X86RecognizableInstr.cpp revision 280031
1//===- X86RecognizableInstr.cpp - Disassembler instruction spec --*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file is part of the X86 Disassembler Emitter.
11// It contains the implementation of a single recognizable instruction.
12// Documentation for the disassembler emitter in general can be found in
13//  X86DisasemblerEmitter.h.
14//
15//===----------------------------------------------------------------------===//
16
17#include "X86RecognizableInstr.h"
18#include "X86DisassemblerShared.h"
19#include "X86ModRMFilters.h"
20#include "llvm/Support/ErrorHandling.h"
21#include <string>
22
23using namespace llvm;
24
25#define MRM_MAPPING     \
26  MAP(C0, 32)           \
27  MAP(C1, 33)           \
28  MAP(C2, 34)           \
29  MAP(C3, 35)           \
30  MAP(C4, 36)           \
31  MAP(C8, 37)           \
32  MAP(C9, 38)           \
33  MAP(CA, 39)           \
34  MAP(CB, 40)           \
35  MAP(CF, 41)           \
36  MAP(D0, 42)           \
37  MAP(D1, 43)           \
38  MAP(D4, 44)           \
39  MAP(D5, 45)           \
40  MAP(D6, 46)           \
41  MAP(D7, 47)           \
42  MAP(D8, 48)           \
43  MAP(D9, 49)           \
44  MAP(DA, 50)           \
45  MAP(DB, 51)           \
46  MAP(DC, 52)           \
47  MAP(DD, 53)           \
48  MAP(DE, 54)           \
49  MAP(DF, 55)           \
50  MAP(E0, 56)           \
51  MAP(E1, 57)           \
52  MAP(E2, 58)           \
53  MAP(E3, 59)           \
54  MAP(E4, 60)           \
55  MAP(E5, 61)           \
56  MAP(E8, 62)           \
57  MAP(E9, 63)           \
58  MAP(EA, 64)           \
59  MAP(EB, 65)           \
60  MAP(EC, 66)           \
61  MAP(ED, 67)           \
62  MAP(EE, 68)           \
63  MAP(F0, 69)           \
64  MAP(F1, 70)           \
65  MAP(F2, 71)           \
66  MAP(F3, 72)           \
67  MAP(F4, 73)           \
68  MAP(F5, 74)           \
69  MAP(F6, 75)           \
70  MAP(F7, 76)           \
71  MAP(F8, 77)           \
72  MAP(F9, 78)           \
73  MAP(FA, 79)           \
74  MAP(FB, 80)           \
75  MAP(FC, 81)           \
76  MAP(FD, 82)           \
77  MAP(FE, 83)           \
78  MAP(FF, 84)
79
80// A clone of X86 since we can't depend on something that is generated.
81namespace X86Local {
82  enum {
83    Pseudo      = 0,
84    RawFrm      = 1,
85    AddRegFrm   = 2,
86    MRMDestReg  = 3,
87    MRMDestMem  = 4,
88    MRMSrcReg   = 5,
89    MRMSrcMem   = 6,
90    RawFrmMemOffs = 7,
91    RawFrmSrc   = 8,
92    RawFrmDst   = 9,
93    RawFrmDstSrc = 10,
94    RawFrmImm8  = 11,
95    RawFrmImm16 = 12,
96    MRMXr = 14, MRMXm = 15,
97    MRM0r = 16, MRM1r = 17, MRM2r = 18, MRM3r = 19,
98    MRM4r = 20, MRM5r = 21, MRM6r = 22, MRM7r = 23,
99    MRM0m = 24, MRM1m = 25, MRM2m = 26, MRM3m = 27,
100    MRM4m = 28, MRM5m = 29, MRM6m = 30, MRM7m = 31,
101#define MAP(from, to) MRM_##from = to,
102    MRM_MAPPING
103#undef MAP
104    lastMRM
105  };
106
107  enum {
108    OB = 0, TB = 1, T8 = 2, TA = 3, XOP8 = 4, XOP9 = 5, XOPA = 6
109  };
110
111  enum {
112    PS = 1, PD = 2, XS = 3, XD = 4
113  };
114
115  enum {
116    VEX = 1, XOP = 2, EVEX = 3
117  };
118
119  enum {
120    OpSize16 = 1, OpSize32 = 2
121  };
122
123  enum {
124    AdSize16 = 1, AdSize32 = 2, AdSize64 = 3
125  };
126}
127
128using namespace X86Disassembler;
129
130/// isRegFormat - Indicates whether a particular form requires the Mod field of
131///   the ModR/M byte to be 0b11.
132///
133/// @param form - The form of the instruction.
134/// @return     - true if the form implies that Mod must be 0b11, false
135///               otherwise.
136static bool isRegFormat(uint8_t form) {
137  return (form == X86Local::MRMDestReg ||
138          form == X86Local::MRMSrcReg  ||
139          form == X86Local::MRMXr ||
140          (form >= X86Local::MRM0r && form <= X86Local::MRM7r));
141}
142
143/// byteFromBitsInit - Extracts a value at most 8 bits in width from a BitsInit.
144///   Useful for switch statements and the like.
145///
146/// @param init - A reference to the BitsInit to be decoded.
147/// @return     - The field, with the first bit in the BitsInit as the lowest
148///               order bit.
149static uint8_t byteFromBitsInit(BitsInit &init) {
150  int width = init.getNumBits();
151
152  assert(width <= 8 && "Field is too large for uint8_t!");
153
154  int     index;
155  uint8_t mask = 0x01;
156
157  uint8_t ret = 0;
158
159  for (index = 0; index < width; index++) {
160    if (static_cast<BitInit*>(init.getBit(index))->getValue())
161      ret |= mask;
162
163    mask <<= 1;
164  }
165
166  return ret;
167}
168
169/// byteFromRec - Extract a value at most 8 bits in with from a Record given the
170///   name of the field.
171///
172/// @param rec  - The record from which to extract the value.
173/// @param name - The name of the field in the record.
174/// @return     - The field, as translated by byteFromBitsInit().
175static uint8_t byteFromRec(const Record* rec, const std::string &name) {
176  BitsInit* bits = rec->getValueAsBitsInit(name);
177  return byteFromBitsInit(*bits);
178}
179
180RecognizableInstr::RecognizableInstr(DisassemblerTables &tables,
181                                     const CodeGenInstruction &insn,
182                                     InstrUID uid) {
183  UID = uid;
184
185  Rec = insn.TheDef;
186  Name = Rec->getName();
187  Spec = &tables.specForUID(UID);
188
189  if (!Rec->isSubClassOf("X86Inst")) {
190    ShouldBeEmitted = false;
191    return;
192  }
193
194  OpPrefix = byteFromRec(Rec, "OpPrefixBits");
195  OpMap    = byteFromRec(Rec, "OpMapBits");
196  Opcode   = byteFromRec(Rec, "Opcode");
197  Form     = byteFromRec(Rec, "FormBits");
198  Encoding = byteFromRec(Rec, "OpEncBits");
199
200  OpSize           = byteFromRec(Rec, "OpSizeBits");
201  AdSize           = byteFromRec(Rec, "AdSizeBits");
202  HasREX_WPrefix   = Rec->getValueAsBit("hasREX_WPrefix");
203  HasVEX_4V        = Rec->getValueAsBit("hasVEX_4V");
204  HasVEX_4VOp3     = Rec->getValueAsBit("hasVEX_4VOp3");
205  HasVEX_WPrefix   = Rec->getValueAsBit("hasVEX_WPrefix");
206  HasMemOp4Prefix  = Rec->getValueAsBit("hasMemOp4Prefix");
207  IgnoresVEX_L     = Rec->getValueAsBit("ignoresVEX_L");
208  HasEVEX_L2Prefix = Rec->getValueAsBit("hasEVEX_L2");
209  HasEVEX_K        = Rec->getValueAsBit("hasEVEX_K");
210  HasEVEX_KZ       = Rec->getValueAsBit("hasEVEX_Z");
211  HasEVEX_B        = Rec->getValueAsBit("hasEVEX_B");
212  IsCodeGenOnly    = Rec->getValueAsBit("isCodeGenOnly");
213  ForceDisassemble = Rec->getValueAsBit("ForceDisassemble");
214  CD8_Scale        = byteFromRec(Rec, "CD8_Scale");
215
216  Name      = Rec->getName();
217  AsmString = Rec->getValueAsString("AsmString");
218
219  Operands = &insn.Operands.OperandList;
220
221  HasVEX_LPrefix   = Rec->getValueAsBit("hasVEX_L");
222
223  // Check for 64-bit inst which does not require REX
224  Is32Bit = false;
225  Is64Bit = false;
226  // FIXME: Is there some better way to check for In64BitMode?
227  std::vector<Record*> Predicates = Rec->getValueAsListOfDefs("Predicates");
228  for (unsigned i = 0, e = Predicates.size(); i != e; ++i) {
229    if (Predicates[i]->getName().find("Not64Bit") != Name.npos ||
230	Predicates[i]->getName().find("In32Bit") != Name.npos) {
231      Is32Bit = true;
232      break;
233    }
234    if (Predicates[i]->getName().find("In64Bit") != Name.npos) {
235      Is64Bit = true;
236      break;
237    }
238  }
239
240  if (Form == X86Local::Pseudo || (IsCodeGenOnly && !ForceDisassemble)) {
241    ShouldBeEmitted = false;
242    return;
243  }
244
245  // Special case since there is no attribute class for 64-bit and VEX
246  if (Name == "VMASKMOVDQU64") {
247    ShouldBeEmitted = false;
248    return;
249  }
250
251  ShouldBeEmitted  = true;
252}
253
254void RecognizableInstr::processInstr(DisassemblerTables &tables,
255                                     const CodeGenInstruction &insn,
256                                     InstrUID uid)
257{
258  // Ignore "asm parser only" instructions.
259  if (insn.TheDef->getValueAsBit("isAsmParserOnly"))
260    return;
261
262  RecognizableInstr recogInstr(tables, insn, uid);
263
264  if (recogInstr.shouldBeEmitted()) {
265    recogInstr.emitInstructionSpecifier();
266    recogInstr.emitDecodePath(tables);
267  }
268}
269
270#define EVEX_KB(n) (HasEVEX_KZ && HasEVEX_B ? n##_KZ_B : \
271                    (HasEVEX_K && HasEVEX_B ? n##_K_B : \
272                    (HasEVEX_KZ ? n##_KZ : \
273                    (HasEVEX_K? n##_K : (HasEVEX_B ? n##_B : n)))))
274
275InstructionContext RecognizableInstr::insnContext() const {
276  InstructionContext insnContext;
277
278  if (Encoding == X86Local::EVEX) {
279    if (HasVEX_LPrefix && HasEVEX_L2Prefix) {
280      errs() << "Don't support VEX.L if EVEX_L2 is enabled: " << Name << "\n";
281      llvm_unreachable("Don't support VEX.L if EVEX_L2 is enabled");
282    }
283    // VEX_L & VEX_W
284    if (HasVEX_LPrefix && HasVEX_WPrefix) {
285      if (OpPrefix == X86Local::PD)
286        insnContext = EVEX_KB(IC_EVEX_L_W_OPSIZE);
287      else if (OpPrefix == X86Local::XS)
288        insnContext = EVEX_KB(IC_EVEX_L_W_XS);
289      else if (OpPrefix == X86Local::XD)
290        insnContext = EVEX_KB(IC_EVEX_L_W_XD);
291      else if (OpPrefix == X86Local::PS)
292        insnContext = EVEX_KB(IC_EVEX_L_W);
293      else {
294        errs() << "Instruction does not use a prefix: " << Name << "\n";
295        llvm_unreachable("Invalid prefix");
296      }
297    } else if (HasVEX_LPrefix) {
298      // VEX_L
299      if (OpPrefix == X86Local::PD)
300        insnContext = EVEX_KB(IC_EVEX_L_OPSIZE);
301      else if (OpPrefix == X86Local::XS)
302        insnContext = EVEX_KB(IC_EVEX_L_XS);
303      else if (OpPrefix == X86Local::XD)
304        insnContext = EVEX_KB(IC_EVEX_L_XD);
305      else if (OpPrefix == X86Local::PS)
306        insnContext = EVEX_KB(IC_EVEX_L);
307      else {
308        errs() << "Instruction does not use a prefix: " << Name << "\n";
309        llvm_unreachable("Invalid prefix");
310      }
311    }
312    else if (HasEVEX_L2Prefix && HasVEX_WPrefix) {
313      // EVEX_L2 & VEX_W
314      if (OpPrefix == X86Local::PD)
315        insnContext = EVEX_KB(IC_EVEX_L2_W_OPSIZE);
316      else if (OpPrefix == X86Local::XS)
317        insnContext = EVEX_KB(IC_EVEX_L2_W_XS);
318      else if (OpPrefix == X86Local::XD)
319        insnContext = EVEX_KB(IC_EVEX_L2_W_XD);
320      else if (OpPrefix == X86Local::PS)
321        insnContext = EVEX_KB(IC_EVEX_L2_W);
322      else {
323        errs() << "Instruction does not use a prefix: " << Name << "\n";
324        llvm_unreachable("Invalid prefix");
325      }
326    } else if (HasEVEX_L2Prefix) {
327      // EVEX_L2
328      if (OpPrefix == X86Local::PD)
329        insnContext = EVEX_KB(IC_EVEX_L2_OPSIZE);
330      else if (OpPrefix == X86Local::XD)
331        insnContext = EVEX_KB(IC_EVEX_L2_XD);
332      else if (OpPrefix == X86Local::XS)
333        insnContext = EVEX_KB(IC_EVEX_L2_XS);
334      else if (OpPrefix == X86Local::PS)
335        insnContext = EVEX_KB(IC_EVEX_L2);
336      else {
337        errs() << "Instruction does not use a prefix: " << Name << "\n";
338        llvm_unreachable("Invalid prefix");
339      }
340    }
341    else if (HasVEX_WPrefix) {
342      // VEX_W
343      if (OpPrefix == X86Local::PD)
344        insnContext = EVEX_KB(IC_EVEX_W_OPSIZE);
345      else if (OpPrefix == X86Local::XS)
346        insnContext = EVEX_KB(IC_EVEX_W_XS);
347      else if (OpPrefix == X86Local::XD)
348        insnContext = EVEX_KB(IC_EVEX_W_XD);
349      else if (OpPrefix == X86Local::PS)
350        insnContext = EVEX_KB(IC_EVEX_W);
351      else {
352        errs() << "Instruction does not use a prefix: " << Name << "\n";
353        llvm_unreachable("Invalid prefix");
354      }
355    }
356    // No L, no W
357    else if (OpPrefix == X86Local::PD)
358      insnContext = EVEX_KB(IC_EVEX_OPSIZE);
359    else if (OpPrefix == X86Local::XD)
360      insnContext = EVEX_KB(IC_EVEX_XD);
361    else if (OpPrefix == X86Local::XS)
362      insnContext = EVEX_KB(IC_EVEX_XS);
363    else
364      insnContext = EVEX_KB(IC_EVEX);
365    /// eof EVEX
366  } else if (Encoding == X86Local::VEX || Encoding == X86Local::XOP) {
367    if (HasVEX_LPrefix && HasVEX_WPrefix) {
368      if (OpPrefix == X86Local::PD)
369        insnContext = IC_VEX_L_W_OPSIZE;
370      else if (OpPrefix == X86Local::XS)
371        insnContext = IC_VEX_L_W_XS;
372      else if (OpPrefix == X86Local::XD)
373        insnContext = IC_VEX_L_W_XD;
374      else if (OpPrefix == X86Local::PS)
375        insnContext = IC_VEX_L_W;
376      else {
377        errs() << "Instruction does not use a prefix: " << Name << "\n";
378        llvm_unreachable("Invalid prefix");
379      }
380    } else if (OpPrefix == X86Local::PD && HasVEX_LPrefix)
381      insnContext = IC_VEX_L_OPSIZE;
382    else if (OpPrefix == X86Local::PD && HasVEX_WPrefix)
383      insnContext = IC_VEX_W_OPSIZE;
384    else if (OpPrefix == X86Local::PD)
385      insnContext = IC_VEX_OPSIZE;
386    else if (HasVEX_LPrefix && OpPrefix == X86Local::XS)
387      insnContext = IC_VEX_L_XS;
388    else if (HasVEX_LPrefix && OpPrefix == X86Local::XD)
389      insnContext = IC_VEX_L_XD;
390    else if (HasVEX_WPrefix && OpPrefix == X86Local::XS)
391      insnContext = IC_VEX_W_XS;
392    else if (HasVEX_WPrefix && OpPrefix == X86Local::XD)
393      insnContext = IC_VEX_W_XD;
394    else if (HasVEX_WPrefix && OpPrefix == X86Local::PS)
395      insnContext = IC_VEX_W;
396    else if (HasVEX_LPrefix && OpPrefix == X86Local::PS)
397      insnContext = IC_VEX_L;
398    else if (OpPrefix == X86Local::XD)
399      insnContext = IC_VEX_XD;
400    else if (OpPrefix == X86Local::XS)
401      insnContext = IC_VEX_XS;
402    else if (OpPrefix == X86Local::PS)
403      insnContext = IC_VEX;
404    else {
405      errs() << "Instruction does not use a prefix: " << Name << "\n";
406      llvm_unreachable("Invalid prefix");
407    }
408  } else if (Is64Bit || HasREX_WPrefix || AdSize == X86Local::AdSize64) {
409    if (HasREX_WPrefix && (OpSize == X86Local::OpSize16 || OpPrefix == X86Local::PD))
410      insnContext = IC_64BIT_REXW_OPSIZE;
411    else if (HasREX_WPrefix && AdSize == X86Local::AdSize32)
412      insnContext = IC_64BIT_REXW_ADSIZE;
413    else if (OpSize == X86Local::OpSize16 && OpPrefix == X86Local::XD)
414      insnContext = IC_64BIT_XD_OPSIZE;
415    else if (OpSize == X86Local::OpSize16 && OpPrefix == X86Local::XS)
416      insnContext = IC_64BIT_XS_OPSIZE;
417    else if (OpSize == X86Local::OpSize16 && AdSize == X86Local::AdSize32)
418      insnContext = IC_64BIT_OPSIZE_ADSIZE;
419    else if (OpSize == X86Local::OpSize16 || OpPrefix == X86Local::PD)
420      insnContext = IC_64BIT_OPSIZE;
421    else if (AdSize == X86Local::AdSize32)
422      insnContext = IC_64BIT_ADSIZE;
423    else if (HasREX_WPrefix && OpPrefix == X86Local::XS)
424      insnContext = IC_64BIT_REXW_XS;
425    else if (HasREX_WPrefix && OpPrefix == X86Local::XD)
426      insnContext = IC_64BIT_REXW_XD;
427    else if (OpPrefix == X86Local::XD)
428      insnContext = IC_64BIT_XD;
429    else if (OpPrefix == X86Local::XS)
430      insnContext = IC_64BIT_XS;
431    else if (HasREX_WPrefix)
432      insnContext = IC_64BIT_REXW;
433    else
434      insnContext = IC_64BIT;
435  } else {
436    if (OpSize == X86Local::OpSize16 && OpPrefix == X86Local::XD)
437      insnContext = IC_XD_OPSIZE;
438    else if (OpSize == X86Local::OpSize16 && OpPrefix == X86Local::XS)
439      insnContext = IC_XS_OPSIZE;
440    else if (OpSize == X86Local::OpSize16 && AdSize == X86Local::AdSize16)
441      insnContext = IC_OPSIZE_ADSIZE;
442    else if (OpSize == X86Local::OpSize16 || OpPrefix == X86Local::PD)
443      insnContext = IC_OPSIZE;
444    else if (AdSize == X86Local::AdSize16)
445      insnContext = IC_ADSIZE;
446    else if (OpPrefix == X86Local::XD)
447      insnContext = IC_XD;
448    else if (OpPrefix == X86Local::XS)
449      insnContext = IC_XS;
450    else
451      insnContext = IC;
452  }
453
454  return insnContext;
455}
456
457void RecognizableInstr::adjustOperandEncoding(OperandEncoding &encoding) {
458  // The scaling factor for AVX512 compressed displacement encoding is an
459  // instruction attribute.  Adjust the ModRM encoding type to include the
460  // scale for compressed displacement.
461  if (encoding != ENCODING_RM || CD8_Scale == 0)
462    return;
463  encoding = (OperandEncoding)(encoding + Log2_32(CD8_Scale));
464  assert(encoding <= ENCODING_RM_CD64 && "Invalid CDisp scaling");
465}
466
467void RecognizableInstr::handleOperand(bool optional, unsigned &operandIndex,
468                                      unsigned &physicalOperandIndex,
469                                      unsigned &numPhysicalOperands,
470                                      const unsigned *operandMapping,
471                                      OperandEncoding (*encodingFromString)
472                                        (const std::string&,
473                                         uint8_t OpSize)) {
474  if (optional) {
475    if (physicalOperandIndex >= numPhysicalOperands)
476      return;
477  } else {
478    assert(physicalOperandIndex < numPhysicalOperands);
479  }
480
481  while (operandMapping[operandIndex] != operandIndex) {
482    Spec->operands[operandIndex].encoding = ENCODING_DUP;
483    Spec->operands[operandIndex].type =
484      (OperandType)(TYPE_DUP0 + operandMapping[operandIndex]);
485    ++operandIndex;
486  }
487
488  const std::string &typeName = (*Operands)[operandIndex].Rec->getName();
489
490  OperandEncoding encoding = encodingFromString(typeName, OpSize);
491  // Adjust the encoding type for an operand based on the instruction.
492  adjustOperandEncoding(encoding);
493  Spec->operands[operandIndex].encoding = encoding;
494  Spec->operands[operandIndex].type = typeFromString(typeName,
495                                                     HasREX_WPrefix, OpSize);
496
497  ++operandIndex;
498  ++physicalOperandIndex;
499}
500
501void RecognizableInstr::emitInstructionSpecifier() {
502  Spec->name       = Name;
503
504  Spec->insnContext = insnContext();
505
506  const std::vector<CGIOperandList::OperandInfo> &OperandList = *Operands;
507
508  unsigned numOperands = OperandList.size();
509  unsigned numPhysicalOperands = 0;
510
511  // operandMapping maps from operands in OperandList to their originals.
512  // If operandMapping[i] != i, then the entry is a duplicate.
513  unsigned operandMapping[X86_MAX_OPERANDS];
514  assert(numOperands <= X86_MAX_OPERANDS && "X86_MAX_OPERANDS is not large enough");
515
516  for (unsigned operandIndex = 0; operandIndex < numOperands; ++operandIndex) {
517    if (OperandList[operandIndex].Constraints.size()) {
518      const CGIOperandList::ConstraintInfo &Constraint =
519        OperandList[operandIndex].Constraints[0];
520      if (Constraint.isTied()) {
521        operandMapping[operandIndex] = operandIndex;
522        operandMapping[Constraint.getTiedOperand()] = operandIndex;
523      } else {
524        ++numPhysicalOperands;
525        operandMapping[operandIndex] = operandIndex;
526      }
527    } else {
528      ++numPhysicalOperands;
529      operandMapping[operandIndex] = operandIndex;
530    }
531  }
532
533#define HANDLE_OPERAND(class)               \
534  handleOperand(false,                      \
535                operandIndex,               \
536                physicalOperandIndex,       \
537                numPhysicalOperands,        \
538                operandMapping,             \
539                class##EncodingFromString);
540
541#define HANDLE_OPTIONAL(class)              \
542  handleOperand(true,                       \
543                operandIndex,               \
544                physicalOperandIndex,       \
545                numPhysicalOperands,        \
546                operandMapping,             \
547                class##EncodingFromString);
548
549  // operandIndex should always be < numOperands
550  unsigned operandIndex = 0;
551  // physicalOperandIndex should always be < numPhysicalOperands
552  unsigned physicalOperandIndex = 0;
553
554  // Given the set of prefix bits, how many additional operands does the
555  // instruction have?
556  unsigned additionalOperands = 0;
557  if (HasVEX_4V || HasVEX_4VOp3)
558    ++additionalOperands;
559  if (HasEVEX_K)
560    ++additionalOperands;
561
562  switch (Form) {
563  default: llvm_unreachable("Unhandled form");
564  case X86Local::RawFrmSrc:
565    HANDLE_OPERAND(relocation);
566    return;
567  case X86Local::RawFrmDst:
568    HANDLE_OPERAND(relocation);
569    return;
570  case X86Local::RawFrmDstSrc:
571    HANDLE_OPERAND(relocation);
572    HANDLE_OPERAND(relocation);
573    return;
574  case X86Local::RawFrm:
575    // Operand 1 (optional) is an address or immediate.
576    // Operand 2 (optional) is an immediate.
577    assert(numPhysicalOperands <= 2 &&
578           "Unexpected number of operands for RawFrm");
579    HANDLE_OPTIONAL(relocation)
580    HANDLE_OPTIONAL(immediate)
581    break;
582  case X86Local::RawFrmMemOffs:
583    // Operand 1 is an address.
584    HANDLE_OPERAND(relocation);
585    break;
586  case X86Local::AddRegFrm:
587    // Operand 1 is added to the opcode.
588    // Operand 2 (optional) is an address.
589    assert(numPhysicalOperands >= 1 && numPhysicalOperands <= 2 &&
590           "Unexpected number of operands for AddRegFrm");
591    HANDLE_OPERAND(opcodeModifier)
592    HANDLE_OPTIONAL(relocation)
593    break;
594  case X86Local::MRMDestReg:
595    // Operand 1 is a register operand in the R/M field.
596    // - In AVX512 there may be a mask operand here -
597    // Operand 2 is a register operand in the Reg/Opcode field.
598    // - In AVX, there is a register operand in the VEX.vvvv field here -
599    // Operand 3 (optional) is an immediate.
600    assert(numPhysicalOperands >= 2 + additionalOperands &&
601           numPhysicalOperands <= 3 + additionalOperands &&
602           "Unexpected number of operands for MRMDestRegFrm");
603
604    HANDLE_OPERAND(rmRegister)
605    if (HasEVEX_K)
606      HANDLE_OPERAND(writemaskRegister)
607
608    if (HasVEX_4V)
609      // FIXME: In AVX, the register below becomes the one encoded
610      // in ModRMVEX and the one above the one in the VEX.VVVV field
611      HANDLE_OPERAND(vvvvRegister)
612
613    HANDLE_OPERAND(roRegister)
614    HANDLE_OPTIONAL(immediate)
615    break;
616  case X86Local::MRMDestMem:
617    // Operand 1 is a memory operand (possibly SIB-extended)
618    // Operand 2 is a register operand in the Reg/Opcode field.
619    // - In AVX, there is a register operand in the VEX.vvvv field here -
620    // Operand 3 (optional) is an immediate.
621    assert(numPhysicalOperands >= 2 + additionalOperands &&
622           numPhysicalOperands <= 3 + additionalOperands &&
623           "Unexpected number of operands for MRMDestMemFrm with VEX_4V");
624
625    HANDLE_OPERAND(memory)
626
627    if (HasEVEX_K)
628      HANDLE_OPERAND(writemaskRegister)
629
630    if (HasVEX_4V)
631      // FIXME: In AVX, the register below becomes the one encoded
632      // in ModRMVEX and the one above the one in the VEX.VVVV field
633      HANDLE_OPERAND(vvvvRegister)
634
635    HANDLE_OPERAND(roRegister)
636    HANDLE_OPTIONAL(immediate)
637    break;
638  case X86Local::MRMSrcReg:
639    // Operand 1 is a register operand in the Reg/Opcode field.
640    // Operand 2 is a register operand in the R/M field.
641    // - In AVX, there is a register operand in the VEX.vvvv field here -
642    // Operand 3 (optional) is an immediate.
643    // Operand 4 (optional) is an immediate.
644
645    assert(numPhysicalOperands >= 2 + additionalOperands &&
646           numPhysicalOperands <= 4 + additionalOperands &&
647           "Unexpected number of operands for MRMSrcRegFrm");
648
649    HANDLE_OPERAND(roRegister)
650
651    if (HasEVEX_K)
652      HANDLE_OPERAND(writemaskRegister)
653
654    if (HasVEX_4V)
655      // FIXME: In AVX, the register below becomes the one encoded
656      // in ModRMVEX and the one above the one in the VEX.VVVV field
657      HANDLE_OPERAND(vvvvRegister)
658
659    if (HasMemOp4Prefix)
660      HANDLE_OPERAND(immediate)
661
662    HANDLE_OPERAND(rmRegister)
663
664    if (HasVEX_4VOp3)
665      HANDLE_OPERAND(vvvvRegister)
666
667    if (!HasMemOp4Prefix)
668      HANDLE_OPTIONAL(immediate)
669    HANDLE_OPTIONAL(immediate) // above might be a register in 7:4
670    HANDLE_OPTIONAL(immediate)
671    break;
672  case X86Local::MRMSrcMem:
673    // Operand 1 is a register operand in the Reg/Opcode field.
674    // Operand 2 is a memory operand (possibly SIB-extended)
675    // - In AVX, there is a register operand in the VEX.vvvv field here -
676    // Operand 3 (optional) is an immediate.
677
678    assert(numPhysicalOperands >= 2 + additionalOperands &&
679           numPhysicalOperands <= 4 + additionalOperands &&
680           "Unexpected number of operands for MRMSrcMemFrm");
681
682    HANDLE_OPERAND(roRegister)
683
684    if (HasEVEX_K)
685      HANDLE_OPERAND(writemaskRegister)
686
687    if (HasVEX_4V)
688      // FIXME: In AVX, the register below becomes the one encoded
689      // in ModRMVEX and the one above the one in the VEX.VVVV field
690      HANDLE_OPERAND(vvvvRegister)
691
692    if (HasMemOp4Prefix)
693      HANDLE_OPERAND(immediate)
694
695    HANDLE_OPERAND(memory)
696
697    if (HasVEX_4VOp3)
698      HANDLE_OPERAND(vvvvRegister)
699
700    if (!HasMemOp4Prefix)
701      HANDLE_OPTIONAL(immediate)
702    HANDLE_OPTIONAL(immediate) // above might be a register in 7:4
703    break;
704  case X86Local::MRMXr:
705  case X86Local::MRM0r:
706  case X86Local::MRM1r:
707  case X86Local::MRM2r:
708  case X86Local::MRM3r:
709  case X86Local::MRM4r:
710  case X86Local::MRM5r:
711  case X86Local::MRM6r:
712  case X86Local::MRM7r:
713    // Operand 1 is a register operand in the R/M field.
714    // Operand 2 (optional) is an immediate or relocation.
715    // Operand 3 (optional) is an immediate.
716    assert(numPhysicalOperands >= 0 + additionalOperands &&
717           numPhysicalOperands <= 3 + additionalOperands &&
718           "Unexpected number of operands for MRMnr");
719
720    if (HasVEX_4V)
721      HANDLE_OPERAND(vvvvRegister)
722
723    if (HasEVEX_K)
724      HANDLE_OPERAND(writemaskRegister)
725    HANDLE_OPTIONAL(rmRegister)
726    HANDLE_OPTIONAL(relocation)
727    HANDLE_OPTIONAL(immediate)
728    break;
729  case X86Local::MRMXm:
730  case X86Local::MRM0m:
731  case X86Local::MRM1m:
732  case X86Local::MRM2m:
733  case X86Local::MRM3m:
734  case X86Local::MRM4m:
735  case X86Local::MRM5m:
736  case X86Local::MRM6m:
737  case X86Local::MRM7m:
738    // Operand 1 is a memory operand (possibly SIB-extended)
739    // Operand 2 (optional) is an immediate or relocation.
740    assert(numPhysicalOperands >= 1 + additionalOperands &&
741           numPhysicalOperands <= 2 + additionalOperands &&
742           "Unexpected number of operands for MRMnm");
743
744    if (HasVEX_4V)
745      HANDLE_OPERAND(vvvvRegister)
746    if (HasEVEX_K)
747      HANDLE_OPERAND(writemaskRegister)
748    HANDLE_OPERAND(memory)
749    HANDLE_OPTIONAL(relocation)
750    break;
751  case X86Local::RawFrmImm8:
752    // operand 1 is a 16-bit immediate
753    // operand 2 is an 8-bit immediate
754    assert(numPhysicalOperands == 2 &&
755           "Unexpected number of operands for X86Local::RawFrmImm8");
756    HANDLE_OPERAND(immediate)
757    HANDLE_OPERAND(immediate)
758    break;
759  case X86Local::RawFrmImm16:
760    // operand 1 is a 16-bit immediate
761    // operand 2 is a 16-bit immediate
762    HANDLE_OPERAND(immediate)
763    HANDLE_OPERAND(immediate)
764    break;
765  case X86Local::MRM_F8:
766    if (Opcode == 0xc6) {
767      assert(numPhysicalOperands == 1 &&
768             "Unexpected number of operands for X86Local::MRM_F8");
769      HANDLE_OPERAND(immediate)
770    } else if (Opcode == 0xc7) {
771      assert(numPhysicalOperands == 1 &&
772             "Unexpected number of operands for X86Local::MRM_F8");
773      HANDLE_OPERAND(relocation)
774    }
775    break;
776  case X86Local::MRM_C0: case X86Local::MRM_C1: case X86Local::MRM_C2:
777  case X86Local::MRM_C3: case X86Local::MRM_C4: case X86Local::MRM_C8:
778  case X86Local::MRM_C9: case X86Local::MRM_CA: case X86Local::MRM_CB:
779  case X86Local::MRM_CF: case X86Local::MRM_D0: case X86Local::MRM_D1:
780  case X86Local::MRM_D4: case X86Local::MRM_D5: case X86Local::MRM_D6:
781  case X86Local::MRM_D7: case X86Local::MRM_D8: case X86Local::MRM_D9:
782  case X86Local::MRM_DA: case X86Local::MRM_DB: case X86Local::MRM_DC:
783  case X86Local::MRM_DD: case X86Local::MRM_DE: case X86Local::MRM_DF:
784  case X86Local::MRM_E0: case X86Local::MRM_E1: case X86Local::MRM_E2:
785  case X86Local::MRM_E3: case X86Local::MRM_E4: case X86Local::MRM_E5:
786  case X86Local::MRM_E8: case X86Local::MRM_E9: case X86Local::MRM_EA:
787  case X86Local::MRM_EB: case X86Local::MRM_EC: case X86Local::MRM_ED:
788  case X86Local::MRM_EE: case X86Local::MRM_F0: case X86Local::MRM_F1:
789  case X86Local::MRM_F2: case X86Local::MRM_F3: case X86Local::MRM_F4:
790  case X86Local::MRM_F5: case X86Local::MRM_F6: case X86Local::MRM_F7:
791  case X86Local::MRM_F9: case X86Local::MRM_FA: case X86Local::MRM_FB:
792  case X86Local::MRM_FC: case X86Local::MRM_FD: case X86Local::MRM_FE:
793  case X86Local::MRM_FF:
794    // Ignored.
795    break;
796  }
797
798  #undef HANDLE_OPERAND
799  #undef HANDLE_OPTIONAL
800}
801
802void RecognizableInstr::emitDecodePath(DisassemblerTables &tables) const {
803  // Special cases where the LLVM tables are not complete
804
805#define MAP(from, to)                     \
806  case X86Local::MRM_##from:              \
807    filter = new ExactFilter(0x##from);   \
808    break;
809
810  OpcodeType    opcodeType  = (OpcodeType)-1;
811
812  ModRMFilter*  filter      = nullptr;
813  uint8_t       opcodeToSet = 0;
814
815  switch (OpMap) {
816  default: llvm_unreachable("Invalid map!");
817  case X86Local::OB:
818  case X86Local::TB:
819  case X86Local::T8:
820  case X86Local::TA:
821  case X86Local::XOP8:
822  case X86Local::XOP9:
823  case X86Local::XOPA:
824    switch (OpMap) {
825    default: llvm_unreachable("Unexpected map!");
826    case X86Local::OB:   opcodeType = ONEBYTE;      break;
827    case X86Local::TB:   opcodeType = TWOBYTE;      break;
828    case X86Local::T8:   opcodeType = THREEBYTE_38; break;
829    case X86Local::TA:   opcodeType = THREEBYTE_3A; break;
830    case X86Local::XOP8: opcodeType = XOP8_MAP;     break;
831    case X86Local::XOP9: opcodeType = XOP9_MAP;     break;
832    case X86Local::XOPA: opcodeType = XOPA_MAP;     break;
833    }
834
835    switch (Form) {
836    default:
837      filter = new DumbFilter();
838      break;
839    case X86Local::MRMDestReg: case X86Local::MRMDestMem:
840    case X86Local::MRMSrcReg:  case X86Local::MRMSrcMem:
841    case X86Local::MRMXr:      case X86Local::MRMXm:
842      filter = new ModFilter(isRegFormat(Form));
843      break;
844    case X86Local::MRM0r:      case X86Local::MRM1r:
845    case X86Local::MRM2r:      case X86Local::MRM3r:
846    case X86Local::MRM4r:      case X86Local::MRM5r:
847    case X86Local::MRM6r:      case X86Local::MRM7r:
848      filter = new ExtendedFilter(true, Form - X86Local::MRM0r);
849      break;
850    case X86Local::MRM0m:      case X86Local::MRM1m:
851    case X86Local::MRM2m:      case X86Local::MRM3m:
852    case X86Local::MRM4m:      case X86Local::MRM5m:
853    case X86Local::MRM6m:      case X86Local::MRM7m:
854      filter = new ExtendedFilter(false, Form - X86Local::MRM0m);
855      break;
856    MRM_MAPPING
857    } // switch (Form)
858
859    opcodeToSet = Opcode;
860    break;
861  } // switch (OpMap)
862
863  unsigned AddressSize = 0;
864  switch (AdSize) {
865  case X86Local::AdSize16: AddressSize = 16; break;
866  case X86Local::AdSize32: AddressSize = 32; break;
867  case X86Local::AdSize64: AddressSize = 64; break;
868  }
869
870  assert(opcodeType != (OpcodeType)-1 &&
871         "Opcode type not set");
872  assert(filter && "Filter not set");
873
874  if (Form == X86Local::AddRegFrm) {
875    assert(((opcodeToSet & 7) == 0) &&
876           "ADDREG_FRM opcode not aligned");
877
878    uint8_t currentOpcode;
879
880    for (currentOpcode = opcodeToSet;
881         currentOpcode < opcodeToSet + 8;
882         ++currentOpcode)
883      tables.setTableFields(opcodeType,
884                            insnContext(),
885                            currentOpcode,
886                            *filter,
887                            UID, Is32Bit, IgnoresVEX_L, AddressSize);
888  } else {
889    tables.setTableFields(opcodeType,
890                          insnContext(),
891                          opcodeToSet,
892                          *filter,
893                          UID, Is32Bit, IgnoresVEX_L, AddressSize);
894  }
895
896  delete filter;
897
898#undef MAP
899}
900
901#define TYPE(str, type) if (s == str) return type;
902OperandType RecognizableInstr::typeFromString(const std::string &s,
903                                              bool hasREX_WPrefix,
904                                              uint8_t OpSize) {
905  if(hasREX_WPrefix) {
906    // For instructions with a REX_W prefix, a declared 32-bit register encoding
907    // is special.
908    TYPE("GR32",              TYPE_R32)
909  }
910  if(OpSize == X86Local::OpSize16) {
911    // For OpSize16 instructions, a declared 16-bit register or
912    // immediate encoding is special.
913    TYPE("GR16",              TYPE_Rv)
914    TYPE("i16imm",            TYPE_IMMv)
915  } else if(OpSize == X86Local::OpSize32) {
916    // For OpSize32 instructions, a declared 32-bit register or
917    // immediate encoding is special.
918    TYPE("GR32",              TYPE_Rv)
919  }
920  TYPE("i16mem",              TYPE_Mv)
921  TYPE("i16imm",              TYPE_IMM16)
922  TYPE("i16i8imm",            TYPE_IMMv)
923  TYPE("GR16",                TYPE_R16)
924  TYPE("i32mem",              TYPE_Mv)
925  TYPE("i32imm",              TYPE_IMMv)
926  TYPE("i32i8imm",            TYPE_IMM32)
927  TYPE("GR32",                TYPE_R32)
928  TYPE("GR32orGR64",          TYPE_R32)
929  TYPE("i64mem",              TYPE_Mv)
930  TYPE("i64i32imm",           TYPE_IMM64)
931  TYPE("i64i8imm",            TYPE_IMM64)
932  TYPE("GR64",                TYPE_R64)
933  TYPE("i8mem",               TYPE_M8)
934  TYPE("i8imm",               TYPE_IMM8)
935  TYPE("GR8",                 TYPE_R8)
936  TYPE("VR128",               TYPE_XMM128)
937  TYPE("VR128X",              TYPE_XMM128)
938  TYPE("f128mem",             TYPE_M128)
939  TYPE("f256mem",             TYPE_M256)
940  TYPE("f512mem",             TYPE_M512)
941  TYPE("FR64",                TYPE_XMM64)
942  TYPE("FR64X",               TYPE_XMM64)
943  TYPE("f64mem",              TYPE_M64FP)
944  TYPE("sdmem",               TYPE_M64FP)
945  TYPE("FR32",                TYPE_XMM32)
946  TYPE("FR32X",               TYPE_XMM32)
947  TYPE("f32mem",              TYPE_M32FP)
948  TYPE("ssmem",               TYPE_M32FP)
949  TYPE("RST",                 TYPE_ST)
950  TYPE("i128mem",             TYPE_M128)
951  TYPE("i256mem",             TYPE_M256)
952  TYPE("i512mem",             TYPE_M512)
953  TYPE("i64i32imm_pcrel",     TYPE_REL64)
954  TYPE("i16imm_pcrel",        TYPE_REL16)
955  TYPE("i32imm_pcrel",        TYPE_REL32)
956  TYPE("SSECC",               TYPE_IMM3)
957  TYPE("AVXCC",               TYPE_IMM5)
958  TYPE("AVX512RC",            TYPE_IMM32)
959  TYPE("brtarget32",          TYPE_RELv)
960  TYPE("brtarget16",          TYPE_RELv)
961  TYPE("brtarget8",           TYPE_REL8)
962  TYPE("f80mem",              TYPE_M80FP)
963  TYPE("lea64_32mem",         TYPE_LEA)
964  TYPE("lea64mem",            TYPE_LEA)
965  TYPE("VR64",                TYPE_MM64)
966  TYPE("i64imm",              TYPE_IMMv)
967  TYPE("anymem",              TYPE_M)
968  TYPE("opaque32mem",         TYPE_M1616)
969  TYPE("opaque48mem",         TYPE_M1632)
970  TYPE("opaque80mem",         TYPE_M1664)
971  TYPE("opaque512mem",        TYPE_M512)
972  TYPE("SEGMENT_REG",         TYPE_SEGMENTREG)
973  TYPE("DEBUG_REG",           TYPE_DEBUGREG)
974  TYPE("CONTROL_REG",         TYPE_CONTROLREG)
975  TYPE("srcidx8",             TYPE_SRCIDX8)
976  TYPE("srcidx16",            TYPE_SRCIDX16)
977  TYPE("srcidx32",            TYPE_SRCIDX32)
978  TYPE("srcidx64",            TYPE_SRCIDX64)
979  TYPE("dstidx8",             TYPE_DSTIDX8)
980  TYPE("dstidx16",            TYPE_DSTIDX16)
981  TYPE("dstidx32",            TYPE_DSTIDX32)
982  TYPE("dstidx64",            TYPE_DSTIDX64)
983  TYPE("offset16_8",          TYPE_MOFFS8)
984  TYPE("offset16_16",         TYPE_MOFFS16)
985  TYPE("offset16_32",         TYPE_MOFFS32)
986  TYPE("offset32_8",          TYPE_MOFFS8)
987  TYPE("offset32_16",         TYPE_MOFFS16)
988  TYPE("offset32_32",         TYPE_MOFFS32)
989  TYPE("offset32_64",         TYPE_MOFFS64)
990  TYPE("offset64_8",          TYPE_MOFFS8)
991  TYPE("offset64_16",         TYPE_MOFFS16)
992  TYPE("offset64_32",         TYPE_MOFFS32)
993  TYPE("offset64_64",         TYPE_MOFFS64)
994  TYPE("VR256",               TYPE_XMM256)
995  TYPE("VR256X",              TYPE_XMM256)
996  TYPE("VR512",               TYPE_XMM512)
997  TYPE("VK1",                 TYPE_VK1)
998  TYPE("VK1WM",               TYPE_VK1)
999  TYPE("VK2",                 TYPE_VK2)
1000  TYPE("VK2WM",               TYPE_VK2)
1001  TYPE("VK4",                 TYPE_VK4)
1002  TYPE("VK4WM",               TYPE_VK4)
1003  TYPE("VK8",                 TYPE_VK8)
1004  TYPE("VK8WM",               TYPE_VK8)
1005  TYPE("VK16",                TYPE_VK16)
1006  TYPE("VK16WM",              TYPE_VK16)
1007  TYPE("VK32",                TYPE_VK32)
1008  TYPE("VK32WM",              TYPE_VK32)
1009  TYPE("VK64",                TYPE_VK64)
1010  TYPE("VK64WM",              TYPE_VK64)
1011  TYPE("GR16_NOAX",           TYPE_Rv)
1012  TYPE("GR32_NOAX",           TYPE_Rv)
1013  TYPE("GR64_NOAX",           TYPE_R64)
1014  TYPE("vx32mem",             TYPE_M32)
1015  TYPE("vy32mem",             TYPE_M32)
1016  TYPE("vz32mem",             TYPE_M32)
1017  TYPE("vx64mem",             TYPE_M64)
1018  TYPE("vy64mem",             TYPE_M64)
1019  TYPE("vy64xmem",            TYPE_M64)
1020  TYPE("vz64mem",             TYPE_M64)
1021  errs() << "Unhandled type string " << s << "\n";
1022  llvm_unreachable("Unhandled type string");
1023}
1024#undef TYPE
1025
1026#define ENCODING(str, encoding) if (s == str) return encoding;
1027OperandEncoding
1028RecognizableInstr::immediateEncodingFromString(const std::string &s,
1029                                               uint8_t OpSize) {
1030  if(OpSize != X86Local::OpSize16) {
1031    // For instructions without an OpSize prefix, a declared 16-bit register or
1032    // immediate encoding is special.
1033    ENCODING("i16imm",        ENCODING_IW)
1034  }
1035  ENCODING("i32i8imm",        ENCODING_IB)
1036  ENCODING("SSECC",           ENCODING_IB)
1037  ENCODING("AVXCC",           ENCODING_IB)
1038  ENCODING("AVX512RC",        ENCODING_IB)
1039  ENCODING("i16imm",          ENCODING_Iv)
1040  ENCODING("i16i8imm",        ENCODING_IB)
1041  ENCODING("i32imm",          ENCODING_Iv)
1042  ENCODING("i64i32imm",       ENCODING_ID)
1043  ENCODING("i64i8imm",        ENCODING_IB)
1044  ENCODING("i8imm",           ENCODING_IB)
1045  // This is not a typo.  Instructions like BLENDVPD put
1046  // register IDs in 8-bit immediates nowadays.
1047  ENCODING("FR32",            ENCODING_IB)
1048  ENCODING("FR64",            ENCODING_IB)
1049  ENCODING("VR128",           ENCODING_IB)
1050  ENCODING("VR256",           ENCODING_IB)
1051  ENCODING("FR32X",           ENCODING_IB)
1052  ENCODING("FR64X",           ENCODING_IB)
1053  ENCODING("VR128X",          ENCODING_IB)
1054  ENCODING("VR256X",          ENCODING_IB)
1055  ENCODING("VR512",           ENCODING_IB)
1056  errs() << "Unhandled immediate encoding " << s << "\n";
1057  llvm_unreachable("Unhandled immediate encoding");
1058}
1059
1060OperandEncoding
1061RecognizableInstr::rmRegisterEncodingFromString(const std::string &s,
1062                                                uint8_t OpSize) {
1063  ENCODING("RST",             ENCODING_FP)
1064  ENCODING("GR16",            ENCODING_RM)
1065  ENCODING("GR32",            ENCODING_RM)
1066  ENCODING("GR32orGR64",      ENCODING_RM)
1067  ENCODING("GR64",            ENCODING_RM)
1068  ENCODING("GR8",             ENCODING_RM)
1069  ENCODING("VR128",           ENCODING_RM)
1070  ENCODING("VR128X",          ENCODING_RM)
1071  ENCODING("FR64",            ENCODING_RM)
1072  ENCODING("FR32",            ENCODING_RM)
1073  ENCODING("FR64X",           ENCODING_RM)
1074  ENCODING("FR32X",           ENCODING_RM)
1075  ENCODING("VR64",            ENCODING_RM)
1076  ENCODING("VR256",           ENCODING_RM)
1077  ENCODING("VR256X",          ENCODING_RM)
1078  ENCODING("VR512",           ENCODING_RM)
1079  ENCODING("VK1",             ENCODING_RM)
1080  ENCODING("VK8",             ENCODING_RM)
1081  ENCODING("VK16",            ENCODING_RM)
1082  ENCODING("VK32",            ENCODING_RM)
1083  ENCODING("VK64",            ENCODING_RM)
1084  errs() << "Unhandled R/M register encoding " << s << "\n";
1085  llvm_unreachable("Unhandled R/M register encoding");
1086}
1087
1088OperandEncoding
1089RecognizableInstr::roRegisterEncodingFromString(const std::string &s,
1090                                                uint8_t OpSize) {
1091  ENCODING("GR16",            ENCODING_REG)
1092  ENCODING("GR32",            ENCODING_REG)
1093  ENCODING("GR32orGR64",      ENCODING_REG)
1094  ENCODING("GR64",            ENCODING_REG)
1095  ENCODING("GR8",             ENCODING_REG)
1096  ENCODING("VR128",           ENCODING_REG)
1097  ENCODING("FR64",            ENCODING_REG)
1098  ENCODING("FR32",            ENCODING_REG)
1099  ENCODING("VR64",            ENCODING_REG)
1100  ENCODING("SEGMENT_REG",     ENCODING_REG)
1101  ENCODING("DEBUG_REG",       ENCODING_REG)
1102  ENCODING("CONTROL_REG",     ENCODING_REG)
1103  ENCODING("VR256",           ENCODING_REG)
1104  ENCODING("VR256X",          ENCODING_REG)
1105  ENCODING("VR128X",          ENCODING_REG)
1106  ENCODING("FR64X",           ENCODING_REG)
1107  ENCODING("FR32X",           ENCODING_REG)
1108  ENCODING("VR512",           ENCODING_REG)
1109  ENCODING("VK1",             ENCODING_REG)
1110  ENCODING("VK2",             ENCODING_REG)
1111  ENCODING("VK4",             ENCODING_REG)
1112  ENCODING("VK8",             ENCODING_REG)
1113  ENCODING("VK16",            ENCODING_REG)
1114  ENCODING("VK32",            ENCODING_REG)
1115  ENCODING("VK64",            ENCODING_REG)
1116  ENCODING("VK1WM",           ENCODING_REG)
1117  ENCODING("VK8WM",           ENCODING_REG)
1118  ENCODING("VK16WM",          ENCODING_REG)
1119  errs() << "Unhandled reg/opcode register encoding " << s << "\n";
1120  llvm_unreachable("Unhandled reg/opcode register encoding");
1121}
1122
1123OperandEncoding
1124RecognizableInstr::vvvvRegisterEncodingFromString(const std::string &s,
1125                                                  uint8_t OpSize) {
1126  ENCODING("GR32",            ENCODING_VVVV)
1127  ENCODING("GR64",            ENCODING_VVVV)
1128  ENCODING("FR32",            ENCODING_VVVV)
1129  ENCODING("FR64",            ENCODING_VVVV)
1130  ENCODING("VR128",           ENCODING_VVVV)
1131  ENCODING("VR256",           ENCODING_VVVV)
1132  ENCODING("FR32X",           ENCODING_VVVV)
1133  ENCODING("FR64X",           ENCODING_VVVV)
1134  ENCODING("VR128X",          ENCODING_VVVV)
1135  ENCODING("VR256X",          ENCODING_VVVV)
1136  ENCODING("VR512",           ENCODING_VVVV)
1137  ENCODING("VK1",             ENCODING_VVVV)
1138  ENCODING("VK2",             ENCODING_VVVV)
1139  ENCODING("VK4",             ENCODING_VVVV)
1140  ENCODING("VK8",             ENCODING_VVVV)
1141  ENCODING("VK16",            ENCODING_VVVV)
1142  ENCODING("VK32",            ENCODING_VVVV)
1143  ENCODING("VK64",            ENCODING_VVVV)
1144  errs() << "Unhandled VEX.vvvv register encoding " << s << "\n";
1145  llvm_unreachable("Unhandled VEX.vvvv register encoding");
1146}
1147
1148OperandEncoding
1149RecognizableInstr::writemaskRegisterEncodingFromString(const std::string &s,
1150                                                       uint8_t OpSize) {
1151  ENCODING("VK1WM",           ENCODING_WRITEMASK)
1152  ENCODING("VK2WM",           ENCODING_WRITEMASK)
1153  ENCODING("VK4WM",           ENCODING_WRITEMASK)
1154  ENCODING("VK8WM",           ENCODING_WRITEMASK)
1155  ENCODING("VK16WM",          ENCODING_WRITEMASK)
1156  ENCODING("VK32WM",          ENCODING_WRITEMASK)
1157  ENCODING("VK64WM",          ENCODING_WRITEMASK)
1158  errs() << "Unhandled mask register encoding " << s << "\n";
1159  llvm_unreachable("Unhandled mask register encoding");
1160}
1161
1162OperandEncoding
1163RecognizableInstr::memoryEncodingFromString(const std::string &s,
1164                                            uint8_t OpSize) {
1165  ENCODING("i16mem",          ENCODING_RM)
1166  ENCODING("i32mem",          ENCODING_RM)
1167  ENCODING("i64mem",          ENCODING_RM)
1168  ENCODING("i8mem",           ENCODING_RM)
1169  ENCODING("ssmem",           ENCODING_RM)
1170  ENCODING("sdmem",           ENCODING_RM)
1171  ENCODING("f128mem",         ENCODING_RM)
1172  ENCODING("f256mem",         ENCODING_RM)
1173  ENCODING("f512mem",         ENCODING_RM)
1174  ENCODING("f64mem",          ENCODING_RM)
1175  ENCODING("f32mem",          ENCODING_RM)
1176  ENCODING("i128mem",         ENCODING_RM)
1177  ENCODING("i256mem",         ENCODING_RM)
1178  ENCODING("i512mem",         ENCODING_RM)
1179  ENCODING("f80mem",          ENCODING_RM)
1180  ENCODING("lea64_32mem",     ENCODING_RM)
1181  ENCODING("lea64mem",        ENCODING_RM)
1182  ENCODING("anymem",          ENCODING_RM)
1183  ENCODING("opaque32mem",     ENCODING_RM)
1184  ENCODING("opaque48mem",     ENCODING_RM)
1185  ENCODING("opaque80mem",     ENCODING_RM)
1186  ENCODING("opaque512mem",    ENCODING_RM)
1187  ENCODING("vx32mem",         ENCODING_RM)
1188  ENCODING("vy32mem",         ENCODING_RM)
1189  ENCODING("vz32mem",         ENCODING_RM)
1190  ENCODING("vx64mem",         ENCODING_RM)
1191  ENCODING("vy64mem",         ENCODING_RM)
1192  ENCODING("vy64xmem",        ENCODING_RM)
1193  ENCODING("vz64mem",         ENCODING_RM)
1194  errs() << "Unhandled memory encoding " << s << "\n";
1195  llvm_unreachable("Unhandled memory encoding");
1196}
1197
1198OperandEncoding
1199RecognizableInstr::relocationEncodingFromString(const std::string &s,
1200                                                uint8_t OpSize) {
1201  if(OpSize != X86Local::OpSize16) {
1202    // For instructions without an OpSize prefix, a declared 16-bit register or
1203    // immediate encoding is special.
1204    ENCODING("i16imm",        ENCODING_IW)
1205  }
1206  ENCODING("i16imm",          ENCODING_Iv)
1207  ENCODING("i16i8imm",        ENCODING_IB)
1208  ENCODING("i32imm",          ENCODING_Iv)
1209  ENCODING("i32i8imm",        ENCODING_IB)
1210  ENCODING("i64i32imm",       ENCODING_ID)
1211  ENCODING("i64i8imm",        ENCODING_IB)
1212  ENCODING("i8imm",           ENCODING_IB)
1213  ENCODING("i64i32imm_pcrel", ENCODING_ID)
1214  ENCODING("i16imm_pcrel",    ENCODING_IW)
1215  ENCODING("i32imm_pcrel",    ENCODING_ID)
1216  ENCODING("brtarget32",      ENCODING_Iv)
1217  ENCODING("brtarget16",      ENCODING_Iv)
1218  ENCODING("brtarget8",       ENCODING_IB)
1219  ENCODING("i64imm",          ENCODING_IO)
1220  ENCODING("offset16_8",      ENCODING_Ia)
1221  ENCODING("offset16_16",     ENCODING_Ia)
1222  ENCODING("offset16_32",     ENCODING_Ia)
1223  ENCODING("offset32_8",      ENCODING_Ia)
1224  ENCODING("offset32_16",     ENCODING_Ia)
1225  ENCODING("offset32_32",     ENCODING_Ia)
1226  ENCODING("offset32_64",     ENCODING_Ia)
1227  ENCODING("offset64_8",      ENCODING_Ia)
1228  ENCODING("offset64_16",     ENCODING_Ia)
1229  ENCODING("offset64_32",     ENCODING_Ia)
1230  ENCODING("offset64_64",     ENCODING_Ia)
1231  ENCODING("srcidx8",         ENCODING_SI)
1232  ENCODING("srcidx16",        ENCODING_SI)
1233  ENCODING("srcidx32",        ENCODING_SI)
1234  ENCODING("srcidx64",        ENCODING_SI)
1235  ENCODING("dstidx8",         ENCODING_DI)
1236  ENCODING("dstidx16",        ENCODING_DI)
1237  ENCODING("dstidx32",        ENCODING_DI)
1238  ENCODING("dstidx64",        ENCODING_DI)
1239  errs() << "Unhandled relocation encoding " << s << "\n";
1240  llvm_unreachable("Unhandled relocation encoding");
1241}
1242
1243OperandEncoding
1244RecognizableInstr::opcodeModifierEncodingFromString(const std::string &s,
1245                                                    uint8_t OpSize) {
1246  ENCODING("GR32",            ENCODING_Rv)
1247  ENCODING("GR64",            ENCODING_RO)
1248  ENCODING("GR16",            ENCODING_Rv)
1249  ENCODING("GR8",             ENCODING_RB)
1250  ENCODING("GR16_NOAX",       ENCODING_Rv)
1251  ENCODING("GR32_NOAX",       ENCODING_Rv)
1252  ENCODING("GR64_NOAX",       ENCODING_RO)
1253  errs() << "Unhandled opcode modifier encoding " << s << "\n";
1254  llvm_unreachable("Unhandled opcode modifier encoding");
1255}
1256#undef ENCODING
1257