z_Linux_util.cpp revision 360784
1/*
2 * z_Linux_util.cpp -- platform specific routines.
3 */
4
5//===----------------------------------------------------------------------===//
6//
7// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
8// See https://llvm.org/LICENSE.txt for license information.
9// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
10//
11//===----------------------------------------------------------------------===//
12
13#include "kmp.h"
14#include "kmp_affinity.h"
15#include "kmp_i18n.h"
16#include "kmp_io.h"
17#include "kmp_itt.h"
18#include "kmp_lock.h"
19#include "kmp_stats.h"
20#include "kmp_str.h"
21#include "kmp_wait_release.h"
22#include "kmp_wrapper_getpid.h"
23
24#if !KMP_OS_DRAGONFLY && !KMP_OS_FREEBSD && !KMP_OS_NETBSD && !KMP_OS_OPENBSD
25#include <alloca.h>
26#endif
27#include <math.h> // HUGE_VAL.
28#include <sys/resource.h>
29#include <sys/syscall.h>
30#include <sys/time.h>
31#include <sys/times.h>
32#include <unistd.h>
33
34#if KMP_OS_LINUX && !KMP_OS_CNK
35#include <sys/sysinfo.h>
36#if KMP_USE_FUTEX
37// We should really include <futex.h>, but that causes compatibility problems on
38// different Linux* OS distributions that either require that you include (or
39// break when you try to include) <pci/types.h>. Since all we need is the two
40// macros below (which are part of the kernel ABI, so can't change) we just
41// define the constants here and don't include <futex.h>
42#ifndef FUTEX_WAIT
43#define FUTEX_WAIT 0
44#endif
45#ifndef FUTEX_WAKE
46#define FUTEX_WAKE 1
47#endif
48#endif
49#elif KMP_OS_DARWIN
50#include <mach/mach.h>
51#include <sys/sysctl.h>
52#elif KMP_OS_DRAGONFLY || KMP_OS_FREEBSD
53#include <sys/types.h>
54#include <sys/sysctl.h>
55#include <sys/user.h>
56#include <pthread_np.h>
57#elif KMP_OS_NETBSD || KMP_OS_OPENBSD
58#include <sys/types.h>
59#include <sys/sysctl.h>
60#endif
61
62#include <ctype.h>
63#include <dirent.h>
64#include <fcntl.h>
65
66#include "tsan_annotations.h"
67
68struct kmp_sys_timer {
69  struct timespec start;
70};
71
72// Convert timespec to nanoseconds.
73#define TS2NS(timespec) (((timespec).tv_sec * 1e9) + (timespec).tv_nsec)
74
75static struct kmp_sys_timer __kmp_sys_timer_data;
76
77#if KMP_HANDLE_SIGNALS
78typedef void (*sig_func_t)(int);
79STATIC_EFI2_WORKAROUND struct sigaction __kmp_sighldrs[NSIG];
80static sigset_t __kmp_sigset;
81#endif
82
83static int __kmp_init_runtime = FALSE;
84
85static int __kmp_fork_count = 0;
86
87static pthread_condattr_t __kmp_suspend_cond_attr;
88static pthread_mutexattr_t __kmp_suspend_mutex_attr;
89
90static kmp_cond_align_t __kmp_wait_cv;
91static kmp_mutex_align_t __kmp_wait_mx;
92
93kmp_uint64 __kmp_ticks_per_msec = 1000000;
94
95#ifdef DEBUG_SUSPEND
96static void __kmp_print_cond(char *buffer, kmp_cond_align_t *cond) {
97  KMP_SNPRINTF(buffer, 128, "(cond (lock (%ld, %d)), (descr (%p)))",
98               cond->c_cond.__c_lock.__status, cond->c_cond.__c_lock.__spinlock,
99               cond->c_cond.__c_waiting);
100}
101#endif
102
103#if ((KMP_OS_LINUX || KMP_OS_FREEBSD) && KMP_AFFINITY_SUPPORTED)
104
105/* Affinity support */
106
107void __kmp_affinity_bind_thread(int which) {
108  KMP_ASSERT2(KMP_AFFINITY_CAPABLE(),
109              "Illegal set affinity operation when not capable");
110
111  kmp_affin_mask_t *mask;
112  KMP_CPU_ALLOC_ON_STACK(mask);
113  KMP_CPU_ZERO(mask);
114  KMP_CPU_SET(which, mask);
115  __kmp_set_system_affinity(mask, TRUE);
116  KMP_CPU_FREE_FROM_STACK(mask);
117}
118
119/* Determine if we can access affinity functionality on this version of
120 * Linux* OS by checking __NR_sched_{get,set}affinity system calls, and set
121 * __kmp_affin_mask_size to the appropriate value (0 means not capable). */
122void __kmp_affinity_determine_capable(const char *env_var) {
123// Check and see if the OS supports thread affinity.
124
125#if KMP_OS_LINUX
126#define KMP_CPU_SET_SIZE_LIMIT (1024 * 1024)
127#elif KMP_OS_FREEBSD
128#define KMP_CPU_SET_SIZE_LIMIT (sizeof(cpuset_t))
129#endif
130
131
132#if KMP_OS_LINUX
133  // If Linux* OS:
134  // If the syscall fails or returns a suggestion for the size,
135  // then we don't have to search for an appropriate size.
136  int gCode;
137  int sCode;
138  unsigned char *buf;
139  buf = (unsigned char *)KMP_INTERNAL_MALLOC(KMP_CPU_SET_SIZE_LIMIT);
140  gCode = syscall(__NR_sched_getaffinity, 0, KMP_CPU_SET_SIZE_LIMIT, buf);
141  KA_TRACE(30, ("__kmp_affinity_determine_capable: "
142                "initial getaffinity call returned %d errno = %d\n",
143                gCode, errno));
144
145  // if ((gCode < 0) && (errno == ENOSYS))
146  if (gCode < 0) {
147    // System call not supported
148    if (__kmp_affinity_verbose ||
149        (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none) &&
150         (__kmp_affinity_type != affinity_default) &&
151         (__kmp_affinity_type != affinity_disabled))) {
152      int error = errno;
153      kmp_msg_t err_code = KMP_ERR(error);
154      __kmp_msg(kmp_ms_warning, KMP_MSG(GetAffSysCallNotSupported, env_var),
155                err_code, __kmp_msg_null);
156      if (__kmp_generate_warnings == kmp_warnings_off) {
157        __kmp_str_free(&err_code.str);
158      }
159    }
160    KMP_AFFINITY_DISABLE();
161    KMP_INTERNAL_FREE(buf);
162    return;
163  }
164  if (gCode > 0) { // Linux* OS only
165    // The optimal situation: the OS returns the size of the buffer it expects.
166    //
167    // A verification of correct behavior is that Isetaffinity on a NULL
168    // buffer with the same size fails with errno set to EFAULT.
169    sCode = syscall(__NR_sched_setaffinity, 0, gCode, NULL);
170    KA_TRACE(30, ("__kmp_affinity_determine_capable: "
171                  "setaffinity for mask size %d returned %d errno = %d\n",
172                  gCode, sCode, errno));
173    if (sCode < 0) {
174      if (errno == ENOSYS) {
175        if (__kmp_affinity_verbose ||
176            (__kmp_affinity_warnings &&
177             (__kmp_affinity_type != affinity_none) &&
178             (__kmp_affinity_type != affinity_default) &&
179             (__kmp_affinity_type != affinity_disabled))) {
180          int error = errno;
181          kmp_msg_t err_code = KMP_ERR(error);
182          __kmp_msg(kmp_ms_warning, KMP_MSG(SetAffSysCallNotSupported, env_var),
183                    err_code, __kmp_msg_null);
184          if (__kmp_generate_warnings == kmp_warnings_off) {
185            __kmp_str_free(&err_code.str);
186          }
187        }
188        KMP_AFFINITY_DISABLE();
189        KMP_INTERNAL_FREE(buf);
190      }
191      if (errno == EFAULT) {
192        KMP_AFFINITY_ENABLE(gCode);
193        KA_TRACE(10, ("__kmp_affinity_determine_capable: "
194                      "affinity supported (mask size %d)\n",
195                      (int)__kmp_affin_mask_size));
196        KMP_INTERNAL_FREE(buf);
197        return;
198      }
199    }
200  }
201
202  // Call the getaffinity system call repeatedly with increasing set sizes
203  // until we succeed, or reach an upper bound on the search.
204  KA_TRACE(30, ("__kmp_affinity_determine_capable: "
205                "searching for proper set size\n"));
206  int size;
207  for (size = 1; size <= KMP_CPU_SET_SIZE_LIMIT; size *= 2) {
208    gCode = syscall(__NR_sched_getaffinity, 0, size, buf);
209    KA_TRACE(30, ("__kmp_affinity_determine_capable: "
210                  "getaffinity for mask size %d returned %d errno = %d\n",
211                  size, gCode, errno));
212
213    if (gCode < 0) {
214      if (errno == ENOSYS) {
215        // We shouldn't get here
216        KA_TRACE(30, ("__kmp_affinity_determine_capable: "
217                      "inconsistent OS call behavior: errno == ENOSYS for mask "
218                      "size %d\n",
219                      size));
220        if (__kmp_affinity_verbose ||
221            (__kmp_affinity_warnings &&
222             (__kmp_affinity_type != affinity_none) &&
223             (__kmp_affinity_type != affinity_default) &&
224             (__kmp_affinity_type != affinity_disabled))) {
225          int error = errno;
226          kmp_msg_t err_code = KMP_ERR(error);
227          __kmp_msg(kmp_ms_warning, KMP_MSG(GetAffSysCallNotSupported, env_var),
228                    err_code, __kmp_msg_null);
229          if (__kmp_generate_warnings == kmp_warnings_off) {
230            __kmp_str_free(&err_code.str);
231          }
232        }
233        KMP_AFFINITY_DISABLE();
234        KMP_INTERNAL_FREE(buf);
235        return;
236      }
237      continue;
238    }
239
240    sCode = syscall(__NR_sched_setaffinity, 0, gCode, NULL);
241    KA_TRACE(30, ("__kmp_affinity_determine_capable: "
242                  "setaffinity for mask size %d returned %d errno = %d\n",
243                  gCode, sCode, errno));
244    if (sCode < 0) {
245      if (errno == ENOSYS) { // Linux* OS only
246        // We shouldn't get here
247        KA_TRACE(30, ("__kmp_affinity_determine_capable: "
248                      "inconsistent OS call behavior: errno == ENOSYS for mask "
249                      "size %d\n",
250                      size));
251        if (__kmp_affinity_verbose ||
252            (__kmp_affinity_warnings &&
253             (__kmp_affinity_type != affinity_none) &&
254             (__kmp_affinity_type != affinity_default) &&
255             (__kmp_affinity_type != affinity_disabled))) {
256          int error = errno;
257          kmp_msg_t err_code = KMP_ERR(error);
258          __kmp_msg(kmp_ms_warning, KMP_MSG(SetAffSysCallNotSupported, env_var),
259                    err_code, __kmp_msg_null);
260          if (__kmp_generate_warnings == kmp_warnings_off) {
261            __kmp_str_free(&err_code.str);
262          }
263        }
264        KMP_AFFINITY_DISABLE();
265        KMP_INTERNAL_FREE(buf);
266        return;
267      }
268      if (errno == EFAULT) {
269        KMP_AFFINITY_ENABLE(gCode);
270        KA_TRACE(10, ("__kmp_affinity_determine_capable: "
271                      "affinity supported (mask size %d)\n",
272                      (int)__kmp_affin_mask_size));
273        KMP_INTERNAL_FREE(buf);
274        return;
275      }
276    }
277  }
278#elif KMP_OS_FREEBSD
279  int gCode;
280  unsigned char *buf;
281  buf = (unsigned char *)KMP_INTERNAL_MALLOC(KMP_CPU_SET_SIZE_LIMIT);
282  gCode = pthread_getaffinity_np(pthread_self(), KMP_CPU_SET_SIZE_LIMIT, reinterpret_cast<cpuset_t *>(buf));
283  KA_TRACE(30, ("__kmp_affinity_determine_capable: "
284                "initial getaffinity call returned %d errno = %d\n",
285                gCode, errno));
286  if (gCode == 0) {
287    KMP_AFFINITY_ENABLE(KMP_CPU_SET_SIZE_LIMIT);
288    KA_TRACE(10, ("__kmp_affinity_determine_capable: "
289                  "affinity supported (mask size %d)\n"<
290		  (int)__kmp_affin_mask_size));
291    KMP_INTERNAL_FREE(buf);
292    return;
293  }
294#endif
295  // save uncaught error code
296  // int error = errno;
297  KMP_INTERNAL_FREE(buf);
298  // restore uncaught error code, will be printed at the next KMP_WARNING below
299  // errno = error;
300
301  // Affinity is not supported
302  KMP_AFFINITY_DISABLE();
303  KA_TRACE(10, ("__kmp_affinity_determine_capable: "
304                "cannot determine mask size - affinity not supported\n"));
305  if (__kmp_affinity_verbose ||
306      (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none) &&
307       (__kmp_affinity_type != affinity_default) &&
308       (__kmp_affinity_type != affinity_disabled))) {
309    KMP_WARNING(AffCantGetMaskSize, env_var);
310  }
311}
312
313#endif // KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED
314
315#if KMP_USE_FUTEX
316
317int __kmp_futex_determine_capable() {
318  int loc = 0;
319  int rc = syscall(__NR_futex, &loc, FUTEX_WAKE, 1, NULL, NULL, 0);
320  int retval = (rc == 0) || (errno != ENOSYS);
321
322  KA_TRACE(10,
323           ("__kmp_futex_determine_capable: rc = %d errno = %d\n", rc, errno));
324  KA_TRACE(10, ("__kmp_futex_determine_capable: futex syscall%s supported\n",
325                retval ? "" : " not"));
326
327  return retval;
328}
329
330#endif // KMP_USE_FUTEX
331
332#if (KMP_ARCH_X86 || KMP_ARCH_X86_64) && (!KMP_ASM_INTRINS)
333/* Only 32-bit "add-exchange" instruction on IA-32 architecture causes us to
334   use compare_and_store for these routines */
335
336kmp_int8 __kmp_test_then_or8(volatile kmp_int8 *p, kmp_int8 d) {
337  kmp_int8 old_value, new_value;
338
339  old_value = TCR_1(*p);
340  new_value = old_value | d;
341
342  while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) {
343    KMP_CPU_PAUSE();
344    old_value = TCR_1(*p);
345    new_value = old_value | d;
346  }
347  return old_value;
348}
349
350kmp_int8 __kmp_test_then_and8(volatile kmp_int8 *p, kmp_int8 d) {
351  kmp_int8 old_value, new_value;
352
353  old_value = TCR_1(*p);
354  new_value = old_value & d;
355
356  while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) {
357    KMP_CPU_PAUSE();
358    old_value = TCR_1(*p);
359    new_value = old_value & d;
360  }
361  return old_value;
362}
363
364kmp_uint32 __kmp_test_then_or32(volatile kmp_uint32 *p, kmp_uint32 d) {
365  kmp_uint32 old_value, new_value;
366
367  old_value = TCR_4(*p);
368  new_value = old_value | d;
369
370  while (!KMP_COMPARE_AND_STORE_REL32(p, old_value, new_value)) {
371    KMP_CPU_PAUSE();
372    old_value = TCR_4(*p);
373    new_value = old_value | d;
374  }
375  return old_value;
376}
377
378kmp_uint32 __kmp_test_then_and32(volatile kmp_uint32 *p, kmp_uint32 d) {
379  kmp_uint32 old_value, new_value;
380
381  old_value = TCR_4(*p);
382  new_value = old_value & d;
383
384  while (!KMP_COMPARE_AND_STORE_REL32(p, old_value, new_value)) {
385    KMP_CPU_PAUSE();
386    old_value = TCR_4(*p);
387    new_value = old_value & d;
388  }
389  return old_value;
390}
391
392#if KMP_ARCH_X86
393kmp_int8 __kmp_test_then_add8(volatile kmp_int8 *p, kmp_int8 d) {
394  kmp_int8 old_value, new_value;
395
396  old_value = TCR_1(*p);
397  new_value = old_value + d;
398
399  while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) {
400    KMP_CPU_PAUSE();
401    old_value = TCR_1(*p);
402    new_value = old_value + d;
403  }
404  return old_value;
405}
406
407kmp_int64 __kmp_test_then_add64(volatile kmp_int64 *p, kmp_int64 d) {
408  kmp_int64 old_value, new_value;
409
410  old_value = TCR_8(*p);
411  new_value = old_value + d;
412
413  while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) {
414    KMP_CPU_PAUSE();
415    old_value = TCR_8(*p);
416    new_value = old_value + d;
417  }
418  return old_value;
419}
420#endif /* KMP_ARCH_X86 */
421
422kmp_uint64 __kmp_test_then_or64(volatile kmp_uint64 *p, kmp_uint64 d) {
423  kmp_uint64 old_value, new_value;
424
425  old_value = TCR_8(*p);
426  new_value = old_value | d;
427  while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) {
428    KMP_CPU_PAUSE();
429    old_value = TCR_8(*p);
430    new_value = old_value | d;
431  }
432  return old_value;
433}
434
435kmp_uint64 __kmp_test_then_and64(volatile kmp_uint64 *p, kmp_uint64 d) {
436  kmp_uint64 old_value, new_value;
437
438  old_value = TCR_8(*p);
439  new_value = old_value & d;
440  while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) {
441    KMP_CPU_PAUSE();
442    old_value = TCR_8(*p);
443    new_value = old_value & d;
444  }
445  return old_value;
446}
447
448#endif /* (KMP_ARCH_X86 || KMP_ARCH_X86_64) && (! KMP_ASM_INTRINS) */
449
450void __kmp_terminate_thread(int gtid) {
451  int status;
452  kmp_info_t *th = __kmp_threads[gtid];
453
454  if (!th)
455    return;
456
457#ifdef KMP_CANCEL_THREADS
458  KA_TRACE(10, ("__kmp_terminate_thread: kill (%d)\n", gtid));
459  status = pthread_cancel(th->th.th_info.ds.ds_thread);
460  if (status != 0 && status != ESRCH) {
461    __kmp_fatal(KMP_MSG(CantTerminateWorkerThread), KMP_ERR(status),
462                __kmp_msg_null);
463  }
464#endif
465  KMP_YIELD(TRUE);
466} //
467
468/* Set thread stack info according to values returned by pthread_getattr_np().
469   If values are unreasonable, assume call failed and use incremental stack
470   refinement method instead. Returns TRUE if the stack parameters could be
471   determined exactly, FALSE if incremental refinement is necessary. */
472static kmp_int32 __kmp_set_stack_info(int gtid, kmp_info_t *th) {
473  int stack_data;
474#if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD ||     \
475        KMP_OS_HURD
476  pthread_attr_t attr;
477  int status;
478  size_t size = 0;
479  void *addr = 0;
480
481  /* Always do incremental stack refinement for ubermaster threads since the
482     initial thread stack range can be reduced by sibling thread creation so
483     pthread_attr_getstack may cause thread gtid aliasing */
484  if (!KMP_UBER_GTID(gtid)) {
485
486    /* Fetch the real thread attributes */
487    status = pthread_attr_init(&attr);
488    KMP_CHECK_SYSFAIL("pthread_attr_init", status);
489#if KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD
490    status = pthread_attr_get_np(pthread_self(), &attr);
491    KMP_CHECK_SYSFAIL("pthread_attr_get_np", status);
492#else
493    status = pthread_getattr_np(pthread_self(), &attr);
494    KMP_CHECK_SYSFAIL("pthread_getattr_np", status);
495#endif
496    status = pthread_attr_getstack(&attr, &addr, &size);
497    KMP_CHECK_SYSFAIL("pthread_attr_getstack", status);
498    KA_TRACE(60,
499             ("__kmp_set_stack_info: T#%d pthread_attr_getstack returned size:"
500              " %lu, low addr: %p\n",
501              gtid, size, addr));
502    status = pthread_attr_destroy(&attr);
503    KMP_CHECK_SYSFAIL("pthread_attr_destroy", status);
504  }
505
506  if (size != 0 && addr != 0) { // was stack parameter determination successful?
507    /* Store the correct base and size */
508    TCW_PTR(th->th.th_info.ds.ds_stackbase, (((char *)addr) + size));
509    TCW_PTR(th->th.th_info.ds.ds_stacksize, size);
510    TCW_4(th->th.th_info.ds.ds_stackgrow, FALSE);
511    return TRUE;
512  }
513#endif /* KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD ||
514              KMP_OS_HURD */
515  /* Use incremental refinement starting from initial conservative estimate */
516  TCW_PTR(th->th.th_info.ds.ds_stacksize, 0);
517  TCW_PTR(th->th.th_info.ds.ds_stackbase, &stack_data);
518  TCW_4(th->th.th_info.ds.ds_stackgrow, TRUE);
519  return FALSE;
520}
521
522static void *__kmp_launch_worker(void *thr) {
523  int status, old_type, old_state;
524#ifdef KMP_BLOCK_SIGNALS
525  sigset_t new_set, old_set;
526#endif /* KMP_BLOCK_SIGNALS */
527  void *exit_val;
528#if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD ||     \
529        KMP_OS_OPENBSD || KMP_OS_HURD
530  void *volatile padding = 0;
531#endif
532  int gtid;
533
534  gtid = ((kmp_info_t *)thr)->th.th_info.ds.ds_gtid;
535  __kmp_gtid_set_specific(gtid);
536#ifdef KMP_TDATA_GTID
537  __kmp_gtid = gtid;
538#endif
539#if KMP_STATS_ENABLED
540  // set thread local index to point to thread-specific stats
541  __kmp_stats_thread_ptr = ((kmp_info_t *)thr)->th.th_stats;
542  __kmp_stats_thread_ptr->startLife();
543  KMP_SET_THREAD_STATE(IDLE);
544  KMP_INIT_PARTITIONED_TIMERS(OMP_idle);
545#endif
546
547#if USE_ITT_BUILD
548  __kmp_itt_thread_name(gtid);
549#endif /* USE_ITT_BUILD */
550
551#if KMP_AFFINITY_SUPPORTED
552  __kmp_affinity_set_init_mask(gtid, FALSE);
553#endif
554
555#ifdef KMP_CANCEL_THREADS
556  status = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &old_type);
557  KMP_CHECK_SYSFAIL("pthread_setcanceltype", status);
558  // josh todo: isn't PTHREAD_CANCEL_ENABLE default for newly-created threads?
559  status = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &old_state);
560  KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
561#endif
562
563#if KMP_ARCH_X86 || KMP_ARCH_X86_64
564  // Set FP control regs to be a copy of the parallel initialization thread's.
565  __kmp_clear_x87_fpu_status_word();
566  __kmp_load_x87_fpu_control_word(&__kmp_init_x87_fpu_control_word);
567  __kmp_load_mxcsr(&__kmp_init_mxcsr);
568#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
569
570#ifdef KMP_BLOCK_SIGNALS
571  status = sigfillset(&new_set);
572  KMP_CHECK_SYSFAIL_ERRNO("sigfillset", status);
573  status = pthread_sigmask(SIG_BLOCK, &new_set, &old_set);
574  KMP_CHECK_SYSFAIL("pthread_sigmask", status);
575#endif /* KMP_BLOCK_SIGNALS */
576
577#if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD ||     \
578        KMP_OS_OPENBSD
579  if (__kmp_stkoffset > 0 && gtid > 0) {
580    padding = KMP_ALLOCA(gtid * __kmp_stkoffset);
581  }
582#endif
583
584  KMP_MB();
585  __kmp_set_stack_info(gtid, (kmp_info_t *)thr);
586
587  __kmp_check_stack_overlap((kmp_info_t *)thr);
588
589  exit_val = __kmp_launch_thread((kmp_info_t *)thr);
590
591#ifdef KMP_BLOCK_SIGNALS
592  status = pthread_sigmask(SIG_SETMASK, &old_set, NULL);
593  KMP_CHECK_SYSFAIL("pthread_sigmask", status);
594#endif /* KMP_BLOCK_SIGNALS */
595
596  return exit_val;
597}
598
599#if KMP_USE_MONITOR
600/* The monitor thread controls all of the threads in the complex */
601
602static void *__kmp_launch_monitor(void *thr) {
603  int status, old_type, old_state;
604#ifdef KMP_BLOCK_SIGNALS
605  sigset_t new_set;
606#endif /* KMP_BLOCK_SIGNALS */
607  struct timespec interval;
608
609  KMP_MB(); /* Flush all pending memory write invalidates.  */
610
611  KA_TRACE(10, ("__kmp_launch_monitor: #1 launched\n"));
612
613  /* register us as the monitor thread */
614  __kmp_gtid_set_specific(KMP_GTID_MONITOR);
615#ifdef KMP_TDATA_GTID
616  __kmp_gtid = KMP_GTID_MONITOR;
617#endif
618
619  KMP_MB();
620
621#if USE_ITT_BUILD
622  // Instruct Intel(R) Threading Tools to ignore monitor thread.
623  __kmp_itt_thread_ignore();
624#endif /* USE_ITT_BUILD */
625
626  __kmp_set_stack_info(((kmp_info_t *)thr)->th.th_info.ds.ds_gtid,
627                       (kmp_info_t *)thr);
628
629  __kmp_check_stack_overlap((kmp_info_t *)thr);
630
631#ifdef KMP_CANCEL_THREADS
632  status = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &old_type);
633  KMP_CHECK_SYSFAIL("pthread_setcanceltype", status);
634  // josh todo: isn't PTHREAD_CANCEL_ENABLE default for newly-created threads?
635  status = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &old_state);
636  KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
637#endif
638
639#if KMP_REAL_TIME_FIX
640  // This is a potential fix which allows application with real-time scheduling
641  // policy work. However, decision about the fix is not made yet, so it is
642  // disabled by default.
643  { // Are program started with real-time scheduling policy?
644    int sched = sched_getscheduler(0);
645    if (sched == SCHED_FIFO || sched == SCHED_RR) {
646      // Yes, we are a part of real-time application. Try to increase the
647      // priority of the monitor.
648      struct sched_param param;
649      int max_priority = sched_get_priority_max(sched);
650      int rc;
651      KMP_WARNING(RealTimeSchedNotSupported);
652      sched_getparam(0, &param);
653      if (param.sched_priority < max_priority) {
654        param.sched_priority += 1;
655        rc = sched_setscheduler(0, sched, &param);
656        if (rc != 0) {
657          int error = errno;
658          kmp_msg_t err_code = KMP_ERR(error);
659          __kmp_msg(kmp_ms_warning, KMP_MSG(CantChangeMonitorPriority),
660                    err_code, KMP_MSG(MonitorWillStarve), __kmp_msg_null);
661          if (__kmp_generate_warnings == kmp_warnings_off) {
662            __kmp_str_free(&err_code.str);
663          }
664        }
665      } else {
666        // We cannot abort here, because number of CPUs may be enough for all
667        // the threads, including the monitor thread, so application could
668        // potentially work...
669        __kmp_msg(kmp_ms_warning, KMP_MSG(RunningAtMaxPriority),
670                  KMP_MSG(MonitorWillStarve), KMP_HNT(RunningAtMaxPriority),
671                  __kmp_msg_null);
672      }
673    }
674    // AC: free thread that waits for monitor started
675    TCW_4(__kmp_global.g.g_time.dt.t_value, 0);
676  }
677#endif // KMP_REAL_TIME_FIX
678
679  KMP_MB(); /* Flush all pending memory write invalidates.  */
680
681  if (__kmp_monitor_wakeups == 1) {
682    interval.tv_sec = 1;
683    interval.tv_nsec = 0;
684  } else {
685    interval.tv_sec = 0;
686    interval.tv_nsec = (KMP_NSEC_PER_SEC / __kmp_monitor_wakeups);
687  }
688
689  KA_TRACE(10, ("__kmp_launch_monitor: #2 monitor\n"));
690
691  while (!TCR_4(__kmp_global.g.g_done)) {
692    struct timespec now;
693    struct timeval tval;
694
695    /*  This thread monitors the state of the system */
696
697    KA_TRACE(15, ("__kmp_launch_monitor: update\n"));
698
699    status = gettimeofday(&tval, NULL);
700    KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
701    TIMEVAL_TO_TIMESPEC(&tval, &now);
702
703    now.tv_sec += interval.tv_sec;
704    now.tv_nsec += interval.tv_nsec;
705
706    if (now.tv_nsec >= KMP_NSEC_PER_SEC) {
707      now.tv_sec += 1;
708      now.tv_nsec -= KMP_NSEC_PER_SEC;
709    }
710
711    status = pthread_mutex_lock(&__kmp_wait_mx.m_mutex);
712    KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
713    // AC: the monitor should not fall asleep if g_done has been set
714    if (!TCR_4(__kmp_global.g.g_done)) { // check once more under mutex
715      status = pthread_cond_timedwait(&__kmp_wait_cv.c_cond,
716                                      &__kmp_wait_mx.m_mutex, &now);
717      if (status != 0) {
718        if (status != ETIMEDOUT && status != EINTR) {
719          KMP_SYSFAIL("pthread_cond_timedwait", status);
720        }
721      }
722    }
723    status = pthread_mutex_unlock(&__kmp_wait_mx.m_mutex);
724    KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
725
726    TCW_4(__kmp_global.g.g_time.dt.t_value,
727          TCR_4(__kmp_global.g.g_time.dt.t_value) + 1);
728
729    KMP_MB(); /* Flush all pending memory write invalidates.  */
730  }
731
732  KA_TRACE(10, ("__kmp_launch_monitor: #3 cleanup\n"));
733
734#ifdef KMP_BLOCK_SIGNALS
735  status = sigfillset(&new_set);
736  KMP_CHECK_SYSFAIL_ERRNO("sigfillset", status);
737  status = pthread_sigmask(SIG_UNBLOCK, &new_set, NULL);
738  KMP_CHECK_SYSFAIL("pthread_sigmask", status);
739#endif /* KMP_BLOCK_SIGNALS */
740
741  KA_TRACE(10, ("__kmp_launch_monitor: #4 finished\n"));
742
743  if (__kmp_global.g.g_abort != 0) {
744    /* now we need to terminate the worker threads  */
745    /* the value of t_abort is the signal we caught */
746
747    int gtid;
748
749    KA_TRACE(10, ("__kmp_launch_monitor: #5 terminate sig=%d\n",
750                  __kmp_global.g.g_abort));
751
752    /* terminate the OpenMP worker threads */
753    /* TODO this is not valid for sibling threads!!
754     * the uber master might not be 0 anymore.. */
755    for (gtid = 1; gtid < __kmp_threads_capacity; ++gtid)
756      __kmp_terminate_thread(gtid);
757
758    __kmp_cleanup();
759
760    KA_TRACE(10, ("__kmp_launch_monitor: #6 raise sig=%d\n",
761                  __kmp_global.g.g_abort));
762
763    if (__kmp_global.g.g_abort > 0)
764      raise(__kmp_global.g.g_abort);
765  }
766
767  KA_TRACE(10, ("__kmp_launch_monitor: #7 exit\n"));
768
769  return thr;
770}
771#endif // KMP_USE_MONITOR
772
773void __kmp_create_worker(int gtid, kmp_info_t *th, size_t stack_size) {
774  pthread_t handle;
775  pthread_attr_t thread_attr;
776  int status;
777
778  th->th.th_info.ds.ds_gtid = gtid;
779
780#if KMP_STATS_ENABLED
781  // sets up worker thread stats
782  __kmp_acquire_tas_lock(&__kmp_stats_lock, gtid);
783
784  // th->th.th_stats is used to transfer thread-specific stats-pointer to
785  // __kmp_launch_worker. So when thread is created (goes into
786  // __kmp_launch_worker) it will set its thread local pointer to
787  // th->th.th_stats
788  if (!KMP_UBER_GTID(gtid)) {
789    th->th.th_stats = __kmp_stats_list->push_back(gtid);
790  } else {
791    // For root threads, __kmp_stats_thread_ptr is set in __kmp_register_root(),
792    // so set the th->th.th_stats field to it.
793    th->th.th_stats = __kmp_stats_thread_ptr;
794  }
795  __kmp_release_tas_lock(&__kmp_stats_lock, gtid);
796
797#endif // KMP_STATS_ENABLED
798
799  if (KMP_UBER_GTID(gtid)) {
800    KA_TRACE(10, ("__kmp_create_worker: uber thread (%d)\n", gtid));
801    th->th.th_info.ds.ds_thread = pthread_self();
802    __kmp_set_stack_info(gtid, th);
803    __kmp_check_stack_overlap(th);
804    return;
805  }
806
807  KA_TRACE(10, ("__kmp_create_worker: try to create thread (%d)\n", gtid));
808
809  KMP_MB(); /* Flush all pending memory write invalidates.  */
810
811#ifdef KMP_THREAD_ATTR
812  status = pthread_attr_init(&thread_attr);
813  if (status != 0) {
814    __kmp_fatal(KMP_MSG(CantInitThreadAttrs), KMP_ERR(status), __kmp_msg_null);
815  }
816  status = pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_JOINABLE);
817  if (status != 0) {
818    __kmp_fatal(KMP_MSG(CantSetWorkerState), KMP_ERR(status), __kmp_msg_null);
819  }
820
821  /* Set stack size for this thread now.
822     The multiple of 2 is there because on some machines, requesting an unusual
823     stacksize causes the thread to have an offset before the dummy alloca()
824     takes place to create the offset.  Since we want the user to have a
825     sufficient stacksize AND support a stack offset, we alloca() twice the
826     offset so that the upcoming alloca() does not eliminate any premade offset,
827     and also gives the user the stack space they requested for all threads */
828  stack_size += gtid * __kmp_stkoffset * 2;
829
830#if defined(__ANDROID__) && __ANDROID_API__ < 19
831    // Round the stack size to a multiple of the page size. Older versions of
832    // Android (until KitKat) would fail pthread_attr_setstacksize with EINVAL
833    // if the stack size was not a multiple of the page size.
834    stack_size = (stack_size + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1);
835#endif
836
837  KA_TRACE(10, ("__kmp_create_worker: T#%d, default stacksize = %lu bytes, "
838                "__kmp_stksize = %lu bytes, final stacksize = %lu bytes\n",
839                gtid, KMP_DEFAULT_STKSIZE, __kmp_stksize, stack_size));
840
841#ifdef _POSIX_THREAD_ATTR_STACKSIZE
842  status = pthread_attr_setstacksize(&thread_attr, stack_size);
843#ifdef KMP_BACKUP_STKSIZE
844  if (status != 0) {
845    if (!__kmp_env_stksize) {
846      stack_size = KMP_BACKUP_STKSIZE + gtid * __kmp_stkoffset;
847      __kmp_stksize = KMP_BACKUP_STKSIZE;
848      KA_TRACE(10, ("__kmp_create_worker: T#%d, default stacksize = %lu bytes, "
849                    "__kmp_stksize = %lu bytes, (backup) final stacksize = %lu "
850                    "bytes\n",
851                    gtid, KMP_DEFAULT_STKSIZE, __kmp_stksize, stack_size));
852      status = pthread_attr_setstacksize(&thread_attr, stack_size);
853    }
854  }
855#endif /* KMP_BACKUP_STKSIZE */
856  if (status != 0) {
857    __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status),
858                KMP_HNT(ChangeWorkerStackSize), __kmp_msg_null);
859  }
860#endif /* _POSIX_THREAD_ATTR_STACKSIZE */
861
862#endif /* KMP_THREAD_ATTR */
863
864  status =
865      pthread_create(&handle, &thread_attr, __kmp_launch_worker, (void *)th);
866  if (status != 0 || !handle) { // ??? Why do we check handle??
867#ifdef _POSIX_THREAD_ATTR_STACKSIZE
868    if (status == EINVAL) {
869      __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status),
870                  KMP_HNT(IncreaseWorkerStackSize), __kmp_msg_null);
871    }
872    if (status == ENOMEM) {
873      __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status),
874                  KMP_HNT(DecreaseWorkerStackSize), __kmp_msg_null);
875    }
876#endif /* _POSIX_THREAD_ATTR_STACKSIZE */
877    if (status == EAGAIN) {
878      __kmp_fatal(KMP_MSG(NoResourcesForWorkerThread), KMP_ERR(status),
879                  KMP_HNT(Decrease_NUM_THREADS), __kmp_msg_null);
880    }
881    KMP_SYSFAIL("pthread_create", status);
882  }
883
884  th->th.th_info.ds.ds_thread = handle;
885
886#ifdef KMP_THREAD_ATTR
887  status = pthread_attr_destroy(&thread_attr);
888  if (status) {
889    kmp_msg_t err_code = KMP_ERR(status);
890    __kmp_msg(kmp_ms_warning, KMP_MSG(CantDestroyThreadAttrs), err_code,
891              __kmp_msg_null);
892    if (__kmp_generate_warnings == kmp_warnings_off) {
893      __kmp_str_free(&err_code.str);
894    }
895  }
896#endif /* KMP_THREAD_ATTR */
897
898  KMP_MB(); /* Flush all pending memory write invalidates.  */
899
900  KA_TRACE(10, ("__kmp_create_worker: done creating thread (%d)\n", gtid));
901
902} // __kmp_create_worker
903
904#if KMP_USE_MONITOR
905void __kmp_create_monitor(kmp_info_t *th) {
906  pthread_t handle;
907  pthread_attr_t thread_attr;
908  size_t size;
909  int status;
910  int auto_adj_size = FALSE;
911
912  if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) {
913    // We don't need monitor thread in case of MAX_BLOCKTIME
914    KA_TRACE(10, ("__kmp_create_monitor: skipping monitor thread because of "
915                  "MAX blocktime\n"));
916    th->th.th_info.ds.ds_tid = 0; // this makes reap_monitor no-op
917    th->th.th_info.ds.ds_gtid = 0;
918    return;
919  }
920  KA_TRACE(10, ("__kmp_create_monitor: try to create monitor\n"));
921
922  KMP_MB(); /* Flush all pending memory write invalidates.  */
923
924  th->th.th_info.ds.ds_tid = KMP_GTID_MONITOR;
925  th->th.th_info.ds.ds_gtid = KMP_GTID_MONITOR;
926#if KMP_REAL_TIME_FIX
927  TCW_4(__kmp_global.g.g_time.dt.t_value,
928        -1); // Will use it for synchronization a bit later.
929#else
930  TCW_4(__kmp_global.g.g_time.dt.t_value, 0);
931#endif // KMP_REAL_TIME_FIX
932
933#ifdef KMP_THREAD_ATTR
934  if (__kmp_monitor_stksize == 0) {
935    __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE;
936    auto_adj_size = TRUE;
937  }
938  status = pthread_attr_init(&thread_attr);
939  if (status != 0) {
940    __kmp_fatal(KMP_MSG(CantInitThreadAttrs), KMP_ERR(status), __kmp_msg_null);
941  }
942  status = pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_JOINABLE);
943  if (status != 0) {
944    __kmp_fatal(KMP_MSG(CantSetMonitorState), KMP_ERR(status), __kmp_msg_null);
945  }
946
947#ifdef _POSIX_THREAD_ATTR_STACKSIZE
948  status = pthread_attr_getstacksize(&thread_attr, &size);
949  KMP_CHECK_SYSFAIL("pthread_attr_getstacksize", status);
950#else
951  size = __kmp_sys_min_stksize;
952#endif /* _POSIX_THREAD_ATTR_STACKSIZE */
953#endif /* KMP_THREAD_ATTR */
954
955  if (__kmp_monitor_stksize == 0) {
956    __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE;
957  }
958  if (__kmp_monitor_stksize < __kmp_sys_min_stksize) {
959    __kmp_monitor_stksize = __kmp_sys_min_stksize;
960  }
961
962  KA_TRACE(10, ("__kmp_create_monitor: default stacksize = %lu bytes,"
963                "requested stacksize = %lu bytes\n",
964                size, __kmp_monitor_stksize));
965
966retry:
967
968/* Set stack size for this thread now. */
969#ifdef _POSIX_THREAD_ATTR_STACKSIZE
970  KA_TRACE(10, ("__kmp_create_monitor: setting stacksize = %lu bytes,",
971                __kmp_monitor_stksize));
972  status = pthread_attr_setstacksize(&thread_attr, __kmp_monitor_stksize);
973  if (status != 0) {
974    if (auto_adj_size) {
975      __kmp_monitor_stksize *= 2;
976      goto retry;
977    }
978    kmp_msg_t err_code = KMP_ERR(status);
979    __kmp_msg(kmp_ms_warning, // should this be fatal?  BB
980              KMP_MSG(CantSetMonitorStackSize, (long int)__kmp_monitor_stksize),
981              err_code, KMP_HNT(ChangeMonitorStackSize), __kmp_msg_null);
982    if (__kmp_generate_warnings == kmp_warnings_off) {
983      __kmp_str_free(&err_code.str);
984    }
985  }
986#endif /* _POSIX_THREAD_ATTR_STACKSIZE */
987
988  status =
989      pthread_create(&handle, &thread_attr, __kmp_launch_monitor, (void *)th);
990
991  if (status != 0) {
992#ifdef _POSIX_THREAD_ATTR_STACKSIZE
993    if (status == EINVAL) {
994      if (auto_adj_size && (__kmp_monitor_stksize < (size_t)0x40000000)) {
995        __kmp_monitor_stksize *= 2;
996        goto retry;
997      }
998      __kmp_fatal(KMP_MSG(CantSetMonitorStackSize, __kmp_monitor_stksize),
999                  KMP_ERR(status), KMP_HNT(IncreaseMonitorStackSize),
1000                  __kmp_msg_null);
1001    }
1002    if (status == ENOMEM) {
1003      __kmp_fatal(KMP_MSG(CantSetMonitorStackSize, __kmp_monitor_stksize),
1004                  KMP_ERR(status), KMP_HNT(DecreaseMonitorStackSize),
1005                  __kmp_msg_null);
1006    }
1007#endif /* _POSIX_THREAD_ATTR_STACKSIZE */
1008    if (status == EAGAIN) {
1009      __kmp_fatal(KMP_MSG(NoResourcesForMonitorThread), KMP_ERR(status),
1010                  KMP_HNT(DecreaseNumberOfThreadsInUse), __kmp_msg_null);
1011    }
1012    KMP_SYSFAIL("pthread_create", status);
1013  }
1014
1015  th->th.th_info.ds.ds_thread = handle;
1016
1017#if KMP_REAL_TIME_FIX
1018  // Wait for the monitor thread is really started and set its *priority*.
1019  KMP_DEBUG_ASSERT(sizeof(kmp_uint32) ==
1020                   sizeof(__kmp_global.g.g_time.dt.t_value));
1021  __kmp_wait_4((kmp_uint32 volatile *)&__kmp_global.g.g_time.dt.t_value, -1,
1022               &__kmp_neq_4, NULL);
1023#endif // KMP_REAL_TIME_FIX
1024
1025#ifdef KMP_THREAD_ATTR
1026  status = pthread_attr_destroy(&thread_attr);
1027  if (status != 0) {
1028    kmp_msg_t err_code = KMP_ERR(status);
1029    __kmp_msg(kmp_ms_warning, KMP_MSG(CantDestroyThreadAttrs), err_code,
1030              __kmp_msg_null);
1031    if (__kmp_generate_warnings == kmp_warnings_off) {
1032      __kmp_str_free(&err_code.str);
1033    }
1034  }
1035#endif
1036
1037  KMP_MB(); /* Flush all pending memory write invalidates.  */
1038
1039  KA_TRACE(10, ("__kmp_create_monitor: monitor created %#.8lx\n",
1040                th->th.th_info.ds.ds_thread));
1041
1042} // __kmp_create_monitor
1043#endif // KMP_USE_MONITOR
1044
1045void __kmp_exit_thread(int exit_status) {
1046  pthread_exit((void *)(intptr_t)exit_status);
1047} // __kmp_exit_thread
1048
1049#if KMP_USE_MONITOR
1050void __kmp_resume_monitor();
1051
1052void __kmp_reap_monitor(kmp_info_t *th) {
1053  int status;
1054  void *exit_val;
1055
1056  KA_TRACE(10, ("__kmp_reap_monitor: try to reap monitor thread with handle"
1057                " %#.8lx\n",
1058                th->th.th_info.ds.ds_thread));
1059
1060  // If monitor has been created, its tid and gtid should be KMP_GTID_MONITOR.
1061  // If both tid and gtid are 0, it means the monitor did not ever start.
1062  // If both tid and gtid are KMP_GTID_DNE, the monitor has been shut down.
1063  KMP_DEBUG_ASSERT(th->th.th_info.ds.ds_tid == th->th.th_info.ds.ds_gtid);
1064  if (th->th.th_info.ds.ds_gtid != KMP_GTID_MONITOR) {
1065    KA_TRACE(10, ("__kmp_reap_monitor: monitor did not start, returning\n"));
1066    return;
1067  }
1068
1069  KMP_MB(); /* Flush all pending memory write invalidates.  */
1070
1071  /* First, check to see whether the monitor thread exists to wake it up. This
1072     is to avoid performance problem when the monitor sleeps during
1073     blocktime-size interval */
1074
1075  status = pthread_kill(th->th.th_info.ds.ds_thread, 0);
1076  if (status != ESRCH) {
1077    __kmp_resume_monitor(); // Wake up the monitor thread
1078  }
1079  KA_TRACE(10, ("__kmp_reap_monitor: try to join with monitor\n"));
1080  status = pthread_join(th->th.th_info.ds.ds_thread, &exit_val);
1081  if (exit_val != th) {
1082    __kmp_fatal(KMP_MSG(ReapMonitorError), KMP_ERR(status), __kmp_msg_null);
1083  }
1084
1085  th->th.th_info.ds.ds_tid = KMP_GTID_DNE;
1086  th->th.th_info.ds.ds_gtid = KMP_GTID_DNE;
1087
1088  KA_TRACE(10, ("__kmp_reap_monitor: done reaping monitor thread with handle"
1089                " %#.8lx\n",
1090                th->th.th_info.ds.ds_thread));
1091
1092  KMP_MB(); /* Flush all pending memory write invalidates.  */
1093}
1094#endif // KMP_USE_MONITOR
1095
1096void __kmp_reap_worker(kmp_info_t *th) {
1097  int status;
1098  void *exit_val;
1099
1100  KMP_MB(); /* Flush all pending memory write invalidates.  */
1101
1102  KA_TRACE(
1103      10, ("__kmp_reap_worker: try to reap T#%d\n", th->th.th_info.ds.ds_gtid));
1104
1105  status = pthread_join(th->th.th_info.ds.ds_thread, &exit_val);
1106#ifdef KMP_DEBUG
1107  /* Don't expose these to the user until we understand when they trigger */
1108  if (status != 0) {
1109    __kmp_fatal(KMP_MSG(ReapWorkerError), KMP_ERR(status), __kmp_msg_null);
1110  }
1111  if (exit_val != th) {
1112    KA_TRACE(10, ("__kmp_reap_worker: worker T#%d did not reap properly, "
1113                  "exit_val = %p\n",
1114                  th->th.th_info.ds.ds_gtid, exit_val));
1115  }
1116#endif /* KMP_DEBUG */
1117
1118  KA_TRACE(10, ("__kmp_reap_worker: done reaping T#%d\n",
1119                th->th.th_info.ds.ds_gtid));
1120
1121  KMP_MB(); /* Flush all pending memory write invalidates.  */
1122}
1123
1124#if KMP_HANDLE_SIGNALS
1125
1126static void __kmp_null_handler(int signo) {
1127  //  Do nothing, for doing SIG_IGN-type actions.
1128} // __kmp_null_handler
1129
1130static void __kmp_team_handler(int signo) {
1131  if (__kmp_global.g.g_abort == 0) {
1132/* Stage 1 signal handler, let's shut down all of the threads */
1133#ifdef KMP_DEBUG
1134    __kmp_debug_printf("__kmp_team_handler: caught signal = %d\n", signo);
1135#endif
1136    switch (signo) {
1137    case SIGHUP:
1138    case SIGINT:
1139    case SIGQUIT:
1140    case SIGILL:
1141    case SIGABRT:
1142    case SIGFPE:
1143    case SIGBUS:
1144    case SIGSEGV:
1145#ifdef SIGSYS
1146    case SIGSYS:
1147#endif
1148    case SIGTERM:
1149      if (__kmp_debug_buf) {
1150        __kmp_dump_debug_buffer();
1151      }
1152      KMP_MB(); // Flush all pending memory write invalidates.
1153      TCW_4(__kmp_global.g.g_abort, signo);
1154      KMP_MB(); // Flush all pending memory write invalidates.
1155      TCW_4(__kmp_global.g.g_done, TRUE);
1156      KMP_MB(); // Flush all pending memory write invalidates.
1157      break;
1158    default:
1159#ifdef KMP_DEBUG
1160      __kmp_debug_printf("__kmp_team_handler: unknown signal type");
1161#endif
1162      break;
1163    }
1164  }
1165} // __kmp_team_handler
1166
1167static void __kmp_sigaction(int signum, const struct sigaction *act,
1168                            struct sigaction *oldact) {
1169  int rc = sigaction(signum, act, oldact);
1170  KMP_CHECK_SYSFAIL_ERRNO("sigaction", rc);
1171}
1172
1173static void __kmp_install_one_handler(int sig, sig_func_t handler_func,
1174                                      int parallel_init) {
1175  KMP_MB(); // Flush all pending memory write invalidates.
1176  KB_TRACE(60,
1177           ("__kmp_install_one_handler( %d, ..., %d )\n", sig, parallel_init));
1178  if (parallel_init) {
1179    struct sigaction new_action;
1180    struct sigaction old_action;
1181    new_action.sa_handler = handler_func;
1182    new_action.sa_flags = 0;
1183    sigfillset(&new_action.sa_mask);
1184    __kmp_sigaction(sig, &new_action, &old_action);
1185    if (old_action.sa_handler == __kmp_sighldrs[sig].sa_handler) {
1186      sigaddset(&__kmp_sigset, sig);
1187    } else {
1188      // Restore/keep user's handler if one previously installed.
1189      __kmp_sigaction(sig, &old_action, NULL);
1190    }
1191  } else {
1192    // Save initial/system signal handlers to see if user handlers installed.
1193    __kmp_sigaction(sig, NULL, &__kmp_sighldrs[sig]);
1194  }
1195  KMP_MB(); // Flush all pending memory write invalidates.
1196} // __kmp_install_one_handler
1197
1198static void __kmp_remove_one_handler(int sig) {
1199  KB_TRACE(60, ("__kmp_remove_one_handler( %d )\n", sig));
1200  if (sigismember(&__kmp_sigset, sig)) {
1201    struct sigaction old;
1202    KMP_MB(); // Flush all pending memory write invalidates.
1203    __kmp_sigaction(sig, &__kmp_sighldrs[sig], &old);
1204    if ((old.sa_handler != __kmp_team_handler) &&
1205        (old.sa_handler != __kmp_null_handler)) {
1206      // Restore the users signal handler.
1207      KB_TRACE(10, ("__kmp_remove_one_handler: oops, not our handler, "
1208                    "restoring: sig=%d\n",
1209                    sig));
1210      __kmp_sigaction(sig, &old, NULL);
1211    }
1212    sigdelset(&__kmp_sigset, sig);
1213    KMP_MB(); // Flush all pending memory write invalidates.
1214  }
1215} // __kmp_remove_one_handler
1216
1217void __kmp_install_signals(int parallel_init) {
1218  KB_TRACE(10, ("__kmp_install_signals( %d )\n", parallel_init));
1219  if (__kmp_handle_signals || !parallel_init) {
1220    // If ! parallel_init, we do not install handlers, just save original
1221    // handlers. Let us do it even __handle_signals is 0.
1222    sigemptyset(&__kmp_sigset);
1223    __kmp_install_one_handler(SIGHUP, __kmp_team_handler, parallel_init);
1224    __kmp_install_one_handler(SIGINT, __kmp_team_handler, parallel_init);
1225    __kmp_install_one_handler(SIGQUIT, __kmp_team_handler, parallel_init);
1226    __kmp_install_one_handler(SIGILL, __kmp_team_handler, parallel_init);
1227    __kmp_install_one_handler(SIGABRT, __kmp_team_handler, parallel_init);
1228    __kmp_install_one_handler(SIGFPE, __kmp_team_handler, parallel_init);
1229    __kmp_install_one_handler(SIGBUS, __kmp_team_handler, parallel_init);
1230    __kmp_install_one_handler(SIGSEGV, __kmp_team_handler, parallel_init);
1231#ifdef SIGSYS
1232    __kmp_install_one_handler(SIGSYS, __kmp_team_handler, parallel_init);
1233#endif // SIGSYS
1234    __kmp_install_one_handler(SIGTERM, __kmp_team_handler, parallel_init);
1235#ifdef SIGPIPE
1236    __kmp_install_one_handler(SIGPIPE, __kmp_team_handler, parallel_init);
1237#endif // SIGPIPE
1238  }
1239} // __kmp_install_signals
1240
1241void __kmp_remove_signals(void) {
1242  int sig;
1243  KB_TRACE(10, ("__kmp_remove_signals()\n"));
1244  for (sig = 1; sig < NSIG; ++sig) {
1245    __kmp_remove_one_handler(sig);
1246  }
1247} // __kmp_remove_signals
1248
1249#endif // KMP_HANDLE_SIGNALS
1250
1251void __kmp_enable(int new_state) {
1252#ifdef KMP_CANCEL_THREADS
1253  int status, old_state;
1254  status = pthread_setcancelstate(new_state, &old_state);
1255  KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
1256  KMP_DEBUG_ASSERT(old_state == PTHREAD_CANCEL_DISABLE);
1257#endif
1258}
1259
1260void __kmp_disable(int *old_state) {
1261#ifdef KMP_CANCEL_THREADS
1262  int status;
1263  status = pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, old_state);
1264  KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
1265#endif
1266}
1267
1268static void __kmp_atfork_prepare(void) {
1269  __kmp_acquire_bootstrap_lock(&__kmp_initz_lock);
1270  __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock);
1271}
1272
1273static void __kmp_atfork_parent(void) {
1274  __kmp_release_bootstrap_lock(&__kmp_initz_lock);
1275  __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);
1276}
1277
1278/* Reset the library so execution in the child starts "all over again" with
1279   clean data structures in initial states.  Don't worry about freeing memory
1280   allocated by parent, just abandon it to be safe. */
1281static void __kmp_atfork_child(void) {
1282  __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);
1283  /* TODO make sure this is done right for nested/sibling */
1284  // ATT:  Memory leaks are here? TODO: Check it and fix.
1285  /* KMP_ASSERT( 0 ); */
1286
1287  ++__kmp_fork_count;
1288
1289#if KMP_AFFINITY_SUPPORTED
1290#if KMP_OS_LINUX || KMP_OS_FREEBSD
1291  // reset the affinity in the child to the initial thread
1292  // affinity in the parent
1293  kmp_set_thread_affinity_mask_initial();
1294#endif
1295  // Set default not to bind threads tightly in the child (we���re expecting
1296  // over-subscription after the fork and this can improve things for
1297  // scripting languages that use OpenMP inside process-parallel code).
1298  __kmp_affinity_type = affinity_none;
1299  if (__kmp_nested_proc_bind.bind_types != NULL) {
1300    __kmp_nested_proc_bind.bind_types[0] = proc_bind_false;
1301  }
1302#endif // KMP_AFFINITY_SUPPORTED
1303
1304  __kmp_init_runtime = FALSE;
1305#if KMP_USE_MONITOR
1306  __kmp_init_monitor = 0;
1307#endif
1308  __kmp_init_parallel = FALSE;
1309  __kmp_init_middle = FALSE;
1310  __kmp_init_serial = FALSE;
1311  TCW_4(__kmp_init_gtid, FALSE);
1312  __kmp_init_common = FALSE;
1313
1314  TCW_4(__kmp_init_user_locks, FALSE);
1315#if !KMP_USE_DYNAMIC_LOCK
1316  __kmp_user_lock_table.used = 1;
1317  __kmp_user_lock_table.allocated = 0;
1318  __kmp_user_lock_table.table = NULL;
1319  __kmp_lock_blocks = NULL;
1320#endif
1321
1322  __kmp_all_nth = 0;
1323  TCW_4(__kmp_nth, 0);
1324
1325  __kmp_thread_pool = NULL;
1326  __kmp_thread_pool_insert_pt = NULL;
1327  __kmp_team_pool = NULL;
1328
1329  /* Must actually zero all the *cache arguments passed to __kmpc_threadprivate
1330     here so threadprivate doesn't use stale data */
1331  KA_TRACE(10, ("__kmp_atfork_child: checking cache address list %p\n",
1332                __kmp_threadpriv_cache_list));
1333
1334  while (__kmp_threadpriv_cache_list != NULL) {
1335
1336    if (*__kmp_threadpriv_cache_list->addr != NULL) {
1337      KC_TRACE(50, ("__kmp_atfork_child: zeroing cache at address %p\n",
1338                    &(*__kmp_threadpriv_cache_list->addr)));
1339
1340      *__kmp_threadpriv_cache_list->addr = NULL;
1341    }
1342    __kmp_threadpriv_cache_list = __kmp_threadpriv_cache_list->next;
1343  }
1344
1345  __kmp_init_runtime = FALSE;
1346
1347  /* reset statically initialized locks */
1348  __kmp_init_bootstrap_lock(&__kmp_initz_lock);
1349  __kmp_init_bootstrap_lock(&__kmp_stdio_lock);
1350  __kmp_init_bootstrap_lock(&__kmp_console_lock);
1351  __kmp_init_bootstrap_lock(&__kmp_task_team_lock);
1352
1353#if USE_ITT_BUILD
1354  __kmp_itt_reset(); // reset ITT's global state
1355#endif /* USE_ITT_BUILD */
1356
1357  /* This is necessary to make sure no stale data is left around */
1358  /* AC: customers complain that we use unsafe routines in the atfork
1359     handler. Mathworks: dlsym() is unsafe. We call dlsym and dlopen
1360     in dynamic_link when check the presence of shared tbbmalloc library.
1361     Suggestion is to make the library initialization lazier, similar
1362     to what done for __kmpc_begin(). */
1363  // TODO: synchronize all static initializations with regular library
1364  //       startup; look at kmp_global.cpp and etc.
1365  //__kmp_internal_begin ();
1366}
1367
1368void __kmp_register_atfork(void) {
1369  if (__kmp_need_register_atfork) {
1370    int status = pthread_atfork(__kmp_atfork_prepare, __kmp_atfork_parent,
1371                                __kmp_atfork_child);
1372    KMP_CHECK_SYSFAIL("pthread_atfork", status);
1373    __kmp_need_register_atfork = FALSE;
1374  }
1375}
1376
1377void __kmp_suspend_initialize(void) {
1378  int status;
1379  status = pthread_mutexattr_init(&__kmp_suspend_mutex_attr);
1380  KMP_CHECK_SYSFAIL("pthread_mutexattr_init", status);
1381  status = pthread_condattr_init(&__kmp_suspend_cond_attr);
1382  KMP_CHECK_SYSFAIL("pthread_condattr_init", status);
1383}
1384
1385void __kmp_suspend_initialize_thread(kmp_info_t *th) {
1386  ANNOTATE_HAPPENS_AFTER(&th->th.th_suspend_init_count);
1387  int old_value = KMP_ATOMIC_LD_RLX(&th->th.th_suspend_init_count);
1388  int new_value = __kmp_fork_count + 1;
1389  // Return if already initialized
1390  if (old_value == new_value)
1391    return;
1392  // Wait, then return if being initialized
1393  if (old_value == -1 ||
1394      !__kmp_atomic_compare_store(&th->th.th_suspend_init_count, old_value,
1395                                  -1)) {
1396    while (KMP_ATOMIC_LD_ACQ(&th->th.th_suspend_init_count) != new_value) {
1397      KMP_CPU_PAUSE();
1398    }
1399  } else {
1400    // Claim to be the initializer and do initializations
1401    int status;
1402    status = pthread_cond_init(&th->th.th_suspend_cv.c_cond,
1403                               &__kmp_suspend_cond_attr);
1404    KMP_CHECK_SYSFAIL("pthread_cond_init", status);
1405    status = pthread_mutex_init(&th->th.th_suspend_mx.m_mutex,
1406                                &__kmp_suspend_mutex_attr);
1407    KMP_CHECK_SYSFAIL("pthread_mutex_init", status);
1408    KMP_ATOMIC_ST_REL(&th->th.th_suspend_init_count, new_value);
1409    ANNOTATE_HAPPENS_BEFORE(&th->th.th_suspend_init_count);
1410  }
1411}
1412
1413void __kmp_suspend_uninitialize_thread(kmp_info_t *th) {
1414  if (KMP_ATOMIC_LD_ACQ(&th->th.th_suspend_init_count) > __kmp_fork_count) {
1415    /* this means we have initialize the suspension pthread objects for this
1416       thread in this instance of the process */
1417    int status;
1418
1419    status = pthread_cond_destroy(&th->th.th_suspend_cv.c_cond);
1420    if (status != 0 && status != EBUSY) {
1421      KMP_SYSFAIL("pthread_cond_destroy", status);
1422    }
1423    status = pthread_mutex_destroy(&th->th.th_suspend_mx.m_mutex);
1424    if (status != 0 && status != EBUSY) {
1425      KMP_SYSFAIL("pthread_mutex_destroy", status);
1426    }
1427    --th->th.th_suspend_init_count;
1428    KMP_DEBUG_ASSERT(KMP_ATOMIC_LD_RLX(&th->th.th_suspend_init_count) ==
1429                     __kmp_fork_count);
1430  }
1431}
1432
1433// return true if lock obtained, false otherwise
1434int __kmp_try_suspend_mx(kmp_info_t *th) {
1435  return (pthread_mutex_trylock(&th->th.th_suspend_mx.m_mutex) == 0);
1436}
1437
1438void __kmp_lock_suspend_mx(kmp_info_t *th) {
1439  int status = pthread_mutex_lock(&th->th.th_suspend_mx.m_mutex);
1440  KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
1441}
1442
1443void __kmp_unlock_suspend_mx(kmp_info_t *th) {
1444  int status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex);
1445  KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
1446}
1447
1448/* This routine puts the calling thread to sleep after setting the
1449   sleep bit for the indicated flag variable to true. */
1450template <class C>
1451static inline void __kmp_suspend_template(int th_gtid, C *flag) {
1452  KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_suspend);
1453  kmp_info_t *th = __kmp_threads[th_gtid];
1454  int status;
1455  typename C::flag_t old_spin;
1456
1457  KF_TRACE(30, ("__kmp_suspend_template: T#%d enter for flag = %p\n", th_gtid,
1458                flag->get()));
1459
1460  __kmp_suspend_initialize_thread(th);
1461
1462  status = pthread_mutex_lock(&th->th.th_suspend_mx.m_mutex);
1463  KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
1464
1465  KF_TRACE(10, ("__kmp_suspend_template: T#%d setting sleep bit for spin(%p)\n",
1466                th_gtid, flag->get()));
1467
1468  /* TODO: shouldn't this use release semantics to ensure that
1469     __kmp_suspend_initialize_thread gets called first? */
1470  old_spin = flag->set_sleeping();
1471  if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME &&
1472      __kmp_pause_status != kmp_soft_paused) {
1473    flag->unset_sleeping();
1474    status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex);
1475    KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
1476    return;
1477  }
1478  KF_TRACE(5, ("__kmp_suspend_template: T#%d set sleep bit for spin(%p)==%x,"
1479               " was %x\n",
1480               th_gtid, flag->get(), flag->load(), old_spin));
1481
1482  if (flag->done_check_val(old_spin)) {
1483    old_spin = flag->unset_sleeping();
1484    KF_TRACE(5, ("__kmp_suspend_template: T#%d false alarm, reset sleep bit "
1485                 "for spin(%p)\n",
1486                 th_gtid, flag->get()));
1487  } else {
1488    /* Encapsulate in a loop as the documentation states that this may
1489       "with low probability" return when the condition variable has
1490       not been signaled or broadcast */
1491    int deactivated = FALSE;
1492    TCW_PTR(th->th.th_sleep_loc, (void *)flag);
1493
1494    while (flag->is_sleeping()) {
1495#ifdef DEBUG_SUSPEND
1496      char buffer[128];
1497      __kmp_suspend_count++;
1498      __kmp_print_cond(buffer, &th->th.th_suspend_cv);
1499      __kmp_printf("__kmp_suspend_template: suspending T#%d: %s\n", th_gtid,
1500                   buffer);
1501#endif
1502      // Mark the thread as no longer active (only in the first iteration of the
1503      // loop).
1504      if (!deactivated) {
1505        th->th.th_active = FALSE;
1506        if (th->th.th_active_in_pool) {
1507          th->th.th_active_in_pool = FALSE;
1508          KMP_ATOMIC_DEC(&__kmp_thread_pool_active_nth);
1509          KMP_DEBUG_ASSERT(TCR_4(__kmp_thread_pool_active_nth) >= 0);
1510        }
1511        deactivated = TRUE;
1512      }
1513
1514#if USE_SUSPEND_TIMEOUT
1515      struct timespec now;
1516      struct timeval tval;
1517      int msecs;
1518
1519      status = gettimeofday(&tval, NULL);
1520      KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1521      TIMEVAL_TO_TIMESPEC(&tval, &now);
1522
1523      msecs = (4 * __kmp_dflt_blocktime) + 200;
1524      now.tv_sec += msecs / 1000;
1525      now.tv_nsec += (msecs % 1000) * 1000;
1526
1527      KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform "
1528                    "pthread_cond_timedwait\n",
1529                    th_gtid));
1530      status = pthread_cond_timedwait(&th->th.th_suspend_cv.c_cond,
1531                                      &th->th.th_suspend_mx.m_mutex, &now);
1532#else
1533      KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform"
1534                    " pthread_cond_wait\n",
1535                    th_gtid));
1536      status = pthread_cond_wait(&th->th.th_suspend_cv.c_cond,
1537                                 &th->th.th_suspend_mx.m_mutex);
1538#endif
1539
1540      if ((status != 0) && (status != EINTR) && (status != ETIMEDOUT)) {
1541        KMP_SYSFAIL("pthread_cond_wait", status);
1542      }
1543#ifdef KMP_DEBUG
1544      if (status == ETIMEDOUT) {
1545        if (flag->is_sleeping()) {
1546          KF_TRACE(100,
1547                   ("__kmp_suspend_template: T#%d timeout wakeup\n", th_gtid));
1548        } else {
1549          KF_TRACE(2, ("__kmp_suspend_template: T#%d timeout wakeup, sleep bit "
1550                       "not set!\n",
1551                       th_gtid));
1552        }
1553      } else if (flag->is_sleeping()) {
1554        KF_TRACE(100,
1555                 ("__kmp_suspend_template: T#%d spurious wakeup\n", th_gtid));
1556      }
1557#endif
1558    } // while
1559
1560    // Mark the thread as active again (if it was previous marked as inactive)
1561    if (deactivated) {
1562      th->th.th_active = TRUE;
1563      if (TCR_4(th->th.th_in_pool)) {
1564        KMP_ATOMIC_INC(&__kmp_thread_pool_active_nth);
1565        th->th.th_active_in_pool = TRUE;
1566      }
1567    }
1568  }
1569#ifdef DEBUG_SUSPEND
1570  {
1571    char buffer[128];
1572    __kmp_print_cond(buffer, &th->th.th_suspend_cv);
1573    __kmp_printf("__kmp_suspend_template: T#%d has awakened: %s\n", th_gtid,
1574                 buffer);
1575  }
1576#endif
1577
1578  status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex);
1579  KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
1580  KF_TRACE(30, ("__kmp_suspend_template: T#%d exit\n", th_gtid));
1581}
1582
1583void __kmp_suspend_32(int th_gtid, kmp_flag_32 *flag) {
1584  __kmp_suspend_template(th_gtid, flag);
1585}
1586void __kmp_suspend_64(int th_gtid, kmp_flag_64 *flag) {
1587  __kmp_suspend_template(th_gtid, flag);
1588}
1589void __kmp_suspend_oncore(int th_gtid, kmp_flag_oncore *flag) {
1590  __kmp_suspend_template(th_gtid, flag);
1591}
1592
1593/* This routine signals the thread specified by target_gtid to wake up
1594   after setting the sleep bit indicated by the flag argument to FALSE.
1595   The target thread must already have called __kmp_suspend_template() */
1596template <class C>
1597static inline void __kmp_resume_template(int target_gtid, C *flag) {
1598  KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_resume);
1599  kmp_info_t *th = __kmp_threads[target_gtid];
1600  int status;
1601
1602#ifdef KMP_DEBUG
1603  int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1;
1604#endif
1605
1606  KF_TRACE(30, ("__kmp_resume_template: T#%d wants to wakeup T#%d enter\n",
1607                gtid, target_gtid));
1608  KMP_DEBUG_ASSERT(gtid != target_gtid);
1609
1610  __kmp_suspend_initialize_thread(th);
1611
1612  status = pthread_mutex_lock(&th->th.th_suspend_mx.m_mutex);
1613  KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
1614
1615  if (!flag) { // coming from __kmp_null_resume_wrapper
1616    flag = (C *)CCAST(void *, th->th.th_sleep_loc);
1617  }
1618
1619  // First, check if the flag is null or its type has changed. If so, someone
1620  // else woke it up.
1621  if (!flag || flag->get_type() != flag->get_ptr_type()) { // get_ptr_type
1622    // simply shows what
1623    // flag was cast to
1624    KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already "
1625                 "awake: flag(%p)\n",
1626                 gtid, target_gtid, NULL));
1627    status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex);
1628    KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
1629    return;
1630  } else { // if multiple threads are sleeping, flag should be internally
1631    // referring to a specific thread here
1632    typename C::flag_t old_spin = flag->unset_sleeping();
1633    if (!flag->is_sleeping_val(old_spin)) {
1634      KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already "
1635                   "awake: flag(%p): "
1636                   "%u => %u\n",
1637                   gtid, target_gtid, flag->get(), old_spin, flag->load()));
1638      status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex);
1639      KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
1640      return;
1641    }
1642    KF_TRACE(5, ("__kmp_resume_template: T#%d about to wakeup T#%d, reset "
1643                 "sleep bit for flag's loc(%p): "
1644                 "%u => %u\n",
1645                 gtid, target_gtid, flag->get(), old_spin, flag->load()));
1646  }
1647  TCW_PTR(th->th.th_sleep_loc, NULL);
1648
1649#ifdef DEBUG_SUSPEND
1650  {
1651    char buffer[128];
1652    __kmp_print_cond(buffer, &th->th.th_suspend_cv);
1653    __kmp_printf("__kmp_resume_template: T#%d resuming T#%d: %s\n", gtid,
1654                 target_gtid, buffer);
1655  }
1656#endif
1657  status = pthread_cond_signal(&th->th.th_suspend_cv.c_cond);
1658  KMP_CHECK_SYSFAIL("pthread_cond_signal", status);
1659  status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex);
1660  KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
1661  KF_TRACE(30, ("__kmp_resume_template: T#%d exiting after signaling wake up"
1662                " for T#%d\n",
1663                gtid, target_gtid));
1664}
1665
1666void __kmp_resume_32(int target_gtid, kmp_flag_32 *flag) {
1667  __kmp_resume_template(target_gtid, flag);
1668}
1669void __kmp_resume_64(int target_gtid, kmp_flag_64 *flag) {
1670  __kmp_resume_template(target_gtid, flag);
1671}
1672void __kmp_resume_oncore(int target_gtid, kmp_flag_oncore *flag) {
1673  __kmp_resume_template(target_gtid, flag);
1674}
1675
1676#if KMP_USE_MONITOR
1677void __kmp_resume_monitor() {
1678  KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_resume);
1679  int status;
1680#ifdef KMP_DEBUG
1681  int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1;
1682  KF_TRACE(30, ("__kmp_resume_monitor: T#%d wants to wakeup T#%d enter\n", gtid,
1683                KMP_GTID_MONITOR));
1684  KMP_DEBUG_ASSERT(gtid != KMP_GTID_MONITOR);
1685#endif
1686  status = pthread_mutex_lock(&__kmp_wait_mx.m_mutex);
1687  KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
1688#ifdef DEBUG_SUSPEND
1689  {
1690    char buffer[128];
1691    __kmp_print_cond(buffer, &__kmp_wait_cv.c_cond);
1692    __kmp_printf("__kmp_resume_monitor: T#%d resuming T#%d: %s\n", gtid,
1693                 KMP_GTID_MONITOR, buffer);
1694  }
1695#endif
1696  status = pthread_cond_signal(&__kmp_wait_cv.c_cond);
1697  KMP_CHECK_SYSFAIL("pthread_cond_signal", status);
1698  status = pthread_mutex_unlock(&__kmp_wait_mx.m_mutex);
1699  KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
1700  KF_TRACE(30, ("__kmp_resume_monitor: T#%d exiting after signaling wake up"
1701                " for T#%d\n",
1702                gtid, KMP_GTID_MONITOR));
1703}
1704#endif // KMP_USE_MONITOR
1705
1706void __kmp_yield() { sched_yield(); }
1707
1708void __kmp_gtid_set_specific(int gtid) {
1709  if (__kmp_init_gtid) {
1710    int status;
1711    status = pthread_setspecific(__kmp_gtid_threadprivate_key,
1712                                 (void *)(intptr_t)(gtid + 1));
1713    KMP_CHECK_SYSFAIL("pthread_setspecific", status);
1714  } else {
1715    KA_TRACE(50, ("__kmp_gtid_set_specific: runtime shutdown, returning\n"));
1716  }
1717}
1718
1719int __kmp_gtid_get_specific() {
1720  int gtid;
1721  if (!__kmp_init_gtid) {
1722    KA_TRACE(50, ("__kmp_gtid_get_specific: runtime shutdown, returning "
1723                  "KMP_GTID_SHUTDOWN\n"));
1724    return KMP_GTID_SHUTDOWN;
1725  }
1726  gtid = (int)(size_t)pthread_getspecific(__kmp_gtid_threadprivate_key);
1727  if (gtid == 0) {
1728    gtid = KMP_GTID_DNE;
1729  } else {
1730    gtid--;
1731  }
1732  KA_TRACE(50, ("__kmp_gtid_get_specific: key:%d gtid:%d\n",
1733                __kmp_gtid_threadprivate_key, gtid));
1734  return gtid;
1735}
1736
1737double __kmp_read_cpu_time(void) {
1738  /*clock_t   t;*/
1739  struct tms buffer;
1740
1741  /*t =*/times(&buffer);
1742
1743  return (buffer.tms_utime + buffer.tms_cutime) / (double)CLOCKS_PER_SEC;
1744}
1745
1746int __kmp_read_system_info(struct kmp_sys_info *info) {
1747  int status;
1748  struct rusage r_usage;
1749
1750  memset(info, 0, sizeof(*info));
1751
1752  status = getrusage(RUSAGE_SELF, &r_usage);
1753  KMP_CHECK_SYSFAIL_ERRNO("getrusage", status);
1754
1755  // The maximum resident set size utilized (in kilobytes)
1756  info->maxrss = r_usage.ru_maxrss;
1757  // The number of page faults serviced without any I/O
1758  info->minflt = r_usage.ru_minflt;
1759  // The number of page faults serviced that required I/O
1760  info->majflt = r_usage.ru_majflt;
1761  // The number of times a process was "swapped" out of memory
1762  info->nswap = r_usage.ru_nswap;
1763  // The number of times the file system had to perform input
1764  info->inblock = r_usage.ru_inblock;
1765  // The number of times the file system had to perform output
1766  info->oublock = r_usage.ru_oublock;
1767  // The number of times a context switch was voluntarily
1768  info->nvcsw = r_usage.ru_nvcsw;
1769  // The number of times a context switch was forced
1770  info->nivcsw = r_usage.ru_nivcsw;
1771
1772  return (status != 0);
1773}
1774
1775void __kmp_read_system_time(double *delta) {
1776  double t_ns;
1777  struct timeval tval;
1778  struct timespec stop;
1779  int status;
1780
1781  status = gettimeofday(&tval, NULL);
1782  KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1783  TIMEVAL_TO_TIMESPEC(&tval, &stop);
1784  t_ns = TS2NS(stop) - TS2NS(__kmp_sys_timer_data.start);
1785  *delta = (t_ns * 1e-9);
1786}
1787
1788void __kmp_clear_system_time(void) {
1789  struct timeval tval;
1790  int status;
1791  status = gettimeofday(&tval, NULL);
1792  KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1793  TIMEVAL_TO_TIMESPEC(&tval, &__kmp_sys_timer_data.start);
1794}
1795
1796static int __kmp_get_xproc(void) {
1797
1798  int r = 0;
1799
1800#if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD ||     \
1801        KMP_OS_OPENBSD || KMP_OS_HURD
1802
1803  r = sysconf(_SC_NPROCESSORS_ONLN);
1804
1805#elif KMP_OS_DARWIN
1806
1807  // Bug C77011 High "OpenMP Threads and number of active cores".
1808
1809  // Find the number of available CPUs.
1810  kern_return_t rc;
1811  host_basic_info_data_t info;
1812  mach_msg_type_number_t num = HOST_BASIC_INFO_COUNT;
1813  rc = host_info(mach_host_self(), HOST_BASIC_INFO, (host_info_t)&info, &num);
1814  if (rc == 0 && num == HOST_BASIC_INFO_COUNT) {
1815    // Cannot use KA_TRACE() here because this code works before trace support
1816    // is initialized.
1817    r = info.avail_cpus;
1818  } else {
1819    KMP_WARNING(CantGetNumAvailCPU);
1820    KMP_INFORM(AssumedNumCPU);
1821  }
1822
1823#else
1824
1825#error "Unknown or unsupported OS."
1826
1827#endif
1828
1829  return r > 0 ? r : 2; /* guess value of 2 if OS told us 0 */
1830
1831} // __kmp_get_xproc
1832
1833int __kmp_read_from_file(char const *path, char const *format, ...) {
1834  int result;
1835  va_list args;
1836
1837  va_start(args, format);
1838  FILE *f = fopen(path, "rb");
1839  if (f == NULL)
1840    return 0;
1841  result = vfscanf(f, format, args);
1842  fclose(f);
1843
1844  return result;
1845}
1846
1847void __kmp_runtime_initialize(void) {
1848  int status;
1849  pthread_mutexattr_t mutex_attr;
1850  pthread_condattr_t cond_attr;
1851
1852  if (__kmp_init_runtime) {
1853    return;
1854  }
1855
1856#if (KMP_ARCH_X86 || KMP_ARCH_X86_64)
1857  if (!__kmp_cpuinfo.initialized) {
1858    __kmp_query_cpuid(&__kmp_cpuinfo);
1859  }
1860#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
1861
1862  __kmp_xproc = __kmp_get_xproc();
1863
1864#if ! KMP_32_BIT_ARCH
1865  struct rlimit rlim;
1866  // read stack size of calling thread, save it as default for worker threads;
1867  // this should be done before reading environment variables
1868  status = getrlimit(RLIMIT_STACK, &rlim);
1869  if (status == 0) { // success?
1870    __kmp_stksize = rlim.rlim_cur;
1871    __kmp_check_stksize(&__kmp_stksize); // check value and adjust if needed
1872  }
1873#endif /* KMP_32_BIT_ARCH */
1874
1875  if (sysconf(_SC_THREADS)) {
1876
1877    /* Query the maximum number of threads */
1878    __kmp_sys_max_nth = sysconf(_SC_THREAD_THREADS_MAX);
1879    if (__kmp_sys_max_nth == -1) {
1880      /* Unlimited threads for NPTL */
1881      __kmp_sys_max_nth = INT_MAX;
1882    } else if (__kmp_sys_max_nth <= 1) {
1883      /* Can't tell, just use PTHREAD_THREADS_MAX */
1884      __kmp_sys_max_nth = KMP_MAX_NTH;
1885    }
1886
1887    /* Query the minimum stack size */
1888    __kmp_sys_min_stksize = sysconf(_SC_THREAD_STACK_MIN);
1889    if (__kmp_sys_min_stksize <= 1) {
1890      __kmp_sys_min_stksize = KMP_MIN_STKSIZE;
1891    }
1892  }
1893
1894  /* Set up minimum number of threads to switch to TLS gtid */
1895  __kmp_tls_gtid_min = KMP_TLS_GTID_MIN;
1896
1897  status = pthread_key_create(&__kmp_gtid_threadprivate_key,
1898                              __kmp_internal_end_dest);
1899  KMP_CHECK_SYSFAIL("pthread_key_create", status);
1900  status = pthread_mutexattr_init(&mutex_attr);
1901  KMP_CHECK_SYSFAIL("pthread_mutexattr_init", status);
1902  status = pthread_mutex_init(&__kmp_wait_mx.m_mutex, &mutex_attr);
1903  KMP_CHECK_SYSFAIL("pthread_mutex_init", status);
1904  status = pthread_condattr_init(&cond_attr);
1905  KMP_CHECK_SYSFAIL("pthread_condattr_init", status);
1906  status = pthread_cond_init(&__kmp_wait_cv.c_cond, &cond_attr);
1907  KMP_CHECK_SYSFAIL("pthread_cond_init", status);
1908#if USE_ITT_BUILD
1909  __kmp_itt_initialize();
1910#endif /* USE_ITT_BUILD */
1911
1912  __kmp_init_runtime = TRUE;
1913}
1914
1915void __kmp_runtime_destroy(void) {
1916  int status;
1917
1918  if (!__kmp_init_runtime) {
1919    return; // Nothing to do.
1920  }
1921
1922#if USE_ITT_BUILD
1923  __kmp_itt_destroy();
1924#endif /* USE_ITT_BUILD */
1925
1926  status = pthread_key_delete(__kmp_gtid_threadprivate_key);
1927  KMP_CHECK_SYSFAIL("pthread_key_delete", status);
1928
1929  status = pthread_mutex_destroy(&__kmp_wait_mx.m_mutex);
1930  if (status != 0 && status != EBUSY) {
1931    KMP_SYSFAIL("pthread_mutex_destroy", status);
1932  }
1933  status = pthread_cond_destroy(&__kmp_wait_cv.c_cond);
1934  if (status != 0 && status != EBUSY) {
1935    KMP_SYSFAIL("pthread_cond_destroy", status);
1936  }
1937#if KMP_AFFINITY_SUPPORTED
1938  __kmp_affinity_uninitialize();
1939#endif
1940
1941  __kmp_init_runtime = FALSE;
1942}
1943
1944/* Put the thread to sleep for a time period */
1945/* NOTE: not currently used anywhere */
1946void __kmp_thread_sleep(int millis) { sleep((millis + 500) / 1000); }
1947
1948/* Calculate the elapsed wall clock time for the user */
1949void __kmp_elapsed(double *t) {
1950  int status;
1951#ifdef FIX_SGI_CLOCK
1952  struct timespec ts;
1953
1954  status = clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &ts);
1955  KMP_CHECK_SYSFAIL_ERRNO("clock_gettime", status);
1956  *t =
1957      (double)ts.tv_nsec * (1.0 / (double)KMP_NSEC_PER_SEC) + (double)ts.tv_sec;
1958#else
1959  struct timeval tv;
1960
1961  status = gettimeofday(&tv, NULL);
1962  KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1963  *t =
1964      (double)tv.tv_usec * (1.0 / (double)KMP_USEC_PER_SEC) + (double)tv.tv_sec;
1965#endif
1966}
1967
1968/* Calculate the elapsed wall clock tick for the user */
1969void __kmp_elapsed_tick(double *t) { *t = 1 / (double)CLOCKS_PER_SEC; }
1970
1971/* Return the current time stamp in nsec */
1972kmp_uint64 __kmp_now_nsec() {
1973  struct timeval t;
1974  gettimeofday(&t, NULL);
1975  kmp_uint64 nsec = (kmp_uint64)KMP_NSEC_PER_SEC * (kmp_uint64)t.tv_sec +
1976                    (kmp_uint64)1000 * (kmp_uint64)t.tv_usec;
1977  return nsec;
1978}
1979
1980#if KMP_ARCH_X86 || KMP_ARCH_X86_64
1981/* Measure clock ticks per millisecond */
1982void __kmp_initialize_system_tick() {
1983  kmp_uint64 now, nsec2, diff;
1984  kmp_uint64 delay = 100000; // 50~100 usec on most machines.
1985  kmp_uint64 nsec = __kmp_now_nsec();
1986  kmp_uint64 goal = __kmp_hardware_timestamp() + delay;
1987  while ((now = __kmp_hardware_timestamp()) < goal)
1988    ;
1989  nsec2 = __kmp_now_nsec();
1990  diff = nsec2 - nsec;
1991  if (diff > 0) {
1992    kmp_uint64 tpms = (kmp_uint64)(1e6 * (delay + (now - goal)) / diff);
1993    if (tpms > 0)
1994      __kmp_ticks_per_msec = tpms;
1995  }
1996}
1997#endif
1998
1999/* Determine whether the given address is mapped into the current address
2000   space. */
2001
2002int __kmp_is_address_mapped(void *addr) {
2003
2004  int found = 0;
2005  int rc;
2006
2007#if KMP_OS_LINUX || KMP_OS_HURD
2008
2009  /* On GNUish OSes, read the /proc/<pid>/maps pseudo-file to get all the address
2010     ranges mapped into the address space. */
2011
2012  char *name = __kmp_str_format("/proc/%d/maps", getpid());
2013  FILE *file = NULL;
2014
2015  file = fopen(name, "r");
2016  KMP_ASSERT(file != NULL);
2017
2018  for (;;) {
2019
2020    void *beginning = NULL;
2021    void *ending = NULL;
2022    char perms[5];
2023
2024    rc = fscanf(file, "%p-%p %4s %*[^\n]\n", &beginning, &ending, perms);
2025    if (rc == EOF) {
2026      break;
2027    }
2028    KMP_ASSERT(rc == 3 &&
2029               KMP_STRLEN(perms) == 4); // Make sure all fields are read.
2030
2031    // Ending address is not included in the region, but beginning is.
2032    if ((addr >= beginning) && (addr < ending)) {
2033      perms[2] = 0; // 3th and 4th character does not matter.
2034      if (strcmp(perms, "rw") == 0) {
2035        // Memory we are looking for should be readable and writable.
2036        found = 1;
2037      }
2038      break;
2039    }
2040  }
2041
2042  // Free resources.
2043  fclose(file);
2044  KMP_INTERNAL_FREE(name);
2045#elif KMP_OS_FREEBSD
2046  char *buf;
2047  size_t lstsz;
2048  int mib[] = {CTL_KERN, KERN_PROC, KERN_PROC_VMMAP, getpid()};
2049  rc = sysctl(mib, 4, NULL, &lstsz, NULL, 0);
2050  if (rc < 0)
2051     return 0;
2052  // We pass from number of vm entry's semantic
2053  // to size of whole entry map list.
2054  lstsz = lstsz * 4 / 3;
2055  buf = reinterpret_cast<char *>(kmpc_malloc(lstsz));
2056  rc = sysctl(mib, 4, buf, &lstsz, NULL, 0);
2057  if (rc < 0) {
2058     kmpc_free(buf);
2059     return 0;
2060  }
2061
2062  char *lw = buf;
2063  char *up = buf + lstsz;
2064
2065  while (lw < up) {
2066      struct kinfo_vmentry *cur = reinterpret_cast<struct kinfo_vmentry *>(lw);
2067      size_t cursz = cur->kve_structsize;
2068      if (cursz == 0)
2069          break;
2070      void *start = reinterpret_cast<void *>(cur->kve_start);
2071      void *end = reinterpret_cast<void *>(cur->kve_end);
2072      // Readable/Writable addresses within current map entry
2073      if ((addr >= start) && (addr < end)) {
2074          if ((cur->kve_protection & KVME_PROT_READ) != 0 &&
2075              (cur->kve_protection & KVME_PROT_WRITE) != 0) {
2076              found = 1;
2077              break;
2078          }
2079      }
2080      lw += cursz;
2081  }
2082  kmpc_free(buf);
2083
2084#elif KMP_OS_DARWIN
2085
2086  /* On OS X*, /proc pseudo filesystem is not available. Try to read memory
2087     using vm interface. */
2088
2089  int buffer;
2090  vm_size_t count;
2091  rc = vm_read_overwrite(
2092      mach_task_self(), // Task to read memory of.
2093      (vm_address_t)(addr), // Address to read from.
2094      1, // Number of bytes to be read.
2095      (vm_address_t)(&buffer), // Address of buffer to save read bytes in.
2096      &count // Address of var to save number of read bytes in.
2097      );
2098  if (rc == 0) {
2099    // Memory successfully read.
2100    found = 1;
2101  }
2102
2103#elif KMP_OS_NETBSD
2104
2105  int mib[5];
2106  mib[0] = CTL_VM;
2107  mib[1] = VM_PROC;
2108  mib[2] = VM_PROC_MAP;
2109  mib[3] = getpid();
2110  mib[4] = sizeof(struct kinfo_vmentry);
2111
2112  size_t size;
2113  rc = sysctl(mib, __arraycount(mib), NULL, &size, NULL, 0);
2114  KMP_ASSERT(!rc);
2115  KMP_ASSERT(size);
2116
2117  size = size * 4 / 3;
2118  struct kinfo_vmentry *kiv = (struct kinfo_vmentry *)KMP_INTERNAL_MALLOC(size);
2119  KMP_ASSERT(kiv);
2120
2121  rc = sysctl(mib, __arraycount(mib), kiv, &size, NULL, 0);
2122  KMP_ASSERT(!rc);
2123  KMP_ASSERT(size);
2124
2125  for (size_t i = 0; i < size; i++) {
2126    if (kiv[i].kve_start >= (uint64_t)addr &&
2127        kiv[i].kve_end <= (uint64_t)addr) {
2128      found = 1;
2129      break;
2130    }
2131  }
2132  KMP_INTERNAL_FREE(kiv);
2133#elif KMP_OS_OPENBSD
2134
2135  int mib[3];
2136  mib[0] = CTL_KERN;
2137  mib[1] = KERN_PROC_VMMAP;
2138  mib[2] = getpid();
2139
2140  size_t size;
2141  uint64_t end;
2142  rc = sysctl(mib, 3, NULL, &size, NULL, 0);
2143  KMP_ASSERT(!rc);
2144  KMP_ASSERT(size);
2145  end = size;
2146
2147  struct kinfo_vmentry kiv = {.kve_start = 0};
2148
2149  while ((rc = sysctl(mib, 3, &kiv, &size, NULL, 0)) == 0) {
2150    KMP_ASSERT(size);
2151    if (kiv.kve_end == end)
2152      break;
2153
2154    if (kiv.kve_start >= (uint64_t)addr && kiv.kve_end <= (uint64_t)addr) {
2155      found = 1;
2156      break;
2157    }
2158    kiv.kve_start += 1;
2159  }
2160#elif KMP_OS_DRAGONFLY
2161
2162  // FIXME(DragonFly): Implement this
2163  found = 1;
2164
2165#else
2166
2167#error "Unknown or unsupported OS"
2168
2169#endif
2170
2171  return found;
2172
2173} // __kmp_is_address_mapped
2174
2175#ifdef USE_LOAD_BALANCE
2176
2177#if KMP_OS_DARWIN || KMP_OS_NETBSD
2178
2179// The function returns the rounded value of the system load average
2180// during given time interval which depends on the value of
2181// __kmp_load_balance_interval variable (default is 60 sec, other values
2182// may be 300 sec or 900 sec).
2183// It returns -1 in case of error.
2184int __kmp_get_load_balance(int max) {
2185  double averages[3];
2186  int ret_avg = 0;
2187
2188  int res = getloadavg(averages, 3);
2189
2190  // Check __kmp_load_balance_interval to determine which of averages to use.
2191  // getloadavg() may return the number of samples less than requested that is
2192  // less than 3.
2193  if (__kmp_load_balance_interval < 180 && (res >= 1)) {
2194    ret_avg = averages[0]; // 1 min
2195  } else if ((__kmp_load_balance_interval >= 180 &&
2196              __kmp_load_balance_interval < 600) &&
2197             (res >= 2)) {
2198    ret_avg = averages[1]; // 5 min
2199  } else if ((__kmp_load_balance_interval >= 600) && (res == 3)) {
2200    ret_avg = averages[2]; // 15 min
2201  } else { // Error occurred
2202    return -1;
2203  }
2204
2205  return ret_avg;
2206}
2207
2208#else // Linux* OS
2209
2210// The fuction returns number of running (not sleeping) threads, or -1 in case
2211// of error. Error could be reported if Linux* OS kernel too old (without
2212// "/proc" support). Counting running threads stops if max running threads
2213// encountered.
2214int __kmp_get_load_balance(int max) {
2215  static int permanent_error = 0;
2216  static int glb_running_threads = 0; // Saved count of the running threads for
2217  // the thread balance algorithm
2218  static double glb_call_time = 0; /* Thread balance algorithm call time */
2219
2220  int running_threads = 0; // Number of running threads in the system.
2221
2222  DIR *proc_dir = NULL; // Handle of "/proc/" directory.
2223  struct dirent *proc_entry = NULL;
2224
2225  kmp_str_buf_t task_path; // "/proc/<pid>/task/<tid>/" path.
2226  DIR *task_dir = NULL; // Handle of "/proc/<pid>/task/<tid>/" directory.
2227  struct dirent *task_entry = NULL;
2228  int task_path_fixed_len;
2229
2230  kmp_str_buf_t stat_path; // "/proc/<pid>/task/<tid>/stat" path.
2231  int stat_file = -1;
2232  int stat_path_fixed_len;
2233
2234  int total_processes = 0; // Total number of processes in system.
2235  int total_threads = 0; // Total number of threads in system.
2236
2237  double call_time = 0.0;
2238
2239  __kmp_str_buf_init(&task_path);
2240  __kmp_str_buf_init(&stat_path);
2241
2242  __kmp_elapsed(&call_time);
2243
2244  if (glb_call_time &&
2245      (call_time - glb_call_time < __kmp_load_balance_interval)) {
2246    running_threads = glb_running_threads;
2247    goto finish;
2248  }
2249
2250  glb_call_time = call_time;
2251
2252  // Do not spend time on scanning "/proc/" if we have a permanent error.
2253  if (permanent_error) {
2254    running_threads = -1;
2255    goto finish;
2256  }
2257
2258  if (max <= 0) {
2259    max = INT_MAX;
2260  }
2261
2262  // Open "/proc/" directory.
2263  proc_dir = opendir("/proc");
2264  if (proc_dir == NULL) {
2265    // Cannot open "/prroc/". Probably the kernel does not support it. Return an
2266    // error now and in subsequent calls.
2267    running_threads = -1;
2268    permanent_error = 1;
2269    goto finish;
2270  }
2271
2272  // Initialize fixed part of task_path. This part will not change.
2273  __kmp_str_buf_cat(&task_path, "/proc/", 6);
2274  task_path_fixed_len = task_path.used; // Remember number of used characters.
2275
2276  proc_entry = readdir(proc_dir);
2277  while (proc_entry != NULL) {
2278    // Proc entry is a directory and name starts with a digit. Assume it is a
2279    // process' directory.
2280    if (proc_entry->d_type == DT_DIR && isdigit(proc_entry->d_name[0])) {
2281
2282      ++total_processes;
2283      // Make sure init process is the very first in "/proc", so we can replace
2284      // strcmp( proc_entry->d_name, "1" ) == 0 with simpler total_processes ==
2285      // 1. We are going to check that total_processes == 1 => d_name == "1" is
2286      // true (where "=>" is implication). Since C++ does not have => operator,
2287      // let us replace it with its equivalent: a => b == ! a || b.
2288      KMP_DEBUG_ASSERT(total_processes != 1 ||
2289                       strcmp(proc_entry->d_name, "1") == 0);
2290
2291      // Construct task_path.
2292      task_path.used = task_path_fixed_len; // Reset task_path to "/proc/".
2293      __kmp_str_buf_cat(&task_path, proc_entry->d_name,
2294                        KMP_STRLEN(proc_entry->d_name));
2295      __kmp_str_buf_cat(&task_path, "/task", 5);
2296
2297      task_dir = opendir(task_path.str);
2298      if (task_dir == NULL) {
2299        // Process can finish between reading "/proc/" directory entry and
2300        // opening process' "task/" directory. So, in general case we should not
2301        // complain, but have to skip this process and read the next one. But on
2302        // systems with no "task/" support we will spend lot of time to scan
2303        // "/proc/" tree again and again without any benefit. "init" process
2304        // (its pid is 1) should exist always, so, if we cannot open
2305        // "/proc/1/task/" directory, it means "task/" is not supported by
2306        // kernel. Report an error now and in the future.
2307        if (strcmp(proc_entry->d_name, "1") == 0) {
2308          running_threads = -1;
2309          permanent_error = 1;
2310          goto finish;
2311        }
2312      } else {
2313        // Construct fixed part of stat file path.
2314        __kmp_str_buf_clear(&stat_path);
2315        __kmp_str_buf_cat(&stat_path, task_path.str, task_path.used);
2316        __kmp_str_buf_cat(&stat_path, "/", 1);
2317        stat_path_fixed_len = stat_path.used;
2318
2319        task_entry = readdir(task_dir);
2320        while (task_entry != NULL) {
2321          // It is a directory and name starts with a digit.
2322          if (proc_entry->d_type == DT_DIR && isdigit(task_entry->d_name[0])) {
2323            ++total_threads;
2324
2325            // Construct complete stat file path. Easiest way would be:
2326            //  __kmp_str_buf_print( & stat_path, "%s/%s/stat", task_path.str,
2327            //  task_entry->d_name );
2328            // but seriae of __kmp_str_buf_cat works a bit faster.
2329            stat_path.used =
2330                stat_path_fixed_len; // Reset stat path to its fixed part.
2331            __kmp_str_buf_cat(&stat_path, task_entry->d_name,
2332                              KMP_STRLEN(task_entry->d_name));
2333            __kmp_str_buf_cat(&stat_path, "/stat", 5);
2334
2335            // Note: Low-level API (open/read/close) is used. High-level API
2336            // (fopen/fclose)  works ~ 30 % slower.
2337            stat_file = open(stat_path.str, O_RDONLY);
2338            if (stat_file == -1) {
2339              // We cannot report an error because task (thread) can terminate
2340              // just before reading this file.
2341            } else {
2342              /* Content of "stat" file looks like:
2343                 24285 (program) S ...
2344
2345                 It is a single line (if program name does not include funny
2346                 symbols). First number is a thread id, then name of executable
2347                 file name in paretheses, then state of the thread. We need just
2348                 thread state.
2349
2350                 Good news: Length of program name is 15 characters max. Longer
2351                 names are truncated.
2352
2353                 Thus, we need rather short buffer: 15 chars for program name +
2354                 2 parenthesis, + 3 spaces + ~7 digits of pid = 37.
2355
2356                 Bad news: Program name may contain special symbols like space,
2357                 closing parenthesis, or even new line. This makes parsing
2358                 "stat" file not 100 % reliable. In case of fanny program names
2359                 parsing may fail (report incorrect thread state).
2360
2361                 Parsing "status" file looks more promissing (due to different
2362                 file structure and escaping special symbols) but reading and
2363                 parsing of "status" file works slower.
2364                  -- ln
2365              */
2366              char buffer[65];
2367              int len;
2368              len = read(stat_file, buffer, sizeof(buffer) - 1);
2369              if (len >= 0) {
2370                buffer[len] = 0;
2371                // Using scanf:
2372                //     sscanf( buffer, "%*d (%*s) %c ", & state );
2373                // looks very nice, but searching for a closing parenthesis
2374                // works a bit faster.
2375                char *close_parent = strstr(buffer, ") ");
2376                if (close_parent != NULL) {
2377                  char state = *(close_parent + 2);
2378                  if (state == 'R') {
2379                    ++running_threads;
2380                    if (running_threads >= max) {
2381                      goto finish;
2382                    }
2383                  }
2384                }
2385              }
2386              close(stat_file);
2387              stat_file = -1;
2388            }
2389          }
2390          task_entry = readdir(task_dir);
2391        }
2392        closedir(task_dir);
2393        task_dir = NULL;
2394      }
2395    }
2396    proc_entry = readdir(proc_dir);
2397  }
2398
2399  // There _might_ be a timing hole where the thread executing this
2400  // code get skipped in the load balance, and running_threads is 0.
2401  // Assert in the debug builds only!!!
2402  KMP_DEBUG_ASSERT(running_threads > 0);
2403  if (running_threads <= 0) {
2404    running_threads = 1;
2405  }
2406
2407finish: // Clean up and exit.
2408  if (proc_dir != NULL) {
2409    closedir(proc_dir);
2410  }
2411  __kmp_str_buf_free(&task_path);
2412  if (task_dir != NULL) {
2413    closedir(task_dir);
2414  }
2415  __kmp_str_buf_free(&stat_path);
2416  if (stat_file != -1) {
2417    close(stat_file);
2418  }
2419
2420  glb_running_threads = running_threads;
2421
2422  return running_threads;
2423
2424} // __kmp_get_load_balance
2425
2426#endif // KMP_OS_DARWIN
2427
2428#endif // USE_LOAD_BALANCE
2429
2430#if !(KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_MIC ||                            \
2431      ((KMP_OS_LINUX || KMP_OS_DARWIN) && KMP_ARCH_AARCH64) ||                 \
2432      KMP_ARCH_PPC64 || KMP_ARCH_RISCV64)
2433
2434// we really only need the case with 1 argument, because CLANG always build
2435// a struct of pointers to shared variables referenced in the outlined function
2436int __kmp_invoke_microtask(microtask_t pkfn, int gtid, int tid, int argc,
2437                           void *p_argv[]
2438#if OMPT_SUPPORT
2439                           ,
2440                           void **exit_frame_ptr
2441#endif
2442                           ) {
2443#if OMPT_SUPPORT
2444  *exit_frame_ptr = OMPT_GET_FRAME_ADDRESS(0);
2445#endif
2446
2447  switch (argc) {
2448  default:
2449    fprintf(stderr, "Too many args to microtask: %d!\n", argc);
2450    fflush(stderr);
2451    exit(-1);
2452  case 0:
2453    (*pkfn)(&gtid, &tid);
2454    break;
2455  case 1:
2456    (*pkfn)(&gtid, &tid, p_argv[0]);
2457    break;
2458  case 2:
2459    (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1]);
2460    break;
2461  case 3:
2462    (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2]);
2463    break;
2464  case 4:
2465    (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3]);
2466    break;
2467  case 5:
2468    (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4]);
2469    break;
2470  case 6:
2471    (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2472            p_argv[5]);
2473    break;
2474  case 7:
2475    (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2476            p_argv[5], p_argv[6]);
2477    break;
2478  case 8:
2479    (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2480            p_argv[5], p_argv[6], p_argv[7]);
2481    break;
2482  case 9:
2483    (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2484            p_argv[5], p_argv[6], p_argv[7], p_argv[8]);
2485    break;
2486  case 10:
2487    (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2488            p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9]);
2489    break;
2490  case 11:
2491    (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2492            p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10]);
2493    break;
2494  case 12:
2495    (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2496            p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2497            p_argv[11]);
2498    break;
2499  case 13:
2500    (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2501            p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2502            p_argv[11], p_argv[12]);
2503    break;
2504  case 14:
2505    (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2506            p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2507            p_argv[11], p_argv[12], p_argv[13]);
2508    break;
2509  case 15:
2510    (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2511            p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2512            p_argv[11], p_argv[12], p_argv[13], p_argv[14]);
2513    break;
2514  }
2515
2516  return 1;
2517}
2518
2519#endif
2520
2521// end of file //
2522