_system_object_created(__kmp_monitor_ev, "Event");
1202#endif /* USE_ITT_BUILD */
1203
1204  th->th.th_info.ds.ds_tid = KMP_GTID_MONITOR;
1205  th->th.th_info.ds.ds_gtid = KMP_GTID_MONITOR;
1206
1207  // FIXME - on Windows* OS, if __kmp_monitor_stksize = 0, figure out how
1208  // to automatically expand stacksize based on CreateThread error code.
1209  if (__kmp_monitor_stksize == 0) {
1210    __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE;
1211  }
1212  if (__kmp_monitor_stksize < __kmp_sys_min_stksize) {
1213    __kmp_monitor_stksize = __kmp_sys_min_stksize;
1214  }
1215
1216  KA_TRACE(10, ("__kmp_create_monitor: requested stacksize = %d bytes\n",
1217                (int)__kmp_monitor_stksize));
1218
1219  TCW_4(__kmp_global.g.g_time.dt.t_value, 0);
1220
1221  handle =
1222      CreateThread(NULL, (SIZE_T)__kmp_monitor_stksize,
1223                   (LPTHREAD_START_ROUTINE)__kmp_launch_monitor, (LPVOID)th,
1224                   STACK_SIZE_PARAM_IS_A_RESERVATION, &idThread);
1225  if (handle == 0) {
1226    DWORD error = GetLastError();
1227    __kmp_fatal(KMP_MSG(CantCreateThread), KMP_ERR(error), __kmp_msg_null);
1228  } else
1229    th->th.th_info.ds.ds_thread = handle;
1230
1231  KMP_MB(); /* Flush all pending memory write invalidates.  */
1232
1233  KA_TRACE(10, ("__kmp_create_monitor: monitor created %p\n",
1234                (void *)th->th.th_info.ds.ds_thread));
1235}
1236#endif
1237
1238/* Check to see if thread is still alive.
1239   NOTE:  The ExitProcess(code) system call causes all threads to Terminate
1240   with a exit_val = code.  Because of this we can not rely on exit_val having
1241   any particular value.  So this routine may return STILL_ALIVE in exit_val
1242   even after the thread is dead. */
1243
1244int __kmp_is_thread_alive(kmp_info_t *th, DWORD *exit_val) {
1245  DWORD rc;
1246  rc = GetExitCodeThread(th->th.th_info.ds.ds_thread, exit_val);
1247  if (rc == 0) {
1248    DWORD error = GetLastError();
1249    __kmp_fatal(KMP_MSG(FunctionError, "GetExitCodeThread()"), KMP_ERR(error),
1250                __kmp_msg_null);
1251  }
1252  return (*exit_val == STILL_ACTIVE);
1253}
1254
1255void __kmp_exit_thread(int exit_status) {
1256  ExitThread(exit_status);
1257} // __kmp_exit_thread
1258
1259// This is a common part for both __kmp_reap_worker() and __kmp_reap_monitor().
1260static void __kmp_reap_common(kmp_info_t *th) {
1261  DWORD exit_val;
1262
1263  KMP_MB(); /* Flush all pending memory write invalidates.  */
1264
1265  KA_TRACE(
1266      10, ("__kmp_reap_common: try to reap (%d)\n", th->th.th_info.ds.ds_gtid));
1267
1268  /* 2006-10-19:
1269     There are two opposite situations:
1270     1. Windows* OS keep thread alive after it resets ds_alive flag and
1271     exits from thread function. (For example, see C70770/Q394281 "unloading of
1272     dll based on OMP is very slow".)
1273     2. Windows* OS may kill thread before it resets ds_alive flag.
1274
1275     Right solution seems to be waiting for *either* thread termination *or*
1276     ds_alive resetting. */
1277  {
1278    // TODO: This code is very similar to KMP_WAIT. Need to generalize
1279    // KMP_WAIT to cover this usage also.
1280    void *obj = NULL;
1281    kmp_uint32 spins;
1282#if USE_ITT_BUILD
1283    KMP_FSYNC_SPIN_INIT(obj, (void *)&th->th.th_info.ds.ds_alive);
1284#endif /* USE_ITT_BUILD */
1285    KMP_INIT_YIELD(spins);
1286    do {
1287#if USE_ITT_BUILD
1288      KMP_FSYNC_SPIN_PREPARE(obj);
1289#endif /* USE_ITT_BUILD */
1290      __kmp_is_thread_alive(th, &exit_val);
1291      KMP_YIELD_OVERSUB_ELSE_SPIN(spins);
1292    } while (exit_val == STILL_ACTIVE && TCR_4(th->th.th_info.ds.ds_alive));
1293#if USE_ITT_BUILD
1294    if (exit_val == STILL_ACTIVE) {
1295      KMP_FSYNC_CANCEL(obj);
1296    } else {
1297      KMP_FSYNC_SPIN_ACQUIRED(obj);
1298    }
1299#endif /* USE_ITT_BUILD */
1300  }
1301
1302  __kmp_free_handle(th->th.th_info.ds.ds_thread);
1303
1304  /* NOTE:  The ExitProcess(code) system call causes all threads to Terminate
1305     with a exit_val = code.  Because of this we can not rely on exit_val having
1306     any particular value. */
1307  if (exit_val == STILL_ACTIVE) {
1308    KA_TRACE(1, ("__kmp_reap_common: thread still active.\n"));
1309  } else if ((void *)exit_val != (void *)th) {
1310    KA_TRACE(1, ("__kmp_reap_common: ExitProcess / TerminateThread used?\n"));
1311  }
1312
1313  KA_TRACE(10,
1314           ("__kmp_reap_common: done reaping (%d), handle = %" KMP_UINTPTR_SPEC
1315            "\n",
1316            th->th.th_info.ds.ds_gtid, th->th.th_info.ds.ds_thread));
1317
1318  th->th.th_info.ds.ds_thread = 0;
1319  th->th.th_info.ds.ds_tid = KMP_GTID_DNE;
1320  th->th.th_info.ds.ds_gtid = KMP_GTID_DNE;
1321  th->th.th_info.ds.ds_thread_id = 0;
1322
1323  KMP_MB(); /* Flush all pending memory write invalidates.  */
1324}
1325
1326#if KMP_USE_MONITOR
1327void __kmp_reap_monitor(kmp_info_t *th) {
1328  int status;
1329
1330  KA_TRACE(10, ("__kmp_reap_monitor: try to reap %p\n",
1331                (void *)th->th.th_info.ds.ds_thread));
1332
1333  // If monitor has been created, its tid and gtid should be KMP_GTID_MONITOR.
1334  // If both tid and gtid are 0, it means the monitor did not ever start.
1335  // If both tid and gtid are KMP_GTID_DNE, the monitor has been shut down.
1336  KMP_DEBUG_ASSERT(th->th.th_info.ds.ds_tid == th->th.th_info.ds.ds_gtid);
1337  if (th->th.th_info.ds.ds_gtid != KMP_GTID_MONITOR) {
1338    KA_TRACE(10, ("__kmp_reap_monitor: monitor did not start, returning\n"));
1339    return;
1340  }
1341
1342  KMP_MB(); /* Flush all pending memory write invalidates.  */
1343
1344  status = SetEvent(__kmp_monitor_ev);
1345  if (status == FALSE) {
1346    DWORD error = GetLastError();
1347    __kmp_fatal(KMP_MSG(CantSetEvent), KMP_ERR(error), __kmp_msg_null);
1348  }
1349  KA_TRACE(10, ("__kmp_reap_monitor: reaping thread (%d)\n",
1350                th->th.th_info.ds.ds_gtid));
1351  __kmp_reap_common(th);
1352
1353  __kmp_free_handle(__kmp_monitor_ev);
1354
1355  KMP_MB(); /* Flush all pending memory write invalidates.  */
1356}
1357#endif
1358
1359void __kmp_reap_worker(kmp_info_t *th) {
1360  KA_TRACE(10, ("__kmp_reap_worker: reaping thread (%d)\n",
1361                th->th.th_info.ds.ds_gtid));
1362  __kmp_reap_common(th);
1363}
1364
1365#if KMP_HANDLE_SIGNALS
1366
1367static void __kmp_team_handler(int signo) {
1368  if (__kmp_global.g.g_abort == 0) {
1369    // Stage 1 signal handler, let's shut down all of the threads.
1370    if (__kmp_debug_buf) {
1371      __kmp_dump_debug_buffer();
1372    }
1373    KMP_MB(); // Flush all pending memory write invalidates.
1374    TCW_4(__kmp_global.g.g_abort, signo);
1375    KMP_MB(); // Flush all pending memory write invalidates.
1376    TCW_4(__kmp_global.g.g_done, TRUE);
1377    KMP_MB(); // Flush all pending memory write invalidates.
1378  }
1379} // __kmp_team_handler
1380
1381static sig_func_t __kmp_signal(int signum, sig_func_t handler) {
1382  sig_func_t old = signal(signum, handler);
1383  if (old == SIG_ERR) {
1384    int error = errno;
1385    __kmp_fatal(KMP_MSG(FunctionError, "signal"), KMP_ERR(error),
1386                __kmp_msg_null);
1387  }
1388  return old;
1389}
1390
1391static void __kmp_install_one_handler(int sig, sig_func_t handler,
1392                                      int parallel_init) {
1393  sig_func_t old;
1394  KMP_MB(); /* Flush all pending memory write invalidates.  */
1395  KB_TRACE(60, ("__kmp_install_one_handler: called: sig=%d\n", sig));
1396  if (parallel_init) {
1397    old = __kmp_signal(sig, handler);
1398    // SIG_DFL on Windows* OS in NULL or 0.
1399    if (old == __kmp_sighldrs[sig]) {
1400      __kmp_siginstalled[sig] = 1;
1401    } else { // Restore/keep user's handler if one previously installed.
1402      old = __kmp_signal(sig, old);
1403    }
1404  } else {
1405    // Save initial/system signal handlers to see if user handlers installed.
1406    // 2009-09-23: It is a dead code. On Windows* OS __kmp_install_signals
1407    // called once with parallel_init == TRUE.
1408    old = __kmp_signal(sig, SIG_DFL);
1409    __kmp_sighldrs[sig] = old;
1410    __kmp_signal(sig, old);
1411  }
1412  KMP_MB(); /* Flush all pending memory write invalidates.  */
1413} // __kmp_install_one_handler
1414
1415static void __kmp_remove_one_handler(int sig) {
1416  if (__kmp_siginstalled[sig]) {
1417    sig_func_t old;
1418    KMP_MB(); // Flush all pending memory write invalidates.
1419    KB_TRACE(60, ("__kmp_remove_one_handler: called: sig=%d\n", sig));
1420    old = __kmp_signal(sig, __kmp_sighldrs[sig]);
1421    if (old != __kmp_team_handler) {
1422      KB_TRACE(10, ("__kmp_remove_one_handler: oops, not our handler, "
1423                    "restoring: sig=%d\n",
1424                    sig));
1425      old = __kmp_signal(sig, old);
1426    }
1427    __kmp_sighldrs[sig] = NULL;
1428    __kmp_siginstalled[sig] = 0;
1429    KMP_MB(); // Flush all pending memory write invalidates.
1430  }
1431} // __kmp_remove_one_handler
1432
1433void __kmp_install_signals(int parallel_init) {
1434  KB_TRACE(10, ("__kmp_install_signals: called\n"));
1435  if (!__kmp_handle_signals) {
1436    KB_TRACE(10, ("__kmp_install_signals: KMP_HANDLE_SIGNALS is false - "
1437                  "handlers not installed\n"));
1438    return;
1439  }
1440  __kmp_install_one_handler(SIGINT, __kmp_team_handler, parallel_init);
1441  __kmp_install_one_handler(SIGILL, __kmp_team_handler, parallel_init);
1442  __kmp_install_one_handler(SIGABRT, __kmp_team_handler, parallel_init);
1443  __kmp_install_one_handler(SIGFPE, __kmp_team_handler, parallel_init);
1444  __kmp_install_one_handler(SIGSEGV, __kmp_team_handler, parallel_init);
1445  __kmp_install_one_handler(SIGTERM, __kmp_team_handler, parallel_init);
1446} // __kmp_install_signals
1447
1448void __kmp_remove_signals(void) {
1449  int sig;
1450  KB_TRACE(10, ("__kmp_remove_signals: called\n"));
1451  for (sig = 1; sig < NSIG; ++sig) {
1452    __kmp_remove_one_handler(sig);
1453  }
1454} // __kmp_remove_signals
1455
1456#endif // KMP_HANDLE_SIGNALS
1457
1458/* Put the thread to sleep for a time period */
1459void __kmp_thread_sleep(int millis) {
1460  DWORD status;
1461
1462  status = SleepEx((DWORD)millis, FALSE);
1463  if (status) {
1464    DWORD error = GetLastError();
1465    __kmp_fatal(KMP_MSG(FunctionError, "SleepEx()"), KMP_ERR(error),
1466                __kmp_msg_null);
1467  }
1468}
1469
1470// Determine whether the given address is mapped into the current address space.
1471int __kmp_is_address_mapped(void *addr) {
1472  DWORD status;
1473  MEMORY_BASIC_INFORMATION lpBuffer;
1474  SIZE_T dwLength;
1475
1476  dwLength = sizeof(MEMORY_BASIC_INFORMATION);
1477
1478  status = VirtualQuery(addr, &lpBuffer, dwLength);
1479
1480  return !(((lpBuffer.State == MEM_RESERVE) || (lpBuffer.State == MEM_FREE)) ||
1481           ((lpBuffer.Protect == PAGE_NOACCESS) ||
1482            (lpBuffer.Protect == PAGE_EXECUTE)));
1483}
1484
1485kmp_uint64 __kmp_hardware_timestamp(void) {
1486  kmp_uint64 r = 0;
1487
1488  QueryPerformanceCounter((LARGE_INTEGER *)&r);
1489  return r;
1490}
1491
1492/* Free handle and check the error code */
1493void __kmp_free_handle(kmp_thread_t tHandle) {
1494  /* called with parameter type HANDLE also, thus suppose kmp_thread_t defined
1495   * as HANDLE */
1496  BOOL rc;
1497  rc = CloseHandle(tHandle);
1498  if (!rc) {
1499    DWORD error = GetLastError();
1500    __kmp_fatal(KMP_MSG(CantCloseHandle), KMP_ERR(error), __kmp_msg_null);
1501  }
1502}
1503
1504int __kmp_get_load_balance(int max) {
1505  static ULONG glb_buff_size = 100 * 1024;
1506
1507  // Saved count of the running threads for the thread balance algorithm
1508  static int glb_running_threads = 0;
1509  static double glb_call_time = 0; /* Thread balance algorithm call time */
1510
1511  int running_threads = 0; // Number of running threads in the system.
1512  NTSTATUS status = 0;
1513  ULONG buff_size = 0;
1514  ULONG info_size = 0;
1515  void *buffer = NULL;
1516  PSYSTEM_PROCESS_INFORMATION spi = NULL;
1517  int first_time = 1;
1518
1519  double call_time = 0.0; // start, finish;
1520
1521  __kmp_elapsed(&call_time);
1522
1523  if (glb_call_time &&
1524      (call_time - glb_call_time < __kmp_load_balance_interval)) {
1525    running_threads = glb_running_threads;
1526    goto finish;
1527  }
1528  glb_call_time = call_time;
1529
1530  // Do not spend time on running algorithm if we have a permanent error.
1531  if (NtQuerySystemInformation == NULL) {
1532    running_threads = -1;
1533    goto finish;
1534  }
1535
1536  if (max <= 0) {
1537    max = INT_MAX;
1538  }
1539
1540  do {
1541
1542    if (first_time) {
1543      buff_size = glb_buff_size;
1544    } else {
1545      buff_size = 2 * buff_size;
1546    }
1547
1548    buffer = KMP_INTERNAL_REALLOC(buffer, buff_size);
1549    if (buffer == NULL) {
1550      running_threads = -1;
1551      goto finish;
1552    }
1553    status = NtQuerySystemInformation(SystemProcessInformation, buffer,
1554                                      buff_size, &info_size);
1555    first_time = 0;
1556
1557  } while (status == STATUS_INFO_LENGTH_MISMATCH);
1558  glb_buff_size = buff_size;
1559
1560#define CHECK(cond)                                                            \
1561  {                                                                            \
1562    KMP_DEBUG_ASSERT(cond);                                                    \
1563    if (!(cond)) {                                                             \
1564      running_threads = -1;                                                    \
1565      goto finish;                                                             \
1566    }                                                                          \
1567  }
1568
1569  CHECK(buff_size >= info_size);
1570  spi = PSYSTEM_PROCESS_INFORMATION(buffer);
1571  for (;;) {
1572    ptrdiff_t offset = uintptr_t(spi) - uintptr_t(buffer);
1573    CHECK(0 <= offset &&
1574          offset + sizeof(SYSTEM_PROCESS_INFORMATION) < info_size);
1575    HANDLE pid = spi->ProcessId;
1576    ULONG num = spi->NumberOfThreads;
1577    CHECK(num >= 1);
1578    size_t spi_size =
1579        sizeof(SYSTEM_PROCESS_INFORMATION) + sizeof(SYSTEM_THREAD) * (num - 1);
1580    CHECK(offset + spi_size <
1581          info_size); // Make sure process info record fits the buffer.
1582    if (spi->NextEntryOffset != 0) {
1583      CHECK(spi_size <=
1584            spi->NextEntryOffset); // And do not overlap with the next record.
1585    }
1586    // pid == 0 corresponds to the System Idle Process. It always has running
1587    // threads on all cores. So, we don't consider the running threads of this
1588    // process.
1589    if (pid != 0) {
1590      for (int i = 0; i < num; ++i) {
1591        THREAD_STATE state = spi->Threads[i].State;
1592        // Count threads that have Ready or Running state.
1593        // !!! TODO: Why comment does not match the code???
1594        if (state == StateRunning) {
1595          ++running_threads;
1596          // Stop counting running threads if the number is already greater than
1597          // the number of available cores
1598          if (running_threads >= max) {
1599            goto finish;
1600          }
1601        }
1602      }
1603    }
1604    if (spi->NextEntryOffset == 0) {
1605      break;
1606    }
1607    spi = PSYSTEM_PROCESS_INFORMATION(uintptr_t(spi) + spi->NextEntryOffset);
1608  }
1609
1610#undef CHECK
1611
1612finish: // Clean up and exit.
1613
1614  if (buffer != NULL) {
1615    KMP_INTERNAL_FREE(buffer);
1616  }
1617
1618  glb_running_threads = running_threads;
1619
1620  return running_threads;
1621} //__kmp_get_load_balance()
1622